Skip to main content

Triggering Mechanisms of Tsunamis in the Gulf of Cadiz and the Alboran Sea: An Overview

  • Chapter
  • First Online:
Historical Earthquakes, Tsunamis and Archaeology in the Iberian Peninsula

Abstract

The Gulf of Cadiz and the Alboran Sea are characterized by tectonic activity due to oblique convergence at the boundary between the Eurasian and Nubian plates. This activity has favored a variety of tsunamigenic sources: basically, seismogenic faults and submarine landslides. The main tsunamigenic faults in the Gulf of Cadiz would comprise the thrust systems of Gorringe Ridge, Marquês de Pombal, São Vicente Canyon, and Horseshoe faults with a high susceptibility; meanwhile in the Alboran Sea would be the thrust system of the northern Alboran Ridge with high susceptibility, and the thrust systems of north Xauen and Adra margin, the transpressive segment of Al Idrissi fault, and the Yusuf-Habibas and Averroes faults, with moderate to high susceptibility. The areas with the greatest potential to generate tsunamigenic submarine landslides are in the Gulf of Cadiz, the São Vicente Canyon, Hirondelle Seamount, and Gorringe Ridge; and in the Alboran Sea are the southern and northern flanks of Alboran Ridge. Both sources are likely to generate destructive tsunamis in the Gulf of Cadiz, given its history of bigger earthquakes (>7 Mw) and larger landslides. To fully assess tsunamigenic sources, further work needs to be performed. In the case of seismogenic faults, research focus on geometry, offsets, timing, paleoearthquakes, and recurrence, and in landslides on early post-failure evolution, age, events, and recurrence. In situ measurements, paleotsunami records, and long-term monitoring, in addition to major modeling developments, will be also necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso B, Ercilla G (2003) Small turbidite systems in a complex tectonic setting (SW Mediterranean Sea): morphology and growth patterns. Mar Pet Geol 19(10):1225–1240

    Article  Google Scholar 

  • Alonso B, Ercilla G, Vázquez JT et al (2012) Caracterización morfo-sísmica de las inestabilidades sedimentarias del sector oriental del Mar de Alborán durante el Cuaternario (SO Mediterráneo). Geo-Temas 13:561–564

    Google Scholar 

  • Alonso B, Ercilla G, Garcia M et al (2014) Quaternary mass-transport deposits on the North-Eastern Alboran Seamounts (SW Mediterranean Sea). In: Krastel S et al (eds) Submarine mass movements and their consequences: 6th international symposium. Advances in natural and technological hazards research, vol 37. Springer, Cham, pp 561−570

    Google Scholar 

  • Álvarez-Gómez JA, Aniel-Quiroga Í, González M et al (2011a) Scenarios for earthquake-generated tsunamis on a complex tectonic area of diffuse deformation and low velocity: the Alboran Sea, Western Mediterranean. Marine Geol 284(1–4):55–73

    Article  Google Scholar 

  • Álvarez-Gómez JA, Aniel-Quiroga Í, González M et al (2011b) Tsunami hazard at the Western Mediterranean Spanish coast from seismic sources. Nat Hazards Earth Syst Sci 11:227–240. https://doi.org/10.5194/nhess-11-227-2011

    Article  Google Scholar 

  • Argus DF, Gordon RG, DeMets C, Stein S (1989) Closure of the Africa-Eurasia-North America plate motion circuit and tectonics of the gloria fault. J Geophys Res 94(B5):5585–5602

    Article  Google Scholar 

  • Assier-Rzadkiewic S, Heinrich P, Sabatier PC et al (2000) numerical modelling of a landslide-generated Tsunami: the 1979 nice event. Pure Appl Geophys 157:1707–1727. https://doi.org/10.1007/PL00001057

    Article  Google Scholar 

  • Bakun WH, Wentworth CM (1997) Estimating earthquake location and magnitude from seismic intensity data. Bull Seismol Soc Am 87:1502–1521

    Google Scholar 

  • Ballesteros M, Rivera J, Muñoz A et al (2008) Alboran Basin, southern Spain—Part II: neogene tectonic implications for the orogenic float model. Mar Pet Geol 25:75–101

    Article  Google Scholar 

  • Baraza J, Ercilla G, Nelson CH (1999) Potential geologic hazards on the eastern Gulf of Cadiz slope (SW Spain). Mar Geol 155(1–2):191–215

    Article  Google Scholar 

  • Bartolomé R, Gràcia E, Stich D et al (2012) Evidence for active strike-slip faulting along the Eurasia-Africa convergence zone: implications for seismic hazard in the southwest Iberian margin. Geology 40(6):495–498

    Article  Google Scholar 

  • Batista MA, Miranda J, Chierici F et al (2003) New study of the 1755 earthquake source based on multichannel seismic survey data and tsunami modeling. Nat Hazards Earth Syst Sci 3:330–340

    Google Scholar 

  • Bell JW, Amelung F, King GCP (1997) Preliminary late quaternary slip history of the Carboneras fault, southeastern Spain. J Geodyn 24:51–66

    Article  Google Scholar 

  • Bourgois J, Mauffret A, Ammar A et al (1992) Multichannel seismic data imaging of inversion tectonics of the Alboran Ridge (Western Mediterranean Sea). Geo-Marines Lett 12(2–3):117–122

    Article  Google Scholar 

  • Bryant EA (2014) Tsunami: The Underrated Hazard, 3rd edn. Springer, Berlin-Heidelberg

    Google Scholar 

  • Buforn E, Udías A, Colombás MA (1988) Seismicity, source mechanism and tectonics of the Azores-Gibraltar plate boundary. Tectonophysics 152:89–118

    Article  Google Scholar 

  • Buforn E, Udías A, Madariaga R (1991) Intermediate and deep earthquakes in Spain. Pure Appl Geophys 136:375–393

    Article  Google Scholar 

  • Buforn E, Pro C, Sanz de Galdeano C, Cantavella JV et al (2017) The 2016 south Alboran earthquake (Mw = 6.4): a reactivation of the Ibero-Maghrebian región? Tectonophysics 712–713:704–715

    Article  Google Scholar 

  • Buforn E, Coca P, Bezzeghoud M, Udías A et al (2019) The destructive 1790 Oran (NW Algeria) earthquake in a region of low seismicity. Tectonophysics 759:1–14

    Article  Google Scholar 

  • Buforn E, Udías A, Pro C (2015) Large earthquakes at the Ibero-Maghrebian region: basis for an EEWS. Pure Appl Geophys 172(9):2387–2396

    Google Scholar 

  • Cabieces R, Buforn E, Cesca S et al (2020) Focal parameters of earthquakes offshore Cape St. Vincent using an amphibious network. Pure Appl Geophys 177:1781–1800

    Article  Google Scholar 

  • Casas D, Ercilla G, Yenes F et al (2011) The Baraza slide: model and dynamics. Marine Geophys Res 32:245–256

