Skip to main content

The Multiple Properties of Some of the Lichenized Ascomycetes: Biological Activity and Active Metabolites

  • Chapter
  • First Online:
Plant Adaptation Strategies in Changing Environment

Abstract

The main objective of this chapter was to describe the physicochemical and biological characteristics of selected lichenized ascomycetes and the influence of their physiologically active compounds on human health, through scientifically proven information. The chapter presents the biologically active metabolites derived from lichen species (polyphenols, volatile compounds, lipids, phospholipids, fatty acids, and organic acids). Lichens and their metabolites have been demonstrated to possess numerous biological activities, including antiviral, antibacterial, antitumor, and enzyme inhibitory activity. The influence of environmental factors on the lipid and fatty acid composition of some lichen species has also been reported. Lichens are easily exposed to halogens, which are present in polluted air. We present chlorinated metabolites, which are isolated from various species of lichens. Chlorine is one of the main pollutants in nature. The structures of about 50 chlorinated metabolites of phenolic nature generated by lichenized ascomycetes are considered. Some active lichen substances are used in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Dembitsky VM (1988) Quantification of plasmalogen, alkyl-acyl- and diacyl-glycerolipids by micro-thin-layer chromatography. J Chromatogr 436:467–473

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (1992) Lipids of lichens. Prog Lipid Res 31:373–397

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35:1–51

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2002) Bromo and iodo containing alkaloids of marine microorganisms and sponges. Russ Bioorg Chem 28:196–208

    CAS  Google Scholar 

  • Dembitsky VM (2003a) Lichens: nature’s pioneers. INFORM, Amer Oil Chem Soc 14:30–34

    Google Scholar 

  • Dembitsky VM (2003b) Oxidation, epoxidation, and sulfoxidation reactions catalyzed by haloperoxidases. Tetrahedron 59:4701–4720

    Article  CAS  Google Scholar 

  • Dembitsky VM (2004a) Chemistry and biodiversity of biologically active natural glycosides. Chem Biodivers 1:673–781

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2004b) Astonishing diversity of natural surfactants. 1. Glycosides of fatty acids and alcohols. Lipids 39:933–953

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2005a) Astonishing diversity of natural surfactants. 2. Polyether glycosidic ionophores and macrocyclic glycosides. Lipids 40:219–248

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2005b) Astonishing diversity of natural surfactants. 3. Carotenoid glycosides and isoprenoid glycolipids. Lipids 40:535–557

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2005c) Astonishing diversity of natural surfactants. 4. Fatty acid amide glycosides, their analogues and derivatives. Lipids 40:641–660

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2005d) Astonishing diversity of natural surfactants. 5. Biological active glycosides of aromatic metabolites. Lipids 40:869–900

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2005e) Astonishing diversity of natural surfactants. 6. Biological active marine and terrestrial alkaloid glycosides. Lipids 40:1081–1105

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2006a) Natural neo acids and neo alkanes: their analogues and derivatives. Lipids 41:309–340

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM (2006b) Anticancer activity of natural and synthetic acetylenic lipids. Lipids 41:883–924

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Levitsky DO (2004) Arsenolipids. Prog Lipid Res 43:403–448

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Maoka T (2007) Allenic and cumulenic lipids. Prog Lipid Res 46:328–375

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Rezanka T (2003) Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Sci 165:1177–1192

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rezanka T (2005) Metabolites produced by nitrogen-fixing Nostoc species. Folia Microbiol 50:363–391

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rozentsvet OA (1989) Diacylglyceryltrimethylhomoserines and phospholipids of some green marine macrophytes. Phytochemistry 28:3341–3343

    Article  Google Scholar 

  • Dembitsky VM, Rozentsvet OA (1993) Phospholipid composition of some marine red algae. Phytochemistry 29:3149–3152

    Google Scholar 

  • Dembitsky VM, Srebnik M (2002) Natural halogenated fatty acids: their analogues and derivatives. Prog Lipid Res 41:315–367

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Tolstikov GA (2000) Natural halogen carbonic acids. Chem Sustain Dev 8:623–643

