Skip to main content

Culture of Slipper Lobster Larvae (Decapoda: Achelata: Scyllaridae) Fed Jellyfish as Food

  • Chapter
  • First Online:
Lobsters: Biology, Fisheries and Aquaculture

Abstract

Planktonic larvae of slipper and spiny lobsters, so-called phyllosoma, are known to be associated with various kinds of gelatinous zooplankton such as jellyfish and salps in the wild. Phyllosoma larvae likely utilise the gelatinous zooplankton for food, transport, and protection. Based on knowledge of the natural association behaviour of phyllosoma larvae with gelatinous zooplankton, a seed production technique for lobsters using gelatinous zooplankton as food can be established. In tank conditions, the complete larval development from newly hatched phyllosoma to juvenile stage has been achieved with cnidarian jellyfish as the sole food in three slipper lobster species, Ibacus novemdentatus, I. ciliatus, and Thenus australiensis. Understanding of the biophysical and biochemical compositions of jellyfish and their effect on growth and survival of phyllosoma larvae may result in new knowledge and techniques for successful achievement of mass seed production, as well as development of a sustainable jelly-like artificial diet for phyllosoma larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arai, M. N. (1988). Interactions of fish and pelagic coelenterates. Canadian Journal of Zoology, 66, 1913–1927.

    Article  Google Scholar 

  • Arai, M. N., Welch, D. W., Dunsmuir, A. L., Jacobs, M. C., & Ladouceur, A. R. (2003). Digestion of pelagic Ctenophora and Cnidaria by fish. Canadian Journal of Fisheries and Aquatic Sciences, 60, 825–829.

    Article  Google Scholar 

  • Ates, R. M. L. (1988). Medusivorous fishes, a review. Zoologische Mededelingen Leiden, 62, 29–42.

    Google Scholar 

  • Ates, R., Lindsay, D. J., & Sekiguchi, H. (2007). First record of an association between a phyllosoma larva and a prayid siphonophore. Plankton & Benthos Research, 2, 67–69.

    Article  Google Scholar 

  • Bailey, K. N., & Habib, G. (1982). Food of incidental fish species taken in the purse-seine skipjack fishery, 1976–1981. Fisheries Research Divison Occasional Publication Data Series, 6, 1–24.

    Google Scholar 

  • Barnett, B. M., Hartwick, R. F., & Milward, N. E. (1986). Descriptions of the nisto stage of Scyllarus demani Holthuis, two unidentified Scyllarus species, and the juvenile of Scyllarus martensii Pfeffer (Crustacea: Decapoda: Scyllaridae), reared in the laboratory; and behavioural observations of the nistos of S. demani, S. martensii and Thenus orientalis (Lund). Australian Journal of Marine & Freshwater Research, 37, 595–608.

    Article  Google Scholar 

  • Booth, J. D., Webber, W. R., Sekiguchi, H., & Coutures, E. (2005). Diverse larval recruitment strategies within the Scyllaridae. New Zealand Journal of Marine & Freshwater Research., 39, 581–592.

    Article  Google Scholar 

  • Brusca, R. C., Moore, W., & Shuster, S. M. (2016). Invertebrates (3rd ed., p. 1104). Sunderland: Sinauer Associates.

    Google Scholar 

  • Burton, T. E., & Davie, P. J. F. (2007). A revision of the short-nosed lobsters of the genus Thenus (Crustacea: Decapoda: Scyllaridae), with descriptions of three new species. Zootaxa, 1429, 1–38.

    Article  Google Scholar 

  • Cahu, C. (1999). Nutrition and feeding of penaeid shrimp larvae. In J. Guillaume, S. Kaushik, P. Bergot, & R. Métailler (Eds.), Nutrition and feeding of fish and crustaceans (pp. 253–263). Chichester: Paris Publishing.

    Google Scholar 

  • Cardona, L., Álvarez de Quevedo, I., Borrell, A., & Aguilar, A. (2012). Massive consumption of gelatinous plankton by mediterranean apex predators. PLoS One, 7, e31329. https://doi.org/10.1371/journal.pone.0031329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, T. Y. (2010). Annotated checklist of the world’s marine lobsters (Crustacea: Decapoda: Astacidea, Glypheidea, Achelata, Polychelida). The Raffles Bulletin of Zoology, 23, 153–181.