    Article  Google Scholar 

  • Casas D, Casalbore D, Yenes M et al (2015) Submarine mass movements around the Iberian Peninsula. The building of continental margins through hazardous processes. Boletín Geológico y Minero 126(2–3):257–278

    Google Scholar 

  • Chalouan A, Galindo-Zaldívar J, Akil M et al (2006) Tectonic wedge escape in the southwestern front of the Rif Cordillera (Morocco). Geol Soc Lond 262:101–118

    Article  Google Scholar 

  • Chalouan A, Gil AJ, Galindo-Zaldívar J et al (2014) Active faulting in the frontal Rif Cordillera (Fes region, Morocco): constraints from GPS data. J Geodyn 77:110–122

    Article  Google Scholar 

  • Comas MC, García-Dueñas V, Jurado MJ (1992) Neogene tectonic evolution of the Alboran Sea from MCS data. Geo-Marines Lett 12(2–3):157–164

    Article  Google Scholar 

  • Comas, MC, Platt JP, Soto JI et al (1999) The origin and tectonic history of the Alboran Basin: insights from Leg 161 results. In: Zahn R, Comas MC, Klaus A (eds) Proceedings of the ocean drilling program scientific results 161. Ocean Drilling Program, College Station, pp 555–580

    Google Scholar 

  • Costa PJM, Leroy SAG, Kershaw S et al (2005) Tsunamis: causes, behaviour and sedimentary signature. Studies on the AD 1755 (Portugal). In: Martínez-Frías J, Madero J (eds) Meteoritos y Geología Planetaria. Museo de la Ciencia de Castilla-La Mancha, Cuenca, pp 151–171

    Google Scholar 

  • Cunha TA, Matias LM, Terrinha P et al (2012) Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: a reassessment including recent structural, seismic and geodetic data. Geophys J Int 188:850–872

    Article  Google Scholar 

  • Custódio S, Lima V, Vales D et al (2016) Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: application to the Azores-western Mediterranean region. Tectonophysics 676:70–89

    Article  Google Scholar 

  • d’Acremont E, Lafosse M, Rabaute A et al (2020) Polyphase tectonic evolution of fore-arc basin related to STEP fault as revealed by seismic reflection data from the Alboran Sea (W‐Mediterranean). Tectonics 39:e2019TC005885. https://doi.org/10.1029/2019TC005885

  • d’Acremont E, Lafuerza S, Rabaute A et al (2022) Distribution and origin of submarine landslides in the active margin 2 of the southern Alboran Sea (Western Mediterranean Sea) Mar Geol 445:106739

    Google Scholar 

  • Dawson AG, Stewart I (2007) Tsunami deposits in the geological record. Sed Geol 200:166–183

    Article  Google Scholar 

  • Delvaux D, Barth A (2010) African stress pattern from formal inversion of focal mechanism data. Tectonophysics 482:105–128

    Article  Google Scholar 

  • Delvaux D, Sperner B (2003) New aspects of tectonic stress inversion with reference to the TENSOR program. Geol Soc Lond 212:75–100

    Article  Google Scholar 

  • Delvaux D, Moeys R, Stapel G et al (1997) Paleostress reconstructions and geodynamics of the Baikal region, Central Asia. Part II: cenozoic rifting. Tectonophysics 282:1–38

    Article  Google Scholar 

  • DeMets C, Gordon R, Argus DF et al (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194

    Article  Google Scholar 

  • Dewey JF, Helman ML, Turco E et al (1989) Kinematics of the western Mediterranean. In: Coward MP, Dietric D, Park RG (eds) Alpine tectonics, vol 45. Geological Society of London, Special Publication, pp 265–283

    Google Scholar 

  • Do Couto D, Gorini C, Jolivet L et al (2016) Tectonic and stratigraphic evolution of the western Alboran Sea basin in the last 25Myrs. Tectonophysics 677:280–311

    Article  Google Scholar 

  • Duarte JC, Rosas FM, Terrinha P et al (2011) Thrust-wrench interference tectonics in the Gulf of Cadiz (Africa-Iberia plate boundary in the North-East Atlantic): insights from analog models. Mar Geol 289(1–4):135–149

    Article  Google Scholar 

  • Duarte JC, Rosas FM, Terrinha P et al (2013) Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin. Geology 41:839–842

    Article  Google Scholar 

  • El Alami SO, Tadili BA, Cherkaoui TE et al (1998) The Al Hoceima earthquake of May 26, 1994 and its aftershocks: a seismotectonic study. Ann Geophys 41:519–537

    Google Scholar 

  • EMODnet Bathymetry Consortium (2018) Digital terrain model. https://www.emodnet-bathymetry.eu/home. Accessed 30 Apr 2020

  • Ercilla G, Juan C, Hernández-Molina FJ et al (2016) Significance of bottom currents in deep-sea morphodynamics: an example from the Alboran Sea. Mar Geol 378:157–170

    Article  Google Scholar 

  • Ercilla G, Juan C, Periáñez R et al (2019) Influence of alongslope processes on modern turbidite systems and canyons in the Alboran Sea (southwestern Mediterranean). Deep Sea Res Part I 144:1–16

    Article  Google Scholar 

  • Ercilla G, Baraza J, Alonso B et al (2002) The Ceuta Drift, Alboran Sea, southwestern Mediterranean. In: Stow DAV Stow et al (eds) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Geol Soc Lond Memoirs 22(1):155–170

    Google Scholar 

  • Ercilla G, Vázquez JT, Alonso B et al (2021) Seafloor morphology and processes in the Alboran Sea. In: Baéz JC et al (eds) Alboran sea and its marine resources, Ch. 6. Springer Nature Switzerland AG, pp 157–205

    Google Scholar 

  • Ercilla G, Casas D, Alonso B et al (2021) Offshore Geological Hazards: Charting the Course of Progress and Future Directions. Oceans 2:393–428

    Google Scholar 

  • Estrada F, Ercilla G, Alonso B (1997) Pliocene-quaternary tectonic-sedimentary evolution of the NE Alboran Sea (SW Mediterranean Sea). Tectonophysics 282(1–4):423–442

    Article  Google Scholar 

  • Estrada F, Galindo-Zaldívar J, Vázquez JT et al (2018a) Tectonic indentation in the central Alboran Sea (westernmost Mediterranean). Terra Nova 30(1):24–33. https://doi.org/10.1111/ter.12304

    Article  Google Scholar 

  • Estrada F, Galindo-Zaldívar J, González-Vida JM et al (2018b) Indentación Tectónica en la Zona Central del Mar de Alboran. In: Canora C et al (eds) Avances en el estudio de Fallas Activas, Terremotos y Peligrosidad Sísmica de Iberia. III Reunión Ibérica sobre Fallas Activas y Paleosismología, Alicante, pp 121–124

