Skip to main content

Microbial Degradation of Phenol and Phenolic Compounds

  • Chapter
  • First Online:
Recent Advances in Microbial Degradation

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Phenol and phenolic compounds play an essential role in various modern-day industries. However, due to the toxic and recalcitrant nature of phenolic compounds, these compounds have a detrimental effect on the environment and aquatic life. In the recent past, different physicochemical methods have been employed by various researchers for phenol remediation. However, higher cost and generation of secondary pollutants are primary concerns associated with physiochemical treatment. Alternately recent advances in biological treatment have improved our understanding of bioremediation. Biological treatments such as microbial fuel cells and microalgae are gaining popularity for the treatment of phenolic compounds. These processes are less energy and chemical-intensive and can also achieve higher removal efficiency under optimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarry SE, Audu TOK, Solomon BO (2010) Kinetics of batch microbial degradation of phenols by indigenous binary mixed culture of Pseudomonas aeruginosa and Pseudomonas fluorescens. Int J Environ Pollut 43(1–3):177–189. https://doi.org/10.1504/IJEP.2010.035922

    Article  CAS  Google Scholar 

  • Al-Khalid T, El-Naas MH (2012) Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Environ Sci Technol 42(16):1631–1690. https://doi.org/10.1080/10643389.2011.569872

    Article  CAS  Google Scholar 

  • Aravindhan R, Rao JR, Nair BU (2009) Application of a chemically modified green macro alga as a biosorbent for phenol removal. J Environ Manag 90(5):1877–1883

    Article  CAS  Google Scholar 

  • Collins G, Foy C, McHugh S, Mahony T, O’Flaherty V (2005) Anaerobic biological treatment of phenolic wastewater at 15–18°C. Water Res 39(8):1614–1620. https://doi.org/10.1016/j.watres.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  • Dayana Priyadharshini S, Bakthavatsalam AK (2016) Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman design and response surface methodology. Bioresour Technol 207:150–156

    Article  CAS  Google Scholar 

  • Dong Y, Qu Y, He W, Du Y, Liu J, Han X, Feng Y (2015) A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour Technol 195:66–72

    Article  CAS  Google Scholar 

  • Dotto GL, Gonçalves JO, Cadaval TRS, Pinto LAA (2013) Biosorption of phenol onto bionanoparticles from Spirulina Sp. LEB 18. J Colloid Interface Sci 407:450–456

    Article  CAS  Google Scholar 

  • Eio EJ, Kawai M, Niwa C, Ito M, Yamamoto S, Toda T (2015) Biodegradation of bisphenol a by an algal-bacterial system. Environ Sci Pollut Res 22(19):15145–15153

    Article  CAS  Google Scholar 

  • Eismann F, Kuschek P, Stottmeister U (1997) Microbial phenol degradation of organic compounds in natural systems: temperature-inhibition relationships. Environ Sci Pollut Res 4(4):203–207. https://doi.org/10.1007/BF02986346

    Article  CAS  Google Scholar 

  • Ellis BE (1977) Degradation of phenolic compounds by fresh-water algae. Plant Sci Lett 8(3):213–216

    Article  CAS  Google Scholar 

  • Franchi O, Rosenkranz F, Chamy R (2018) Key microbial populations involved in anaerobic degradation of phenol and p-cresol using different inocula. Electron J Biotechnol 35:33–38. https://doi.org/10.1016/j.ejbt.2018.08.002

    Article  CAS  Google Scholar 

  • Ge Z, Wu L, Zhang F, He Z (2015) Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. J Power Sources 297:260–264

    Article  CAS  Google Scholar 

  • Guieysse B, Wikström P, Forsman M, Mattiasson B (2001) Biomonitoring of continuous microbial community adaptation towards more efficient phenol-degradation in a fed-batch bioreactor. Appl Microbiol Biotechnol 56(5–6):780–787. https://doi.org/10.1007/s002530100676

    Article  CAS  PubMed  Google Scholar 

  • He Q, Xie Z, Fu Z, Wang H, Chen L, Gao S et al (2020) Effects of phenol on extracellular polymeric substances and microbial communities from aerobic granular sludge treating low strength and salinity wastewater. Sci Total Environ 752:141785. https://doi.org/10.1016/j.scitotenv.2020.141785

    Article  CAS  PubMed  Google Scholar 

  • Hedbavna P, Rolfe SA, Huang WE, Thornton SF (2016) Biodegradation of phenolic compounds and their metabolites in contaminated groundwater using microbial fuel cells. Bioresour Technol 200:426–434