    Google Scholar 

  • Connell, S. C., O’Rorke, R., Jeffs, A. G., & Lavery, S. D. (2014). DNA identification of the phyllosoma diet of Jasus edwardsii and Scyllarus sp. Z. New Zealand Journal of Marine and Freshwater Research, 48, 416–429.

    Article  CAS  Google Scholar 

  • Cox, S. L., & Bruce, M. P. (2003). Feeding behaviour and associated sensory mechanisms of stage I–III phyllosoma of Jasus edwardsii and Jasus verreauxi. Journal of the Marine Biological Association of the United Kingdom, 83, 465–468.

    Article  Google Scholar 

  • Fisher, W. S., Nilson, E. H., Steenbergen, J. F., & Lightner, D. V. (1978). Microbial diseases of cultured lobsters: A review. Aquaculture, 14, 115–141.

    Article  Google Scholar 

  • Forster, G. R. (1953). Peritrophic membranes in the Caridea (Crustacea Decapoda). Journal of the Marine Biological Association of the United Kingdom, 32, 315–318.

    Article  Google Scholar 

  • Francis, D. S., Salmon, M. L., Kenway, M. J., & Hall, M. R. (2014). Palinurid lobster aquaculture: Nutritional progress and considerations for successful larval rearing. Reviews in Aquaculture, 6, 180–203.

    Google Scholar 

  • Fukuda, Y., & Naganuma, T. (2001). Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Marine Biology, 138, 1029–1035.

    Article  CAS  Google Scholar 

  • Goldstein, J. S., & Nelson, B. (2011). Application of a gelatinous zooplankton tank for the mass production of larval Caribbean spiny lobster, Panulirus argus. Aquatic Living Resources, 24, 45–51.

    Article  Google Scholar 

  • Goulden, E. F., Hall, M. R., Bourne, D. G., Pereg, L. L., & Høj, L. (2012). Pathogenicity and infection cycle of Vibrio owensii in larviculture of the ornate spiny lobster (Panulirus ornatus). Applied and Environmental Microbiology, 78, 2841–2849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer, A. T., Briseno-Avena, C., Deary, A. L., Cowen, R. K., Hernandez, F. J., & Graham, W. M. (2017). Associations between lobster phyllosoma and gelatinous zooplankton in relation to oceanographic properties in the northern Gulf of Mexico. Fisheries Oceanography, 26, 693–704.

    Article  Google Scholar 

  • Greve, W. (1968). The “planktonkreisel”, a new device for culturing zooplankton. Marine Biology, 1, 201–203.

    Article  Google Scholar 

  • Greve, W. (1970). Cultivation experiments on North Sea ctenophores. Helgoländer Wissenschaftliche Meeresuntersuchungen, 20, 304–317.

    Article  Google Scholar 

  • Guillaume, J. (1997). Protein and amino acids. In L. R. D’Abramo, D. E. Conklin, & D. M. Akiyama (Eds.), Crustacean nutrition (pp. 26–50). Baton Rouge: The World Aquaculture Society.

    Google Scholar 

  • Herrnkind, W., Halusky, J., & Kanciruk, P. (1976). A further note on phyllosoma larvae associated with medusae. Bulletin of Marine Science, 26, 110–112.

    Google Scholar 

  • Higa, T., Fujita, Y., & Shokita, S. (2005). Complete larval development of a scyllarine lobster, Galearctus kitanoviriosus (Harada, 1962) (Decapoda: Scyllaridae: Scyllarinae), reared under laboratory conditions. Crustacean Research, 34, 1–26.

    Article  Google Scholar 

  • Horita, T. (2007). A challenge toward rearing, exhibiting spiny lobster larvae. In G. Nishi & T. Saruwatari (Eds.), Work at aquariums (pp. 84–98). Hatano: Tokai University Press.

    Google Scholar 

  • Ianniello, L., & Mears, S. (2018). Blackwater creatures. 170 pp. Ianniello & Mears. USA.

    Google Scholar 

  • Ishii, H., Morishita, A., & Yamaguchi, Y. (2016). Productive ecology and utilization as food of hydrozoan jellyfish Eutonia indicans. In Abstract book of the 5th international jellyfish bloom symposium (p. 117). Barcelona: L’Aquàrium de Barcelona.

    Google Scholar 

  • Jeffs, A. (2007). Revealing the natural diet of the phyllosoma larvae of spiny lobster. Bulletin of Fisheries Research Agency, 20, 9–13.