    Google Scholar 

  • Fernández-Puga MC, Vázquez JT, Medialdea T et al (2010) Morphological and geophysical evidences of tectonic activity in the Gulf of Cadiz northern continental slope sector. In: Insua-Arévalo JM, Martín-González F (eds) Contribución de la Geología al Análisis de la Peligrosidad Sísmica. I Reunión Ibérica sobre Fallas Activas y Paleosismología, Sigüenza, pp 159–162

    Google Scholar 

  • Fernández-Puga MC, Vázquez JT, Sánchez-Guillamón O et al (2014) Evidences of contemporary tectonic activity along the eastern Gulf of Cadiz continental shelf and upper slope (SW Iberian Peninsula). In: Álvarez-Gómez JA, Martín-González F (eds) Una aproximación multidisciplinar al estudio de las fallas activas, los terremotos y el riesgo sísmico. II Reunión Ibérica sobre Fallas Activas y Paleosismología, Lorca, pp 85–88

    Google Scholar 

  • Flinch JF, Soto JI (2017) Allochthonous triassic and salt tectonic processes in the Betic-Rif orogenic arc. In: Soto JI, Flinch JF, Tari G (eds) Permo-triassic salt provinces of Europe, North Africa and the atlantic margins. Tectonics and hydrocarbon potential. Elsevier, Amsterdam, pp 417–446

    Google Scholar 

  • Flinch JF (1996) Accretion and extensional collapse of the external Western Rif (Northern Morocco). In: Ziegler PA, Horvath F (eds) Peri-Tethys Memoir 2: structure and prospects of Alpine basins and forelands. Mémoires du Muséum national d'histoire naturelle 170:61–85

    Google Scholar 

  • Galindo-Zaldívar J, Chalouan A, Azzouz O et al (2009) Are seismological and geological observations of the Al Hoceima (Morocco Rif) 2004 earthquake (M = 6.3) contradictory? Tectonophysics 475:59–67

    Article  Google Scholar 

  • Galindo-Zaldívar J, Ercilla G, Estrada F et al (2018) Imaging the growth of recent faults: the case of 2016–2017 seismic sequence sea bottom deformation in the Alboran Sea (Western Mediterranean). Tectonics 37:2513–2530. https://doi.org/10.1029/2017TC004941

    Article  Google Scholar 

  • García M, Hernández-Molina FJ, Alonso B et al (2016) Erosive sub-circular depressions on the Guadalquivir Bank (Gulf of Cadiz): interaction between bottom current, mass-wasting and tectonic processes. Mar Geol 378:5–19

    Article  Google Scholar 

  • García-Mayordomo J (2015) Creación de un modelo de zonas sismogénicas para el cálculo del mapa de peligrosidad sísmica de España. IGME, Madrid

    Google Scholar 

  • García-Mayordomo J, Martín-Banda R, Insua-Arévalo JM et al (2017) Active fault databases: building a bridge between earthquake geologists and seismic hazard practitioners, the case of the QAFI vol 3 database. Nat Hazards Earth Syst Sci 17:1447–1459. https://doi.org/10.5194/nhess-17-1447-2017

    Article  Google Scholar 

  • García-Mayordomo J, Insua-Arévalo JM, Martínez-Díaz JJ et al (2012) The Quaternary active faults database of Iberia (QAFI v.2.0). J Iberian Geol 38(1):285–302. https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39219

  • Geist EL (1997) Local tsunamis and earthquake source parameters. Adv Geophys 39:117–209. https://doi.org/10.1016/S0065-2687(08)60276-9

    Article  Google Scholar 

  • Gjevik B, Pedersen G, Dybesland E et al (1997) Modeling tsunamis from earthquake sources near Gorringe Bank southwest of Portugal. J Geophys Res 102(C13):27,931–27,949

    Google Scholar 

  • Goméz de la Peña L, Ranero CR, Gràcia E (2018) The crustal domains of the Alboran Basin (Western Mediterranean). Tectonics 37(10):3352–3377

    Article  Google Scholar 

  • González A (2017) The Spanish national earthquake catalogue: evolution, precision and completeness. J Seismolog 21:435–471

    Article  Google Scholar 

  • González M, Medina R, Olabarrieta M et al (2010) Tsunami hazard assessment on the southern coast of Spain. Turk J Earth Sci 19:351–366

    Google Scholar 

  • González del Castillo L, Galindo-Zaldivar J, Pedrera A et al (2015) Shallow frontal deformation related to active continental subduction: structure and recent stresses in the westernmost Betic Cordillera. Terranova 27(2):114–121

    Google Scholar 

  • Gràcia E, Dañobeitia J, Vergés J et al (2003a) Crustal architecture and tectonic evolution of the Gulf of Cadiz (SW Iberian margin) at the convergence of the Eurasian and African plates. Tectonics 22(4):1033. https://doi.org/10.1029/2001TC901045

    Article  Google Scholar 

  • Gràcia E, Dañobeitia J, Vergés J et al (2003b) Mapping active faults offshore Portugal (36°N–38°N): implications for seismic hazard assessment along the southwest Iberian margin. Geology 31(1):83–86

    Article  Google Scholar 

  • Gràcia E, Pallàs R, Soto JI et al (2006) Active faulting offshore SE Spain (Alboran Sea): implications for earthquake hazard assessment in the Southern Iberian Margin. Earth Planet Sci Lett 241(3–4):734–749

    Article  Google Scholar 

  • Gràcia E, Bartolomé de la Peña R, Lo Iacono C et al (2012) Acoustic and seismic imaging of the active Adra Fault (NE Alboran Sea): in search for the source of the 1910 Adra Earthquake. Nat Hazards Earth Syst Sci 12(11):3255–3268

    Article  Google Scholar 

  • Grotzinger J, Jordan TH, Press F et al (2008) Allgemeine Geologie, 5th edn. Springer, Berlin

    Google Scholar 

  • Gutscher MA, Malod J, Réhault JP et al (2002) Evidence for active subduction beneath Gibraltar. Geology 30:1071–1074

    Article  Google Scholar 

  • Gutscher MA, Baptista MA, Miranda JM (2006) The Gibraltar Arc seismogenic zone (part 2): constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by tsunami modeling and seismic intensity. Tectonophysics 426:153–166

    Article  Google Scholar 

  • Gutscher MA, Dominguez S, Westbrook GK et al (2012) The Gibraltar subduction: a decade of new geophysical data. Tectonophysics 574–575:72–91

    Article  Google Scholar 

  • Hamdache M, Peláez JA, Talbi A et al (2010) A unified catalog of main earthquakes for Northern Algeria from A.D. 856 to 2008. Seismol Res Lett 81:732–739

    Article  Google Scholar 

  • Hanquiez V, Mulder T, Toucanne S et al (2010) The sandy channel–lobe depositional systems in the Gulf of Cadiz: gravity processes forced by contour current processes. Sed Geol 229(3):110–123

    Article  Google Scholar 

  • Harbitz CB (1992) Model simulation of tsunamis generated by the Storegga Slides. Mar Geol 105:1–21