    Article  CAS  Google Scholar 

  • Hirooka T, Akiyama Y, Tsuji N, Nakamura T, Nagase H, Hirata K, Miyamoto K (2003) Removal of hazardous phenols by microalgae under photoautotrophic conditions. J Biosci Bioeng 95(2):200–203

    Article  CAS  Google Scholar 

  • Huang L, Chai X, Quan X, Logan BE, Chen G (2012) Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol 111:167–174

    Article  CAS  Google Scholar 

  • Juang RS, Wu CY (2007) Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contactors. Chemosphere 66(1):191–198. https://doi.org/10.1016/j.chemosphere.2006.04.070

    Article  CAS  PubMed  Google Scholar 

  • Karim AV, Krishnan S, Pisharody L, Malhotra M (2020) Application of ferrate for advanced water and wastewater treatment. In: Advanced oxidation processes-applications, trends, and prospects. IntechOpen, London

    Google Scholar 

  • Khan N, Anwer AH, Ahmad A, Sabir S, Khan MZ (2020) Investigating microbial fuel cell aided bio-remediation of mixed phenolic contaminants under oxic and anoxic environments. Biochem Eng J 155:107485

    Article  CAS  Google Scholar 

  • Klekner V, Kosaric N (1992) Degradation of phenols by algae. Environ Technol 13(5):493–501

    Article  CAS  Google Scholar 

  • Koch B, Ostermann M, Höke H, Hempel DC (1991) Sand and activated carbon as biofilm carriers for microbial degradation of phenols and nitrogen-containing aromatic compounds. Water Res 25(1):1–8. https://doi.org/10.1016/0043-1354(91)90091-4

    Article  CAS  Google Scholar 

  • Krastanov A, Alexieva Z, Yemendzhiev H (2013) Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 13(1):76–87. https://doi.org/10.1002/elsc.201100227

    Article  CAS  Google Scholar 

  • Lal K, Garg A (2015) Catalytic wet oxidation of phenol under mild operating conditions: development of reaction pathway and sludge characterization. Clean Techn Environ Policy 17(1):199–210

    Article  CAS  Google Scholar 

  • Larsen C, Yu ZH, Flick R, Passeport E (2019) Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Sci Total Environ 695:133772

    Article  CAS  Google Scholar 

  • Levén L, Nyberg K, Schnürer A (2012) Conversion of phenols during anaerobic digestion of organic solid waste - a review of important microorganisms and impact of temperature. J Environ Manag 95(Suppl):S99–S103. https://doi.org/10.1016/j.jenvman.2010.10.021

    Article  CAS  Google Scholar 

  • Li Y, Du Q, Liu T, Sun J, Jiao Y, Xia Y, Xia L, Wang Z, Zhang W, Wang K, Zhu H, Wu D (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47(8):1898–1904

    Article  CAS  Google Scholar 

  • Li B, Liu XN, Tang C, Zhou J, Wu XY, Xie XX, Wie P, Jia HH, Yong XY (2019) Degradation of phenolic compounds with simultaneous bioelectricity generation in microbial fuel cells: influence of the dynamic shift in anode microbial community. Bioresour Technol 291:121862

    Article  CAS  Google Scholar 

  • Li CM, Wu HZ, Wang YX, Zhu S, Wei CH (2020) Enhancement of phenol biodegradation: metabolic division of labor in co-culture of Stenotrophomonas sp. N5 and Advenella sp. B9. J Hazard Mater 400:123214. https://doi.org/10.1016/j.jhazmat.2020.123214

    Article  CAS  PubMed  Google Scholar 

  • Lima SAC, Raposo MFJ, Castro PML, Morais RM (2004) Biodegradation of P-chlorophenol by a microalgae consortium. Water Res 38(1):97–102

    Article  CAS  Google Scholar 

  • Long M, Zeng C, Wang Z, Xia S, Zhou C (2020) Complete dechlorination and mineralization of para-chlorophenol (4-CP) in a hydrogen-based membrane biofilm reactor (MBfR). J Clean Prod 276:123257. https://doi.org/10.1016/j.jclepro.2020.123257

    Article  CAS  Google Scholar 

  • Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147(2–3):259–264

    Article  CAS  Google Scholar 

  • Malhotra M, Suresh S, Garg A (2018) Tea waste derived activated carbon for the adsorption of sodium diclofenac from wastewater: adsorbent characteristics, adsorption isotherms, kinetics, and thermodynamics. Environ Sci Pollut Res 25(32):32210–32220