    Google Scholar 

  • Jeffs, A. G., Willmott, M. E., & Wells, R. M. G. (1999). The use of energy stores in the puerulus of the spiny lobster Jasus edwardsii across the continental shelf of New Zealand. Comparative Biochemistry and Physiology. A, Comparative Physiology, 123, 351–357.

    Article  Google Scholar 

  • Jeffs, A. G., Nichols, P. D., & Bruce, M. P. (2001). Lipid reserves used by pueruli of the spiny lobster Jasus edwardsii in crossing the continental shelf of New Zealand. Comparative Biochemistry and Physiology. A, Comparative Physiology, 129, 305–311.

    Article  CAS  Google Scholar 

  • Jouiaei, M., Yanagihara, A. A., Madio, B., Nevalainen, T. J., Alewood, P. F., & Fry, B. G. (2015). Ancient venom systems: A review on cnidaria toxins. Toxins, 7, 2251–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamio, M., Furukawa, D., Wakabayashi, K., Hiei, K., Yano, H., Sato, H., Yoshie-Stark, Y., Akiba, T., & Tanaka, Y. (2015). Grooming behavior by elongated third maxillipeds of phyllosoma larvae of the smooth fan lobster riding on jellyfishes. Journal of Experimental Marine Biology and Ecology, 463, 115–124.

    Article  Google Scholar 

  • Kamio, M., Wakabayashi, K., Nagai, H., & Tanaka, Y. (2016). Phyllosomas of smooth fan lobsters (Ibacus novemdentatus) encase jellyfish cnidae in peritrophic membranes in their feces. Plankton & Benthos Research, 11, 100–104.

    Article  Google Scholar 

  • Kittaka, J. (1997). Application of ecosystem culture method for complete development of phyllosomas of spiny lobster. Aquaculture, 115, 319–331.

    Article  Google Scholar 

  • Kittaka, J. (2000). Culture of larval spiny lobsters. In B. F. Phillips & J. Kittaka (Eds.), Spiny lobsters: Fisheries and culture (pp. 508–532). Oxford: Fishing News Books.

    Chapter  Google Scholar 

  • Kittaka, J. (2005). Jellyfish as food organisms to culture phyllosoma larva. Bulletin of the Plankton Society of Japan, 52, 91–99.

    Google Scholar 

  • Kizhakudan, J. K., & Krishnamoorthi, S. (2014). Complete larval development of Thenus unimaculatus Burton & Davie, 2007 (Decapoda, Scyllaridae). Crustaceana, 87, 570–584.

    Article  Google Scholar 

  • Kumar, T. S., Vijayakumaran, M., Murugan, T. S., Jha, D. K., Sreeraj, G., & Muthukumar, S. (2009). Captive breeding and larval development of the scyllarine lobster Petrarctus rugosus. New Zealand Journal of Marine and Freshwater Research, 43, 101–112.

    Article  Google Scholar 

  • Lavalii, K. L., & Spanier, E. (2007). Introduction to the biology and fisheries of slipper lobsters. In K. L. Lavalli & E. Spanier (Eds.), The biology and fisheries of the slipper lobster (pp. 3–21). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Madin, L. P., & Harbison, G. R. (2001). Gelatinous zooplankton. In S. A. Thorpe & K. K. Turekian (Eds.), Encyclopedia of ocean sciences (Vol. 2, pp. 1120–1130). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Mańko, M. K., Słomska, A. W., & Jażdżewski, K. (2017). Siphonophora of the Gulf of Aqaba (red sea) and their associations with crustaceans. Marine Biology Research, 13, 480–485.

    Article  Google Scholar 

  • Masuda, R., Yamashita, Y., & Matsuyama, M. (2008). Jack mackerel Trachurus japonicus juveniles use jellyfish for predator avoidance and as a prey collector. Fisheries Science, 74, 276–284.

    Article  CAS  Google Scholar 

  • Matsuda, H. (2010). Ise-ebi wo tsukutu (178 pp). Seizan, Tokyo. (In Japanese).

    Google Scholar 

  • Matsuda, H., & Takenouchi, T. (2005). New tank design for larval culture of Japanese spiny lobster, Panulirus japonicus. New Zealand Journal of Marine and Freshwater Research, 39, 279–285.

    Article  Google Scholar 

  • Mikami, S., & Kuballa, A. V. (2004). Overview of lobster aquaculture research. In S. Kolkovski, J. Heine, & S. Clarke (Eds.), Proceedings of the second hatchery feeds and technology workshop (pp. 127–130). Sydney: Novotel Century Sydney.

    Google Scholar 

  • Mikami, S., & Kuballa, A. V. (2007). Factors important in larval and postlarval molting, growth, and rearing. In K. L. Lavalli & E. Spanier (Ed.), The biology and fisheries of the slipper lobster (pp. 91–110). CRC Press.

    Google Scholar 

  • Mikami, S., & Takashima, F. (1993). Development of the proventriculus in larvae of the slipper lobster, Ibacus ciliatus (Decapoda: Scyllaridae). Aquaculture, 116, 199–217.

    Article  Google Scholar 

  • Mikami, S., Greenwood, J. G., & Takashima, F. (1994). Functional morphology and cytology of the phyllosomal digestive system of Ibacus ciliatus and Panulirus japonicus (Decapoda, Scyllaridae and Palinuridae). Crustaceana, 67, 212–225.

    Article  Google Scholar 

  • Mitchell, J. R. (1971). Food preference, feeding mechanisms, and related behavior in phyllosoma larvae of the California spiny lobster, Panulirus interruptus (Randall) (110 pp). Master Thesis in San Diego State College.

    Google Scholar 

  • Murakami, K., Jinbo, T., & Hamasaki, K. (2007). Aspects of the technology of phyllosoma rearing and metamorphosis from phyllosoma to puerulus in the Japanese spiny lobster Panulirus japonicus reared in the laboratory. Bulletin of Fisheries Research Agency, 20, 59–67.

    Google Scholar 

  • Nelson, M. M., Phleger, C. F., Mooney, B. D., & Nichols, P. D. (2000). Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora. Lipids, 35, 551–559.

    Article  CAS  PubMed  Google Scholar 

  • Nishida, S., Quigley, B. D., Booth, J. D., Nemoto, T., & Kittaka, J. (1990). Comparative morphology of the mouthparts and foregut of the final-stage phyllosoma, puerulus, and postpuerulus of the rock lobster Jasus edwardsii (Decapoda: Palinuridae). Journal of Crustacean Biology, 10, 293–305.

    Article  Google Scholar 

  • O’Rorke, R., Lavery, S., Chow, S., Takeyama, H., Tsai, P., Beckley, L. E., Thompson, P. A., Waite, A. M., & Jeffs, A. G. (2012). Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS One, 7, e42757. https://doi.org/10.1371/JOURNAL.PONE.0042757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palero, F., Clark, P. F., & Guerao, G. (2014a). Achelata. In J. W. Martin, J. Olesen, & J. T. Høeg (Eds.), Atlas of Crustacean Larvae (pp. 272–278). Maryland: Johns Hopkins University Press.

    Google Scholar 

  • Palero, F., Guerao, G., Hall, M., Chan, T. Y., & Clark, P. F. (2014b). The ‘giant phyllosoma’ are larval stages of Parribacus antarcticus (Decapoda: Scyllaridae). Invertebrate Systematics, 28, 258–276.

    Article  Google Scholar 

  • Phillips, B. F., & Matsuda, H. (2011). A global review of spiny lobster aquaculture. In R. K. Fotedar & B. F. Phillips (Eds.), Recent advances and new species in aquaculture (pp. 22–84). West Sussex: Blackwell.

    Chapter  Google Scholar 

  • Phillips, B. F., & Sastry, A. N. (1980). Larval ecology. In J. S. Cobb & B. F. Phillips (Eds.), The biology and management of lobsters. II: Ecology and management (pp. 11–57). New York: Academic Press.

    Google Scholar 

  • Phillips, B. F., Jeffs, A. G., Melville-Smith, R., Chubb, C. F., Nelson, M. M., & Nichols, P. D. (2006). Changes in lipid and fatty acid composition of late larval and puerulus stages of the spiny lobster (Panulirus cygnus) across the continental shelf of Western Australia. Comparative Biochemistry and Physiology. B, 143, 219–228.

    Article  CAS  Google Scholar 

  • Phleger, C. F., Nelson, M. M., Mooney, B. D., Nichols, P. D., Ritar, A. J., Smith, G. G., Hart, P. R., & Jeffs, A. G. (2001). Lipids and nutrition of the southern rock lobster, Jasus edwardsii, from hatching to puerulus. Marine and Freshwater Research, 52, 1475–1486.

    Article  CAS  Google Scholar 

  • Purcell, J. E. (2012). Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science, 4, 209–235.

    Article  PubMed  Google Scholar 

  • Purcell, J. E., Uye, S., & Lo, W. T. (2007). Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review. Marine Ecology Progress Series, 350, 153–174.

    Article  Google Scholar 

  • Ritar, A. J. (2001). The experimental culture of phyllosoma larvae of southern rock lobster (Jasus edwardsii) in a flow-through system. Aquacultural Engineering, 24, 149–156.

    Article  Google Scholar 

  • Saunders, M. I., Thompson, P. A., Jeffs, A. G., Säwström, C., Sachlikidis, N., Beckley, L. E., & Waite, A. M. (2012). Fussy feeders: Phyllosoma larvae of the western rocklobster (Panulirus cygnus) demonstrate prey preference. PLoS One, 7, e36580. https://doi.org/10.1371/journal.pone.0036580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi, H., Booth, J. D., & Webber, W. R. (2007). Early life histories of slipper lobsters. In K. L. Lavalli & E. Spanier (Eds.), The biology and fisheries of the slipper lobster (pp. 69–90). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Shojima, Y. (1963). Scyllarid phyllosomas’ habit of accompanying the jelly-fish (preliminary report). Bullettin of the Japanese Society of Scientific Fisheries, 29, 349–353.

    Article  Google Scholar 

  • Shojima, Y. (1973). The phyllosoma larvae of Palinura in the East China Sea and adjacent waters—I. Bulletin of Seikai Regulation Fisheries Research Laboratory, 43, 105–115. (In Japanese).

    Google Scholar 

  • Simon, C. J., Carter, C. G., & Battaglene, S. C. (2012). Development and function of the filter-press in spiny lobster, Sagmariasus verreauxi, phyllosoma. Aquaculture, 370–371, 68–75.

    Article  Google Scholar 

  • Sims, H. W., Jr., & Brown, C. L., Jr. (1968). A giant scyllarid phyllosoma larva taken north of Bermuda (Palinuridea). Crustaceana (Supplement), 2, 80–82.

    Google Scholar 

  • Sullivan, L. J., & Kremer, P. (2011). Gelatinous zooplankton and their trophic roles. In E. Wolanski & D. McLusky (Ed.), Treatise on estuarine and coastal science, Vol. 6, Trophic relationships of coastal and estuarine ecosystems (pp. 127–171). London: Academic Press.

    Google Scholar 

  • Suzuki, N., Murakami, K., Takeyama, H., & Chow, S. (2006). Molecular attempt to identify prey organisms of lobster phyllosoma larvae. Fisheries Science, 72, 342–349.

    Article  CAS  Google Scholar 

  • Suzuki, N., Murakami, K., Takeyama, H., & Chow, S. (2007). Eukaryotes from the hepatopancreas of lobster phyllosoma larvae. Bullettin of Fisheries Research Agency, 20, 1–7.

    CAS  Google Scholar 

  • Sverdrup, H.U., Johnson, M.W. & Fleming, R.H. 1947. The oceans: Their physics, chemistry, and general biology. 1087 pp. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Takahashi, M., & Saisho, T. (1978). The complete larval development of the scyllarid lobster, Ibacus ciliatus (von Siebold) and Ibacus novemdentatus Gibbes in the laboratory. Members Faculty of Fisheries Kagoshima University, 27, 305–353.

    Google Scholar 

  • Takeuchi, T. (2014). Progress on larval and juvenile nutrition to improve the quality and health of seawater fish: A review. Fisheries Science, 80, 389–403.

    Article  CAS  Google Scholar 

  • Thomas, L. R. (1963). Phyllosoma larvae associated with medusae. Nature, 198, 208.

    Article  Google Scholar 

  • Uye, S., Fujii, N., & Takeoka, H. (2003). Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku, Japan. Plankton Biology and Ecology, 50, 17–21.

    Google Scholar 

  • Vijayakumaran, M., & Radhakrishnan, E. V. (2011). Slipper lobsters. In R. K. Fotedar & B. F. Phillips (Eds.), Recent advances and new species in aquaculture (pp. 85–114). West Sussex: Blackwell.

    Chapter  Google Scholar 

  • Wakabayashi, K., & Phillips, B. F. (2016). Morphological descriptions of laboratory reared larvae and post-larvae of the Australian shovel-nosed lobster Thenus australiensis Burton and Davie, 2007 (Decapoda, Scyllaridae). Crustaceana, 89, 97–117.

    Article  Google Scholar 

  • Wakabayashi, K., & Tanaka, Y. (2012). The jellyfish-rider: Phyllosoma larvae of spiny and slipper lobsters associated with jellyfish. TAXA, Proceedings of Japanese Society Systematic Zoology, 33, 5–12. (In Japanese).

    Google Scholar 

  • Wakabayashi, K., Sato, R., Hirai, A., Ishii, H., Akiba, T., & Tanaka, Y. (2012a). Predation by the phyllosoma larva of Ibacus novemdentatus on various kinds of venomous jellyfish. The Biological Bulletin, 222, 1–5.

    Article  PubMed  Google Scholar 

  • Wakabayashi, K., Sato, R., Ishii, H., Akiba, T., Nogata, Y., & Tanaka, Y. (2012b). Culture of phyllosomas of Ibacus novemdentatus (Decapoda: Scyllaridae) in a closed recirculating system using jellyfish as food. Aquaculture, 330–333, 162–166.

    Article  Google Scholar 

  • Wakabayashi, K., Matsumura, K., & Tanaka, Y. (2013). Consumption rates of jellyfish by phyllosoma larvae of the smooth fan lobster Ibacus novemdentatus. In Abstracts of aquaculture conference: To the next 40 years of sustainable global aquaculture. Palacio de Congresos de Canarias Convention Centre, Las Palmas de Gran Canaria. O6.5.

    Google Scholar 

  • Wakabayashi, K., Nagai, S., & Tanaka, Y. (2016a). The complete larval development of Ibacus ciliatus from hatching to the nisto and juvenile stages using jellyfish as the sole diet. Aquaculture, 450, 102–107.

    Article  Google Scholar 

  • Wakabayashi, K., Sato, H., Yoshie-Stark, Y., Ogushi, M., & Tanaka, Y. (2016b). Differences in the biochemical compositions of two dietary jellyfish species and their effects on the growth and survival of Ibacus novemdentatus phyllosomas. Aquaculture Nutrition, 22, 25–33.

    Article  CAS  Google Scholar 

  • Wakabayashi, K., Tanaka, Y., & Abe, H. (2017a). Field guide to marine plankton (Vol. 180). Tokyo: Bun-ichi. (In Japanese).

    Google Scholar 

  • Wakabayashi, K., Yang, C. H., Shy, J. Y., He, C. H., & Chan, T. Y. (2017b). Correct identification and redescription of the larval stages and early juveniles of the slipper lobster Eduarctus martensii (Pfeffer, 1881) (Decapoda: Scyllaridae). Journal of Crustacean Biology, 37, 204–219.

    Article  Google Scholar 

  • Wake, F., Izumimoto, M., Mikami, M., & Miura, H. (1974). On the bacteriostatic action by glycine. Research Bullettin of Obihiro University Series I, 9, 159–163.

    Google Scholar 

  • Wang, M., & Jeffs, A. G. (2014). Nutritional composition of potential zooplankton prey of spiny lobster larvae: A review. Reviews in Aquaculture, 6, 270–299.

    Article  Google Scholar 

  • Yoshino, Y. (2015). Sekai de ichi-ban utsukushii umi no ikimono zukan (Most beautiful creatures in the ocean). 231 pp. Sogensha, Osaka. (In Japanese).

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the underwater photographers Mr. Hideki Abe, Mr. Yusuke Yoshino, Mr. Tsutomu Sasagawa, Ms. Miki Sasagawa, and Ms. Kumiko Maki who always provided us their observations with wonderful photographs. The gratitude also goes to Dr. Wanting Cheng and Mr. Ryuichi Sugimoto who agreed with providing unpublished data in this chapter. A special acknowledgement to the late Dr. Jiro Kittaka who was encouraging the authors to seek a possibility of gelatinous zooplankton as food for slipper and spiny lobster phyllosomas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Wakabayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wakabayashi, K., Tanaka, Y., Phillips, B.F. (2019). Culture of Slipper Lobster Larvae (Decapoda: Achelata: Scyllaridae) Fed Jellyfish as Food. In: Radhakrishnan, E., Phillips, B., Achamveetil, G. (eds) Lobsters: Biology, Fisheries and Aquaculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9094-5_11

Download citation

Publish with us

Policies and ethics