    Article  Google Scholar 

  • Harbitz CB, Lovholt F, Pedersen G et al (2006) Mechanisms of tsunami generation by submarine landslides a short review. Norw J Geol 86:255–264

    Google Scholar 

  • Harbitz CB, Løvholt F, Bungum H (2014) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72:1341–1374

    Article  Google Scholar 

  • Haugen KB, Lovholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine mass flows in idealized geometries. Mar Pet Geol 22:195–202

    Article  Google Scholar 

  • Henares J, López-Casado C (2001) Catálogo de mecanismos focales del área Ibero-Mogrebí. University of Granada, Granada

    Google Scholar 

  • Henares J, López-Casado C, Sanz de Galdeano C et al (2003) Stress fields in the Iberian-Maghrebi región. J Seismol 7:65–78

    Article  Google Scholar 

  • Hensen C, Scholz F, Nuzzo M et al (2015) Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea. Geology 43(4):339–342. https://doi.org/10.1130/G36359.1

    Article  Google Scholar 

  • Hensen C, Duarte JC, Vannucchi (2019) Marine transform faults and fracture zones: a joint perspective integrating seismicity, fluid flow and life. Front Earth Sci 7:39. https://doi.org/10.3389/feart.2019.00039

  • Hernández-Molina FJ, Llave E, Stow DAV et al (2006) The contourite depositional system of the Gulf of Cadiz: a sedimentary model related to the bottom current activity of the Mediterranean outflow water and its interaction with the continental margin. Deep Sea Res Part II 53(11–13):1420–1463

    Article  Google Scholar 

  • Herraiz M, De Vicente G, Lindo-Ñaupari R et al (2000) The recent (upper Miocene to Quaternary) and present tectonic stress distributions in the Iberian Peninsula. Tectonics 19(4):762–786

    Article  Google Scholar 

  • Hwang RD (2014) First-order rupture features of the 2011 MW 9.0 Tohoku (Japan) earthquake from surface waves. J Asian Earth Sci 81(25):20–27

    Google Scholar 

  • IGME (2015) ZESIS: Bases de Datos de Zonas Sismogénicas de la Península Ibérica y territorios de influencia para el cálculo de la peligrosidad sísmica en España. http://info.igme.es/zesis. Accessed 30 Apr 2020

  • IGN (2020) Earthquake catalog. https://www.ign.es/web/ign/portal/sis-catalogo-terremotos. Accessed 30 Apr 2020

  • Jimenez-Munt I, Sabadini R, Gardi A et al (2003) Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data. J Geophys Res Solid Earth 108(B1):2006. https://doi.org/10.1029/2001JB001544

    Article  Google Scholar 

  • Juan G, Ercilla G, Hernández-Molina FJ et al (2016) Seismic evidence of current-controlled sedimentation in the Alboran Sea during the pliocene and quaternary: palaeoceanographic implications. Marine Geol 378:292–311. https://doi.org/10.1016/jmargeo.2016.01.006.

  • Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet Inter 6(5):346–359

    Article  Google Scholar 

  • Keating B, McGuire W (2000) Island edifice failures and associated tsunami hazards. Pure Appl Geophys 157:899–955

    Article  Google Scholar 

  • Keller EA, Pinter N (2002) Active tectonics, earthquakes, uplift and landscape, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Klug H (1986) Flutwellen und Risiken der Küste. Franz Steiner Verlag, Stuttgart

    Google Scholar 

  • Kopp H, Weinreibe W (2009) Ursachen von Tsunamis: ein Überblick. Geogr Rundsch 61:20–27

    Google Scholar 

  • Koulali A, Ouazar D, Tahayt A et al (2011) New GPS constraints on active deformation along the Africa-Iberia plate boundary. Earth Planet Sci Lett 308(1–2):211–217

    Article  Google Scholar 

  • Krastel S, Schmincke HS, Jacobs CL et al (2001) Submarine landslides around the Canary Islands. J Geophys Res Solid Earth 106(B3):3977–3997

    Article  Google Scholar 

  • Lafosse M, D’Acremont E, Rabaute A et al (2020) Plio-quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean). Solid Earth 11:714–765. https://doi.org/10.5194/se-11-741-2020

    Article  Google Scholar 

  • Lauterjung J, Münch U, Rudloff A (2009) Geotechnik im Dienst der Menschheit. Geogr Rundsch 61:36–41

    Google Scholar 

  • Lee HJ, Kayen RE, Gardner JV et al (2003) Characteristics of several tsunamigenic submarine landslides. In: Locat J, Mienert J, Boisvert L (eds) Submarine mass movements and their consequences: 1st international symposium. Advances in natural and technological hazards, vol 19. Springer, Dordrecht, pp 357–366

    Google Scholar 

  • León R, Somoza L (2011) GIS-based mapping for marine geohazards in seabed fluid leakage areas (Gulf of Cadiz, Spain). Marine Geophys Res 32(1–2):207–223

    Article  Google Scholar 

  • León R, Somoza L, Medialdea T et al (2019) A new scenario for the mass transport deposits west Canary volcanic province. Earth Planet Sci Lett 509:27–37

    Article  Google Scholar 

  • León R, Urgeles R, Pérez-López R et al (2020) Geological and tectonic controls on morphometrics of submarine landslides of the Spanish margins. Geol Soc Lond 500:495–513. https://doi.org/10.1144/SP500-2019-153

    Article  Google Scholar 

  • Lin A, Ikuta R, Rao G (2012) Tsunami run-up associated with co-seismic thrust slip produced by the 2011 Mw 9.0 Off Pacific Coast of Tohoku earthquake, Japan. Earth Planetary Sci Lett 337–338:121–132

    Article  Google Scholar 

  • Lipman PW, Normark WR, Moore JG et al (1988) The giant submarine Alika Debris Slide, Mauna Loa, Hawaii. J Geophys Res Solid Earth 93(B5):4279–4299

    Google Scholar 

  • Lo Iacono C, Gràcia E, Zaniboni F et al (2012) Large, deepwater slope failures: implications for landslide-generated tsunamis. Geology 40(10):931–934

    Article  Google Scholar 

  • Locat J, Gardner JV, Lee H et al (1999) Using multibeam sonar surveys for submarine landslide investigations. In: Slope stability engineering. Proceedings of the international symposium, IS-Shikiku ‘99, Matsuyama, Shikoku, Japan, 8–11 November 1999, pp 127–134

    Google Scholar 

  • Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39(1):193–212

    Article  Google Scholar 

  • López-Casado C, Sanz de Galdeano C, Molina-Palacios S et al (2001) The structure of the Alboran Sea: an interpretation from seismological and geological data. Tectonophysics 338:79–95

    Article  Google Scholar 

  • Løvholt F, Harbitz CB, Haugen KB (2005) A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway. Mar Pet Geol 22:219–231