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2001) Natural chloro containing alkaloids. Chem Sustain Dev 9:169–181

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2002a) Natural halogenated diterpenes. Chem Sustain Dev 3:269–280

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2002b) Chloro-containing sesquiterpenes of plants. Chem Sustain Dev 4:383–390

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2002c) Natural halogenated sesquiterpenes of marine organisms. Chem Sustain Dev 10:383–390

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2002d) Natural halogenated С15 acetogenines of marine organisms. Chem Sustain Dev 11:329–340

    Google Scholar 

  • Dembitsky VÐœ, Tolstikov GA (2003a) Natural organic halogenated compounds. Geo-Science Publishing House, Novosibirsk, p 367

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2003b) Natural halogenated furanones, terpenes and sterols. Chem Sustain Dev 11:699–705

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2003c) Natural halogenated polyacrylamides. Chem Sustain Dev 11:341–348

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2003d) Natural halogenated alkaloids. Chem Sustain Dev 11:461–476

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2003e) Natural halogenated complex phenols. Chem Sustain Dev 11:819–830

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2003f) Halogenated phenols of lichens and fungi. Chem Sustain Dev 11:569–578

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2003g) Natural halogenated simple phenols and derivatives. Chem Sustain Dev 11:579–587

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2003h) Natural halogenated macrolides, tetracyclines and quinones. Chem Sustain Dev 11:689–698

    Google Scholar 

  • Dembitsky VM, Tolstikov GA (2004a) Natural halogenated sesquiterpenes marine organisms. Chem Sustain Dev 12:1–12

    Article  Google Scholar 

  • Dembitsky VM, Tolstikov GA (2004b) Natural halogenated xantones. Chem Sustain Dev 12:13–18

    Google Scholar 

  • Dembitsky VÐœ, Tolstikov GA (2005) Organic metabolites of lichens. Geo-Science, Novosibirsk, p 135

    Google Scholar 

  • Dembitsky VM, Rozentsvet OA, Pechenkina EE (1990) Glycolipids, phospholipids and fatty acids of brown algae species. Phytochemistry 29:3417–3421

    Article  CAS  Google Scholar 

  • Dembitsky VM, Pechenkina-Shubina EE, Rozentsvet OA (1991a) Glycolipids and fatty acids of some seaweeds and marine grasses from the Black Sea. Phytochemistry 30:2279–2283

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA, Shustov MV (1991b) Identification of fatty acids from Cladonia lichens. Phytochemistry 30:4015–4018

    Google Scholar 

  • Dembitsky VM, Shustov MV, Rozentsvet OA, Bychek IA (1991c) Phospholipid and fatty acid compositions of some lichen species from the Volga river basin. Phytochemistry 30:837–839

    Article  Google Scholar 

  • Dembitsky VM, Bychek IA, Rozentsvet OA, Shustov MV (1992a) Fatty acid and phospholipid compositions of some lichen species from the Volga river basin. Cryptogam Bot 2:391–394

    Google Scholar 

  • Dembitsky VM, Bychek IA, Kashin AG (1992b) Chemical constituents of some lichen species. J Hattori Bot Lab 71:255–262

    Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA, Shustov MV (1992c) Fatty acid composition of Parmelia lichens. Phytochemistry 31:841–843

    Article  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA (1992d) Lipid composition of some lichens. Phytochemistry 31:1617–1620

    Article  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA (1992e) Fatty acid and phospholipids from lichens of the order Leconorales. Phytochemistry 31:851–853

    Article  Google Scholar 

  • Dembitsky VM, Bychek IA, Rozentsvet OA (1993a) Diacylglyceryltrimethyl-homoserine and phospholipid composition of some lichen species. Phytochemistry 34:1535–1536

    Google Scholar 

  • Dembitsky VM, Rezanka T, Rozentsvet OA (1993b) Lipid composition of three macrophytes from the Caspian Sea. Phytochemistry 33:1015–1019

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rezanka T, Shubina EE (1993c) Unusual hydroxy fatty acids from some fungi. Phytochemistry 34:1057–1059