    Article  CAS  Google Scholar 

  • Milner EM, Popescu D, Curtis T, Head IM, Scott K, Eileen HY (2016) Microbial fuel cells with highly active aerobic biocathodes. J Power Sources 324:8–16

    Article  CAS  Google Scholar 

  • Moreno L, Nemati M, Predicala B (2018) Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes. Environ Technol 39(2):144–156

    Article  CAS  Google Scholar 

  • Morris JM, Jin S (2007) Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Environ Sci Health A 43(1):18–23

    Article  Google Scholar 

  • Mostafa A, Im S, Lee MK, Song YC, Kim DH (2020) Enhanced anaerobic digestion of phenol via electrical energy input. Chem Eng J 389:124501. https://doi.org/10.1016/j.cej.2020.124501

    Article  CAS  Google Scholar 

  • Papazi A, Karamanli M, Kotzabasis K (2019) Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus—the biodegradation strategy of microalgae. J Biotechnol 296:61–68

    Article  CAS  Google Scholar 

  • Peng Z’e, Wu F, Deng N (2006) Photodegradation of bisphenol a in simulated lake water containing algae, humic acid and ferric ions. Environ Pollut 144(3):840–846

    Article  CAS  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soci Lond Ser B 84(571):260–276

    Article  Google Scholar 

  • Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54(3):745–756

    Article  Google Scholar 

  • Rosenkranz F, Cabrol L, Carballa M, Donoso-Bravo A, Cruz L, Ruiz-Filippi G et al (2013) Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR. Water Res 47(17):6739–6749. https://doi.org/10.1016/j.watres.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  • Shivaraman N, Kumaran P, Pandey RA, Chatterjee SK, Chowdhary KR, Parhad NM (1985) Microbial degradation of thiocyanate, phenol and cyanide in a completely mixed aeration system. Environ Pollut Ser A 39:141–150

    Article  CAS  Google Scholar 

  • Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N (2016) A short review of techniques for phenol removal from wastewater. Curr Pollut Rep 2(3):157–167

    Article  CAS  Google Scholar 

  • Wang J, Wu B, Sierra JM, He C, Hu Z, Wang W (2020) Influence of particle size distribution on anaerobic degradation of phenol and analysis of methanogenic microbial community. Environ Sci Pollut Res 27(10):10391–10403. https://doi.org/10.1007/s11356-020-07665-z

    Article  CAS  Google Scholar 

  • Wu H, Wang M, Zhu S, Xie J, Preis S, Li F, Wei C (2019) Structure and function of microbial community associated with phenol co-substrate in degradation of benzo[a]pyrene in coking wastewater. Chemosphere 228:128–138. https://doi.org/10.1016/j.chemosphere.2019.04.117

    Article  CAS  PubMed  Google Scholar 

  • Xiao P, Kondo R (2020) Biodegradation and biotransformation of pentachlorophenol by wood-decaying white rot fungus Phlebia acanthocystis TMIC34875. J Wood Sci 66(1):2. https://doi.org/10.1186/s10086-020-1849-6

    Article  CAS  Google Scholar 

  • Yan W, Sun F, Liu J, Zhou Y (2018) Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration. Chem Eng J 352(June):1–9. https://doi.org/10.1016/j.cej.2018.06.187

    Article  CAS  Google Scholar 

  • Yang J, Zhou M, Zhao Y, Zhang C, Hu Y (2013) Electrosorption driven by microbial fuel cells to remove phenol without external power supply. Bioresour Technol 150:271–277

    Article  CAS  Google Scholar 

  • Zhang D, Li Z, Zhang C, Zhou X, Xiao Z, Awata T, Katayama A (2017) Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell. J Biosci Bioeng 123(3):364–369

    Article  CAS  Google Scholar 

  • Zheng H, Guo W, Li S, Chen Y, Wu Q, Feng X, Yin R, Ho SH, Ren N, Chang JS (2017) Adsorption of P-Nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism. Bioresour Technol 244:1456–1464

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malhotra, M., Gupta, D., Sahani, J., Singh, S. (2021). Microbial Degradation of Phenol and Phenolic Compounds. In: Inamuddin, .., Ahamed, M.I., Prasad, R. (eds) Recent Advances in Microbial Degradation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0518-5_11

Download citation

Publish with us

Policies and ethics