    Article  Google Scholar 

  • Løvholt F, Pedersen G, Harbitz B et al (2015) On the characteristics of landslide tsunamis. Phil Trans R Soc A 373:20140376. https://doi.org/10.1098/rsta.2014.0376

    Article  Google Scholar 

  • Macías J, Vázquez JT, Fernández-Salas LM et al (2015) The Al-Borani submarine landslide and associated tsunami. A modelling approach. Mar Geol 361:79–95

    Article  Google Scholar 

  • Maestro A, Somoza L, Medialdea T (2003) Large-scale slope failure involving Triassic and Middle Miocene salt and shale in the Gulf of Cadiz (Atlantic Iberian Margin). Terranova 15:380–391

    Google Scholar 

  • Maldonado A, Somoza L, Pallarés L (1999) The Betic orogen and the Iberian-African boundary in the Gulf of Cadiz: geological evolution (Central North Atlantic). Mar Geol 155:9–43

    Article  Google Scholar 

  • Martínez-García P, Soto JI, Comas JI (2010) Recent structures in the Alboran Ridge and Yusuf fault zones based on swath bathymetry and sub-bottom profiling: evidence of active tectonics. Geo-Mar Lett 31:19–36

    Article  Google Scholar 

  • Martínez-García P, Comas M, Soto JI et al (2013) Strike-slip tectonics and basin inversion in the Western Mediterranean: the Post-Messinian evolution of the Alboran Sea. Basin Res 25(4):361–387

    Article  Google Scholar 

  • Martínez-García P, Comas M, Lonergan L et al (2017) From extension to shortening: tectonic inversion distributed in time and space in the Alboran Sea, western mediterranean. Tectonics 36(12):2777–2805

    Article  Google Scholar 

  • Martínez-Loriente S, Gràcia E, Bartolomé R et al (2013) Active deformation in old oceanic lithosphere and significance for earthquake hazard: Seismic imaging of the Coral Patch Ridge area and neighboring abyssal plains (SW Iberian Margin). Geochem Geophys Geosyst 14(7):2206–2231

    Article  Google Scholar 

  • Martínez-Loriente S, Sallarès V, Gràcia E et al (2014) Seismic and gravity constraints on the nature of the basement in the Africa-Eurasia plate boundary: new insights for the geodynamic evolution of the SW Iberian margin. J Geophys Res Solid Earth 119(1):127–149

    Article  Google Scholar 

  • Martínez-Loriente S, Gràcia E, Bartolomé R et al (2018) Morphostructure, tectono-sedimentary evolution and seismic potential of the Horseshoe Fault, SW Iberian margin. Basin Res 30(S1):382–400

    Article  Google Scholar 

  • Masana E, Moreno X, Gràcia E et al (2018) First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): Los Trances site. Geol Acta 16(4):461–476. https://doi.org/10.1344/GeologicaActa2018.16.4.8

    Article  Google Scholar 

  • Masson DG (1996) Catastrophic collapse of the flank of El Hierro about 15,000 years ago, and the history of large flank collapses in the Canary Islands. Geology 24:231–234

    Article  Google Scholar 

  • Masson DG, Watts AB, Gee MJR et al (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57(1–2):1–35

    Article  Google Scholar 

  • Masson DG, Harbitz CB, Wynn RB et al (2006) Submarine landslides: processes, triggers and hazard prediction. Phil Trans R Soc A 364:2009–2039. https://doi.org/10.1098/rsta.2006.1810

    Article  Google Scholar 

  • Matias LM, Cunha T, Annunziato A et al (2013) Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence. Nat Hazards Earth Syst Sci 13:1–13

    Article  Google Scholar 

  • Mauffret A, Maldonado A, Campillo AC (1992) Tectonic framework of the Eastern Alboran and Western Algerian Basins, Western Mediterranean. Geo-Mar Lett 12:104–110

    Article  Google Scholar 

  • Mauffret A, Ammar A, Gorini C et al (2007) The Alboran Sea (Western Mediterranean) revisited with a view from the Moroccan margin. Terranova 19:195–203

    Google Scholar 

  • Max MD (2003) Natual gas hydrate in oceanic and permafrost environments. Springer, Dordrecht

    Google Scholar 

  • McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136. https://doi.org/10.1016/S0025-3227(00)00050-5

    Article  Google Scholar 

  • Medialdea T, Vegas R, Somoza L et al (2004) Structure and evolution of the “Olistostrome” complex of the Gibraltar Arc in the Gulf of Cadiz (Eastern Central Atlantic): evidence from two long seismic cross-sections. Mar Geol 209:173–198

    Article  Google Scholar 

  • Mendes-Victor LA, Sousa Olivera C, Azevedo J et al (eds) (2009) The 1755 Lisbon earthquake: revisited. Geotechnical, geological and earthquake engineering, vol 7. Springer, Dordrecht

    Google Scholar 

  • Mezcua J, Rueda J (1997) Seismological evidence for a delamination process in the lithosphere under the Alboran Sea. Geophys J Int 129(1):F1–F8

    Article  Google Scholar 

  • Mezcua J, Rueda J, García-Blanco RM (2004) Reevaluation of historic earthquakes in Spain. Seismol Res Lett 75:75–81

    Article  Google Scholar 

  • Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian Landslides. Annu Rev Earth Planet Sci 22:119–144

    Article  Google Scholar 

  • Morales J, Serrano I, Jabaloy A et al (1999) Active continental subduction beneath the Betic Cordillera and the Alborán Sea. Geology 27:735–738

    Article  Google Scholar 

  • Moreno X, Masana E, Pallàs R et al (2015) Quaternary tectonic activity of the Carboneras Fault in the La Serrata range (SE Iberia): geomorphological and chronological constraints. Tectonophysics 663:78–94

    Article  Google Scholar 

  • Moreno X, Gràcia E, Bartolomé R et al (2016) Seismostratigraphy and tectonic architecture of the Carboneras fault offshore based on multiscale seismic imaging: implications for the Neogene evolution of the NE Alboran Sea. Tectonophysics 689:115–132

    Article  Google Scholar 

  • Mulder T, Alexander J (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48:269–299

    Article  Google Scholar 

  • Mulder T, Voisset M, Lecroart P et al (2003) The Gulf of Cadiz: an unstable giant contouritic levee. Geo-Mar Lett 23:7–18

    Article  Google Scholar 

  • Mulder T, Lecroart P, Hanquiez V et al (2006) The western part of the Gulf of Cadiz: contour currents and turbidity currents interactions. Geo-Mar Lett 26(1):31–41

    Article  Google Scholar 

  • Mulder T, Gonthier E, Lecroart P et al (2009) Sediment failures and flows in the Gulf of Cadiz (eastern Atlantic). Mar Pet Geol 26(5):660–672

    Article  Google Scholar 

  • Murty TS (1977) Seismic sea waves, tsunamis. Department of Fisheries and the Environment Fisheries and Marine Service, Ottawa