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rezanka T, Shubina EE (1993d) Chemical constituents of some higher fungi. 2. Fatty acid composition of ascomycetes. Cryptogam Bot 3:378–381

    Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA (1994a) Seasonal variability of lipids of lipids and fatty acids in the tree-growing lichen Xanthoria parietina. J Exp Bot 45:403–408

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA (1994b) Seasonal examination of lipids of the tree-growing lichen of genus Physcia. Phytochemistry 36:601–608

    Article  CAS  Google Scholar 

  • Dembitsky VM, Smoum R, Al-Quntar AA, Abu Ali H, Pergament I, Srebnik M (2002) Natural occurrence of boron-containing compounds in plants, algae and microorganisms. Plant Sci 163:931–942

    Article  CAS  Google Scholar 

  • Dembitsky VM, Terent’ev AO, Levitsky DO (2010) Amino and fatty acids of wild edible mushrooms of the genus Boletus. Rec Nat Prod 4:218–223

    CAS  Google Scholar 

  • Dembitsky VM, Quntar A, Srebnik M (2011) Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev 111:209–237

    Google Scholar 

  • Enk DC, Hochberg M, Torres A, Lev O, Dor I, Niddam V, Dembitsky VM, Srebnik M (2002) Natural UV filters derived from pigments of lichens (Sept. 03), Israel Patent Application: IL02/00725

    Google Scholar 

  • Enk DC, Srebnik M, Lev O, Hochberg M, Dor I, Torres-Kerner A, Dembitsky VM (2003) Verwendung Von Natü Rlichen Pigmenten Aus Flechten, Cyanobakterien, Pilzen Und Pflanzen Zum Sonnenschutz. WO 2003/020236 2003/11 13.03.2003. German Patent

    Google Scholar 

  • Enk CD, Hochberg M, Torres A, Dor I, Lev O, Srebnik M, Dembitsky VM (2004) Photoprotection by Cichorium endivia extracts: prevention of UVB-induced erythema, pyrimidine dimer formation and IL-6 expression. Skin Pharmacol Appl Ski Physiol 17:19–28

    Google Scholar 

  • Enk CD, Srebnik M, Lev O, Hochberg M, Dor I, Torres-Kerner A, Dembitsky VM (2005) Utilization of natural pigments from lichens, cyanobacteria, fungi and plants for sun protection, US Patent #20050129630, 06.15.2005, Application 424059000 (USPTO), A61K007/42 (Intl Class)

    Google Scholar 

  • Go JV, Řezanka T, Dembitsky VM (2002) Variability of fatty acid components of marine and freshwater gastropod species from the littoral zone of the Red Sea, Mediterranean Sea, and Sea of Galilee. Biochem Syst Ecol 30:819–835

    Article  CAS  Google Scholar 

  • Hanus LO, Dembitsky VM, Moussaieff A (2006) Comparative studies of the volatile compounds from fresh fruits of Mandragora autumnalis. Acta Chromatogr 17:151–160

    Google Scholar 

  • Hanus LO, Moussaieff A, Rezanka T, Abu-Lafi S, Dembitsky VM (2007) Phytochemical analysis and comparison for differentiation of Boswellia carterii and B. serrata. Nat Prod Commun 2:139–142

    Google Scholar 

  • HanuÅ¡ LO, Shkrob I, Dembitsky VM (2008a) Lipids and fatty acids of wild edible mushrooms of the genus Boletus. J Food Lipids 15:370–383

    Article  Google Scholar 

  • HanuÅ¡ LO, Temina M, Dembitsky VM (2008b) Antibacterial and antifungal activities of phenolic metabolites from lichenized ascomycete Ramalina lacera. Nat Prod Commun 3:233–236

    Google Scholar 

  • HanuÅ¡ LO, Temina M, Dembitsky VM (2008c) Biodiversity of chemical constituents by the epiphytic lichenized ascomycete Ramalina lacera grows on Crataegus sinaicus, Pinus halepensis, and Quercus calliprinos. Biomed Papers 152:203–208

    Article  Google Scholar 

  • Hawksworth D, Hill D (1984) The lichen-forming fungi. Blackie. 158

    Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87(9):888–891

    Google Scholar 

  • Huneck S (2001) New results on the chemistry of lichen substances. Progress in the chemistry of organic natural products, vol 81. Springer, Vienna, p 313

    Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin

    Book  Google Scholar 

  • Purvis W (2010) Lichens. Natural history museum. Softcover, p 112

    Google Scholar 

  • Rezanka T, Dembitsky VM (1993) Occurrence of C40-C130 polyisoprenoid alcohols in lower plants. Phytochemistry 34:1335–1339

    Article  CAS  Google Scholar 

  • Rezanka T, Dembitsky VM (1999a) Bromo-containing fatty acids of Acorospora gobiensis lichen. Phytochemistry 50:97–99

    Article  CAS  Google Scholar 

  • Rezanka T, Dembitsky VM (1999b) Novel brominated lipidic compounds from lichen of Central Asia. Phytochemistry 51:963–968

    Article  CAS  PubMed  Google Scholar 

  • Rezanka T, Dembitsky VM (2001) Bromoallenic lipid compounds from lichens of Central Asia. Phytochemistry 56:869–874

    Article  CAS  PubMed  Google Scholar 

  • Rezanka T, Dembitsky VM (2003) Identification of acylated xanthone glycosides by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry in positive and negative modes from the lichen Umbilicaria proboscidea. J Chromatogr A 995:109–118

    Article  CAS  PubMed  Google Scholar 

  • Rezanka T, Dembitsky VM (2006a) Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae. Folia Microbiol 51:159–182

    Google Scholar 

  • Řezanka T, Dembitsky VM (2006b) The colleflaccinosides, two chiral bianthraquinone glycosides with antitumor activity from the lichen Collema flaccidum collected in Israel and Russia. Nat Prod Res 20:969–980

    Google Scholar 

  • Rezanka T, Jáchymová J, Dembitsky VM (2003) Prenylated xanthone glucosides from Ural’s lichen Umbilicaria proboscidea. Phytochemistry 62:607–612

    Article  CAS  PubMed  Google Scholar 

  • Rezanka T, Temina M, Tolstikov AG, Dembitsky VM (2004a) Natural microbial UV radiation filters – mycosporine-like amino acids. Folia Microbiol 49:339–352

    Article  CAS  Google Scholar 

  • Rezanka T, Temina M, HanuÅ¡ L, Dembitsky VM (2004b) Tornabeatins, four new tetrahydro-2-furanone derivatives, from the lichenized ascomycete Tornabea scutellifera (With.) J.R. Laundon. Phytochemistry 65:2605–2612

    Article  CAS  PubMed  Google Scholar 

  • Temina M, Levitsky DO, Dembitsky VM (2010) Chemical constituents of the epiphytic and Lithophilic lichens of the genus Collema. Rec Nat Prod 4:79–86

    CAS  Google Scholar 

  • Torres A, Dor I, Rottem E, Srebnik M, Dembitsky VM (2003) n-Alkane and fatty acid variations in the lichen Xanthoria parietina, their photobiont Trebouxia sp. and mycobiont, from Jerusalem hills. Eur J Biochem 270:2120–2125

    Article  CAS  PubMed  Google Scholar 

  • Torres A, Hochberg M, Pergament I, Smoum R, Niddam V, Dembitsky VM, Temina M, Dor I, Lev O, Srebnik M, Enk CD (2004) A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur J Biochem 271:780–784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank two anonymous reviewers for their helpful comments that significantly improved the manuscript as well as Ms. Jenny Dembitsky for her valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dembitsky, V.M. (2017). The Multiple Properties of Some of the Lichenized Ascomycetes: Biological Activity and Active Metabolites. In: Shukla, V., Kumar, S., Kumar, N. (eds) Plant Adaptation Strategies in Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-6744-0_8

Download citation

Publish with us

Policies and ethics