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Abstract

For a given generalized eta-quotient, we show that linear progressions whose residues
fulfill certain quadratic equations do not give rise to a linear congruence modulo any
prime. This recovers known results for classical eta-quotients, especially the partition
function, but also yields linear incongruences for more general weakly holomorphic
modular forms like the Rogers-Ramanujan functions.

1 Introduction and statement of results
Ever since Ramanujan established his famous linear congrucences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 6) ≡ 0 (mod 7),

p(11n + 7) ≡ 0 (mod 11)

(1)

for the partition function p(n), the challenge of proving and generalizing them triggered a
vast amount of research. For instance, Ono [8] found analogues of (1) for every modulus
coprime to 6. See also [3] and the sources contained therein for further results. However,
recent work of Radu [9] proved that there are no linear congruences of p(n) modulo 2
and 3, affirming a famous conjecture of Subbarao. The main ingredients of his proof are
skillful computations and the q-expansion principle due to Deligne and Rapoport [4].
Adapting the methods of Radu’s proof, Ahlgren and Kim [2] showed analogous results for
themock theta functions f (q) andω(q), aswell as for certain classes ofweakly holomorphic
modular forms, including (classical) eta-quotients. In this paper, we extend their approach
to generalized eta-quotients.
These functions are defined as follows: For δ ∈ Z

+ and a residue class g (mod δ), we set

ηδ,g (z) := q
δ
2P2( gδ )

∏

m>0
m≡g (mod δ)

(1 − qm)
∏

m>0
m≡−g (mod δ)

(1 − qm) ,

where z ∈ H and q := e2π iz throughout. Here, for x ∈ R and {x} := x − �x�, we let

P2(x) := {x}2 − {x} + 1
6

be the second Bernoulli function.
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Note that if

η(z) := q1/24
∏

m>0
(1 − qm)

denotes the usual Dedekind eta-function, then

ηδ,0(z) = η(δz)2 and ηδ, δ2
(z) = η

(
δ
2z

)2

η(δz)2
.

Furthermore, for g /∈ {
0, δ

2
}
we have

ηδ,g (z)−1 = q
δ
2P2( gδ )

∑

n≥0
pδ,g (n)qn,

where pδ,g (n) denotes the number of partitions of n with all parts congruent to ±g
(mod δ).
For δ = 5, these functions occur in the well-known Rogers-Ramanujan identities, which

state that

q
1
60 η−1

5,1 (z) =
∑

n≥0

qn2

(q; q)n
= 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + · · ·

and

q− 11
60 η−1

5,2 (z) =
∑

n≥0

qn2+n

(q; q)n
= 1 + q2 + q3 + q4 + q5 + 2q6 + · · · ,

where (q; q)n := ∏n
j=1(1 − qj).

For N ∈ Z
+, a residue class a (mod N ), let r := (rδ,g )δ|N,g (mod δ) be a tuple of half-

integers, indexed by the divisors of N and their residue classes, with rδ,g ∈ Z unless g = 0
or g = δ

2 . In this paper, we study generalized eta-quotients of the form

Hr(z) :=
∏

δ|N
g (mod δ)

ηδ,g (z)rδ,g =: qP(r)
∑

n≥0
cr(n)qn,

where

P(r) := 1
2

∑

δ|N
g (mod δ)

δrδ,gP2
(g

δ

)
.

Note that the denominator of P(r) divides 12N .
For every modulus m ∈ Z

+ and residue class t (mod m), we give conditions on prime
numbers p that guarantee that the linear progression t (mod m) does not satisfy a lin-
ear congruence mod p for the generalized eta-quotient Hr . Here, for any residue class a
(mod N ), we denote by ra the tuple (rδ,ag )δ|N,g (mod δ).

Theorem 1 Let m ∈ Z
+ and t ∈ {0, . . . , m − 1}. For a, d ∈ Z with ad ≡ 1 (mod 24Nm),

let n be the smallest nonnegative integer for which

d2(n + P(ra)) − P(r) ≡ t (mod m).

Then for every prime p not dividing cra (n), we have
∑

n≥0
cr(mn + t)qn �≡ 0 (mod p).
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Remark 1 Since we always have cr(0) = 1, the linear incongruence is satisfied for any
prime p if

d2P(ra) − P(r) ≡ t (mod m).

Remark 2 Bywork of Ahlgren and Boylan [1], if the conditions of Theorem 1 are satisfied,
we even have that

#
{
n ≤ X : cr(mn + t) �≡ 0 (mod p)

} 
p,r,m,t,K

√
X

logX
(log logX)K

for every positive integer K .

Theorem 1 has several immediate applications.

Example 1 Let N = a = 1 and r = − 1
2 . Then

H− 1
2
(z) = η−1(z) = q− 1

24
∑

n≥0
p(n)qn.

Since p(0) = p(1) = 1, Theorem 1 then implies that
∑

n≥0
p(mn + t)qn �≡ 0 (mod �)

for every prime � if there is a d coprime to 6m with

t ≡ 1 − d2

24
(mod m) or t ≡ 1 + 23d2

24
(mod m).

Now assume that � ≥ 5 is prime with
(−23

�

) = −1. Then the classes d2 (mod �) and
−23d2 (mod �) together run over all residue classes except for 0 as d runs over residue
classes coprime to �. Since (�, 24) = 1, the classes 1−d2

24 and 1+23d2
24 cover every residue

class modulo � except for 1−�2

24 . It follows that we can only have a linear congruence
∑

n≥0
p(�n + t)qn ≡ 0 (mod �)

if t ≡ 1−�2

24 (mod �). This result was shown by Kiming and Olsson for every prime � [7].
In particular, for � ∈ {5, 7, 11}, this implies that the residues in (1) are the only ones for
which such a congruence can hold.

Example 2 More generally, Theorem 1 specializes to classical eta-quotients if rδ,g = 0 for
g �= 0. Then we have P(ra) = 1

12
∑

δ|N δrδ for all a. Since we always have ca(0) = 1, we
obtain that for every prime p, we have

∑

n≥0
cr(mn + t)qn �≡ 0 (mod p) if t ≡ d2 − 1

12
∑

δ|N
δrδ (mod m)

for some d coprime to 6Nm.

Example 3 Another interesting example are partitions occurring in Schur’s Theorem [12].
These are given by

q
1
12 η−1

6,1 (z) =
∑

n≥0
p6,1(n)qn = 1 + q + q2 + q3 + q4 + 2q5 + 2q6 + · · ·
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with N = 6, r6,1 = −1 and rδ,g = 0 otherwise, and P(ra) = − 1
12 for every a coprime to 6.

Thus Theorem 1 implies that
∑

n≥0
p6,1(mn + t)qn �≡ 0 (mod p)

for any prime p if there is a d coprime to 6m and j ∈ {−1, 11, 23, 35, 47} with

t ≡ 1 + jd2

12
(mod m).

As in Example 1, if � ≥ 5 is a prime with at least one of
(−11

�

)
,
(−23

�

)
,
(−35

�

)
, or

(−47
�

)

equal to −1, then there can only be a linear congruence if t ≡ 1−�2

12 (mod �).

Example 4 Now we take a closer look at the Rogers-Ramanujan functions η−1
5,1 and η−1

5,2 .
If Hr1 = Hr4 = η−1

5,1 , then we have N = 5, r5,1 = −1, r5,2 = 0, Hr2 = Hr3 = η−1
5,2 , and

P(ra) =
⎧
⎨

⎩
− 1

60 if a ≡ 1 or 4 (mod 5),
11
60 if a ≡ 2 or 3 (mod 5).

Hence Theorem 1 states that
∑

n≥0 p5,1(mn + t)qn �≡ 0 (mod p) for every prime p, if

t ≡ nd2 + 1 − d2

60
(mod m) for n ∈ {0, 1, 2, 3} and

d ≡ 1, 4 (mod 5) coprime to 6m

or

t ≡ nd2 + 11d2 + 1
60

(mod m) for n ∈ {0, 2, 3, 4, 5} and

d ≡ 2, 3 (mod 5)coprime to 6m.

If we switch the roles of η−1
5,1 and η−1

5,2 , we obtain that
∑

n≥0 p5,2(mn+ t)qn �≡ 0 (mod p)
for every prime p, if

t ≡ nd2 − d2 + 11
60

(mod m) for n ∈ {0, 1, 2, 3} and

d ≡ 2, 3 (mod 5) coprime to 6m

or

t ≡ nd2 + 11(d2 − 1)
60

(mod m) for n ∈ {0, 2, 3, 4, 5} and

d ≡ 1, 4 (mod 5) coprime to 6m.

In contrast, applying work of Gordon [5], Hirschhorn [6] found linear congruences
(mod 2) for p5,1 and p5,2. For example, Theorem 3 of [6] states that

p5,1(98n + t) ≡ 0 (mod 2)

for t ∈ {23, 37, 51, 65, 79, 93} and
p5,2(98n + t) ≡ 0 (mod 2)
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for t ∈ {6, 20, 34, 62, 76, 90}. The above discussion precludes all the other residues
(mod 98) except for t ∈ {9, 16, 58, 72, 86} resp. t ∈ {13, 27, 48, 55, 97} from satisfying
these congruences.

The paper is organized as follows: In Sect. 2 we define generalized eta-quotients and
study their transformation behavior under �0(12N ), slightly adapting a result of Robins
[10]. This will lead to modularity properties for the functions Hm,r,t whose Fourier coef-
ficients are given by those of Hr on the arithmetic progression t (mod m). In Sect. 3 we
prove Theorem 1 using the q-expansion principle.

2 Transformation properties of eta-quotients
We begin by studying modularity properites of ηδ,g . For A = ( a b

c d
) ∈ �0(δ) we define

μA,g,δ by

ηδ,g (Az) = e
(
μA,g,δ

)
j(A, z)δg,0ηδ,ag (z),

where j(A, z) := cz + d and e(w) := e2π iw throughout. An analogue of the following
proposition for the subgroup �1(δ) was shown in Theorem 2 of [10].

Proposition 1 For A = ( a b
c d

) ∈ �0(12δ) we have

μA,g,δ ≡ 1
2
dbδP2

(ag
δ

)
− a − 1

4
+ 1

2

⌊ag
δ

⌋
(mod 1).

Proof An equation on p. 122 of [10] states that (note the different normalization ofμA,g,δ)

μA,g,δ =
a−1∑

μ=1

((μ

a

) )( ( c
δ

μ

a
+ g

δ

))
+ δb

2a
P2

(ag
δ

)
− c

12δa

with

((x)) :=
⎧
⎨

⎩
{x} − 1

2 if x �= 0,

0 if x = 0.

By Eqn. (34) of [11], Ch. VIII §4, the denominator of μA,g,δ divides 12δ. This implies that
for A ∈ �0(12δ) we have, using that ad ≡ 1 (mod 12δ),

μA,g,δ ≡ ad
a−1∑

μ=1

((μ

a

) )( ( c
δ

μ

a
+ g

δ

) )
+ δdb

2
P2

(ag
δ

)
(mod 1).

We compute

ad
a−1∑

μ=1

((μ

a

) )( ( c
δ

μ

a
+ g

δ

) )
= d

a−1∑

μ=1

(
μ − a

2

) (( c
δ

μ

a
+ g

δ

) )

= d
a−1∑

μ=1
μ

( ( c
δ

μ

a
+ g

δ

) )
− ad

2

a−1∑

μ=1

( (μ

a
+ g

δ

) )
.

Now

d
a−1∑

μ=1
μ

( ( c
δ

μ

a
+ g

δ

))
≡ d

a−1∑

μ=1
μ

(
c
δ

μ

a
+ g

δ
− 1

2

)
≡ a − 1

2

(
g
δ

− 1
2

)
(mod 1)
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and

ad
2

a−1∑

μ=1

( (μ

a
+ g

δ

) )
≡ 1

2

a−1∑

μ=1

(
μ

a
+ g

δ
−

⌊μ

a
+ g

δ

]
− 1

2

)

≡ a − 1
4

+ a − 1
2

(
g
δ

− 1
2

)
− 1

2

⌊ag
δ

⌋
(mod 1),

using that
∑a−1

μ=0
⌊

μ
a + x

⌋ = �ax�. �


Let

Hr,m,t (z) := 1
m

∑

λ (mod m)
e
(

− λ

m
(t + P(r))

)
Hr

((
1 λ

m

)
z
)
, (2)

so that

Hr,m,t (z) = q
t+P(r)

m
∑

n≥0
cr(mn + t)qn

and for every λ (mod m) and
( a b
c d

) ∈ �0(m) choose λ′ with

aλ′ ≡ b + dλ (mod m).

Note that λ′ runs over all residue classes modulom with λ.

Moreover, let k := ∑
δ|N rδ,0, so that k is the weight of Hr .

Proposition 2 For A ∈ �0(24Nm), we have

Hr,m,t (Az) = j(A, z)k
ζ

m
∑

λ (mod m)
e
(

λ

m
(
d2P(ra) − P(r) − t

) − λ′

m
P(ra)

)

× Hra

((
1 λ′

m

)
z
)
,

where ζ is a 24Nm-th root of unity depending on r, m, and A. In particular, H24Nm
r,m,t is a

weakly holomorphic modular form of weight 24Nmk for �1(24Nm), i.e. a meromorphic
modular form whose poles are supported at the cusps.

Proof Let

Aλ :=
(
a + cλ 1

m
(
b + dλ − λ′(a + cλ)

)

mc d − cλ′

)
,

so that
(
1 λ

m

)
A = Aλ

(
1 λ′

m

)
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Then for A ∈ �0(24Nm), we have by Proposition 1

ηδ,g

((
1 λ

m

)
Az

)rδ,g

= ηδ,g

(
Aλ

(
1 λ′

m

)
z
)rδ,g

= e
(
rδ,gμAλ ,g,δ

)
j
(
Aλ,

(
1 λ′

m

)
z
)δg,0rδ,g

ηδ,ag

((
1 λ′

m

)
z
)rδ,g

= ζ0e
( rδ,gδ

2
P2

(ag
δ

)
(d − cλ′) 1

m
(
b + dλ − λ′(a + cλ)

))

×j(A, z)δg,0rδ,gηδ,ag

((
1 λ′

m

)
z
)rδ,g

= ζ0e
( rδ,gδ

2m
P2

(ag
δ

) (
db + d2λ − λ′)

)

× j(A, z)δg,0rδ,g ηδ,ag

((
1 λ′

m

)
z
)rδ,g

,

where ζ0 is a fourth root of unity depending on rδ,g and A. Thus,

Hr

((
1 λ

m

)
Az

)
= ζ j(A, z)ke

(
P(ra)
m

(
d2λ − λ′)

)
Hra

((
1 λ′

m

)
z
)
.

Together with (2), this yields the formula in the proposition.
Moreover, note that for A ∈ �1(24Nm), we have λ′ ≡ λ + b (mod m) and

Hr,m,t (Az)

= j(A, z)k
ζ

m
∑

λ′ (mod m)
e
(

λ′ − b
m

(
(d2 − 1)P(r) − t

) − λ′

m
P(r)

)
Hr

((
1 λ′

m

)
z
)

= j(A, z)k
ζ1
m

∑

λ′ (mod m)
e
(

−λ′

m
(t + P(r))

)
Hr

((
1 λ′

m

)
z
)

= ζ1j(A, z)kHr,m,t (z)

with ζ1 := e
(
bt
m

)
ζ . Since ζ1 is a 24Nm-th root of unity, we conclude that H24Nm

r,m,t is a
weakly holomorphic modular form of weight 24Nmk for �1(24Nm). �

3 Proof of Theorem 1
Proof For j large enough, we have that H24Nm

r,m,t 
j is a holomorphic modular form for
�1(24Nm). Let A = ( a b

c d
) ∈ �0(24Nm) and let |k denote the Petersson slash-operator, i.e.

(f |kA)(z) := j(A, z)−k f (Az). Then since

Hra

((
1 λ′

m

)
z
)

= e
(

λ′

m
P(ra)

)
q

P(ra)
m

∑

n≥0
cra (n)e

(
λ′

m
n
)
q

n
m ,

we obtain by Proposition 2

(Hr,m,t |kA) (z) = ζ

m
∑

λ (mod m)
e
(

λ

m
(
d2P(ra) − P(r) − t

) − λ′

m
P(ra)

)
Hra

((
1 λ′

m

)
z
)

= ζ

m
∑

λ (mod m)
e
(

λ

m
(
d2P(ra) − P(r) − t

))
q

P(ra)
m

∑

n≥0
cra (n)e

(
λ′

m
n
)
q

n
m

= ζ2
m
q

P(ra)
m

∑

n≥0
cra (n)

∑

λ (mod m)
e
(

λ

m
(
d2(P(ra) + n) − P(r) − t

))
q

n
m

with ζ2 := e
(
db
m

)
ζ , since λ′ ≡ db + d2λ (mod m).
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Now assume that n is the smallest nonnegative integer with d2(P(ra) + n) − P(r) ≡ t
(mod m). Then we have

(Hr,m,t |kA) (z) = ζ2cra (n)q
P(ra)+n

m
(
1 + O

(
q

1
m

))

Suppose that Hr,m,t ≡ 0 (mod p). Then

(p−1Hr,m,t )24Nm
j ∈ M24Nmk+12j(�1(24Nm)) ∩ Z[ζ24Nm][q].

The q-expansion principle from Corollaire 3.12 of [4], Ch. VII states that if f is a modular
form of weight κ for �1(N ) whose Fourier coefficients at i∞ lie in Z[ζN ], then for any
A ∈ �0(N ), also f |κA has Fourier coefficients in Z[ζN ] (see also Corollary 5.3 of [9]). Thus
it follows that

(
(p−1Hr,m,t )24Nm
j

)
|24Nmk+12jA ∈ Z[ζ24Nm][q]

for every A ∈ �0(24Nm). By the above computation we have
((

(p−1Hr,m,t )24Nm
j
)

|24Nmk+12jA
)

= p−24Nm((Hr,m,t |A) (z))24Nm
(z)j

=
(
cra (n)
p

)24Nm
q24N (P(ra)+n)+j (1 + O(q)) ∈ Z[ζ24Nm][q].

This can only hold if p divides cra (n). �
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