    Google Scholar 

  • Neres M, Carafa MMC, Fernandes RMS et al (2016) Lithospheric deformation in the Africa-Iberia plate boundary: improved neotectonic modeling testing a basal driven Alboran plate. J Geophys Res Solid Earth 121:6566–6596

    Article  Google Scholar 

  • Neves MC, Roque C, Luttrell KM et al (2016) Impact of sea-level rise on earthquake and landslide triggering offshore the Alentejo margin (SW Iberia). Geo-Mar Lett 36:415–424

    Article  Google Scholar 

  • Niedoroda AW, Reed CW, Das H, Hatchett L (2007) The general behavior of mass gravity flows in the marine environment. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences: 3rd international symposium. Advances in natural and technological hazards research, vol 27. Springer, Dordrecht, pp 111–118

    Google Scholar 

  • Nocquet JM (2012) Present-day kinematics of the Mediterranean: a comprehensive overviewof GPS results. Tectonophysics 579:220–242

    Article  Google Scholar 

  • Omira R, Ramalho I, Terrinha P et al (2016) Deep-water seamounts, a potential source of tsunami generated by landslides? The Hirondelle Seamount, NE Atlantic. Mar Geol 379:267–280

    Article  Google Scholar 

  • Omira R, Dogan GG, Hidayat R et al (2019) The september 28th, 2018, Tsunami in Palu-Sulawesi, Indonesia: a post-event field survey. Pure Appl Geophys 176:1379–1395

    Article  Google Scholar 

  • Palano M, González PJ, Fernández J (2013) Strain and stress fields along the Gibraltar Orogenic Arc: constraints on active geodynamics. Gondwana Res 23:1071–1088

    Article  Google Scholar 

  • Pedrera A, Ruiz-Constán A, Galindo-Zaldívar J et al (2011) Is there an active subduction beneath the Gibraltar orogenic arc? Constraints from Pliocene to present-day stress field. J Geodyn 52(2):83–96

    Article  Google Scholar 

  • Peláez JA, Chourak M, Tadili BA et al (2007) A catalog of main Moroccan earthquakes from 1045 to 2005. Seismol Res Lett 78:614–621

    Article  Google Scholar 

  • Peláez JA, Henares J, Hamdache M et al (2018) A seismogenic zone model for seismic hazard studies in Northwestern Africa. In: D’Amico S (ed) Moment tensor solutions. A useful tool for seismotectonics. Springer, Cham, pp 643–680

    Google Scholar 

  • Perea H, Gràcia E, Martínez-Loriente S et al (2018) Kinematic analysis of secondary faults within a distributed shear-zone reveals fault linkage and increased seismic hazard. Mar Geol 399:23–33

    Article  Google Scholar 

  • Piper DJW, Mosher DC, Gauley BJ, Kenner K (2003) The chronology and recurrence of submarine mass movements on the continental slope off southern Canada. In: Locat J, Mienert J, Boisvert L (eds) Submarine mass movements and their consequences: 1st international symposium. Advances in natural and technological hazards, vol 19. Springer, Dordrecht, pp 299–306

    Google Scholar 

  • Platt JP, Behr WM, Johanesen KWJR (2013) The Betic-Rif arc and its orogenic hinterland: a review. Annu Rev Earth Planet Sci 41:313–357

    Article  Google Scholar 

  • Raji O, Dezileau L, Von Grafenstein U et al (2015) Extreme sea events during the last millennium in the northeast of Morocco. Nat Hazard 15(2):203–211

    Article  Google Scholar 

  • Ramos A, Fernández O, Terrinha P et al (2017) Neogene to recent contraction and basin inversion along the Nubia-Iberia boundary in SW Iberia. Tectonics 36:257–286

    Article  Google Scholar 

  • Ratzov G, Collot JY, Sosson M et al (2010) Mass-transport deposits in the northern Ecuador subduction trench: Result of frontal erosion over multiple seismic cycles. Earth Planet Sci Lett 296:80–102

    Article  Google Scholar 

  • Reicherter K, Becker-Heidmann P (2009) Tsunami deposits in the western mediterranean: remains of the 1522 Almería earthquake? In: Reicherter K, Michetti AA, Silva PG (eds) Palaeoseismology: historical and prehistorical records of earthquake ground effects for seismic hazard assessment, vol 316. The Geological Society, London, Special Publications, pp 217–235

    Google Scholar 

  • Reicherter K, Hübscher C (2007) Evidence for a seafloor rupture of the Carboneras Fault Zone (southern Spain): relation to the 1522 Almería earthquake? J Seismolog 11(1):15–26

    Article  Google Scholar 

  • Reilly WI, Fredrich G, Hein GW et al (1992) Geodetic determination of crustal deformation across the Strait of Gibraltar. Geophys J Int 111(2):391–398

    Article  Google Scholar 

  • Röbke BR, Vött A (2017) Tsunami phenomenon. Prog Oceanogr 159:296–322. https://doi.org/10.1016/j.pocean.2017.09.003

    Article  Google Scholar 

  • Rodriguez M, Cl M, Jollivet-Castelot M et al (2017) Tsunamigenic submarine landslides along the Xauen-Tofiño banks in the Alboran Sea (Western Mediterranean Sea). Geophys J Int 209:266–281

    Article  Google Scholar 

  • Roque C, Duarte H, Terrinha P, Valadares V, Noiva J, Cachão M, Ferreira J, Legoinha P, Zitellini N (2012) Pliocene and quaternary depositional model of the Algarve margin contourite drifts (Gulf of Cadiz, SW Iberia): seismic architecture, tectonic control and paleoceanographic insights. Mar Geol 303–306:42–62

    Article  Google Scholar 

  • Rosas FM, Duarte JC, Terrinha P et al (2009) Morphotectonic characterization of major bathymetric lineaments in Gulf of Cadiz (Africa-Iberia plate boundary): insights from analogue modelling experiments. Mar Geol 261(1–4):33–47

    Article  Google Scholar 

  • Rosas F, Duarte J, Neves M et al (2012) Thrust–wrench interference between major active faults in the Gulf of Cadiz (Africa–Eurasia plate boundary, offshore SW Iberia): tectonic implications from coupled analog and numerical modelling. Tectonophysics 548:1–21

    Article  Google Scholar 

  • Rosas F, Duarte J, Schellart WP et al (2016) Seismic potential of thrust-wrench tectonic interference between major active faults offshore SW Iberia. A new explanation for the 1755 great lisbon earthquake? In: Duarte JC, Schellart WP (eds) Plate boundaries and natural hazards. Wiley, Hoboken, pp 193–217

    Chapter  Google Scholar 

  • Royden L (1993) Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12:629–638

    Article  Google Scholar 

  • Sallares V, Martínez-Loriente S, Prada M et al (2013) Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia). Earth Planet Sci Lett 365:120–131

    Article  Google Scholar 

  • Sanchez G, Merleb R, Hinschbergerc F et al (2019) Post-spreading deformation and associated magmatism along the Iberia Morocco Atlantic margins: Insight from submarine volcanoes of the Tore Madeira Rise. Mar Geol 407:76–93

    Article  Google Scholar 

  • Sánchez-Guillamón O, Vázquez-Garrido JT, Fernández-Puga MC et al (2014) Caracterización de fallas normales recientes en la plataforma continental del Golfo de Cádiz (SO de la Península Ibérica). In: Álvarez-Gómez JA, Martín-González F (eds) Una aproximación multidisciplinar al estudio de las fallas activas, los terremotos y el riesgo sísmico. II Reunión Ibérica sobre Fallas Activas y Paleosismología, Lorca, pp 129–132

    Google Scholar 

  • Sayago-Gil M, Pérez-García C, Vázquez JT et al (2008) Slides on the flanks of submarine canyons in the Upper Slope of the Algarve. Thalassas 24(1):65–72

    Google Scholar 

  • Seber D, Barazangi M, Ibenbrahim A et al (1996) Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif-Betic mountains. Nature 379:785–790

    Article  Google Scholar 

  • Serpelloni E, Vannucci G, Pondrelli S et al (2007) Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys J Int 169:1180–1200

    Article  Google Scholar 

  • Serra CS, Martínez-Loriente S, Gràcia E et al (2020) Tectonic evolution, geomorphology and influence of bottom currents along a large submarine canyon system: the São Vicente Canyon (SW Iberian margin). Mar Geol 426:106219

    Article  Google Scholar 

  • Silva PG, Goy JL, Somoza L et al (1993) Landscape response to strike-slip faulting linked to collisional settings: quaternary tectonics and basin formation in the Eastern Betics, southeastern Spain. Tectonophysics 224(4):289–303

    Article  Google Scholar 

  • Silva S, Terrinha P, Matias L et al (2017) Micro-seismicity in the Gulf of Cadiz: is there a link between micro-seismicity, high magnitude earthquakes and active faults? Tectonophysics 717:226–241

    Article  Google Scholar 

  • Silva PF, Roque C, Drago T et al (2020) Multidisciplinary characterization of quaternary mass movement deposits in the Portimão Bank (Gulf of Cadiz, SW Iberia). Mar Geol 420:106086

    Article  Google Scholar 

  • Sorensen RM (2010) Basic coastal engineering, 3rd edn. Springer, New York

    Google Scholar 

  • Soto JI, Fernández-Ibáñez F, Fernández M et al (2008) Thermal structure of the crust in the GibraltarArc: influence on active tectonics in the western mediterranean. Geochem Geophys Geosyst 9:Q10011

    Article  Google Scholar 

  • Soto JI, Fernández-Ibáñez F, Talukder AR (2012) Recent shale tectonics and basin evolution of the NW Alboran Sea. Lead Edge 31(7):768–775

    Article  Google Scholar 

  • Spakman W, Wortel R (2004) A tomographic view on western mediterranean geodynamics. In: Cavazza W et al (eds) The TRANSMED Atlas: the mediterranean region from crust to mantle. Springer, Berlin, pp 31–52

    Chapter  Google Scholar 

  • Spakman W, Chertova MV, Van Den Berg A et al (2018) Puzzling features of western Mediterranean tectonics explained by slab dragging. Nat Geosci 11(3):211–216

    Article  Google Scholar 

  • Sparacino F, Palano M, Peláez JA (2020) Geodetic deformation versus seismic crustal moment-rates: insights from the Ibero-Maghrebian region. Remote Sensing 12:952

    Article  Google Scholar 

  • Stich D, Batlló J, Morales J et al (2003) Source parameters of the Mw = 6.1 1910 Adra earthquake (southern Spain). Geophys J Int 155:539–546

    Article  Google Scholar 

  • Stich D, Martínez Solares JM, Custódio S et al (2020) Seismicity of the Iberian Peninsula. In: Quesada C, Oliveira JT (eds) The geology of Iberia: a geodynamic approach. Springer, Cham, pp 11–32

    Chapter  Google Scholar 

  • Stich D, Mancilla FdeL, Pondrelli S et al (2007) Source analysis of the February 12th 2007, Mw6.0 Horseshoe earthquake: implications for the 1755 Lisbon earthquake. Geophys Res Lett 34(12):L12308

    Google Scholar 

  • Stirling M, McVerry G, Berryman K (2002) A new seismic hazard model for New Zealand. Bull Seismol Soc Am 92(5):1878–1903

    Article  Google Scholar 

  • Strozyk F, Strasser M, Föster A et al (2010) Slope failure in active margin environment: constraints from submarine landslide in the Hellenic arc. J Geophys Res Solid Earth 115:B08103. https://doi.org/10.1029/2009JB006841

    Article  Google Scholar 

  • Tappin DR (2017) Tsunamis from submarine landslides. Geol Today 33(5):190–200. https://doi.org/10.1111/gto.12200

    Article  Google Scholar 

  • Tappin DR (2010) Mass transport events and their tsunami hazard. In: Mosher DC et al (eds) Submarine mass movements and their consequences: 4th international symposium. Advances in natural and technological hazards research, vol 48. Springer, Dordrecht, pp 667–684

    Google Scholar 

  • Terrinha P, Pinheiro LM, Henrie JP et al (2003) Tsunamigenic-seismogenic structures, neotectonics, sedimentary processes and slope instability on the southwest Portuguese Margin. Mar Geol 195:55–73

    Article  Google Scholar 

  • Terrinha P, Matias L, Vicente J et al (2009) Morphotectonics and strain partitioning at the Iberia-Africa plate boundary from multibeam and seismic reflection data. Mar Geol 267(3):156–174

    Article  Google Scholar 

  • Tinivella U, Accaino F, Della Vedova B (2008) Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula. Geo-Mar Lett 28:97–106

    Article  Google Scholar 

  • Todorovska MI, Trifunac MD (2001) Generation of tsunamis by a slowly spreading uplift of the sea floor. Soil Dyn Earthq Eng 21:151–167

    Article  Google Scholar 

  • Trifonov VG, Kozhurin A (2010) Study of active faults: theoretical and applied implications. Geotectonics 44(6):510–528

    Article  Google Scholar 

  • Urgeles R, Camerlenghi A (2013) Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency magnitude distribution. J Geophys Res Earth Surf 118(4):2600–2618

    Article  Google Scholar 

  • Urgeles R, Masson DG, Canals M et al (1999) Recurrent giant landslides on the west flank of LaPalma, Canary Islands. J Geophys Res 104:25331–25348

    Article  Google Scholar 

  • Van der Woerd J, Dorbath C, Ousadou F et al (2014) The Al Hoceima Mw 6.4 earthquake of 24 February 2004 and its aftershocks sequence. J Geodyn 77:89–109

    Article  Google Scholar 

  • Vázquez JT, Vegas R (2000) Acomodación de la convergencia entre África y la Península Ibérica, Golfo de Cádiz y Mar de Alborán, a partir del análisis de terremotos. Geogaceta 27:171–174

    Google Scholar 

  • Vázquez JT, Medialdea T, Hernández-Molina FJ et al (2004) Morfología y tectónica del talud inferior del Golfo de Cádiz. Geo-Temas 6(4):211–214

    Google Scholar 

  • Vázquez JT, Medialdea T, Somoza L et al (2008) Revisión de las estructuras neotectónicas en la región del Golfo de Cádiz. Margen continental y Llanuras abisales adyacentes. Geo-Temas 10:592–594

    Google Scholar 

  • Vázquez JT, Alonso B, Fernández-Puga MC et al (2015a) Seamounts along the Iberian continental margins: a key morphological feature. Bol Geol Min 126(2–3):483–514

    Google Scholar 

  • Vázquez JT, Ercilla G, Alonso B et al (2015b) Submarine canyons and related features in the Alboran Sea: continental margins and major isolated reliefs. CIESM Workshop Monogr 47:183–196

    Google Scholar 

  • Vázquez JT, Fernández-Puga MC, Medialdea T et al (2010a) Fracturación normal durante el Cuaternario Superior en la Plataforma Continental Septentrional del Golfo de Cádiz (SO de Iberia). In: Insua-Arévalo JM, Martín-González F (eds) Contribución de la Geología al Análisis de la Peligrosidad Sísmica. I Reunión Ibérica sobre Fallas Activas y Paleosismología, Sigüenza, pp 179–182

    Google Scholar 

  • Vázquez JT, López-González N, Fernández-Salas LM et al (2010b) Nuevos datos de actividad tectónica durante el Pleistoceno Superior – Holoceno en el Sector Oriental de la Plataforma Continental del Golfo de Cádiz (SO de Iberia). In: Insua-Arévalo JM, Martín-González F (eds) Contribución de la Geología al Análisis de la Peligrosidad Sísmica. I Reunión Ibérica sobre Fallas Activas y Paleosismología, Sigüenza, pp 183–186

    Google Scholar 

  • Vázquez JT, Alonso B, Palomino D et al (2013) Mass movement deposits and tectonics relation as a main factor to control the stratigraphical architecture of the South Alboran Basin (Alboran Sea, Western Mediterranean). V Regional Committee on Atlantic Neogene Stratigraphy (RCANS) Congress: Two decades of Atlantic Neogene study, Huelva, pp 46–47

    Google Scholar 

  • Vázquez JT, Estrada F, Vegas R et al (2014) Quaternary tectonics influence on the Adra continental slope morphology (Northern Alboran Sea). In: Álvarez-Gómez JA, Martín-González F (eds) Una aproximación multidisciplinar al estudio de las fallas activas, los terremotos y el riesgo sísmico. II Reunión Ibérica sobre Fallas Activas y Paleosismología, Lorca, pp 89–92

    Google Scholar 

  • Vázquez JT, Fernández-Puga MC, Palomino D et al (2015c) Shallow tectonics on the middle continental slope of the northeastern Gulf of Cadiz continental margin (SW Iberia). In: Díaz del Río V et al (eds) Resúmenes sobre el VIII Simposio MIA15, Málaga del 21 al 23 de septiembre de 2015c, Instituto Español de Oceanografía, pp 149–152

    Google Scholar 

  • Vázquez JT, Estrada F, Vegas R et al (2016) Geomorfología submarina en relación con la actividad tectónica Cuaternaria en la Cuenca del Mar de Alborán. In: Durán Valsero JJ et al (eds) Comprendiendo el relieve: del pasado al futuro. Actas de la XIV Reunión Nacional de Geomorfología, Málaga. Publicaciones IGME Geología y Geofísica 5:587–595

    Google Scholar 

  • Vázquez JT, Estrada F, Ercilla G et al (2018) Geomorfología y deformaciones cuaternarias en zonas de falla de la plataforma marginal de Motril-Djibouti. In: Canora C et al (eds) Avances en el estudio de Fallas Activas, Terremotos y Peligrosidad Sísmica de Iberia. III Reunión Ibérica sobre Fallas Activas y Paleosismología, Alicante, pp 137–140

    Google Scholar 

  • Vázquez JT, Ercilla G, Catalán M et al (2021) A geological history for the alboran sea region. In: Baéz JC et al (eds) Alboran sea and its marine resources, Ch. 5, Springer Nature Switzerland AG, pp 111–156

    Google Scholar 

  • Vázquez JT (2001) Estructura del margen septentrional del Mar de Alborán. Dissertation, Univ. Complutense

    Google Scholar 

  • Vegas R, Medialdea T, Vázquez JT (2008) Sobre la naturaleza del límite de placas actual entre la Península Ibérica y el norte de África. Geo-Temas 10:1535–1538

    Google Scholar 

  • De Vicente G, Cloetingh S, Muñoz-Martín A et al (2008) Inversion of moment tensor focal mechanisms for active stresses around the microcontinent Iberia: Tectonic implications. Tectonics 27:TC1009

    Google Scholar 

  • Watts AB, Platt JP, Buhl P (1993) Tectonic evolution of the Alboran Sea basin. Basin Res 5:153–177

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Woodside MJ, Maldonado A (1992) Styles of compressional neotectonics in the eastern Alboran Sea. Geo-Mar Lett 12:111–116

    Article  Google Scholar 

  • Zitellini N, Rovere M, Terrinha P (2004) Neogene through quaternary tectonic teractivation of SW Iberian passive margin. Pure Appl Geophys 161:565–587

    Article  Google Scholar 

  • Zitellini N, Gràcia E, Matias L et al (2009) The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. Earth Planet Sci Lett 280(1–4):13–50

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish projects INCRISIS, DAMAGE (CGL2016-80687-R AEI/FEDER), FAUCES (CTM2015-65461-C2-1-R) and INPULSE (CTM2016-75129-C3-1-R), RIGEL (Instituto Español de Oceanografía), PAPEL (B-RNM-301-UGR18), AGORA (P18-RT-3275), RNM 148 and RNM 328 (Junta de Andalucía), as well as by the French program Actions Marges, the Marlboro cruise, and the EUROFLEETS program-SARAS cruise (FP7/2007-2013; 228344). The Secretaría General de Pesca (Spain) provided the bathymetric data from the northern part of the Alboran Sea. The IHS-Kingdom Geoscience educational license is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Tomás Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vázquez, JT. et al. (2022). Triggering Mechanisms of Tsunamis in the Gulf of Cadiz and the Alboran Sea: An Overview. In: Álvarez-Martí-Aguilar, M., Machuca Prieto, F. (eds) Historical Earthquakes, Tsunamis and Archaeology in the Iberian Peninsula. Natural Science in Archaeology. Springer, Singapore. https://doi.org/10.1007/978-981-19-1979-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1979-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1978-7

  • Online ISBN: 978-981-19-1979-4

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics