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Abstract   

 

Onchocerciasis, or “river blindness”, is a parasitic disease caused by the filarial worm 

Onchocerca volvulus. Significant progress in onchocerciasis control in Latin America 

and Africa, where 99% of cases occur, has made elimination of the disease feasible in 

some circumstances. However, progression to an elimination programme poses new 

challenges for diagnosis, as no test can detect current infection with the O. volvulus adult 

worm, and the detection of microfilariae (mf) in the skin lacks sufficient sensitivity after 

long-term exposure to treatment with ivermectin. To achieve the new global health goals 

for onchocerciasis, O. volvulus biomarkers with high sensitivity are needed to map areas 

with low levels of ongoing transmission and monitor infection recrudescence, while high 

specificity is required to enable discrimination between closely related filarial worms in 

areas with overlapping geographic distributions. Although the adult worms live in 

subcutaneous nodules, these nodules are highly vascularised, allowing potential 

biomarkers of O. volvulus to present in the host circulation. In this study, a longitudinal 

plasma sample set collected in Cameroon from individuals with onchocerciasis pre-

treatment, and at four, 12 and 21 months after following one of three antifilarial 

treatment regimens, was used to screen for circulating protein, DNA and miRNA 

markers of infection and macrofilaricidal treatment efficacy in the host. Following the 

development of a discovery proteomic method for plasma, five individuals infected at 

baseline and amicrofilaridermic or with low mf burden (four patients and one patient, 

respectively) at 21 months were analysed. Sixteen circulating O. volvulus proteins were 

identified, of which 15 were detected 21 months post-doxycycline treatment. Eight 

proteins were detected in almost every individual at each time point over 21 months, 

while three parasite proteins changed in detection frequency among individuals by the 

final follow-up. An uncharacterised O. volvulus membrane protein enriched in female 

worms, A0A044VCM8, was detected in all individuals and may be a circulating marker 

for female worm infection. However, the protein was detected consistently over the 21 

month follow-up, suggesting it is unlikely to be useful as a marker for treatment 

efficacy. An analysis of 18 participants before and after treatment with either 

doxycycline, doxycycline + ivermectin, or ivermectin, detected both parasite-derived 

miRNAs and O. volvulus-specific DNA in the circulation of the host using RT-qPCR 

and qPCR, respectively. However, the two parasite-derived miRNAs associated with O. 

volvulus, miR-71 and lin-4, were negative in almost all plasma samples, and did not 

have the specificity or sensitivity to be circulating markers for onchocerciasis. The O. 
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volvulus-specific O-150 DNA marker was detected in plasma in almost half of the same 

18 individuals pre-treatment, with a decline in the proportion of positive patients 

detected in all treatment groups over the follow-up timeframe. Of the 58 plasma samples 

negative for O-150 by qPCR, 36 (62.1%) had microfilaridermia detected by 

parasitological evaluation. Detection of O. volvulus DNA in the host plasma was therefore 

was not sufficiently sensitive. No suitable circulating protein, DNA or miRNA markers of 

infection clearance and treatment efficacy were identified by 21 months post-treatment 

among the individuals tested. Several factors may have confounded our longitudinal 

biomarker analyses, such as large gaps in time between sampling in an area of ongoing 

transmission, where reinfections can occur and influence the prevalence or abundance of 

circulating biomarkers. Individuals may also have occult L. loa and/or M. perstans infection, 

and therefore potential biomarkers identified may not be specific for onchocerciasis. 

Participants in the study may have had incomplete responses to macrofilaricidal treatment, 

and the variable persistence of adult worms among individuals influenced the circulating 

biomarker profile. Ideally, biomarkers of active O. volvulus infection and infection clearance 

following macrofilaricidal treatment would be validated in clinical sample sets from areas of 

low endemicity or in a confirmed elimination setting, in order to reduce the possibility of 

reinfections over follow-up. These areas should also be free of coinfective parasites, such as 

L. loa, M. perstans or W. bancrofti, to ensure that biomarker(s) are detected due to infection 

with O. volvulus only. Additionally, patients would consistently respond to treatment and 

show a total macrofilaricidal response. In the absence of a perfect human sample set, animal 

models, such as new immunodeficient mouse models for onchocerciasis, would also be 

useful for conducting preclinical studies, where samples can be readily obtained and 

conditions optimally controlled. Future work should determine in an optimised sample set 

whether the O. volvulus proteins consistently detected here in plasma are indeed novel 

circulating markers of infection, in order to progress specific and sensitive targets for future 

diagnostic development.   

 

 

  



 

3 

Contents 

 

Abstract ....................................................................................................................... 1 

List of Figures ............................................................................................................. 5 

List of Tables .............................................................................................................. 7 

Supplementary Material ............................................................................................ 8 

Acknowledgements ..................................................................................................... 9 

Contributors Statements ......................................................................................... 10 

List of Abbreviations and Acronyms ..................................................................... 11 

Chapter 1.  Introduction ........................................................................................ 13 

Onchocerciasis ........................................................................................................ 13 

Parasite and life cycle ............................................................................................. 13 

Clinical manifestations of disease .......................................................................... 15 

Epidemiological patterns and prevalence ............................................................... 19 

Control and elimination .......................................................................................... 20 

Treatment for onchocerciasis ................................................................................. 25 

Diagnosis of Onchocerca volvulus ......................................................................... 30 

Biomarkers for onchocerciasis ............................................................................... 37 

Recent advances in technology platforms for biomarker discovery ...................... 39 

Circulating biomarkers for adult Onchocerca volvulus: A rationale ..................... 43 

Project aims ............................................................................................................ 45 

Chapter 2.  Methods ............................................................................................... 46 

Methodology .......................................................................................................... 46 

Reagents and equipment ......................................................................................... 46 

Human plasma ........................................................................................................ 48 

Ethics statement ...................................................................................................... 50 

Proteomic techniques ............................................................................................. 50 

Protein identification: Proteome Discoverer and Mascot ....................................... 55 

Protein identification: MaxQuant and Andromeda ................................................ 57 

Bioinformatic analysis of the onchocerciasis plasma proteome: Perseus .............. 59 

Functional analysis of Onchocerca volvulus proteins ............................................ 60 

Molecular techniques ............................................................................................. 61 

Statistical analysis .................................................................................................. 68 

 



 

4 

Chapter 3.  Developing a discovery proteomic workflow for plasma................ 70 

Abstract .................................................................................................................. 70 

Introduction ............................................................................................................ 71 

Methods .................................................................................................................. 73 

Results .................................................................................................................... 78 

Discussion .............................................................................................................. 93 

Chapter 4.  The onchocerciasis plasma proteome – a longitudinal survey ....... 99 

Abstract .................................................................................................................. 99 

Introduction .......................................................................................................... 100 

Methods ................................................................................................................ 102 

Results .................................................................................................................. 109 

Discussion ............................................................................................................ 126 

Chapter 5.  Nucleic acid markers of Onchocerca volvulus in plasma .............. 132 

Abstract ................................................................................................................ 132 

Introduction .......................................................................................................... 133 

Methods ................................................................................................................ 135 

Results .................................................................................................................. 141 

Discussion ............................................................................................................ 157 

Chapter 6.  Discussion .......................................................................................... 164 

Bibliography ........................................................................................................... 172 

 

 



 

5 

List of Figures 

 

Fig. 1. 1. Life cycle of Onchocerca volvulus. ............................................................ 15 

Fig. 1. 2. Distribution and status of preventive chemotherapy for onchocerciasis 

worldwide, in 2015. ................................................................................................... 23 

Fig. 3. 1. Percentage of protein mass in plasma......................................................... 71 

Fig. 3. 2. Proteomic workflow. .................................................................................. 74 

Fig. 3. 3. Plasma protein profile with 1D SDS-PAGE............................................... 79 

Fig. 3. 4. Protein identifications in plasma depleted of abundant proteins. ............... 82 

Fig. 3. 5. Relative abundance of the top 12 abundant proteins (-Ig accessions) in 

plasma and depleted plasma. ...................................................................................... 87 

Fig. 3. 6. Number of proteins in the depleted plasma and whole plasma. ................. 88 

Fig. 3. 7. Reproducibility of LC-MS/MS analyses. ................................................... 89 

Fig. 3. 8. Number of proteins in the depleted plasma and eluted fraction. ................ 90 

Fig. 3. 9. Protein identifications in depleted and eluted fractions combined in silico.

 .................................................................................................................................... 92 

Fig. 4. 1. Proteomic workflow. ................................................................................ 105 

Fig. 4. 2. Number of protein groups identified in each individual at each time point.

 .................................................................................................................................. 111 

Fig. 4. 3. Statistical evaluation of protein expression level changes over time. ...... 115 

Fig. 4. 4. Profile plots of O. volvulus proteins in plasma. ........................................ 119 

Fig. 4. 5. Overview of GO annotations for the O. volvulus proteins. ...................... 120 

Fig. 4. 6. Unsupervised hierarchical clustering and principal component analysis. 125 

Fig. 5. 1. Standard curves of two parasite miRNA qPCR assays. ........................... 142 

Fig. 5. 2. Assessment of plasma reference miRNAs................................................ 143 

Fig. 5. 3. Plasma reference and spike-in miRNA controls....................................... 144 

Fig. 5. 4. Monitoring PCR inhibition using a plasma endogenous control miRNA.

 .................................................................................................................................. 146 

Fig. 5. 5. Detection of a parasite miRNA in plasma after optimising the RT-qPCR.

 .................................................................................................................................. 147 

Fig. 5. 6. Longitudinal evaluation of cel-miR-71-5p in two individuals with 

onchocerciasis before and after doxycycline-treatment. .......................................... 148 



 

6 

Fig. 5. 7. Longitudinal detection of plasma endogenous control and spike-in 

miRNAs in trial individuals before and after following one of three antifilarial 

treatment regimens. .................................................................................................. 150 

Fig. 5. 8. Standard curve of the O. volvulus O-150 qPCR assay and endogenous 

plasma control GAPDH qPCR assay. ...................................................................... 151 

Fig. 5. 9. O. volvulus DNA positive and endogenous control DNA positive 

individuals. ............................................................................................................... 152 

Fig. 5. 10. O-150 positive plasma samples by treatment group and time point. ..... 154 

Fig. 5. 11. Plasma reference and spike-in DNA controls......................................... 156 



 

7 

List of Tables 

n 

Table 2. 1. List of powder and liquid laboratory supplies used and their sources. ... 46 

Table 2. 2. Buffers and solutions made in the laboratory. ......................................... 48 

Table 2. 3. Reference proteomes concatenated for database searching in MaxQuant.

 .................................................................................................................................... 59 

Table 2. 4. Primer and probe sequences for DNA-based experiments. ..................... 67 

Table 3. 1. Plasma proteins identified by 1D SDS-PAGE and LC-MS/MS. ............ 80 

Table 3. 2. Plasma proteins identified by 1D SDS-PAGE and LC-MS/MS after 

abundant protein depletion. ........................................................................................ 83 

Table 3. 3. Top 20 high scoring proteins identified in plasma by in-solution 

proteolysis and LC-MS/MS. ...................................................................................... 84 

Table 3. 4. Top 20 high scoring proteins identified in depleted plasma by in-solution 

proteolysis and LC-MS/MS. ...................................................................................... 85 

Table 3. 5. Protein accessions unique to the bound abundant protein fraction. ........ 91 

Table 4. 1. Parasitology of participants selected for the current study.................... 104 

Table 4. 2. Protein identifications in the onchocerciasis plasma proteome............. 110 

Table 4. 3. The 20 most abundant proteins in the onchocerciasis plasma proteome.

 .................................................................................................................................. 112 

Table 4. 4. Proteins present at only one of four time points in the trial. ................. 113 

Table 4. 5. Specificity of the 16 O. volvulus proteins detected in plasma............... 123 

Table 5. 1. Parasitology of participants selected for the current study.................... 137 

Table 5. 2. Clinical plasma samples positive for worm miRNAs. .......................... 149 

Table 5. 3. Individuals positive and negative for O-150 in plasma by qPCR. ........ 153 

Table 5. 4. Test results obtained by qPCR of plasma and by mf detection in skin 

snips. ........................................................................................................................ 155 

 

 

  



 

8 

Supplementary Material 

 

Table S1. Protein identifications from whole plasma and depleted plasma. 

Table S2. Protein identifications from depleted plasma and eluted abundant protein   

     fraction. 

Table S3. Protein identifications from depleted plasma and eluted abundant protein  

     fraction recombined in silico. 

Table S4. Protein identifications in the onchocerciasis plasma proteome. 

Table S5. GO terms for circulating O. volvulus proteins. 

Table S6. Details of O. volvulus peptide identifications.  

 

Fig. S1. Pairwise comparisons of log2 transformed LFQ protein intensities. 

Fig. S2. Distribution of sample LFQ intensities.  

Fig. S3. Low abundance LFQ intensity imputation. 



 

9 

Acknowledgements 

 

I would firstly like to thank my supervisors, Professor Mark Taylor and Dr Simon 

Wagstaff, for their input and guidance throughout my PhD. I would also like to 

thank the Liverpool School of Tropical Medicine for funding this PhD studentship. I 

would like to thank past and current members of the A-WOL laboratory for general 

support over the years, with a special thank you to Dr Gemma Molyneux for helping 

me immensely during the initial stages of my proteomics project, and for giving me 

an understanding of protein experiments, proteomics and the bioinformatic analyses. 

I sincerely appreciate her assistance, expertise, time and advice on proteomics during 

our time working together. I would also like to thank Mr Andrew Stevens, who has 

been great support over the years, Dr Joe Turner for helpful discussions regarding 

trial and parasite samples and filariasis, and Miss Mary Creegan for giving 

administrative support and for her help throughout my PhD. I would also like to 

thank Dr Tom Edwards and Dr Emily Adams for their useful discussions and 

guidance on the molecular work. Professor Alister Craig and Professor Martin 

Donnelly have also provided informative and constructive feedback and advice 

during the later stages of my PhD, and I would to thank them for always making 

time for me. I would also like to thank Dr Artemis Koukounari within LSTM, and Dr 

Simon Perkins and Miss Hayley Price at the University of Liverpool, for giving up 

their time to discuss statistical and bioinformatic techniques with me. Dr Eva 

Caamano has been an amazing friend within LSTM throughout my PhD, and I am 

grateful for her support and helpful discussions over the years. Finally, I would like 

to thank my family and friends, in particular my mum, Tom Edwards and Rebecca 

Chilvers, for their patience and support, and for getting many drinks in.



 

10 

Contributors Statements 

 

The contributions to all chapters:  

Chapter 1.  Cara L Macfarlane wrote this and Professor Mark Taylor and Dr 

Simon Wagstaff supervised the writing.  

Chapter 2.  Cara L Macfarlane wrote this and Professor Mark Taylor and Dr 

Simon Wagstaff supervised the writing. Advice on the statistical and 

bioinformatic analysis methodology was provided by Dr Artemis 

Koukounari, Dr Simon Perkins and Miss Hayley Price. 

Chapter 3.  Cara L Macfarlane performed the scientific experiments, with 

assistance from Dr Gemma Molyneux and Dr Gavin Laing for the 

LC-MS/MS analyses. Professor Mark Taylor and Dr Simon Wagstaff 

supervised the experimental design, work and the writing.  

Chapter 4.  Cara L Macfarlane performed the scientific experiments with 

assistance from Dr Gemma Molyneux for the LC-MS/MS analyses. 

Professor Mark Taylor and Dr Simon Wagstaff supervised the 

experimental design, work and the writing.  

Chapter 5.  Cara L Macfarlane performed the scientific experiments. Professor 

Mark Taylor and Simon Wagstaff supervised the experimental design, 

work and the writing.  

Chapter 6.  Cara L Macfarlane wrote this chapter and Professor Mark Taylor and 

Dr Simon Wagstaff supervised the writing. 

 



 

11 

List of Abbreviations and Acronyms 

 

Aa - Amino acid 

ACN - Acetonitrile 

AmBic - Ammonium Bicarbonate 

ANOVA - Analysis of Variance 

APOC - African Programme for    

  Onchocerciasis Control 

APS - Ammonium Persulfate 

BLAST - Basic Local Alignment  

  Search Tool 

Bp - Base Pair 

BSA - Bovine Serum Albumin 

CDD - Community Drug  

  Distributor 

cDNA - Complementary DNA 

CFA - Circulating Filarial  

  Antigen 

CI - Confidence Interval  

Cq - Quantification Cycle     

  Value 

CTDi - Community Directed  

  Treatment with  

   ivermectin 

CV - Coefficient of Variation 

d.H2O - Distilled water 

DALY - Disability-Adjusted Life  

  Years 

DEC - Diethylcarbamazine 

DNA - Deoxyribonucleic acid 

DOXY - Doxycycline 

DTT - Dithiothreitol 

E/S - Excretory-secretory 

EDTA - 

Ethylenediaminetetracetic  

  acid 

ELISA - Enzyme-Linked    

  Immunosorbent Assay 

FA - Formic acid 

FDR - False Discovery Rate 

GAPDH - Glyceraldehyde 3- 

  phosphate dehydrogenase 

GEO - Generalised   

onchocerciasis 

H2O - Water 

HCl - Hydrogen Chloride 

HPLC - High-Performance  

  Liquid Chromatography 

HUPO - Human Proteome  

   Organization 

IAA - Iodoacetamide 

ICT - Immunochromatographic  

  Test 

Ig - Immunoglobulin 

IVM - Ivermectin 

kDa - Kilodalton 

L1 - First stage larvae 

L3 - Third stage larvae 

LAMP - Loop Mediated  

  Isothermal Amplification 

LC - Liquid Chromatography 

LC-

MS/MS 

- Liquid Chromatography  

  Tandem-Mass  

  Spectrometry  

LF - Lymphatic filariasis 

LOD - Limit of Detection 

LSTM - Liverpool School of  

  Tropical Medicine 

MDA - Mass Drug  

   Administration 

Mf - Microfilariae 

mf/mg - Microfilariae per mg skin  

miRNA - MicroRNA 

MS - Mass Spectrometry 

MS/MS - Tandem-Mass  

   Spectrometry 

MW - Molecular Weight 

NaOH - Sodium Hydroxide 

NATOG - N-Acetyltyramine-O,β- 

   Glucuronide 

NHS - National Health Service 

  



 

12 

NMWL - Nominal Molecular  

  Weight Limit 

nt - Nucleotide 

NTC - No Template Control 

NTD - Neglected Tropical  

  Disease 

OCP - Onchocerciasis Control  

  Programme 

OEPA - Onchocerciasis  

  Elimination Program for    

  the Americas 

PC - Preventive  

  Chemotherapy 

PCA - Principal Component  

  Analysis 

PCR - Polymerase Chain  

  Reaction 

PhHV-1 - Phocine herpes virus 1 

PSM - Peptide Spectrum Match 

PZP - Pregnancy Zone Protein 

QC - Quality Control 

Qpcr - Quantitative PCR 

RAPLOA - Rapid Assessment  

  Procedures for Loiasis 

RDT - Rapid Diagnostic Test 

REMO - Rapid Epidemiological  

  Mapping of  

  Onchocerciasis 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

RNA - Ribonucleic acid 

RP-LC - Reverse Phase Liquid  

  Chromatography 

RPMI - Roswell Park Memorial  

   Institute 

RT - Reverse Transcription 

-RT - Minus Reverse  

   Transcriptase control 

RT-qPCR - Quantitative Reverse  

   Transcription PCR 

SAE - Severe Adverse Event 

SD - Standard Deviation 

SDS - Sodium Dodecyl Sulfate 

SDS-

PAGE 

- Sodium Dodecyl Sulfate  

   Polyacrylamide Gel  

   Electrophoresis 

SEM - Standard Error of the  

   Mean 

STH - Soil-Transmitted  

   Helminths 

TEMED - Tetramethylethylenedi- 

   Amine 

TFA - Trifluoroacetic acid 

Tm - Melting temperature 

Tris - Tris base / Trizma 

WHO - World Health  

   Organization 

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

13 

Chapter 1.  Introduction 

  

Onchocerciasis  

Onchocerciasis, also known as “river blindness”, is a neglected tropical 

disease (NTD) affecting an estimated 37 million people, with over 100 million more 

people at risk (1). Of the 34 countries where the disease is prevalent, over 99% of 

cases occur in 31 endemic African countries (2). Sub-Saharan Africa is by far the 

most affected region with regards to distribution and impact of disease, with minor 

foci in Latin America and in Yemen. Onchocerciasis is caused by the filarial 

nematode Onchocerca volvulus, which is transmitted to the human host by infected 

blackflies of the genus Simulium during a bloodmeal. The name “river blindness” 

derives from the insect vector breeding requirement for fast-flowing streams and 

rivers which confines infection to areas adjacent to river systems, and an advanced 

clinical manifestation of the disease which results in blindness (3). Onchocerciasis is 

responsible for a range of clinical presentations that affect the skin and eyes. 

Symptoms experienced by those infected include severe itching and various skin 

changes, and some people may develop eye symptoms that can progress to visual 

impairment and blindness. There is currently no vaccine to protect people from 

continued re-infection with O. volvulus. In endemic areas, the enormous socio-

economic impact (4-7) and the substantial morbidity experienced by those infected 

resulted in over 1 million disability-adjusted life years (DALYs) annually (8, 9). 

Significant progress in interrupting disease transmission has been made in Latin 

America and in Africa over the last few decades by using large-scale mass treatment 

of all populations in endemic areas. Following the success of ongoing efforts and 

near elimination of onchocerciasis in Latin America, and interruption of disease 

transmission in some areas in Africa, elimination of the disease in the African 

Region is now a global health initiative (10). 

Parasite and life cycle  

      There are eight species of filarial nematodes that infect humans, and three are 

responsible for causing the majority of medically important filariasis disease (11). 

Wuchereria bancrofti and Brugia malayi cause lymphatic filariasis, and O. volvulus 

is the sole causative agent of onchocerciasis. O. volvulus is a parasitic thread-like 
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roundworm transmitted to the human host during a bloodmeal by the intermediate 

black fly host of the genus Simulium (Fig. 1.1) (12). Once the infective third-stage 

larvae (L3) of the parasite are introduced into the human host, the larvae develop 

into sexually dimorphic mature adults after one year. The adult worms reside in 

vascularised subcutaneous or deeper nodules called onchocercomas, and they are 

typically situated over bony prominences (13). The adult female can live for up to 14 

years, with a reproductive life span ranging from nine to 11 years (14). The males 

are around ten times smaller in size and migrate between nodules to inseminate the 

viviparous females, which when fertilised give birth to 1,000 to 3,000 microfilariae 

(mf) per day (3). Fertilised females have an enormous reproductive capacity and can 

produce millions of mf over the course of their life time. The mf migrate from 

nodules into the skin, utilising extracellular proteases to aid their migration through 

tissues (15), where they can live for 12 – 18 months waiting to be taken up by the 

blackfly vector (11). Once the mf are within their intermediate host, they migrate 

from the blackfly's midgut through the hemocoel to the thoracic muscles. The mf 

develop over two weeks by undergoing successive moults into second-stage larvae 

(L2) and finally into infective L3 larvae (12). The L3 larvae then migrate to the 

blackfly proboscis ready to infect another human during a blood meal, thus 

completing the parasite life cycle and transmission of the infection. Humans are the 

primary host for O. volvulus and there is no animal reservoir for the parasite.  

      O. volvulus, like many other filarial worms, harbour the intracellular bacteria 

Wolbachia as an obligate endosymbiont. The presence of Wolbachia in O. volvulus 

was first reported by Kozek and Marroquin in 1977 (16), and the endosymbiont is 

present in both the male and female worms, and in all the larval developmental 

stages (3). Wolbachia is fundamental for the growth, development, embryogenesis, 

and survival of the parasite (17).  
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Fig. 1. 1. Life cycle of Onchocerca volvulus (18). 

 

Clinical manifestations of disease 

     Onchocerciasis presents as cutaneous and ocular disease as a result of 

inflammatory reactions to the death of mf in the skin and eyes (19). Symptoms of 

onchocerciasis typically appear one to three years after infection, and the severity of 

the pathology can vary considerably amongst those affected (20). A spectrum of 

disease manifestations is evident and this reflects the intensity and type of host 

immune responses, which may be influenced by host genetic factors (21). The 

majority of infected individuals typically develop the generalised onchocerciasis 

(GEO) disease type, which is characterised by low levels of inflammation, 

hyporesponsive immune responses and high parasite load (22). Most individuals are 

asymptomatic/paucisymptomatic, presenting with a hyporesponsive immunological 

state that supresses anti-parasitic immunity and is unable to effectively reduce 

parasite loads (23). A rare but severe hyperreactive form, known as lichenified 

onchodermatitis or sowda, more common in particular geographical regions such as 

Yemen and Sudan has reduced mf and adult worm burdens associated with 

pronounced cellular and humoral immune responses with severe pathology (24).  
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Cutaneous pathology  

      The skin is the primary site of O. volvulus mf infection and the cutaneous 

pathology is responsible for 50% of the 1 million DALYs for onchocerciasis (25). 

Manifestations of the skin disease are highly variable, and the cumulative effects of 

chronic infection means that two or more clinical patterns may present at the same 

time and progress towards a variety of chronic skin manifestations (26). One of the 

most common and significant features of onchocerciasis is pruritus (troublesome 

itching), which causes extreme irritation as well as social stigma and reduced income 

generating capacity amongst those affected (4, 6, 27). Several different patterns of 

onchocercal-induced skin disease were classified by Murdoch et al, including; acute 

papular and chronic papular onchodermatitis, lichenified onchodermatitis, atrophy 

and depigmentation (28). Acute and chronic papular onchodermatitis affects those 

with the generalised onchocerciasis type. Symptoms of acute papular 

onchodermatitis include skin defects such as pruritic papules, vesicles and pustules, 

and localised erythema and oedema of the skin may also occur. The chronic form 

presents as a papular rash, where scattered skin lesions are flat-topped papules of 

variable size and height on the skin, and some lesions may be itchy. Post-

inflammatory hyper-pigmentation of skin is characteristic of chronic papular 

onchodermatitis. The rarer severe hyperreactive form, lichenified onchodermatisis or 

sowda, presents as pruritic, hyperpigmented, hyperkeratotic plaques, with 

lichenification and lymphadenopathy. Atrophy consists of loss of skin elasticity and 

is also known as ‘lizard skin’. ‘Hanging groin’ presents as uni- or bilateral inelastic 

folds of skin that may contain enlarged lymph nodes. Onchocercal depigmentation 

can also cause areas of pigment-loss, and is described as ‘leopard skin’ (28).  

Ocular pathology 

      If onchocerciasis is left to progress untreated, increasingly severe pathological 

outcomes such as visual impairment and blindness can result, making onchocerciasis 

one of the most important infectious causes of blindness worldwide (after trachoma) 

in number of persons affected (29, 30). Over 500,000 people are estimated to suffer 

from visual impairment, and blindness affects a further 270,000 people (8, 31). In 

untreated populations infection was once responsible for blinding the older residents 

of entire villages; however, the implementation of control programs in Sub-Saharan 
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Africa has drastically reduced the incidence of new ocular pathology and blindness. 

The incidence of ocular disease has been linked to a number of factors; including 

localisation of nodules in the upper part of the body (32), vector species (33), mf 

load (34), parasite strain (35), and a higher Wolbachia load in the blinding savannah 

strain of O. volvulus (36). Onchocercal ocular disease encompasses a wide spectrum 

of clinical manifestations, and mf may be found in all the tissues of the eye. 

Thylefors (37) and Bird et al (38) have produced a detailed review of the 

onchocercal ocular manifestations. The most common ocular pathology is typically 

initiated by inflammatory reaction to dead mf in the cornea provoking reversible 

onchocercal punctuate keratitis, which manifests as greyish ‘fluffy’ or ‘snow-flake’ 

opacities (37). The irreversible corneal lesion, sclerosing keratitis, may develop over 

several years with high ocular infection densities, as the cornea progressively loses 

transparency and becomes white and hard (37). Mf in the conjunctiva provoke 

itching, and can cause an inflammation of the iris known as chronic anterior uveitis 

(39). Chronic inflammation can also result in blindness due to secondary glaucoma 

or secondary cataract (40). In the posterior section of the eye, the optic nerve, the 

retina and the choroid can be affected by onchocercal lesions (38). Acute optic 

neuritis can lead to permanent optic atrophy and restricted visual fields (41). Retinal 

lesions are initially characterised by a mottled area with slight oedema, which can 

advance to atrophy of the retinal pigment epithelium (38). Chronic chorioretinitis 

may develop as an inflammation causing gradual loss of visual field, leading on to 

choroido-retinal or optic atrophy and eventually blindness (42).  

      The intracellular Wolbachia endosymbiont of the parasite also has a role in 

driving onchocercal eye disease, where bacteria released from dying and 

degenerating mf in the corneal stroma evokes a sequence of inflammatory responses 

that induce keratitis (3). By using a mouse model of onchocercal keratitis and O. 

volvulus extracts containing Wolbachia, the presence of Wolbachia has been found 

to be crucial for neutrophil-mediated inflammation, opacity, and corneal haze (43-

45). The role of Wolbachia in pathogenesis of onchocercal keratitis was established, 

as: i) corneal inflammation does not occur in individuals with O. volvulus depleted 

of Wolbachia by antibiotic treatment, (ii) other Wolbachia-containing filarial species 

induce keratitis, while filarial species without Wolbachia do not, and iii) neutrophil 

recruitment to the corneal stroma was induced by isolated Wolbachia bacteria (3). 
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The role of Wolbachia in onchocerciasis ocular pathology has been reviewed by 

Tamarozzi et al (3). Additionally, parasite antigens similar to human autoantigens 

have also been implicated in inducing cross-reactive antibodies linked to the 

pathogenesis of posterior eye disease (46) and anterior segment lesions (47).  

Other conditions associated with onchocerciasis 

      Systemic effects of onchocerciasis reportedly may also include low body weight, 

general debility, and diffuse musculoskeletal pain (39). Onchocerciasis has also been 

linked to epilepsy (48-50), with some epileptic individuals presenting with retarded 

growth, mental impairment, and delayed sexual development (50). Two other 

conditions that have been linked to onchocerciasis (and each other) include 

nakalanga syndrome and nodding syndrome (51, 52). The cause of nakalanga 

syndrome remains uncertain, but the condition has been described in Africa for 

several decades, and clinical manifestations include growth retardation, physical 

deformities, endocrine dysfunction, mental impairment, and epilepsy (51). Nodding 

syndrome has been documented in Uganda, South Sudan, and Tanzania, and is a 

neurological disorder affecting children (53). Nodding syndrome presents with 

similar features to nakalanga syndrome, and can involve head nodding episodes, 

stunted growth, delayed puberty, and mental impairment (51). In recent years, the 

blackfly vectors in onchocerciasis endemic regions have been implicated in the 

transmission of an etiological agent that, directly or indirectly, causes nodding 

syndrome and other types of epilepsy (54-56). There is also evidence suggesting 

nodding syndrome is an autoimmune epileptic disorder induced by molecular 

mimicry with O. volvulus antigens (particularly tropomyosin) (57, 58). Johnson et al 

reported the use of an untargeted approach for autoantibody profiling in pooled sera 

from individuals with nodding syndrome and pooled sera from unaffected control 

villagers (57). The authors identified leiomodin-1 autoantibodies were increased 

33,000-fold in individuals with nodding syndrome, and autoantibodies to leiomodin-

1 were detected in both sera and cerebrospinal fluid. The protein was shown to be 

expressed in brain structures that are thought to be affected in those with nodding 

syndrome, and the antibodies were found to be neurotoxic in vitro. The authors 

linked parasitic infection to autoimmune epilepsy, as leiomodin-1 antibodies purified 

from individuals with nodding syndrome also cross-reacted with O. volvulus 

antigens (57). Antibodies against the neuron surface protein, VGKC complex 
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protein, have also been studied in serum from individuals with nodding syndrome 

and compared to serum from unaffected siblings (59). However, 15 of the 31 

individuals with nodding syndrome (48.3%) and one of the 11 controls (9.1%) tested 

positive (unpublished data from Idro et al, reported in (59)). 

Epidemiological patterns and prevalence  

      Onchocerciasis is endemic in 31 countries in Sub-Saharan Africa, extending 

from Senegal in the west across to Ethiopia on the eastern boundary, and in two 

dispersed foci in two countries in Latin American, and in Yemen (60). In Africa, it is 

estimated that 86 million people live in high risk areas in 18 countries, with most of 

the high risk population found in Nigeria (26 million) and the Democratic Republic 

of Congo (28 million) (61). High risk areas for onchocerciasis range from small 

remote foci to an extensive adjoining area of more than 2 million km2 spread across 

seven countries. In Cameroon, the Central African Republic, the Democratic 

Republic of Congo, Liberia and South Sudan, the population of high risk areas 

represents some 31 - 48% of the total population of the country (61). Onchocerciasis 

endemicity is principally determined by the ecology and behaviour of the insect 

vectors of family Simuliidae, therefore the greatest incidence of infection occurs in 

villages situated nearby rivers with Simulium breeding sites (11). All populations 

near vector breeding sites will be at risk, and the amount of exposure and the length 

of time a population is exposed will influence the progression and manifestations of 

the disease.  

      Two broad epidemiological patterns of onchocerciasis exist in Africa, blinding 

(savannah) and the non-blinding (forest), and the two patterns arise from 

Onchocerca-Simulium complexes where particular vector members are better 

adapted to transmit either the savannah or forest strains of O. volvulus (62, 63). The 

Simulium damnosum complex is the largest sibling species complex, consisting of 

morphologically similar sibling species and cytoforms (64, 65). Variations within the 

complex are minor but they exhibit adaptations to local conditions; the migratory S. 

damnosum subcomplex includes the species primarily responsible for transmission in 

savannah areas, while S. yahense and S. squamosum subspecies are more endemic to 

forest areas, and S. sanctipauli in the forest‐savannah mosaic (39, 66). Some 

Simulium sp. such as S. neavei in East Africa do not fly far from breeding sites, while 
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S. damnosum in West Africa can fly long distances (400–500km) (39). The forest 

cytoforms of S. damnosum tend to have higher O. volvulus infection intensities 

compared to the savannah forms (63), and the non-blinding form of onchocerciasis 

prevalent in the forest belts typically manifests as severe skin disease, where skin 

disease and severe pruritus can affect 50% of the population in some communities 

(67). Blindness is relatively uncommon in the forest areas (8), whereas in savannah 

communities up to 10% of the population may be blind in villages hyperendemic for 

the savannah O. volvulus strain (20). Different vector species therefore differ in their 

ease of control and efficiency for onchocerciasis transmission. 

      In the Americas, active O. volvulus transmission is currently limited to two foci 

among Yanomami indigenes in crossborder areas of Venezuela and Brazil (68). 

Onchocerciasis was originally introduced into the region by the slave trade, and 

molecular studies indicate that it was the savannah strain that became established in 

the Americas (69). Twelve vector morphospecies, of which several are complexes of 

sibling species, were originally reported in Latin America (70). The most common 

complexes today are S. ochraceum, S. metallicum, S. exiguum and S. guianenses, 

although Simulium sp. in the Americas are less efficient at transmitting the parasite 

than those in Africa (71, 72). In Yemen, the disease likely has African origins and is 

endemic in the river valleys (Wadis) that channel into the Red Sea (39). 

Onchocerciasis in the region can cause a rare hyperreactive immune response in 

those affected, manifesting as a severe skin condition known as sowda.  

Control and elimination 

The Onchocerciasis Control Programme (OCP) 

      The first large-scale control programme for onchocerciasis spanned from 1974 to 

2002 in West Africa, and was coordinated by the Onchocerciasis Control 

Programme (OCP) through the World Health Organization (WHO). The risk of 

onchocercal blindness was originally very high along the rivers in the West African 

savannah, and up to 50% of adults could be affected by blindness in highly endemic 

communities (73). River valleys were depopulated for fear of blindness, and the 

socio-economic importance of onchocerciasis was the primary reason for the 

implementation of the OCP in West Africa (74). At this time, vector control was the 

only intervention available. The OCP initiated large-scale targeting of the blackfly 
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vector breeding sites using weekly aerial insecticide spraying over fast-flowing 

rivers and streams (75). In 1989, the OCP was supplemented by large-scale 

distribution of Mectizan (ivermectin). Merck & Co., Inc generously promised to 

donate ‘as much Mectizan as necessary, for as long as necessary’ for the treatment of 

onchocerciasis (76). The OCP, in partnership with the World Bank, United Nations 

(UN), and later the Mectizan Donation Programme and nongovernmental 

organizations (NGOs), successfully controlled onchocerciasis in the savannah belt of 

nine of the 11 West African countries (75, 77). The programme prevented 40 million 

people from becoming infected, a further 600,000 people from onchocercal 

blindness, and protected 18 million children from the threat of the disease (77). 

Twenty-five million hectares of uninhabited arable land was also recovered for 

settlement and agricultural production, with the capacity to feed 17 million people 

annually (77).  

African Programme for Onchocerciasis Control (APOC) 

     In 1995, the African Programme for Onchocerciasis Control (APOC) was 

launched to control onchocerciasis in endemic countries that were not included in the 

OCP (78). The African area outside the OCP comprised 85% of all infected people 

in the world at the time (8). Aerial larviciding was thought not to be technically 

feasible or cost-effective in this area, and therefore no control was undertaken until 

the introduction of ivermectin. The objective of the APOC was to support the 

establishment of effective and sustainable community-directed treatment with 

ivermectin (CDTi) in the remaining high risk endemic countries in Africa, and use 

vector control to eliminate onchocerciasis in certain foci (78). In the OCP costly 

mobile teams of health workers had been used to distribute ivermectin; however, a 

multi-country study in 1996 showed that CDTi was feasible, effective and 

sustainable (79). This novel approach to mass drug administration (MDA) was based 

on the concept that community drug distributors (CDDs) would be selected by the 

community, and then trained to distribute treatment, keep records and monitor 

adverse events (80).  

      Highly endemic countries to be targeted for treatment were mapped using Rapid 

Epidemiological Mapping of Onchocerciasis (REMO) (81). REMO was based on 

excluding areas unsuitable for the vector, and sampling 30-50 men in villages to 
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identify areas with a high prevalence of onchocercal nodules (81). Three classes of 

onchocerciasis endemicity were delineated based on the community prevalence of 

microfilaridermia: hyperendemic (mf prevalence > 60%), mesoendemic (mf 

prevalence 35% - 60%) and hypoendemic (mf prevalence <35%) (82). Higher mf 

burdens were associated with the more severe clinical manifestations. Mf prevalence 

is correlated with the prevalence of palpable nodules, therefore the onchocerciasis 

endemicity levels based on community prevalence of nodules in adults was 

extrapolated: hyperendemic (nodule prevalence > 45%), mesoendemic (nodule 

prevalence 20% - 45%), and hypoendemic (nodule prevalence < 20%) (83). CDTi 

was to be established in high risk areas where the prevalence of palpable nodules 

was higher than 20% in adults (84, 85). The APOC mapped infection in 20 countries 

(85), and managed annual treatment by CDTi in 16 countries where onchocerciasis 

was thought to be a public health problem (9).  

From control to elimination: Guidelines 

      The original guidelines for certification of elimination of human onchocerciasis 

were published by the WHO in 2001 (86), and were used to verify the elimination of 

the disease as a public health problem in Colombia, Ecuador and Mexico. New 

guidelines were published by the WHO in 2016 (87), outlining the criteria for 

stopping MDA and verifying elimination of onchocerciasis following interruption of 

transmission of O. volvulus. The distribution and status of preventive chemotherapy 

for onchocerciasis worldwide in 2015 is shown in Fig. 1.2 (87). The WHO 

recommendations provide guidance on when to cease MDA initiatives and conduct 

post-treatment surveillance (PTS) activities.  PTS is required for at least three to five 

years before elimination of onchocerciasis can be confirmed. Before the official 

acknowledgement of elimination by WHO Director General, the International 

Verification Team (IVT) must verify the elimination of O. volvulus transmission in 

the whole endemic country. Ongoing transmission is assessed using several methods 

aimed at identifying the infection and transmission potential in both the intermediate 

vector and the human host. 
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Fig. 1. 2. Distribution and status of preventive chemotherapy for onchocerciasis 

worldwide, in 2015 (88). 

 

Elimination in the African Region 

      The APOC closed in 2015 after providing treatment through CDTi to 114 million 

people, covering around 60% of people who require treatment globally (60). The 

APOC continued to scale up the CDTi MDA campaign over its 20 years of 

operation, increasing coverage from 1.5 million people in 1997 to 68.4 million by 

2009 (89). As evidence gathered on the interruption of transmission in some APOC 

areas (90-92), the feasibility of the onchocerciasis elimination in Africa came into 

question (93). In 2012, new goals were outlined in the WHO 2020 Roadmap for 

NTDs to eliminate onchocerciasis in select African countries by 2020 (10, 94), and 

onchocerciasis where possible by 2025 (95). With continued progress, it is estimated 

that onchocerciasis will be eliminated by 2020 in 12 African countries (Benin, 

Burundi, Chad, Kenya, Mali, Guinea-Bissau, Guinea, Malawi, Niger, Senegal, Sierra 

Leone and Togo) (96). With the closure of the APOC, the Expanded Special Project 

for the Elimination of Neglected Tropical Diseases in Africa (ESPEN) was launched 

in 2016 in the African Region. This programme will operate from 2016-2020 and 
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oversee the APOC activities. However, ESPEN has expanded to support country 

owned NTD programmes targeting additional infectious diseases that are responsive 

to preventive chemotherapy (PC): lymphatic filariasis (LF), trachoma, soil 

transmitted helminths (STHs) and schistosomiasis (97). The term PC encompasses 

the approach of treating at risk populations for human helminth diseases in order to 

prevent transmission of or morbidity from the infections (98). The Regional focus 

has now been shifted to integrated rather than vertical control of NTDs and scaling-

up MDA for PC diseases (99).  

      Achieving the ambitious elimination goals for onchocerciasis will involve 

addressing a number of challenges pertinent to the ‘endgame’ (100, 101). Treatment 

with ivermectin will need to be expanded to onchocerciasis hypoendemic 

communities not previously targeted by the APOC, and this will require remapping 

areas of infection using more sensitive techniques, as nodule palpation is only 

reliable in highly endemic areas (99, 102). Effective geographic and therapeutic 

coverage and compliance is also paramount in order to sustainably break 

transmission (101). Despite long-term intervention efforts some areas in Africa have 

encountered challenges in reducing the onchocerciasis prevalence. For example, in 

Cameroon some communities have remained mesoendemic for onchocerciasis 

despite 15 years of CDTi (103), while in Ghana persistent transmission occurs 

despite long-term control (104). An additional barrier to treatment occurs in areas 

where onchocerciasis is coendemic with another filarial infection, Loa loa, known as 

loiasis or tropical eye worm, where ivermectin can cause severe adverse events 

(SAEs) in individuals with high levels of microfilaraemia (105). Therefore, to work 

towards onchocerciasis elimination in Africa will require adopting different 

approaches in transmission zones where transmission persists in areas under control, 

or are hypoendemic and where co-endemic loiasis is a risk factor (106).  

 Onchocerciasis Elimination Program of the Americas (OEPA) and Yemen 

      In 1992, the Onchocerciasis Elimination Program of the Americas (OEPA) 

launched with the objective of eliminating new onchocercal ocular morbidity and 

interrupting transmission in the Americas by 2007 (107). This public–private 

partnership coordinated the establishment of biannual large-scale ivermectin 

treatment to all the endemic areas in the region using mobile teams, with over 85% 
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therapeutic coverage achieved in all endemic countries (108). Onchocerciasis 

originally occurred in 13 discrete foci in six countries: Colombia, Guatemala, Brazil, 

Ecuador, Venezuela and Mexico. By 2015, transmission was interrupted in 11 of the 

13 foci (109). The first country in the world to be verified and acknowledged as free 

of onchocerciasis by WHO was Colombia in 2013, followed by Ecuador in 2014, 

Mexico in 2015, and Guatemala in 2016 (60). The remaining two endemic foci are in 

a transmission zone, the “Yanomami area”, that connects at the border of Brazil and 

the Bolivarian Republic of Venezuela, and includes the indigenous Yanomami 

people with a population of 26,715 (109). Elimination efforts are now centred on the 

Yanomami people with high coverage quarterly treatments to advance 

onchocerciasis elimination. Mf prevalence has decreased from 27.6% in 2008 to 

7.8% in 2013 in the Venezuelan South focus, and from 14.7% in 2007 to 4% in 2012 

in the Brazilian Amazonas focus (109). 

      In Yemen, there was no national control programme for onchocerciasis due to 

upheaval and social unrest (110). In 2016, areas of known transmission were mapped 

and the WHO, in partnership with the Ministry of Health and Population and other 

international partners, launched the first MDA with ivermectin, with the objective of 

eliminating onchocerciasis in Yemen (60).  

Treatment for onchocerciasis 

Historical treatment of onchocerciasis  

      One of the earliest methods used to manage onchocerciasis was the removal of 

superficial subcutaneous nodules, known as nodulectomy. This method was more 

widely practiced in the Americas where head nodules were more prevalent, and was 

used to reduce the risk of mf migration to ocular tissues (111). Nodulectomies are 

not considered efficacious for controlling transmission, as removal of nodules does 

not significantly alter microfilaridermia levels (112, 113) due to nodules present in 

deeper tissues, or remove early adult worm infections (114, 115).       

      Before the introduction of ivermectin in the late 1980’s, the chemotherapy used 

for treatment of onchocerciasis was suramin and diethylcarbamazine-citrate (DEC). 

Suramin killed the adult and mf stages, and was administered as a single weekly 

injection for six weeks (116). Suramin was very toxic due to its high protein-binding 

affinity and alteration of enzyme function (117), and treatment could result in optic 
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neuropathy, nephrotoxicity, and sometimes death (118, 119). DEC was identified as 

a antifilarial drug in the late 1940’s, and was effective for rapidly killing the mf 

(120). DEC was provided as a daily tablet over several weeks, and regular 

retreatment was required as mf would repopulate the skin over 6-12 months (121). 

DEC administration was associated with SAEs, known as Mazzotti reactions, which 

included systemic reactions occurring in multiple systems (120, 122) and ocular 

reactions (123-125). A more detailed overview of DEC-induced SAEs have been 

described by Awadzi and Gilles (122). The severity of adverse events experienced 

after DEC treatment is related to mf infection intensity, as the severity increases with 

higher numbers of mf killed (126). Attempts to reduce the toxicity of suramin and 

DEC, such as using lower doses and using other drugs as SAE suppressants, induced 

less side-effects but there was also reduced efficacy (127-129). In the 1970’s, it 

became evident that both drugs could aggravate onchocercal eye lesions and 

progress ocular pathology, and their use for onchocerciasis ceased (119, 130). DEC 

in combination with albendazole is currently used for treatment of lymphatic 

filariasis, but only in areas where onchocerciasis is not coendemic (131).  

Current treatment by mass drug administration 

      Ivermectin is the only drug used in MDA programmes for the treatment of 

onchocerciasis (132). It is also an effective treatment for other helminth infections, 

such as ascariasis, strongyloidiasis, and trichuriasis, and ectoparasites such as scabies 

and lice (133). In the African Region, ivermectin is given annually in CDTi 

programmes and semi-annually in some priority areas in West Africa (87). 

Treatment is a standard dose of 150 μg/kg to all adults and children over 15 kg 

(excluding pregnant and breastfeeding women, and the sick) (11), which has to be 

sustained for more than 15 years due to the long life span of the adult female 

parasite. Ivermectin is known as a ‘microfilaricide’, as it immobilises the mf by 

hyperpolarisation of glutamate-sensitive channels (134). The microfilaricidal effect 

clears the mf over days, and also exerts an ‘embryostatic’ effect on the adult worm, 

where the release of more mf is temporarily blocked (132). Early studies with 

ivermectin showed that 14 days after treatment, the mf densities had decreased to 

around 99% of pretreatment levels and this effect was sustained over one year post-

treatment (135, 136). The mf are the causative agent of disease and the parasite stage 

taken up and transmitted by the vector; therefore, regular treatment can prevent 
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development of onchocercal clinical manifestations and interrupt transmission by 

clearing the dermal reservoir until the adult worms naturally die. Although 

ivermectin has been shown to have a moderate effect on the adult worms when given 

four times a year for consecutive years (137), most are not killed and can continue 

producing mf several months after treatment.  

      Ivermectin is a well-tolerated and safe microfilaricide; however, adverse events 

can occur as a result of the host response to dying mf. Adverse events are typically 

of the Mazzotti type, and include exacerbation of pruritus, oedema, headache, fever 

and sustained postural hypotension, typically within a week of treatment (138). The 

incidence and severity of adverse events is related to higher mf infection intensities 

(138), and also to the activation of innate inflammatory responses to Wolbachia 

lipoproteins released from dying mf (139).  

Treatment in areas co-endemic for Loa loa       

      Complications from MDA with ivermectin can occur in areas that are endemic 

for onchocerciasis and another filarial worm, L. loa. L. loa, also known as tropical 

eye worm, is the causative agent of loiasis, an African disease that is endemic to 

equatorial rainforest areas of Central and West Africa (140). L. loa mf reside in the 

blood, and the adult worms reside and migrate through subcutaneous tissues (141).  

Although infection prevalence of L. loa can be very high in some communities, it is 

not considered a public health problem and treatment is usually not required (142). 

SAEs following ivermectin treatment, first reported in 1991 and during early CDTi 

initiatives in Cameroon, are attributable to high L. loa parasitaemias (> 30 000 mf/ml 

of blood) (143-145). SAEs include encephalopathic reactions, coma and even death 

(146). Ivermectin remains the treatment for onchocerciasis hyper- and mesoendemic 

areas that are coendemic for O. volvulus and L. loa, as the risk is considered 

justifiable given the health burden of onchocerciasis within communities. However, 

adjusted treatment strategies were outlined by the Mectizan Expert Committee 

(MEC)/APOC for early identification and management of SAE cases in these areas 

(147).  

      Areas at higher risk of experiencing SAEs were identified following the 

development of a field-applicable Rapid Assessment Procedure for Loiasis 

(RAPLOA) (140, 148). This method used a questionnaire centred on identifying 
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individuals with subcutaneous migration of adult L. loa under the eye conjunctiva. A 

strong correlation was observed between prevalence of a history of eye worm and 

the L. loa mf prevalence at the community level, and a threshold of 40% prevalence 

of L. loa eye history was set as a predictor for high risk communities. RAPLOA was 

adopted for large-scale mapping in 11 APOC countries that were potentially endemic 

for loiasis (149), and 10 countries were found to have high risk areas for loiasis, 

where an estimated 14.4 people live (140). However, this method is not a universal 

predicator for areas at high risk of SAEs, as recent studies in Bas Congo, DRC 

demonstrated the events were 16 times higher in medium risk areas (RAPLOA 

prevalence between 20 - 40%) compared to the low loiasis prevalence areas (150). In 

addition, for onchocerciasis hypoendemic areas not previously covered by the 

APOC, the extent of overlap with high risk loiasis areas, termed “hypoendemic 

hotspots”, is not clear (151). In these areas, alternative treatment strategies will be 

required to meet the onchocerciasis elimination targets (105).  

Alternative treatment strategies 

      The chemotherapy strategy currently used for treatment of onchocerciasis does 

not affect the adult worm reservoir within the host, and therefore regular MDA is 

necessary for many years. Extensive research has been undertaken to identify 

alternative strategies that safely target the adult worm and effectively treat 

onchocerciasis. Several trials have demonstrated that antibiotics, namely 

doxycycline, when given daily over several weeks kill the adult worms, and are 

‘macrofilaricidal’. The macrofilaricidal properties are due to the anti-Wolbachia 

activity of the drug, where >90% depletion of the obligate endosymbiont results in 

long-term sterilisation of the female worm (>24 months), and a slow and sustained 

killing of the adult worm population (over 20 - 27 months) (152-155). A 5-week 100 

mg daily regimen (156) and a 4-week 200 mg daily regimen have comparable 

clinical outcomes (152), killing ~50% adult female worms. A 6-week 200 mg daily 

regimen has been shown to kill >60% adult female worms (152, 157) although this 

increases to >70% when newly acquired infections were taken into account (152, 

158). Modelling approaches demonstrated that doxycycline treatment has an 

estimated average efficacy of 91%–94%, irrespective of the treatment regimen, and 

considerably reduces adult worm longevity from approximately 10 years to 2–3 

years (159). The effects of doxycycline also extend to the migratory mf, where 
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Wolbachia depletion has been shown to impede development to the infective L3 

stage in the blackfly vector (160). The slow and sustained killing of the adult worms 

and block in mf production delivers a markedly improved safety profile compared to 

other antifilarial drugs, as the parasite-mediated or Wolbachia-mediated 

inflammatory adverse events are avoided (11). A major advantage of anti-Wolbachia 

treatment, however, is that it is safe for onchocerciasis treatment in loiasis co-

endemic areas (157, 161), as L. loa do not harbour the Wolbachia endosymbiont and 

are therefore not affected by antibiotic chemotherapy (162, 163).  

       While doxycycline is clearly very valuable for onchocerciasis treatment and for 

interrupting transmission, it is considered to be more suitable for ‘test and treat’ 

strategies, rather than community-wide MDA strategies. Limitations of doxycycline 

for community-based drug administration include the contraindication of treating 

children under 9 years of age and pregnant women, and the logistics of delivering 

multiple-week treatment regimens (158, 164). However, large community studies in 

Cameroon have demonstrated a significant proportion of communities were eligible 

to receive doxycycline, and of those treated there was a very high level of 

compliance (97.5%) to the 42 day treatment programme (161). Furthermore, the 

long-term effectiveness of the community-directed doxycycline treatment was 

demonstrated four years later, where the mf prevalence was found to be lower in 

those who had received doxycycline and subsequent rounds of MDA with ivermectin 

(17%) relative to those who had only received ivermectin (27%) (165). Alternative 

strategies for community treatment would be particularly useful where responses to 

ivermectin have been sub-optimal, such as areas in Ghana where microfilaridermia 

persists in ‘hotspots' despite multiple rounds of treatment with ivermectin (166-168). 

A recent trial showed that in an area with ivermectin suboptimal response, a 6-week 

100 mg daily doxycycline regimen followed by standard ivermectin treatment at 3 

and 12 months resulted in 97% of patients without microfilaridermia after 20 

months, while the placebo group remained at pretreatment levels (169).  

      A macrofilaricide that is sufficiently efficacious and can be delivered with 

shorter treatment regimens is highly desirable. Different chemotherapy regimens of 

other antibiotics, such as azithromycin and rifampicin, have also been evaluated for 

onchocerciasis. Azithromycin was shown not to be macrofilaricidal for 

onchocerciasis when studied at different doses (250 mg/day or 1,200 mg/week) and 
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treatment durations (five days or six weeks) (170, 171). Rifampicin was also not 

effective following a 5-day 20 mg/kg daily regimen (171), but macrofilaricidal 

activity was observed after a 2- or 4-week 10 mg/kg daily course (172). However, 

the 2- and 4-week rifampicin regimen was inferior to a 6-week doxycycline 

treatment course for onchocerciasis (172). Since 2007, the Anti-Wolbachia 

Consortium, or A-WOL (http://awol.lstmed.ac.uk/), has sought to identify new anti-

Wolbachia drugs with shorter treatment times of a week or less, and to also optimise 

regimens of existing drugs and re-purposed registered drugs for use in more 

constricted populations (173). A recent trial showed that one of the identified drugs, 

minocycline, had a trend for stronger potency with a 3-week 200 mg daily 

minocycline treatment regimen compared to a 3-week 200 mg doxycycline regimen 

(absence of Wolbachia in female worms was 72.7% and 64.1%, respectively) (174). 

However, a 4-week 200 mg daily doxycycline treatment course had superior 

macrofilaricidal efficacy over the shorter courses of minocycline and doxycycline 

(absence of Wolbachia in female worms was 98.8%) (174). High-dose rifampicin 

has also shown promise in preclinical in vivo mouse models of Onchocerca ochengi 

adult worm infection (the closest phylogenetic relative of O. volvulus)(175), 

achieving >90% Wolbachia depletion with a 14-day 35 mg/kg daily rifampicin 

regimen (176). Rifampicin at this high dose given regularly over 2 weeks had no 

serious side effects associated with the treatment, and the high 35 mg/kg dose has 

also been shown to be safe in human trials when administered to individuals with 

tuberculosis (177). A-WOL has screened over 2 million compounds for in vitro anti-

Wolbachial activity, the hits of which have been progressed through standard 

pipelines to deliver the next generation of macrofilaricide. The outputs of this 

approach include three new repurposing opportunities, two new drug candidates in 

formal development and dozens of novel lead series ready for development as 

macrofilaricides. 

Diagnosis of Onchocerca volvulus  

Clinical diagnosis  

      Diagnosing onchocerciasis can be challenging due to the accessibility of 

different developmental stages that occupy several tissues in the host, as well as co-

infections with other filarial species with skin dwelling mf, such as Mansonella 

streptocerca, or blood dwelling mf, such as Mansonella perstans, found in skin snips 
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contaminated by blood (32). Diagnosis of onchocerciasis may be by clinical 

examination, which can include examining the skin for onchodermatitis (178, 179), 

slit-lamp examination to detect mf in the cornea and anterior chamber of the eye, and 

nodule palpation (102, 180). Subcutaneous nodule palpation can be used to estimate 

adult worm prevalence, and this was the basis of the REMO strategy adopted by the 

APOC to map areas that were hyper- and mesoendemic for onchocerciasis (81). 

However, this method lacks sensitivity in hypoendemic areas where nodule 

prevalence will be lower, and deeper nodules or early developing infections will be 

missed (102, 114), and where lymphomas and other subcutaneous structures can lead 

to a false positive diagnosis.  

Parasitological diagnosis 

      The ‘gold standard’ in onchocerciasis diagnostics has been the skin snip to 

identify mf infection in the skin. The skin snip involves taking a bloodless skin 

biopsy and culturing the sample in saline, resulting in the migration of mf out of the 

tissue and into the saline. Using microscopy, infection intensity can be assessed by 

counting the mf, and the infection burden may be expressed as number of mf per mg 

of skin (mf/mg), or more precisely as mf/biopsy or mf/snip due to the variability in 

skin biopsy weight. The skin snip is relatively simple to perform with basic 

equipment, and is highly specific when used by skilled parasitologists or health 

workers. However, taking a skin biopsy is an unpopular, painful and invasive 

procedure, and not always acceptable to communities (181). People may also refuse 

to give multiple skin snips, and this is important for collecting longitudinal follow-

up data in clinical trials and for surveillance and monitoring (90, 91). Skin snips lack 

sensitivity in areas undergoing MDA with ivermectin, as mf are often absent from 

the skin for several months following treatment (182). Skin snips are also insensitive 

when levels of microfilaridermia are low, such as in hypoendemic areas and during 

the prepatent period (the time it takes from infection initiation to mf appearing in the 

skin) which is estimated to be between 9 to 15 months (183). The new WHO 

guidelines for stopping MDA and verifying elimination of onchocerciasis 

recommend the use of skin snip in phase 1 (treatment phase) of elimination 

programmes, but not to verify elimination (87). Mf in the eyes can be detected using 

slit-lamp examinations (184), however after years of interventions there is now much 

less ocular involvement with onchocerciasis. 
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      The DEC patch test is another means for indirectly detecting mf, and involves 

applying topical DEC to an area of skin to provoke a localised Mazzotti reaction. 

The individual is observed over 24 - 48 hours, and infection can be determined by 

the appearance of dermal papules (185, 186). A ready-to-use DEC containing patch 

(LTS-2 patch) has also recently been trialled in order to circumvent the time-

consuming DEC patch preparation (187). The DEC patch has been found to be more 

sensitive than skin snip at low levels of microfilaridermia (188), although others 

have found prevalence estimates using DEC patch test were comparable to those 

obtained by skin snip (189). However, the DEC patch test is not specific for O. 

volvulus, and false positives can occur in individuals infected with loiasis (190). The 

use of the DEC patch test is also only recommended during the treatment phase of 

elimination programmes (87, 191).  

 USG as an Onchocerca diagnostic tool and measure of treatment response 

      Ultrasonography (USG) can be used to detect adult worm motility in the host 

through non-invasive ultrasound examination of palpable onchocercomas, and this 

method has been shown to be consistent and more reliable than nodule palpation for 

detecting onchocercomas (192). As the technique is non-invasive, this may also 

improve patient compliance. USG of nodules can therefore be useful for longitudinal 

monitoring of changes in the number and size of nodules and in adult worm motility 

within the host. This technique has also been used in longitudinal clinical trials to 

verify the impact of drug treatment on the adult worms in vivo (157, 192, 193). In 

one study analysing a subset of individuals with palpable nodules 21 months after 

receiving doxycycline, doxycycline + ivermectin, or ivermectin, USG examination 

recorded reduced parasite motility in individuals treated with doxycycline + 

ivermectin and doxycycline relative to the ivermectin group (157). However, USG 

has some limitations for measuring the macrofilaricidal treatment response. Firstly, 

ultrasound examination is unable to determine the number and sex of adult worms, 

and therefore information is qualitative only. This method is also unable to assess 

embryogenesis and spermatogenesis of the adult worms. USG examinations will also 

only identify a small proportion of worms shown to be "vital" in histology, due to 

either dense host tissue or because of the echo dense connective tissue around the 

nodule (192).  
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Molecular diagnosis 

      The sensitivity of the skin snip can be significantly improved by using 

polymerase chain reaction (PCR) to detect the Onchocerca genus-specific 150 bp 

tandem repeat sequence (188, 194-197). To achieve species-specificity, hybridisation 

with an O. volvulus-specific probe can also be used (198). A recent estimate of the 

true genome-wide copy number of the O-150 repeats in O. volvulus is 5,920 (199), 

and detection by skin snip PCR offers improved sensitivity and specificity over 

parasitological and immunological diagnosis methods for onchocerciasis. In addition 

to conventional PCR analysis, real time qPCR assays and loop mediated isothermal 

amplification (LAMP) methods have recently been developed for highly sensitive 

and specific amplification of O. volvulus DNA targets in skin biopsies (200-204). 

Limitations of the skin snip PCR include the expensive equipment and reagents, the 

trained personnel required to conduct the tests, and the inability to distinguish 

between dead or moribund mf and living motile mf. The skin snip PCR technique 

will also be less sensitive if microfilaridermia is very low or absent, and will 

therefore not be appropriate for use for a number of months following ivermectin 

treatment. To the best of our knowledge, O-150 has not been validated to determine 

treatment response to ivermectin. However, in a study assessing the O-150 qPCR 

assay in individuals who had recently (< 20 months), not recently (>20 months) or 

not been treated with ivermectin, nine individuals were positive by skin snip 

microscopy and 17 were positive by qPCR (202). Skin snip PCR is currently not 

suitable as a point-of-care diagnostic tool, and new WHO guidelines recommend that 

this test may be used in limited situations where a number of children are found to be 

positive by the O. volvulus Ov-16 antibody-based test (where Ov-16 seropositivity is 

>0.1%) (87). This may enable differentiation of actual infection from antibody 

exposure to the parasite in sentinel populations.  

      PCR for detection of O. volvulus DNA can also be used for xenomonitoring of 

the black fly vector population (205). Entomological evaluation by O-150 PCR aims 

to determine the prevalence of the infective-L3 stage by pool-screening hundreds of 

blackfly heads using an O. volvulus-specific O-150 DNA probe (206, 207). 

Molecular xenomonitoring has been used to assess infection transmission dynamics 

after years of ivermectin control in Latin America (208-210) and some areas in 

Africa (90, 91). More recently, an isothermal LAMP assay (211) and a non-
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instrumented nucleic acid amplification (NINA)-LAMP assay have been developed 

for detection of parasite DNA in the vector (212). A speciation assay has also been 

developed based on differentiation between O. volvulus and O. ochengi 

mitochondrial DNA sequences, which can be used in high-throughput high-

resolution melt (HRM)- as well as lower throughput conventional restriction 

fragment length polymorphism (RFLP) analyses (213). Entomological assessment of 

the infective Simulium population by PCR is a recommended diagnostic tool for use 

in onchocerciasis elimination programmes, and flies should be collected when they 

will be most abundant (during daylight hours and during the peak transmission 

season) (87). Following evaluation by PCR, an upper limit of the 95% confidence 

interval for the prevalence of flies with infective L3 larvae should be less than one 

infected black fly in 1000 parous flies (<1/1000), equating to less than a 0.1% 

prevalence, or one infected black fly in 2000 flies tested, equating to less than a 

0.05% prevalence (87). Limitations of xenomonitoring by PCR include the challenge 

of collecting a large number of black flies sufficient to represent the potential 

infective vector reservoir, the cost of molecular supplies and equipment for PCR, 

and trained personnel to conduct the tests. The presence of other species of 

Onchocerca in the blackfly vectors may also confound molecular testing for 

xenomonitoring if an O. volvulus-specific probe is not used to detect the O-150 DNA 

sequence.  

Antibody detection tests  

     Much of the initial effort to develop immunodiagnostics for onchocerciasis 

focussed on antibody detection assays, as attempts to produce antigen detection tests 

were largely unsuccessful (214). The early serological tests involved developing 

antibody detection assays using O. volvulus parasite extracts, however this was 

encumbered by the need to obtain adult worms from nodules since there was no 

suitable laboratory host (214). Most of the assays using native material from O. 

volvulus (215-217), or closely related Onchocerca species (218), as well as 

alternative filarial worms that could be laboratory cultured (219, 220), were highly 

sensitive but lacked specificity for onchocerciasis. The development of recombinant 

O. volvulus antigens, such as Ov33 (221) and Ov16 (222), enhanced the specificity 

of onchocerciasis diagnosis relative to native antigens. However, sensitivity for 

detecting infection using individual recombinant antigens varied, and so to improve 
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the sensitivity a cocktail of recombinant O. volvulus antigens was employed (223-

226). A multicentre trial was initiated by the WHO’s Special Programme for 

Research and Training in Tropical Diseases (WHO/TDR) to test a panel of antigens 

for sensitivity and specificity (227), and three were selected (Ov16 (222, 228), Ov7 

(229) and Ov11 (230)) as the preferred antigen cocktail. Although the antigen ‘tri-

cocktail’ had an epidemiological sensitivity of 70–80% (depending on the area), and 

a specificity of 96–100%, enzyme-linked immunosorbent assay (ELISA) was the 

basis for onchocerciasis antibody detection, and the test was not adopted for routine 

operational use (20, 231).  

Ov16 antibody detection tests 

      The specificity of onchocerciasis immunodiagnosis was further improved by 

assessing the IgG4 antibody subclass rather than total IgG (232, 233). In particular, 

the detection of IgG4 antibodies to the recombinant O. volvulus antigen Ov16, to 

which antibodies develop during the pre-patent period of infection (228), has been 

the most widely used and employed in a number of immunoassay formats. Using a 

cocktail of antigens that were also available alongside the anti-Ov16 assay did not 

improve the performance of the test (234). A lateral flow rapid-format card test for 

detection of anti-Ov16 IgG4 was developed in 2000 and later assessed for field use 

(235, 236), but the test was never commercialised. An anti-Ov16 ELISA has been 

operationalised as a serological surveillance tool for routine evaluations in Latin 

America (237-239), and in some countries in Africa (240-242). Guidelines for using 

serological evaluation for elimination involves assessing infection exposure in 

children under 10 years in sentinel populations to identify areas with ongoing 

transmission (87). The sample cohort should be representative of the entire 

transmission zone, and a sample size of 2000 children is recommended to assess 

whether the prevalence is ≤0.1 % at the upper bound of the 95% confidence interval 

(87, 240). The 0.1% threshold was extrapolated from experience in OEPA areas, 

however, it is not technically feasible to measure the 0.1% threshold prevalence 

specified by the elimination guidelines as the Ov16 serology tests are not 100% 

specific (234). Several different versions of the Ov16 ELISA are currently in use, 

and in hyper and mesoendemic areas the Ov16 ELISA has a high sensitivity (80-

90%) and up to 99% specificity. However, the lower sensitivity of the ELISA 

increases the sample size that is required, for example a test that is 80% sensitive 
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would mean a 25% increase in the sample size, and without 100% test specificity 

representative areas would rarely ever make the 0.1% cut-off (234). Representative 

areas for transmission assessment may also not meet the current specified sample 

size of 2000 children.  

      More recently, a rapid diagnostic test (RDT) using recombinant Ov16 to detect 

IgG4 antibodies was developed (243), and is now commercially available as a point-

of-care RDT for field use (Alere SD BIOLINE Onchocerciasis IgG4 Rapid Test, 

Suwon, Republic of Korea). However, it will be important to compare the 

performance of the RDT to the ELISA format before operationalising the RDT for 

use in programmatic decision-making regarding onchocerciasis elimination. 

Although the RDT has been compared to the ELISA using samples where the 

infection status is known and in a programmatic setting in Togo (234, 244, 245), the 

Ov16 antibody tests have primarily been assessed in populations with high 

onchocerciasis prevalence. In hyperendemic and mesoendemic areas, the RDT had a 

sensitivity of ~80% for detecting people with mf positive skin snips; however, in 

untreated hypoendemic areas and in hyperendemic areas that had been treated for 

some time, the RDT had a sensitivity of 40-60% for detecting people with mf 

positive skin snips (234). Similarly, the RDT’s sensitivity compared to the ELISA 

was over 90% in samples from people where infection status was known, but was 

40-65% in samples from low or suppressed transmission areas (234). A recent study 

that compared onchocerciasis diagnostic tests in a setting in Tanzania that has 

suppressed transmission reported that based on a randomised, age-stratified analysis, 

the Ov16 antibody RDT was positive in 38 (5.5%) participants, with 1 (0.5%), 1 

(0.4%), and 2 (0.8%) children aged 0-5, 6-10, and 11-15 years, respectively (246). 

The authors concluded that although MDA in this area had had a significant impact 

on transmission, the specificity of the test could result in a number of false positives 

identified, such that the area would have failed to meet WHO criteria for stopping 

MDA in this instance (246). The guidelines issued by the WHO recognise that 

evidence for the usefulness of the Ov16 immunoassays to assess interruption of 

transmission is still limited, and an operational research priority is the validation of 

Ov16 RDT (87). Additional uncertainties highlighted in the new WHO guidelines 

regarding the use of Ov16 serology in elimination settings include the need to better 

understand the dynamics and sero-reversion rate of the Ov16 antibody response.  
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      Onchocerciasis diagnosis via antibody profiling has proven useful as a 

surveillance tool for assessing infection prevalence in untreated communities, as well 

as for monitoring elimination programs in Latin America working to interrupt 

transmission. The major shortcoming of antibody-profiling assays is that due to the 

long half-life of antibodies, antibody detection tests are unable to distinguish 

between past and current infections (247). In addition, diagnosis of ongoing 

transmission using Ov16 serology will miss those individuals who do not mount a 

detectable antibody response against the Ov16 antigen (248).Therefore, alternative 

diagnostic tests that are able to detect active infection with O. volvulus adult worms 

are required to distinguish new patent and ongoing infections from historical 

infection exposure.  

Biomarkers for living adult Onchocerca volvulus  

      A circulating biomarker for O. volvulus that could be used to detect active 

infection or determine infection intensity would be highly advantageous over the 

currently available diagnostic tools for onchocerciasis. The onchocercomas where 

adult worms reside are highly vascularised (249, 250), and therefore parasite 

antigens, metabolites, RNA and DNA may all be present in the host circulation as 

markers of infection. The progression from an onchocerciasis control to an 

elimination programme in Africa poses additional challenges for disease diagnosis, 

as well as for community wide surveillance and evaluation of ongoing infection 

transmission or recrudescence. As declining levels of disease endemicity no longer 

prove to be cost-effective for current MDA-based strategies, ‘end-game’ scenarios 

will be dependent upon continued surveillance and case management by ‘test and 

treat’ strategies. For those areas that will no longer require MDA, over-prescribing 

drugs wastes resources. Therefore, diagnostic tools with high sensitivity and 

specificity for active O. volvulus infection are required to accurately map 

hypoendemic areas with low levels of ongoing transmission, and make informed 

decisions regarding treatment provision and intervention cessation. In addition, an O. 

volvulus-specific marker of the adult worms would be valuable for quantifying 

treatment efficacy for both established and new candidate drugs, and for monitoring 

patient drug response (251). 
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      Circulating antigen detection tests for onchocerciasis were first described in the 

early 1980s (252, 253), and development of diagnostic tools to identify adult O. 

volvulus infection has continued to be an active area of research ever since. The 

earlier antigen detection assays lacked the necessary sensitivity and specificity for a 

diagnostic test, and were directed towards unknown antigens (252, 253). Later tests 

showed more promise, with one study reporting the use of indirect ELISA to detect 

O. volvulus antigen in serum and urine with sensitivities of 92.3% and 85.9%, 

respectively (254). The positivity of this ELISA with both serum and urine also 

correlated well with mf densities in skin. However, the specificify was not 

determined, and the antiserum used in the ELISA was raised against a crude soluble 

antigen extract, and so there may be cross-reactivity due to multiple binding sites for 

similar epitopes found in other parasitic worms (214). Other O. volvulus antigen 

detection assays for serum have also been susceptible to high false positive rates 

(255) and cross-reactivity with other geographically relevant filarial parasites (such 

as L. loa and M. perstans)(256). Therefore, while several immunoassays have been 

developed and tested (252-257), none were progressed for specific and sensitive 

diagnosis of onchocerciasis. 

      For lymphatic filariasis, a sensitive immunochromatographic test (ICT), the 

Alere Filariasis Test Strip, is used in the Global Programme to Eliminate Lymphatic 

Filariasis (GPELF) to qualitatively or semi-quantitatively detect the circulating 

filarial antigen (CFA) of W. bancrofti (258-260). Levels of CFA can be quantified 

using the Trop-Ag ELISA kit (TropBio, Townsville, Australia). A sensitive ICT for 

detection of circulating filarial antigens from the dog heartworm, Dirofilaria immitis, 

is also available (261). Several longitudinal macrofilaricidal drug trials have 

demonstrated a significant decline in CFA levels over the months and years 

following macrofilaricidal treatment (262-265). Furthermore, studies have shown 

that the levels of filarial antigens may correlate to the adult worm infection intensity 

(266-268) and to mf densities in the blood or skin (254, 260). Circulating filarial 

markers can therefore be used to determine infection prevalence, infection intensity 

and treatment efficacy. A similar rapid format diagnostic test for active O. volvulus 

infection that demonstrated a significant, reproducible, dynamic alteration following 

elimination of adult worms is highly desirable. 
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Recent advances in technology platforms for biomarker discovery 

Proteomics 

      Increasingly sophisticated omics-based methods are currently being used to 

identify biomarkers of O. volvulus infection. The availability of filarial worm 

genomes and advances in transcriptomics and proteomics will help elucidate the 

unique biology of the parasite and interaction with the human host, and aid in 

identifying novel targets for onchocerciasis diagnosis. High-quality genome 

assemblies with reconstruction of whole chromosomes were obtained for O. volvulus 

in 2016 (199). In the same year, transcriptomic and proteomic profiles of both O. 

volvulus and its Wolbachia endosymbiont in the intermediate vector and human host 

stages were also published (269). This included L1, L2, L3, moulting L3, L4, and 

adult male and female stages, which enabled identification of stage-specific 

pathways important for the parasite adaption in the human host. Additionally, new 

biomarkers of O. volvulus patent infection were identified by using immunomics 

(270) to profile host antibody responses from well-characterised human samples to a 

protein array generated from 397 parasite stage-specific proteins (269). This study 

reported seven novel antigenic O. volvulus biomarkers from IgG4 responses in 

infected individuals, one of which, OVOC10469, has been tested and validated in a 

luciferase immunoprecipitation system (LIPS) immunoassay (269). An integrated 

multiomic-based approach using data from the O. volvulus genome, proteome, and 

transcriptome has also led to the identification of novel antigens as candidates for 

serodiagnosis of onchocerciasis (271). Of the 241 immunoreactive proteins detected, 

many of the major diagnostic antigens over the past 25 years were included, in 

addition to 33 new proteins.  

Metabolomics 

      Metabolomics is another technology that has shown promise for identifying 

small molecules, or metabolites, of O. volvulus infection. Metabolomics using mass 

spectrometry (MS)-based approaches enables nonbiased analysis of all the molecules 

that are present in the host body fluids by aligning against libraries of known 

biochemicals (272). Metabolite profiling, in which a smaller subset of metabolites 

are measured, may then be used to measure potential biomarkers of infection (273). 

For onchocerciasis, metabolite profiling of infection-associated markers in human 
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plasma and serum has identified metabolites that are able to discriminate between 

infected and non-infected individuals (273, 274). In one study, the use of a discovery 

liquid chromatography-MS (LC-MS) based approach identified a set of molecules 

that, in combination, deliver a statistically relevant characteristic of onchocerciasis 

infection (273). The African sample set, consisting of 73 serum and plasma samples, 

enabled the discovery of a set of 14 biomarkers that could discriminate between O. 

volvulus–positive and negative individuals by multivariate statistical analysis. A 

more recent metabolomic analysis analysed the serum metabolic profiles of 10 O. 

volvulus-infected and 10 uninfected individuals, which identified 286 known 

metabolites, as well as putative metabolites based on KEGG, HMDB and HMT 

databases (274). Their non-targeted metabolomic approach produced a global view 

of the metabolic variations that occur in individuals infected with O. volvulus, and 

enabled the discovery of important metabolites and associated pathways that could 

be useful as biomarkers of onchocerciasis (274).  

      Metabolomic analysis of urine from onchocerciasis infected individuals has 

additionally identified the biomarker N-acetyltyramine-O,β-glucuronide (NATOG), 

a neurotransmitter-derived secretion metabolite from O. volvulus (275). NATOG has 

been detected at a significantly reduced concentration in urine from individuals 

tested 20 months post-doxycycline treatment compared with untreated O. volvulus-

positive patients and placebo-treated patients (275), and found to be detectable 

before the appearance of mf in jirds infected with the onchocerciasis model 

nematode Litomosoides sigmodontis (276). The diagnostic utility of NATOG has 

also recently been evaluated in two separate studies (277, 278). In one report, an 

assessment of NATOG specificity revealed that NATOG values were found to be 

elevated in mono- and co-infection (L. loa and Mansonella perstans) samples only in 

the presence of O. volvulus (277). The authors proposed NATOG as a biomarker for 

tracking active onchocerciasis infections, and provided a threshold concentration 

value of NATOG for future diagnostic tool development (277). However, in a 

separate evaluation, Lagatie and colleagues reported on the limited diagnostic 

applicability of NATOG due to the lack of discrimination between nodule-positive 

amicrofilaridermic individuals and the control groups (278).  

      Metabolomics could be a useful alternative to protein-based diagnostics due to 

the very limited half-lives of metabolites and because they are the result of 
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combinatorial effects of the genome, the transcriptome, the proteome and the 

environment (274). Biomarker identification from metabolomic analyses is 

challenging however, due to the constant dynamic changes of the metabolites, small 

intermediates, or end products of enzyme-catalysed biochemical reactions (274). 

Plasma and serum of uninfected and infected hosts have also been analysed for 

nematode-specific phospholipids, however analysis of the host phospholipid profiles 

showed that parasite phospholipids were below the limit of detection (279).  

Parasite-derived microRNAs  

      More recently, small RNA markers for onchocerciasis have become an area of 

diagnostic interest. The most extensively studied small RNAs include microRNAs 

(miRNAs), small interfering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs) 

(280); however, in parasitic worms particular attention has been given to miRNAs. 

MiRNAs are small (~22 nt in length) non-coding RNAs that function as post-

transcriptional gene regulators, typically by inducing gene silencing of their target 

(281). The miRNA–target interaction is initiated by the ‘seed’ sequence, which 

consists of nucleotides 2–7 at the 5′ end of a miRNA (282). MiRNA populations 

have been identified in at least 35 species of parasitic helminths (283), and have been 

implicated in several important physiological processes such as development, 

differentiation and homeostasis, and possibly drug resistance (284). Parasite 

miRNAs may also have potential roles in host-pathogen interactions and immune 

regulation (285-288). Many miRNA families are highly conserved with homologues 

in nematodes (289), however some have been found to be filarial specific (289) and 

unique to a species (290, 291). Furthermore, both gender- and stage-specific miRNA 

expression in parasitic worms has been observed (289, 290, 292, 293). MiRNAs in 

parasitic helminthiases have recently been reviewed by Cai et al (283). 

      Parasite-derived miRNAs have been identified in the host biofluids for a number 

of parasitic nematodes, including filarial worms such as O. volvulus, O. ochengi, L. 

loa, D. immitis, Brugia pahangi and L. sigmodontis, and trematodes, Schistoma 

japonicum and Schistoma mansoni (251, 287, 291, 294-297). MiRNAs are also 

present in mammalian extracellular body fluids such as plasma, where they are 

believed to be particularly stable due to their association with specific proteins or by 

encapsulation in small lipoprotein vesicles (298, 299). Host miRNAs have been 
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proposed as potential markers of parasite infection due to the correlation between the 

status or progression of various diseases and miRNA dysregulation (300, 301). The 

potential of circulating host miRNAs as biomarkers has been investigated with 

infections of S. japonicum (302, 303), S. mansoni (295), and Opisthorchis viverrini 

(304, 305), although with mixed results. For example, while one group found that 

levels of the host miRNA miR-192 in serum could potentially be a biomarker and 

prognostic indicator for O. viverrini-induced cholangiocarcinoma (ICC) (304), 

another study that identified a panel of eight miRNAs associated with O. viverrini-

ICC in plasma did not include miR-192 in their panel (305). The host miRNA miR-

223 has also been put forth as a potential circulating biomarker for infection with S. 

japonicum (302); however, higher levels of miR-223 in the circulation may also be 

indicative of other conditions, such as gastric cancer (306).  

      With respect to onchocerciasis, six putative O. volvulus miRNAs have been 

identified in host plasma using Illumina high-throughput sequencing (291), two of 

which, miR-71 and lin-4, were present in plasma from infected individuals living in 

Cameroon. In another study, 21 miRNA candidates predicted to be released by O. 

volvulus were discovered through sequencing and bioinformatic analysis of 

onchocerciasis-infected sera (251). However, there was no overlap in the parasite 

miRNAs identified in the two studies, and the 21 putative O. volvulus miRNA 

identifications by Tritten et al (251) were questioned by Quintana et al (291). In the 

study of Quintana and collegues, the reads of nucleotide (nt) sequences detected and 

aligned to the O. volvulus genome were present in ≥ 2 copies to avoid analysis of 

sequencing artefacts, and only reads >16 nt were analysed in line with the default 

criteria of miRdeep2 alignments. Following further bioinformatic analysis of 

miRNA content, sequence reads had to map perfectly to the genome and be 18 to 30 

nt in length to be included for analysis. Quintana et al (291) criticised the findings of 

Tritten et al (251), as 13 of the 21 reported miRNAs were < 17 nt long or detected in 

only one read, and therefore did not meet their more stringent analysis criteria. 

Additionally, a further three sequences were found to perfectly align to human 

ribosomal RNA, and two were identified as part of longer sequences in European 

control serum. Therefore, miRNAs specific to O. volvulus have yet to be confidently 

identified in the host. Although several studies have demonstrated the conserved 

nature of RNA secretion/excretion by nematodes (251, 287, 291, 296, 307), the 
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identification of novel miRNAs from O. ochengi in nodule fluid holds promise that 

O. volvulus-specific miRNAs may also be present in the blood (291).  

Circulating biomarkers for adult Onchocerca volvulus: A rationale 

      While several interesting protein, metabolite and nucleic acid candidates have 

been identified using various technologies, no potential biomarkers identified in 

recent years have yet been progressed to diagnostic development for field use. 

Additionally, all studies have identified the potential O. volvulus biomarkers in the 

host by testing infected vs uninfected cohorts. Therefore, aside from the metabolite 

NATOG, whether any of the markers could be used to monitor treatment efficacy or 

patient drug response is unknown. The ideal circulating diagnostic marker for O. 

volvulus would be specific and sensitive for active adult worm infection, in addition 

to tracking the progressive impact of treatment and control strategies on the adult 

worm population within the host.  

      We possess a unique plasma sample set collected sequentially from patients 

enrolled in a randomised double-blind phase II trial conducted in Cameroon over a 

two year period (157). Treatment arms consisted of macrofilaricidal (doxycycline), 

microfilaricidal (ivermectin), or a combination of the two treatments, and this sample 

set includes supporting parasitological and clinical data on treatment outcome. In 

addition, the trial undertook parasitological screening for coinfective filarial 

parasites L. loa and M. perstans. This sample set could be used to discover 

circulating markers of onchocerciasis infection and treatment efficacy, by identifying 

markers present at baseline in plasma that dynamically change in abundance or 

prevalence over time following antifilarial therapy. Proteomics provides a promising 

platform for the discovery of circulating biomarkers in human plasma, and several 

novel circulating O. volvulus antigens have recently been identified using proteomic 

analyses of infected vs uninfected cohorts (269, 271). The plasma proteome also 

mirrors the physiology of an individual, representing a dynamic reflection of both 

genes and the environment (308). The proteome is probably the most ubiquitously 

affected in disease, response and recovery (309), and an affluence of proteins are 

introduced into the circulation from tissue leakage and foreign proteins introduced 

by microorganisms (310). Although based on a high technology platform, high-depth 

coverage discovery proteomics, followed by high-throughput selected reaction 
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monitoring (SRM) for verification of potential candidates, could enable the 

progression of potential biomarkers to immunoassay-based validation (311). Proteins 

are therefore also a practical target, as they more tractably translate into a point of 

care diagnostic format e.g. antigen detection test.  

      As a comparative study of other potential biomarkers in our unique sample set, 

parasite nucleic acids could also be investigated as circulating markers of infection 

and treatment efficacy. Detection of parasite-derived miRNAs would verify active 

infection in the host, and preliminary studies have also shown that miRNAs 

originating from S. mansoni enabled the differentiation between uninfected and 

infected serum in humans (295). Although the O. volvulus miRNAs sequenced from 

host biofluids have been inconsistent between studies (251, 291), miR-71 and lin-4 

have been identified in a number of host-parasite models, and therefore appear to be 

more reliable as secreted/excreted parasite miRNA candidates. Detection of 

conserved circulating O. volvulus-associated miRNAs would provide information on 

the diagnostic potential of parasite-derived miRNAs for onchocerciasis. Detection of 

the O. volvulus-specific O-150 DNA repeat sequence in the host circulation would 

also be advantageous over current diagnostics tests such as the skin snip-PCR, which 

is insensitive for months following microfilaricidal treatment and involves obtaining 

painful invasive skin snips. In O. volvulus, the genome-wide copy number of the O-

150 repeats has recently been estimated to be 5,920 (199), increasing the likelihood 

of detecting the sequence in the host circulation. The detection of circulating O-150 

may enable diagnosis of active infection by adult worms irrespective of mf status, 

and the levels of circulating parasite DNA may provide an indication of adult 

infection intensity.  

      Following identification of protein markers of O. volvulus infection and infection 

clearance in a unique longitudinal plasma sample set, protein candidates with the 

necessary sensitivity and specificity could be progressed for diagnostic development 

for use in onchocerciasis ‘end game’ strategies, where diagnostic tests of adult worm 

infection are a high priority for programmatic support for disease elimination. The 

assessment of circulating parasite nucleic acids will also provide additional 

information on the potential of alternative diagnostic tools for onchocerciasis. 
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Project aims  

This thesis aims to investigate whether proteomic analysis of plasma from 

onchocerciasis-infected individuals can identify circulating protein markers of active 

adult worm infection. Potential diagnostic biomarkers were analysed to determine 

any dynamic change in abundance or prevalence following treatment with 

doxycycline over a two-year follow-up period in a subset of five patients. Further 

studies compared potential O. volvulus miRNA and DNA biomarker dynamics in an 

expanded plasma sample set from 18 trial participants treated with doxycycline, 

ivermectin or a combination of both. 

 

The aims of this project can therefore be summarised as:  

1. To develop a proteomic workflow that will reduce the redundancy in plasma 

proteome analysis by discovery liquid chromatography tandem mass spectrometry 

(LC-MS/MS), in order to improve the depth of plasma proteome coverage and 

improve detection of less abundant circulating parasite and host proteins. 

2. To use the proteomic workflow and shotgun LC-MS/MS to analyse a unique 

longitudinal plasma sample set and identify circulating protein markers of active 

onchocerciasis infection, and then track the dynamic changes in protein abundance 

and prevalence over time to identify markers of adult worm death and treatment 

efficacy.  

3. To determine the suitability of selected parasite-derived miRNAs and DNA as 

potential biomarkers of active onchocerciasis, and determine any dynamic change in 

their abundance and prevalence following treatment. 
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Chapter 2.  Methods 

  

Methodology 

 This chapter details the complete methodology for all the experiments 

conducted and presented in this thesis. In subsequent individual experimental 

chapters (Chapters 3 - 5), the methods that are relevant to each chapter are briefly 

outlined, which refer back to the methodology provided in this chapter. 

Reagents and equipment  

      The powder and liquid laboratory supplies that were used in experimental work 

and their sources are listed in Table 2.1. All reagents and equipment were maintained 

in the conditions recommended by the manufacturer’s storage instructions. 

Type Product Company 

 

Powder 

Glycine Sigma-Aldrich 

Tris Base (Tris, or Trizma) Sigma-Aldrich 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich 

Ammonium persulfate (APS) Thermo Scientific 

Ammonium bicarbonate (AmBic) Sigma-Aldrich 

Dithiothreitol (DTT) Bio-Rad 

Iodoacetamide (IAA) Sigma-Aldrich 

Tryptic digest bovine serum albumin (BSA) Bruker 

MassPrep Escherichia coli digestion standard Waters 

 

Liquid 

 

 

 

Ethanol Sigma-Aldrich 

2-Propanol (isopropanol)  Sigma-Aldrich 

30% Acrylamide-Bis solution Bio-Rad 

N,N,N′,N′-Tetramethylethylenediamine (TEMED) Sigma-Aldrich 

Acetonitrile (ACN) Sigma-Aldrich 

0.1% (v/v) formic acid (FA) Pierce 

HPLC-grade trifluoroacetic acid (TFA) Sigma-Aldrich 

HPLC-grade H2O Sigma-Aldrich 

RNaseZap Thermo Scientific 

Distel laboratory disinfectant  Starlab 

Nuclease-free H2O Ambion  

TE Buffer pH 8.0 Integrated DNA technologies 

Table 2. 1. List of powder and liquid laboratory supplies used and their sources. 
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      The solutions and buffers prepared in the laboratory are provided in Table 2.2. 

Double distilled water (d.H2O) was made in-house and dispensed from specialised 

laboratory taps. An UltraBasic UB-10 benchtop pH meter (Denver Instruments) was 

used to measure and adjust pH, and the pH of solution was altered using either HCl 

or NaOH. Other ‘specific-use’ laboratory reagents, kits, equipment and software and 

the suppliers are detailed in the relevant methods subsections described below. All 

protein-containing samples were stored in Protein Lo-Bind microcentrifuge tubes 

(Eppendorf), and all nucleic acid-containing samples were stored in DNA Lo-Bind 

microcentrifuge tubes (Eppendorf). 

Solution name Components Concentration Amount Adjustment 

Resolving gel 

30% Acrylamide/Bis 

solution  

Tris  

SDS 

d.H2O 

APS 

TEMED 

37.5:1 

 

1.5 M 

20% (w/v) 

 

10% (w/v) 

4 ml 

 

2.5 ml 

50 µl 

3.4 ml 

75 µl 

7.5 µl 

Tris was first 

adjusted to pH 8.8 

Stacking gel 

30% Acrylamide/Bis 

solution 

Tris  

SDS 

d.H2O 

APS 

TEMED 

37.5:1 

 

0.5M  

20% (w/v) 

 

10% (w/v) 

0.65 ml 

 

1.25 ml 

50 µl 

3.025 ml 

25 µl 

2.5 µl 

Tris was first 

adjusted to pH 6.8 

10 x running 

buffer 

Tris 

Glycine 

SDS 

d.H2O 

250 mM 

1.92 M 

1% w/v 

30 g 

144 g 

10 g 

~1 L 

 

Running buffer 
10 x running buffer 

d.H2O 

1 x 100 ml 

900 ml 
 

70% Ethanol 
Ethanol 

d.H2O 

70% (v/v) 700 ml 

300 ml 
 

High pH elution 

buffer 

Glycine 

d.H2O 

100 mM 375 mg 

~50 ml 

Glycine solution 

was adjusted to pH 

2.5 
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Low pH elution 

buffer 

Glycine 

d.H2O 

100 mM 375 mg 

~50 ml 

Glycine solution 

was adjusted to pH 

10 

Destaining 

solution 

CAN 

AmBic 

100% 

25 mM 

500 ml 

500 ml 

 

*Reduction 

solution 

DTT 

AmBic 

60 mM 

25 mM 

1.5 mg 

1 ml 

 

*Alkylation 

solution 

IAA 

AmBic 

170 mM 

25 mM 

10 mg 

1 ml 

 

Trypsin stock 

solution 

Trypsin 

AmBic 

 

25 mM 

20 µg 

100 µl 

 

+RapiGest 
RapiGest 

AmBic 

 

25 mM 

1 mg 

100 µl 

 

+Reduction 

solution 

DTT 

AmBic 

60 mM 

25 mM 

9.2 mg 

1 ml 

 

+Alkylation 

solution 

IAA 

AmBic 

170 mM 

25 mM 

33 mg 

1 ml 

 

Table 2. 2. Buffers and solutions made in the laboratory. 

*For use with in-gel tryptic digestion method.  

+For use with in-solution tryptic digestion method. 

 

Human plasma  

European control plasma 

      For protein-based experiments in Chapter 3, the uninfected control plasma was 

lyophilised plasma (Sigma-Aldrich), prepared by the manufacturer from pooled 

human blood with 4% trisodium citrate as the anticoagulant. Plasma was 

reconstituted in d.H2O to the specified volume and aliquoted out for storage at -20 

oC. For molecular experiments in Chapter 5, plasma from an individual was obtained 

through the national health service (NHS, UK) and aliquoted out for storage at -20 

oC until use. An alternative plasma source was obtained as the lyophilised plasma 

was found to have lower levels of extracellular nucleic acids relative to plasma of 

trial participants. Frozen plasma was thawed gently on ice before use. For all 

experiments, plasma samples were initially centrifuged at 16 000 x g for 5 min to 

pellet insoluble material. 
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Onchocerciasis-infected plasma 

      Plasma from individuals infected with onchocerciasis were obtained from a 

double-blind, randomised, phase II field trial conducted over two years in Cameroon 

(157). The trial was community based and was conducted in six satellite villages 

(Bifang, Ebendi, Eka, Ngalla, Dinku and Olurunti) in Widikum, in the North West 

Province of Cameroon (situated between latitude 5o N 43–5o N 54 and between 

longitude 9o E 41o E 44). The trial commenced on the 1st July 2003 and concluded 

on the 31st March 2005. At the time of the trial, the area was hyperendemic for 

onchocerciasis with a community prevalence of L. loa ranging from 3.36%–14.29% 

(312). Eligibility criteria for inclusion comprised: O. volvulus microfilaridermia >10 

mf/mg, adults aged 15 – 60, a minimum body weight of 40 kg, and in good health. 

Exclusion criteria included: L. loa microfilarial load >8000 mf/ml, irregular range 

for hepatic and renal enzymes (AST and creatinine [3–126 µmol/l]), pregnancy, 

lactation, ivermectin intolerance, alcohol or drug abuse, or anti-filarial therapy in the 

last 12 months. Enrolled individuals were assigned to one of three drug regimens: 

(i) DOXY: Doxycycline (2 × 100 mg capsules daily) for six weeks plus non-

matching ivermectin-dummy pill at month four (lactose tablet). 

(ii) DOXY+IVM: Doxycycline (2 × 100 mg capsules daily) for six weeks 

plus ivermectin (150 µg/kg oral dose) at month four. 

(iii) IVM: Matching doxycycline-placebo for six weeks plus ivermectin (150 

µg/kg oral dose) at month four. 

      Blood plasma was collected in BD Vacutainer® EDTA blood collection tubes 

from the trial participants at baseline and then at four, 12 and 21 months after the 

start of DOXY or DOXY-placebo treatment. At each time point, O. volvulus 

microfilaridermia was assessed by obtaining two skin snips of approximately 1 mg 

and immersing them in saline overnight. The next day, saline samples were moved to 

glass slides for microscopy, and the total number of liberated mf were counted to 

obtain the average number of mf/snip. At the final follow-up post-treatment, a subset 

of participants from each treatment group had palpable nodules removed. Further 

details on the methodology can be found in the study report (157). In brief, worm 

death was verified by evidence of calcification without cuticle or near complete 

adsorption, body wall had loss of integrity, absence of nuclei and absence of O. 

volvulus lysosomal aspartic protease (APR) staining.  



 

50 

      Some of the enrolled participants had or developed co-infections with L. loa and 

M. perstans over the duration of the trial. Coinfections with other filarial worms 

were assessed by collecting 50 µl finger prick blood at each sampling time point and 

preparing thick blood smears to count the numbers of L. loa and M. perstans mf 

using microscopy. 

      Plasma samples selected for use in this thesis were from participants infected 

only with O. volvulus by parasitological examination; however, we cannot rule out 

that the individuals selected did not have occult loiasis and/or mansonelliasis. 

Parasitological information for the individuals is provided in the relevant chapters. 

Plasma from the trial participants was stored at the Liverpool School of Tropical 

Medicine (LSTM) at -80 oC, and gently thawed on ice before use. For all 

experiments, plasma was centrifuged at 16 000 x g for 5 min to remove insoluble 

material prior to any experimental work. 

Ethics statement 

      The experimental protocol for the trial from which the human plasma was 

obtained was designed in accordance with the general ethical principles outlined in 

the Declaration of Helsinki. The trial was approved by ethics committees of the 

Tropical Medicine Research Station, Kumba and the Research Ethics Committee of 

The Liverpool School of Tropical Medicine. The trial is registered with the current 

controlled trials registry, no: ISRCTN48118452. 

 

Proteomic techniques 

Determining protein concentration  

      The protein concentration of plasma samples was determined using the BCA 

Assay (Pierce), following the manufacturer’s instructions. Briefly, neat or diluted 

samples were added to a 96 well plate (Nunclon) in duplicate at a 10 or 25 μl 

volume, before addition of 200 μl of BCA working reagent (WR) to give a ratio of 1: 

20 or 1:8 sample:WR, respectfully. To determine protein concentration, a standard 

curve of protein (BSA) diluted in the same diluent as the sample was included on 

each plate. After an incubation at 37 °C for 30 min, a plate-reader was used to 

measure absorbance at 562 nm. A standard curve was generated using the 
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absorbance values from the diluted standards, and from this the protein concentration 

in the sample wells could be calculated. Additionally, a NanoDrop™ 

spectrophotometer (Thermo Scientific) was used to cross-validate the protein 

concentrations obtained with the BCA assay for samples with low protein 

concentrations, or when a sample was stored in a buffer (glycine elution buffers) that 

interfered with the BCA Assay absorbance measurements. Protein concentrations 

were measured at A280 nm absorbance by initial blanking of instrument using the 

same buffer as the sample, followed by addition of 2 μl of sample in triplicate to 

obtain the average concentration from the three absorbance readings. 

Preparation of SDS-polyacrylamide gels 

      One-dimensional sodium dodecyl sulfate polyacrylamide gels (1D SDS-

polyacrylamide gels) at 12% (w/v) were hand-cast, according to Laemmli (247). Gel 

casting stands and casting frames from the Mini-PROTEAN Tetra Cell Casting 

Module (Bio-Rad) were used to prepare the gels. The resolving gel was prepared 

fresh (see Table 2.2. for solutions used) and poured to fill 2/3’s of the glass plate, 

followed by addition of d.H2O for the remaining 1/3 of the plate. The gels were left 

to polymerise for one hour wrapped in cling film. Stacking gel was prepared fresh, 

and the solution was mixed thoroughly before pouring over the set resolving gel 

fraction. A 1.0 mm comb was inserted in the stacking gel, and the gel was left to 

polymerise for one hour. Gels could be stored in d.H2O for several days prior to use. 

1D SDS-PAGE  

      To separate plasma by one-dimensional sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (1D SDS-PAGE), samples were diluted to the desired 

concentration and mixed with 2x Laemmli Reducing Sample Buffer (Bio-Rad). The 

protein/buffer mixture was heated at 95 °C for 10 min, and then stored on ice until 

use. The (SDS-PAGE) Mini Cell Apparatus (Bio-Rad) was assembled to include 

hand cast 12% polyacrylamide gels submerged in Tris-Glycine Running buffer (see 

Table 2.2). The protein mixture was then loaded into individual gel lanes. To 

estimate the molecular weight (MW) of separated proteins and to ensure the gels had 

run correctly, 5 μg pre-stained Kaleidoscope Precision Plus Protein Standard (Bio-

Rad) or ProtoMarker Protein Standard (National Diagnostics) was also loaded into 

one gel lane. The gels were run at 200 V for 45 min, and then washed three times in 
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d.H2O for 15 min with constant agitation. Gels were immersed in GelCode Blue 

(Thermo Scientific) to stain and agitated for 1 hour, and then the GelCode Blue stain 

was poured off and the gels were de-stained overnight in d.H2O with continual 

agitation. 

Plasma protein depletion 

      Pierce Top 12 Abundant Protein Depletion Spin Columns were used to remove 

~95% of the abundant protein portion of the plasma proteome. The columns target 

12 abundant plasma proteins, including: α1-acid glycoprotein, α1-antitrypsin, α2-

macroglobulin, albumin, apolipoprotein A-I, apolipoprotein A-II, fibrinogen, 

haptoglobin, IgA, IgG, IgM and transferrin. Plasma was diluted to 600 μg in a 10 μl 

final volume and added to a single-use spin column. The spin columns were gently 

agitated to facilitate mixing, before undergoing end-over-end mixing for 75 min. The 

spin column was then centrifuged at 1000 x g for 2 min, and the flow-through was 

collected and stored at -20 oC. 

Elution of abundant proteins 

      Recovery of abundant plasma proteins captured by the Pierce Top 12 Abundant 

Protein Depletion Spin Columns was achieved by using a combination of low pH 

and high pH incubations on-column to elute the bound proteins. 

      Immediately following plasma depletion, spin columns were resealed using 

Parafilm M. The elution method consisted of two incubations with 400 µl 100mM 

glycine.HCl pH 2.5 buffer, followed by one incubation with 400 µl 1M Tris-HCl pH 

7.4 buffer, and then two incubations with 100mM glycine.HCl pH 10 buffer (see 

Table 2.2). Each incubation step consisted of: addition of 400 μl buffer (a volume 

sufficient to cover the spin column antibody resin) to the column and gentle agitation 

to facilitate mixing. Columns were end-over-end mixed for 10 min, and then 

centrifuged at 1000 x g for 2 min. The flow-through was collected and the eluate 

fractions were immediately neutralised with an equal volume of 1M Tris-HCl pH 7.4 

buffer. All flow-through fractions were pooled to a final volume of ~3.6 ml.  

      Protein elution was confirmed by adding an equal volume of reducing sample 

buffer (Bio-Rad) to the spin-column resin and boiling at 95 oC for 10 min, followed 

by visualisation on a 1D polyacrylamide gel. 
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Concentrating protein-containing samples 

       Concentration of the depleted plasma samples was achieved using Amicon 

Ultra-0.5 Centrifugal Filter Units (Merck Millipore) with nominal molecular weight 

limit (NMWL) of 3 kDa, as per the manufacturer’s instructions. Briefly, the filter 

units were first washed with d.H2O by centrifuging for 30 min at 14000 x g. The 

depleted plasma (500 μl) was then added to the column and centrifuged at 14000 x g 

for 30 min, giving ~ 48 μl concentrated material. The concentrated flow-through 

from the device was stored at -20 oC. 

     Abundant plasma protein eluate underwent diafiltration and concentration 

simultaneously using Amicon Ultra-4 Centrifugal Filter Units (Merck Millipore) 

with NMWL of 3 kDa. Filter units were first washed for 40 min at 4000 x g in a 

swing bucket rotor. The eluted protein fraction was then added to the column and 

centrifuged at 4000 x g for 40 min, giving ~94 μl concentrated material. Diafiltration 

was necessary to remove the glycine buffers used for eluting proteins off the 

depletion spin column. Buffer exchange was achieved by the addition of 25 mM 

AmBic to the filter unit to a final volume of 4 ml, and centrifuging at 4000 x g for 40 

min. The process of “washing out” was repeated for three successive steps until the 

concentration of the glycine buffer was sufficiently reduced.  

In-gel tryptic digestion 

      Individual 1D-SDS polyacrylamide gel bands were excised using a scalpel and 

placed in separate Eppendorf tubes. Destaining solution (see Table 2.2 for solutions) 

was added in 20 µl volumes to each gel slice and then heated at 37 °C for 10 min. 

The destaining solution was removed and this process repeated until the band was 

completely translucent. The reduction solution was then added at 20 µl to each gel 

band and incubated at 37 °C for 60 min. After removal of the reduction solution, 20 

µl alkylation solution was added to the gel slices and incubated at 37 °C for 45 min 

in the dark. The alkylation solution was then removed and the bands washed with 

d.H2O, before dehydrating the gel slices in 20 µl of 100% ACN. The gel slices were 

left to stand for one hour, and then any excess ACN was removed. Proteolysis was 

achieved by adding 10 µl Trypsin at final concentration of 0.2 µg to the individual 

gel bands, and incubating at 37 °C overnight. The next day, formic acid at 1% (v/v) 
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was added and samples mixed by vortexing. The peptide solution was collected and 

transferred to a new Eppendorf before centrifuging at 13 000 x g for 15 min to 

remove all insolubles. The peptide supernatant fraction was collected and 0.1% (v/v) 

formic acid was added for downstream LC-MS/MS analysis. The recovered peptide 

fractions were stored at -20 oC until use. 

In-solution tryptic digestion 

      Depleted plasma samples were prepared by first diluting 20 μg protein in 80 µl 

25 mM AmBic and 5 µl of 1% (w/v) RapiGest SF Surfactant (Waters), and heating 

at 80 °C for 10 min. The reduction solution (see Table 2.2 for solutions) was then 

added at 5 µl and vortexed to mix, before incubating samples at 60 °C for 10 min. 

Following this, 5 µl alkylation solution was added and the sample vortexed before 

incubating for 30 min at room temperature in the dark. Trypsin solution was added to 

depleted plasma at a 30:1 protein:trypsin ratio and incubated overnight at 37 °C. The 

following day, protein digestion was confirmed by visualising 10 µl sample on a 1D 

SDS-polyacrylamide gel. The enzyme and RapiGest detergent were inactivated by 

the addition of 1 µl trifluoroacetic acid (TFA) to a final concentration of 0.5% (v/v), 

and samples were incubated at 37 °C for 45 min. To remove any insoluble material, 

samples were centrifuged at 13000 x g for 15 min and the peptide supernatant was 

then collected and stored at -20 oC until use. 

      Plasma and eluted abundant plasma protein samples were prepared by diluting 

100 μg protein in 160 µl 25 mM AmBic following the same protocol, with volumes 

of the RapiGest, reduction and alkylation solutions doubled from 5 μl to 10 μl. 

Trypsin was added at a 50:1 protein:trypsin ratio, and the volume of TFA was 

maintained at 1 µl. 

RP-LC-MS/MS 

      In-gel and in-solution tryptically digested peptide samples were diluted to 60 

ng/μl in 0.1% formic acid for analysis using LC-MS/MS. Peptide samples were 

initially separated by reversed-phase liquid chromatography (RP-LC) using a 

DIONEX UltiMate™ 3000LC chromatography system. Peptides (10 µl = ~600 ng) 

were injected onto the analytical column (Dionex Acclaim® PepMap RSLC C18, 2 

µm, 100 Å, 75 µm i.d. x 15 cm, nanoViper), which was maintained at 35 °C and at a 

nanoflow rate of 0.3 µl/min-1. Peptides were separated over linear chromatographic 
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gradients composed of buffer A (2.5 % acetonitrile: 0.1% formic acid) and buffer B 

(90% acetonitrile: 0.1 % formic acid). Samples were separated over a one hour 

chromatographic gradient for analyses in Chapter 3, and a two hour gradient for 

analyses in Chapter 4. MS pre- and post-run quality controls (QC’s) included a 

tryptic digest of bovine serum albumin (BSA) (Bruker), MassPREP Escherichia coli 

digest standard (Waters) and HPLC-grade H2O, with a H2O run interspersed 

regularly between sample LC-MS/MS analyses. 

      To minimise albumin contamination of depleted plasma peptide samples, LC-

MS/MS analyses of depleted plasma were conducted prior to whole plasma or the 

eluted abundant plasma protein fraction LC-MS/MS analyses. QC’s used for 

depleted samples were E. coli digest standard and HPLC-grade H2O pre- and post- 

study run. The eluting peptides were analysed online in a LTQ-Orbitrap Velos mass 

spectrometer (Thermo Fisher Scientific, Schwerte, Germany) coupled to the HPLC 

system with an electro spray ion source. The mass spectrometer was operated in the 

data-dependent mode, where a full scan MS spectra survey (from m/z 200 to 4000) 

was acquired in the Orbitrap with high-resolution (40,000-60,000). The ion-trap 

operated with CID MS/MS (with wide band activation) on the 20 most intense ions. 

Dynamic exclusion was enabled to avoid repeatedly selecting intense ions for 

fragmentation and this was set at 500 with an exclusion duration of 20 seconds. 

Charge states of 1 were rejected. The minimum MS signal threshold was set at 500 

counts and the MS/MS default charge state was 2 with a 1.2 m/z isolation width, 

normalised CID at 35V and an activation time of 10 ms.  

Protein identification: Proteome Discoverer and Mascot  

Proteome Discoverer and Mascot 

      Raw data from the human plasma (Sigma-Aldrich) LC-MS/MS analyses in 

Chapter 3 were informatically processed using Proteome Discoverer (Version. 1.4, 

Thermo Scientific™). The Proteome Discoverer workflow consisted of four 

workflow nodes: Spectrum Files, Spectrum Selector, Mascot database and Target 

Decoy PSM Validator. Individual thermo raw files, containing MS and tandem mass 

spectrometry (MS/MS) data from individual LC-MS/MS analyses, were uploaded to 

the Proteome Discoverer software. Files were then converted to Mascot generic 

format files (MGF) for analysis with Mascot protein identification software (Matrix 
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Science) (313). An in-house Mascot server (Version 2.4, Matrix Sciences) was 

employed to identify proteins in plasma samples by searching the non-redundant 

human reference proteome database, downloaded from UniProt (www.uniprot.org/) 

(314). The human proteome database was accessed on December 7th 2015; 

containing 70, 075 protein sequences, and last modified September 29th 2015 at the 

time of use (available from: http://www.uniprot.org/proteomes/UP000005640).  

Mascot search engine for proteome database searching 

      Mascot search parameters were set-up within the ‘Mascot database’ workflow 

node within Proteome Discoverer to include: 10 ppm peptide mass tolerance and 

with a fragment mass tolerance of 0.8 Da, maximum two missed cleavages allowed, 

carbamidomethylation was set as fixed modification, and methionine oxidation and 

deamidation as variable modifications. Target decoy database search was applied 

with a relaxed False Discovery Rate (FDR) <0.05 and strict FDR <0.01, and no ion 

score cut-off. Protein identifications were filtered in Proteome Discoverer based on 

Mascot significance threshold <0.05, medium and high peptide confidence, and >1 

unique peptide.  

      Target decoy database searches are required for large scale proteomic 

experiments, such as LC-MS/MS analysis of plasma, to determine the FDR. A more 

detailed overview of these methods has been described by Nesvizhskii (315). 

Briefly, it is recommended to repeat the proteome database search, with the same 

search parameters, against a database containing the sequences reversed or 

randomised. As no true matches are expected from the ‘decoy’ database, the number 

of matches identified provides an estimate of the number of false positives in the 

results obtained from the real or ‘target’ database search (316). The quantity reported 

for the FDR is calculated by the equation: FDR = FP / (FP + TP), where FP is false 

positive matches and TP is true positive matches (317).  

Protein inference in Mascot 

      Protein inference within Mascot is based on the "Principle of Parsimony". The 

human proteome is characterised by high sequence redundancy, and in discovery 

proteomics a peptide often cannot be uniquely ascribed to just one protein of origin.  

If the identified peptide sequences match to multiple proteins, the minimum set of 

proteins that cannot be distinguished based on the peptide information are reported 

http://www.uniprot.org/
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as a protein group, with a lead protein identifier for which there is the most peptide 

evidence (318). Protein grouping was enabled to reduce redundancy among protein 

identifications. ‘Unique peptides’ are peptide sequences that are unique to a protein 

group in a data set, and one or several unique peptides may be identified per group. 

Unique peptides are common to the proteins that comprise the group, and are not 

present in the proteins from any other protein group identified.  

      Mascot employs probability based scoring with a 5% confidence threshold, and 

this has been described in more detail by Perkins and colleagues (313). Briefly, each 

protein reported in Mascot is assigned a Protein Score, which has been calculated 

from the summed score of the individual peptides (or Ions Scores) matching the 

protein. Higher scores represent a more confident overall match. The Ion Score is a 

measure of how well the experimentally observed MS/MS spectrum matches the 

theoretical peptide in the database. An individual Ion Score signficance threshold 

value is calculated for the proteome database searched, and peptides equal to or 

greater than this number can be considered significant matches (P = < 0.05). 

Therefore, proteins identifed by one or more peptides with a significant Ion Score 

are more confident matches. Protein identifications were filtered to include proteins 

with a Mascot significance threshold <0.05.  

Protein identification: MaxQuant and Andromeda  

MaxQuant and Andromeda 

      Raw data from LC-MS/MS analyses of plasma from five selected trial 

participants, discussed in Chapter 4, were informatically processed using MaxQuant 

(Version 1.5.3.30) software and integrated search engine, Andromeda (319, 320). 

MaxQuant was selected for this analysis as it is a quantitative proteomics software 

package that has been designed for analysing large MS data sets. An overview of the 

MaxQuant and Andromeda computational workflows, and the parameters and 

configuration options, have recently been reviewed by Tyanova and colleagues 

(321). Briefly, Thermo raw files obtained from individual LC-MS/MS analyses were 

uploaded to MaxQuant, where the depleted and eluted protein fraction files for an 

individual were recombined as one file for proteomic analysis.  

      Search parameters and settings were: default settings for orbitrap instrument, two 

missed cleavages allowed, carbamidomethylation was set as fixed modification, and 
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methionine oxidation and deamidation as variable modifications. Target decoy 

reverse database search was applied with a peptide and protein FDR <0.05. The 

‘match between runs’ feature was also activated. Label-free quantitation (LFQ) was 

performed with a minimum ratio count of 1 (322). 

       ‘Match between runs’ is unique to the MaxQuant computational platform, and it 

enables the transfer of peptide identifications from an LC-MS run, where a peptide 

was identified by MS/MS, to a different LC-MS run file, where MS/MS data was not 

acquired for this peptide, or no peptide was assigned (321). Transfer of peptide 

identifications is based on retention time, accurate mass calculation and the peptide 

features individual mass tolerances (323). Use of the ‘match between runs’ function 

increases the number of peptides available for quantification, thereby producing a 

more complete quantitative profile across samples (321). This function is also 

particularly useful for identification of low abundant peptides, which are variably 

detected between different untargeted LC-MS/MS analyses.    

      ‘MaxLFQ’ is the label-free quantification (LFQ) technology incorporated in the 

MaxQuant workflow for comparative proteomic analyses. The MaxLFQ algorithms 

for calculating protein intensity profiles have been described in detail by Cox et al 

(322). Briefly, LFQ intensity is the relative protein quantification across all samples, 

and is represented by a normalised protein intensity profile (321).  

Custom proteome database  

      A custom proteomic database was prepared in-house by concatenating reference 

proteomes downloaded from UniProt (314) (Table 2.3). The concatenated database 

was composed of three reference proteomes: human (accessed December 7th 2015; 

containing 70, 075 protein sequences, and last modified September 29th 2015 at the 

time of use), O. volvulus (accessed November 11th 2015; containing 12, 994 protein 

sequences, and last modified July 27th 2015 at the time of use) and Wolbachia 

endosymbiont of O. ochengi (accessed November 24th 2015; containing 647 protein 

sequences, and last modified September 18th 2015 at the time of use). The proteome 

of the Wolbachia endosymbiont from O. volvulus was not publicly available at the 

time, therefore the proteome of the Wolbachia endosymbiont of O. ochengi was 

incorporated as this species of filarial worm is very closely related to O. volvulus.  
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      A common contaminants database provided by MaxQuant software was also 

used during the proteome database searching in order to enable downstream filtering 

of non-biologically relevant protein identifications.  

Organism 
No. of protein 

sequences 

Access 

date 
Available from 

Human 70, 075 7.12.15 http://www.uniprot.org/proteomes/UP000005640 

O. volvulus 12, 994 11.11.15 http://www.uniprot.org/proteomes/UP000024404 

Wolbachia 

endosymbiont 

of O. ochengi 

647 24.11.15 http://www.uniprot.org/proteomes/UP000007516 

 

Table 2. 3. Reference proteomes concatenated for database searching in MaxQuant. 

The reference proteomes for humans, O. volvulus and the Wolbachia endosymbiont of O. 

ochengi were downloaded from UniProt. An amalgamated database was prepared in-house 

to identify proteins in the plasma of trial participants infected with onchocerciasis. 

 

Bioinformatic analysis of the onchocerciasis plasma proteome: Perseus 

      The protein identifications from MaxQuant, provided as a proteinGroups.txt 

output file, were uploaded to Perseus software (Version 1.5.2.6), which is provided 

as part of the MaxQuant computational platform for data analysis (324). LFQ 

intensity values formed a data matrix with the individuals and protein groups as 

dimensions. Protein grouping is automatically applied in MaxQuant, such that 

proteins with similar peptides were combined into a protein group, and a lead protein 

accession represented the group. However, all proteins were manually assessed at the 

peptide level in order to assign Swiss-Prot protein accessions as the lead for a protein 

group where a TrEMBL accession containing the exact same peptides had been 

listed as the group lead. Swiss-Prot proteins are proteins which have been manually 

annotated and reviewed by curators at UniProt, while TrEMBL proteins are 

automatically annotated and have not yet been reviewed. Proteins marked as ‘only 

identified by site’ and ‘reverse’ (REV) were filtered out of the data matrix. Proteins 

that were ‘only identified by site’ are those identified only by a modification site 
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with an FDR >0.05. Proteins marked as ‘reverse’ were identified by the target decoy 

search, with an FDR above the prespecified cut-off (> 0.05). ‘Contaminants’ (CON) 

are proteins, such as keratins, that have been identified as a common contaminant in 

proteomic data sets. Proteins marked as ‘contaminants’ were screened, and the 

majority were filtered out of the data matrix. 

      Proteins with >1 unique peptide (peptide sequences that are unique to a protein 

group in the data set) were retained, and the LFQ intensities of the final data set were 

then log2 transformed. Although the ‘match between runs’ feature was used, a 

proportion of the data set still had missing values where the protein was not detected. 

Data imputation was performed within Perseus ahead of conducting some statistical 

analyses. The data matrix was first reduced to include only proteins that were 

detected in three or more of the five individuals (>60%) at all four sampling time 

points (pretreatment, months four, 12 and 21). This criterion was selected as these 

proteins were relatively consistently detected across individuals and time, and 

missing values could be due to the under-sampling of low abundance proteins during 

LC-MS/MS analyses. Imputation was achieved by drawing random values from a 

distribution meant to simulate expression below the detection limit, using a down-

shift of 1.8 and distribution width of 0.5 to simulate the assumption of low abundant 

proteins giving rise to missing values (324). For each sample, the distribution of 

LFQ intensities was examined by plotting frequency histograms following data 

filtering and data imputation, to make sure an approximately normal distribution was 

maintained.  

Functional analysis of Onchocerca volvulus proteins 

      Sequence conservation between the O. volvulus proteins identified in our data set 

and proteins of geographically relevant parasite species, such as L. loa, W. bancrofti 

and soil transmitted helminths (STHs), was assessed using the Basic Local 

Alignment Search Tool (BLAST) within UniProt, with default search settings 

(http://www.uniprot.org/blast/) (325). Other Onchocerca species that do not infect 

humans, and filarial nematodes such as B. malayi that are not endemic to Africa, 

were excluded as peptide or protein conservation among these species would not 

affect a diagnosis of onchocerciasis. The percentage sequence similarity over the 

total protein length of the top BLAST protein hit for each O. volvulus protein was 

http://www.uniprot.org/blast/
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determined using the Clustal Omega global alignment tool within UniProt 

(http://www.uniprot.org/align/) (326). The UniProt Peptide Search was used to 

determine whether the peptides experimentally detected by LC-MS/MS and used for 

O. volvulus protein inference were also present in other relevant parasite species 

(http://www.uniprot.org/peptidesearch/). Gene ontology searching was performed 

using the EBI QuickGO web-browser (https://www.ebi.ac.uk/QuickGO/) (327) by 

uploading experimentally-obtained UniProt accession identifiers. Data from the 

recent stage-specific proteome analyses O. volvulus by Bennuru and colleagues 

(269) was also used in our bioinformatic analyses to identify proteins enriched in 

specific life cycle stages of the worm and proteins that may be secreted (SignalP-

HMM prediction) (269, 328). The entire O. volvulus stage-specific data set is 

available as a hyperlinked Excel workbook at: 

http://exon.niaid.nih.gov/transcriptome/O_volvulus/v245/Ov-v245-web.xlsx.  

 

Molecular techniques 

miRNA extraction from plasma 

      Small RNA (< 1000 nt) was extracted from human plasma samples using the 

miRCURY™ RNA Isolation Kit – Biofluid (Exiqon), following the manufacturer’s 

instructions. Briefly, 300 µl of plasma was centrifuged at 16 000 x g for 5 min to 

pellet insoluble material, and 200 µl supernatant was collected for use as the starting 

volume for RNA extraction. All solutions provided in the kit were prepared 

following the instructions outlined in the ‘Instruction manual v.1.7 (Nov 2015)’. 

Prior to starting the extraction, Proteinase K (Qiagen) at a final concentration of 2 

μg/μl was added to each sample and incubated for 10 min at 37 °C. To minimise 

technical variation between samples, MS2 carrier RNA (Qiagen) at 1 μg/60 μl lysis 

buffer and a synthetic RNA spike-in mixture (Exiqon) at 1 µl/60 μl lysis buffer were 

homogenised in the lysis buffer prior to the addition to samples. Exiqon RNA spike-

in mix is used to monitor RNA isolation, and consists of three pre-mixed synthetic 

miRNAs UniSp2, UniSp4 and UniSp5, corresponding to high, medium and low 

abundance miRNAs, respectively. To remove any contaminating DNA, on-column 

DNase treatment was applied. The extracted small RNA was eluted into 50 µl RNase 

free H2O and stored at -80 oC pending use.  

https://www.ebi.ac.uk/QuickGO/
http://exon.niaid.nih.gov/transcriptome/O_volvulus/v245/Ov-v245-web.xlsx
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miRNA extraction from filarial worms 

      Adult male O. ochengi and L4 L. loa were sourced from a biobank at the LSTM, 

UK. The details of the methodology used to obtain O. ochengi have previously been 

described (175). Briefly, O. ochengi worms were extracted from excised cow 

nodules in Cameroon, and stored in complete sterile RPMI medium at -80 oC. L. loa 

L3 stage worms were injected into the scroft and groin of NSG mice and later 

extracted after culling the mouse at 88 days, before storing under the same 

conditions. Due to scarcity of O. volvulus material and as the miRNAs of interest 

have also been reported in the closely related O. ochengi (291), total RNA was 

extracted from O. ochengi to validate parasite miRNA qPCR assays and for use as a 

positive control.  

      Total RNA was extracted from two adult male O. ochengi worms using the 

miRCURY™ RNA Isolation Kit – Cell and Plant (Exiqon), following the 

manufacturer’s instructions. All solutions provided in the kit were prepared 

following the instructions outlined in the ‘Instruction manual v.2.4 (Nov 2015)’. 

Briefly, the O. ochengi worms were gently thawed and then promptly transferred to 

lysis buffer, where they were homogenised using the MagNA Lyser (Roche 

Diagnostics Ltd) at speed 4000 for 30 sec. The on-column DNA removal (Qiagen) 

was performed to remove any residual DNA. RNA was eluted into 50 μl of Elution 

Buffer and stored at -80 oC pending use. The same extraction procedure was also 

used to extract total RNA from two L4 L. loa worms.  

Determining RNA concentration  

      For plasma RNA samples, as only small RNA was extracted and plasma has very 

low levels of RNA, quantification by optical spectrophotometry or Nanodrop is 

considered to give inaccurate readings. RNA used in downstream applications was 

therefore based on initial sample input (200 µl plasma). 

      For parasite RNA samples, total RNA and absence of contaminating DNA was 

quantified using Qubit RNA BR Assay Kit and Qubit dsDNA HS Assay Kit, 

respectively, for Qubit 3.0 Fluorometer (ThermoFisher), following the 

manufacturer’s instructions. Briefly, the Qubit working solution was prepared by 

diluting the Qubit Assay Reagent 1:200 in Qubit Buffer, to a volume sufficient to 

accommodate all standards and samples. Thin-wall, clear, 0.5 ml Qubit assay tubes 
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were used when preparing samples and standards. Two standards are required to 

calibrate the Qubit 3.0 Fluorometer, and the standards were prepared by adding 190 

µl Qubit working solution and 10 μl of each standard to the appropriate tube, and 

mixing by vortexing. For the samples to be measured, 2 μl of RNA-containing 

sample was added to 198 µl of Qubit working solution, and samples mixed by 

vortexing. All tubes were then incubated at room temperature for 2 min. The Qubit 

3.0 Fluorometer was calibrated by selecting the correct Qubit Assay type and reading 

the standards in the correct order. The concentration of RNA or DNA was measured 

in triplicate for each sample, and the three measurements for each sample averaged 

to give a final concentration. 

miRNA primers 

      All miRNAs in each RNA-containing sample were reverse transcribed into 

cDNA using a universal RT reaction provided in the Universal cDNA Synthesis Kit 

II (Exiqon). LNA-enriched miRNA-specific qPCR primers were used to enhance 

specificity for target templates. All miRNA qPCR primers were purchased from 

Exiqon, and prepared by adding 220 μl nuclease-free H2O to the tube and vortexing 

to mix. Primers were stored in aliquots at -20 oC.  

      Six human miRNA qPCR assays, recommended as potential candidate reference 

genes for plasma, were initially tested in European control plasma: hsa-miR-16-5p; 

hsa-miR-103a-3p; hsa-miR-425-5p; hsa-miR-93-5p; hsa-miR-191-5p; and hsa-miR-

484. miRNA-specific qPCR primers for the two parasite miRNAs, lin-4 and miR-71, 

were purchased from Exiqon for cel-miR-71-5p and bma-lin-4. The work presented 

in this thesis refers to the lin-4 and miR-71 as bma-lin-4 and cel-miR-71-5p, 

respectively, following the naming convention assigned by their homology to 

miRNAs listed in miRBase (release 21, http://www.mirbase.org). miRNA qPCR 

assays were also purchased for the synthetic miRNA spike-ins supplied by Exiqon: 

Sp2, Sp4, Sp5 and Sp6. 

Validation of miRNA primers 

      The linearity of the two parasite miRNA qPCR assays, cel-miR-71 and bma-lin-

4, was determined by preparing five log10 serial dilutions of O. ochengi cDNA for 

each assay, with each dilution performed in triplicate reactions. To measure the 

reproducibility of each assay, the dilution series experiments were repeated three 

http://www.mirbase.org/
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times over consecutive days to enable calculation of the inter- and intra-assay 

coefficient of variation (CV) for both cel-miR-71-5p and bma-lin-4.  

      To determine the limit of detection (LOD) for the parasite qPCR assays, cel-

miR-71-5p and bma-lin-4 PCR products were retrieved following their amplification 

by qPCR, and purified using the QIAquick PCR Purification Kit (Qiagen), following 

the manufacturer’s instructions. Briefly, all buffers were prepared as specified prior 

to using the kit. Five volumes of Buffer PB were added to 1 volume of the PCR 

sample and mixed, before adding to a QIAquick spin column. Purified DNA was 

eluted from the column by after adding 30 μl Buffer EB to the centre of the 

QIAquick membrane and incubating at room temperature for 1 min, before 

centrifuging. The flow-through was collected and the purified miRNA amplicon 

stocks were quantified using the Qubit 3.0 Fluorometer (ThermoFisher, UK). The 

copy number in each miRNA amplicon stock was determined using 

scienceprimer.com. A 1:10 dilution series spanning over 105 to 100 copies per 

reaction was prepared for both cel-miR-71-5p and bma-lin-4, with nine reactions 

conducted per dilution. The 95% LOD for each assay was determined using a probit 

regression analysis in SPSS (Version 23, IBM Corp). Specificity of the parasite 

miRNA assays was evaluated by observing a single peak in the melt curve analysis, 

and by the negative reactions in European control plasma and ‘no template’ controls 

(NTCs). 

      The linearity of a human miRNA, hsa-miR-16-5p, was determined by preparing 

standard curves with five log10 serial dilutions of European control plasma cDNA, in 

three replicate reactions. The experiment was repeated three times on consecutive 

days to measure the inter- and intra-assay CV.  

miRNA RT-qPCR 

Reverse transcription 

      The two-step miRCURY LNA™ Universal RT microRNA PCR (Exiqon) 

methodology was utilised for both plasma and parasite samples, following the 

manufacturer’s instructions with minor modifications. For cDNA synthesis, a 

reaction tube was prepared to a final volume of 10 µl, and consisted of: 5x Reaction 

buffer (2 µl), Nuclease-free H2O (4.5 µl), Enzyme mix (1 µl), synthetic RNA spike-

in Sp6 or nuclease-free H2O if omitted (0.5 µl), and RNA-containing sample (2 µl). 
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A no reverse transcriptase control (-RT), where nuclease-free H2O was added in 

place of the Enzyme mix, was also prepared for each sample to check for DNA 

contamination. For plasma samples, RNA input volumes into the reverse 

transcription (RT) and qPCR systems, respectively, were empirically determined in 

European control plasma and a subset of trial participant plasma samples. RNA 

volumes tested were 2 µl, 4 µl and 7 µl (maximum volume for RT reaction). RT was 

performed with a TC-4000 Thermal Cycler (Bibby Scientific Ltd). The RT 

thermocycling parameters were as follows: 42 °C for 60 min, 95 °C for 5 min, 

followed by a cool down to 4 oC. One RT reaction was performed per sample.  

 qPCR 

      Real time-qPCR was performed with ExiLENT SYBR® Green master mix 

(Exiqon) in 10 µl reaction volumes, which consisted of: 2x PCR Master mix (5 µl), 

primer mix (1 µl) and diluted cDNA template (4 µl). It is recommended by the kit 

manufacturer to dilute cDNA obtained from total cellular RNA to 1:80 in nuclease-

free H2O and to dilute cDNA obtained from biofluid small RNA to 1:40 in nuclease-

free H2O. cDNA obtained from worms was diluted to the desired concentration for 

the experiment, and the optimal plasma cDNA input for qPCR was determined by 

testing cDNA in dilutions of 1:5, 1:10, 1:20 and 1:40. The CFX384 C1000 Thermal 

Cycler (Bio-Rad) was used for qPCR, with Microseal® Skirted 384-Well PCR 

Plates (Bio-Rad) and adhesive Microseal® 'B' PCR Plate Sealing Film (Bio-Rad). 

Thermocycling parameters for qPCR were as follows: 95 °C hold for 10 min, 40 

cycles of 95 °C for 10 sec and 60 °C for 1 min with a ramp rate of 1.6 °C/sec. 

Fluorescence was monitored during the 60 oC step, using the FAM channel. Melt 

curve analysis was performed between 60 and 95 °C at a ramp rate of 0.5 °C/sec.  

      All experiments included a positive control, a -RT control for each sample tested, 

and a NTC obtained from a mock RNA extraction using d.H2O in place of sample. 

Each sample was initially tested in duplicate. A qPCR assay was determined positive 

if the amplification signal crossed the threshold in fewer than 40 cycles and was 

amplified in both reaction replicates. The optimal threshold for each qPCR assay was 

determined using the standard curve method. A single peak at the correct melting 

temperature (Tm) was also required for each product, as determined by the melt 

curve analysis. The anticipated Tm for bma-lin-4 and cel-miR-71-5p was determined 
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from repeated standard curves prepared from O. ochengi cDNA. Samples with 

amplification in one qPCR reaction were retested in triplicate, and were only 

considered positive if amplification occurred in two or more reactions, with a Cq < 

40 and the correct Tm in all positive reactions.  

DNA extraction 

      DNA was extracted from clinical plasma samples using the QIAamp DNA Blood 

Mini Kit (Qiagen) following the manufacturer’s instructions. Briefly, 300 µl of 

plasma was centrifuged at 16 000 x g for 5 min to pellet insoluble material, and 200 

µl of supernatant was collected as starting volume for extraction. To control for 

technical variation between samples, phocine herpes virus-1 DNA (PhHV-1) 

(Clinical Virology Department, Erasmus MC, Netherlands) was diluted 1:1000 in 

nuclease-free H2O and spiked at 1 µl/200 µl lysis buffer. The extracted DNA was 

eluted into 50 µl Buffer AE after a five min on-column incubation, and stored at -80 

oC pending use. Plasma DNA input used in downstream applications was based on 

initial sample volume input. 

      The O. volvulus DNA was originally obtained from a human onchocercoma, and 

stored in a biobank at the LSTM, UK at -80 oC. 

Primers for DNA-based experiments 

      All primers purchased for DNA-based experiments were resuspended in TE 

Buffer pH 8.0 (Integrated DNA Technologies, IDT) at a stock concentration of 100 

µM before storing in aliquots at –20 oC. Primers and probe sequences are provided 

in Table 2.4. 
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Target Primer and probe sequences 

GAPDH 
F 5′- CCACTCCTCCACCTTTGAC -3′  

R 5′- ACCCTGTTGCTGTAGCCA -3′ 

PhHV-1 

F 5′- GGGCGAATCACAGATTGAATC -3′                                             

R 5′- GCGGTTCCAAACGTACCAA -3 

Probe 5′- VIC-TTTTTATGTGTCCGCCACCATCTGGATC-BHQ1 -3′ 

O-150 

F 5′- TCGCCGTGTAAATGTGGAA -3′  

R 5′- AACTGATGACCTATGACCCTAATC -3′ 

Probe 5′- FAM-GGACCCAATTCGAATGTATGTACCCGT-Zen/Iowa 

Black FQ -3′ 

Table 2. 4. Primer and probe sequences for DNA-based experiments. 

 

      Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was selected as the 

plasma endogenous control, and a qPCR assay for GAPDH was purchased from 

Sigma. The qPCR assay was assessed using standard curves prepared from a series 

of five 1:2 dilutions of European control plasma DNA, with three replicate reactions 

per dilution. Standard curve experiments were repeated three times on alternate days. 

Primers and a TaqMan probe for viral DNA spike-in PhHV-1 (accession no. 

Z68147.1) were purchased from IDT. 

      For amplification of O. volvulus DNA, a pre-validated TaqMan qPCR assay 

specific to O. volvulus tandem repeat O-150 DNA sequence (accession no. J04659) 

(201) was purchased from IDT. The details of the primers/probe and their design 

have been reported elsewhere (201). O-150 qPCR assay specificity was verified 

using Primer-BLAST (329), and confirmed by testing negative in European control 

plasma reactions and NTC reactions. The linearity of the TaqMan assay was 

assessed from standard curves prepared from five 1:1 serial dilutions of O. volvulus 

DNA, in three replicate reactions per dilution. Three standard curves were prepared 

over consecutive days to determine the intra- and inter-assay CV. The LOD for the 

assay has been reported elsewhere (201).  

qPCR for DNA-based experiments 

      All qPCR experiments were performed in 20 μl final volumes using the CFX384 

C1000 Thermal Cycler (Bio-Rad) with Microseal® Skirted 384-Well PCR Plates 

(Bio-Rad) and adhesive Microseal® 'B' PCR Plate Sealing Film (Bio-Rad). Reaction 
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mixtures for GAPDH qPCR consisted of: 2X SsoAdvanced™ Universal SYBR® 

Green Supermix (Bio-Rad), 400 nM primers, nuclease-free H2O, and 4 μl DNA from 

clinical plasma samples. Cycling parameters consisted of: a hold at 98.0 oC for 3 

min, 40 cycles of 98.0 oC for 10 sec and 60 oC for 20 sec. Fluorescence was 

monitored during the 60 oC step, using the FAM channel. Melt curve analysis was 

performed between 60 and 95 °C at a ramp rate of 0.5 °C/s.  

      Reaction mixes for PhHV-1 qPCR contained 2X TaqMan Fast Advanced Master 

Mix (Life Technologies, Thermo Scientific), 100 nM primers and probe, nuclease-

free H2O and 4 μl DNA from plasma. O. volvulus O-150 qPCR reaction mixtures 

included 2X TaqMan Fast Advanced Master Mix (Thermo Scientific), 300 nM 

primers, 250 nM probe, nuclease-free H2O and 4 μl DNA from clinical samples. 

Cycling parameters for PhHV-1 and O-150 qPCR assays consisted of: a pre-PCR 

read at 60 °C for 30 sec, a hold at 95 °C for 20 sec, 40 cycles of 95 °C for 3 sec and 

57 °C for 20 sec, and a final extension at 60 °C for 30 sec. Fluorescence was 

monitored during the 57 oC step, using the FAM channel for O-150 and the VIC 

channel for PhHV-1. 

      Experiments included a positive control and a NTC obtained from a mock DNA 

extraction using d.H2O in place of sample. Each sample was initially tested in 

duplicate. A qPCR assay was counted as positive if the amplification signal had a Cq 

< 40 and was amplified in both replicate reactions. The standard curve method was 

used to set the optimal threshold for each qPCR assay. Samples with amplification in 

one reaction were retested in triplicate, and were only considered positive if 

amplification occurred in > two reactions.  

Statistical analysis 

      Data obtained from proteomic and molecular experiments were maintained in 

Excel spreadsheets, and analysed using Perseus (MaxQuant), GraphPad Prism 5, 

SPSS (Version 23, IBM Corp) and CFX Manager™ (Bio-Rad) software packages. 

Figures were prepared using GraphPad Prism 5, Perseus and BioVenn 

(http://www.biovenn.nl/) (330) software. Prior to conducting statistical analyses, 

data sets were tested for normality. When data was found to be normal, or could be 

normalised by transformation, parametric tests were used. To assess whether a 

statistically significant difference was present between the outcomes of independent 
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groups when data was not normally distributed, the non-parametric Kruskall-Wallis 

test was used. The non-parametric Friedman’s test was used to test for differences in 

repeated-measures data of dependent samples. When statistically significant 

differences between groups were identified, Dunn’s post hoc test (with 95% 

confidence intervals) was used to ascertain which groups were significant from the 

others.  

      The reproducibility of protein LFQ intensities between different samples was 

assessed using scatter plots of protein LFQ intensities to calculate R2 values (322). 

To compare means between two groups, in which the groups consisted of 

measurements taken at different time points from the same individuals, a paired t-test 

was used. Multiple pairwise comparisons were made between imputed proteomic 

data collected from four trial time points. Volcano plots were then used to plot -log10 

transformed p-values against log2 fold change in average protein intensity between 

two time points. We acknowledged that this approach risked increasing the chance of 

making a Type I error (rejecting the null hypothesis when it is true, e.g. falsely 

identifying proteins as differentially expressed when they are not), particularly when 

performing multiple t-tests on the same data. After consulting a statistician and 

bioinformaticians, several types of repeated-measures designs for dependent 

variables were discussed, including: repeated-measures ANOVA, logistic regression, 

and linear mixed models. Repeated-measures ANOVA was not suitable for this 

experimental design given the small sample size and high-dimensional data set (the 

dimension of repeated measurements per subject is greater than the number of 

subjects). A dependent t-test was therefore selected for preliminary analyses of 

potentially interesting proteins between time points ahead of conducting more 

computationally sophisticated analyses. Confounding or interacting variables 

(covariates) possibly predictive of the outcomes under study, such as: patient age, 

gender, weight, village, number of nodules, number of mf or nodulectomy outcomes, 

were not investigated due to the small and heterogeneous sample set.  

      Additionally, principal component analysis (PCA) and unsupervised hierarchical 

clustering were conducted on imputed proteomic data. Unsupervised hierarchical 

clustering was performed using Euclidean distance with average linkage for both 

row (proteins) and column (patients). 
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Chapter 3.  Developing a discovery proteomic workflow 

for plasma  

 

Abstract 

Plasma represents the largest and deepest version of the human proteome, and the 

most clinically relevant and informative of human biological samples. However, the 

complexity and huge range in protein concentrations in plasma poses significant 

challenges for proteomic discovery studies. Attempts to reduce the large dynamic 

concentration range of the plasma proteome incorporated the use of Pierce Top 12 

Abundant Protein Depletion Spin Columns, which the manufacturer's claim depletes 

95% of the 12 most abundant plasma proteins. On-column high and low pH washes 

were used to recover the bound abundant plasma proteins, and the depleted and 

eluted protein fractions were analysed by untargeted liquid chromatography tandem-

mass spectrometry (LC-MS/MS). The relative abundance of albumin decreased by 

93.4% following depletion, and six of nine abundant proteins assessed (albumin, α2-

macroglobulin, apolipoprotein A-1, apolipoprotein A-11, haptoglobin and 

transferrin) were significantly reduced (P <0.05) in the depleted plasma relative to 

plasma. Fibrinogen and α1-acid glycoprotein were significantly more abundant in 

depleted plasma relative to plasma, while there was no significant difference in α1-

antitrypsin. However, 63.7% fewer novel protein accessions were identified by LC-

MS/MS without depletion. The eluted plasma fraction contained 133 proteins, 

showing that a high number of non-targeted proteins were bound to the 

immunoaffinity column, some of which were not found in the depleted fraction. 

Recombining the two fractions in silico improved the proteome coverage from 145 

proteins in the depleted fraction to 208 (43.4% increase) proteins in the combined 

sample. Recovering the bound abundant plasma proteins, and concatenating the 

depleted and eluted protein identifications further improved the plasma proteome 

coverage. Merging the two fractions will also provide a better indication of the 

relative protein abundances in plasma for quantitative analyses. This proteomic 

workflow reduced the redundancy of plasma analyses by discovery LC-MS/MS, 

which improved plasma proteome coverage and increased the number of novel low 

abundance circulating proteins identified.
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Introduction 

Blood and its derivatives, plasma and serum, are the primary sample types 

used in clinical diagnostic testing. These biofluids are easy to obtain by minimally 

invasive methods, and their analysis can provide a snap-shot of an individual’s 

physiology at a given point in time. The plasma proteome comprises a subset of 

‘classical’ plasma proteins that carry out their functions in the blood, as well as an 

affluence of proteins introduced into the circulation by secretion from blood and 

tissue cells, tissue leakage, and foreign proteins introduced by microorganisms (310). 

It is estimated that more than 1,000,000 proteins could be circulating in blood at any 

given time when the number of protein variants and isoforms are taken into account 

(331). Plasma therefore represents the most extensive example of the human 

proteome, and the most clinically relevant and informative of human biological 

samples (331, 332). Despite the complexity of the human plasma proteome, 99% of 

the protein mass in plasma is made up of only 22 proteins (Fig. 3.1)(310). 

 

Fig. 3. 1. Percentage of protein mass in plasma (333). 

Approximate weighting of the 22 most abundant proteins in plasma. Ten proteins that make 

up around 90% of total protein mass in plasma are depicted on the left. On the right, the 

remaining 10% is further divided. Thousands of low abundance proteins, including potential 

biomarkers, comprise the 1% of the plasma proteome mass. IgA, immunoglobulin A; IgG, 

immunoglobulin G; IgM, immunoglobulin M.          

 

Albumin alone comprises 55% of the proteome, while other high to medium 

abundance plasma proteins, such immunoglobulins and complement proteins, form 
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the remainder (333). Potential biomarkers and clinically relevant tissue-leakage 

proteins are generally present at sub-nanogram concentrations, and comprise the 

remaining 1% of the plasma protein mass.  

      Discovery, or shotgun, proteomics typically utilises a liquid chromatography 

(LC) system coupled to a tandem mass spectrometer (MS/MS) to perform a 

hypothesis-free, or untargeted, analysis that aims to identify large numbers of 

proteins in complex biological mixtures (334). As no prior knowledge is necessary, 

discovery-based LC-MS/MS attempts to produce an unbiased characterisation of the 

proteome within a sample (333). MS-based shotgun proteomics employs a bottom-

up strategy, whereby proteins are digested into their constituent peptides prior to LC-

MS/MS analysis, and protein inference is achieved through assigning peptide 

sequences to proteins in downstream bioinformatic analyses (335). However, the 

complexity and huge range in protein concentrations in plasma poses significant 

challenges for proteomic discovery studies. While the dynamic range of MS 

instrumentation used for shotgun experiments is 4-5 orders of magnitude (336), the 

dynamic range in protein concentration within the plasma proteome spans over 10 

orders of magnitude (310, 332). For example, the plasma concentrations of albumin 

and interleukin 6, which are normally present at 35-50 mg/ml and 0-9 pg/ml, 

respectively, differ by a factor of 1010 (337). Comparatively less (around 2–5 fold 

less) circulating proteins are identified relative to the number of proteins that can be 

identified evaluating cell and tissue extracts, using similar protein inputs and LC-

MS/MS instruments (338-340).  

      An additional challenge of analysing complex biological mixtures using LC-

MS/MS is that the more abundant peptides tend to ‘drown out’ or suppress ion 

signals from the less abundant peptides. ‘Under-sampling’ can occur when the 

complexity of the digested peptides surpasses the analytical ability of the MS 

instrument, such as where more peptides elute from the LC-column than can be 

analysed per unit time, or peptides at low-abundance are below the detection limit 

for MS/MS (341, 342). This results in data acquisition redundancy, such that only a 

fraction of the peptides that are detectable by LC-MS/MS are actually identified 

(342, 343).  
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Aim of the study  

The aim of this study was to develop a proteomic workflow that would 

significantly reduce the abundant portion of the plasma proteome, in order to 

improve the depth of proteome coverage and increase the number of low abundance 

proteins identified by shotgun LC-MS/MS analysis. The method could then be 

scaled-up for a prospective MS-based discovery study of circulating onchocerciasis 

protein markers using a unique longitudinal plasma sample set (157). 

 

 

Methods  

Human plasma  

       Lyophilised plasma (Sigma-Aldrich), prepared from pooled human blood by 

the manufacturer, was reconstituted in d.H2O and stored in aliquots at -20 oC. All 

proteomic workflows used aliquots of the same pooled human plasma. 

Proteomic workflow 

      Plasma was processed using the protein processing methodology and 

bioinformatic analysis described in Chapter 2. The method has been briefly 

described and illustrated in Fig. 3.2. 
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Fig. 3. 2. Proteomic workflow. 

Plasma was separated into two distinct fractions: a low abundance protein fraction with the 

top 12 abundant plasma proteins depleted, and an eluted abundant protein fraction following 

removal of bound protein from the immunoaffinity column. Depleted and eluted fractions 

were both concentrated and then tryptically digested in-solution for bottom-up proteomics. 

Each fraction was analysed once by discovery LC-MS/MS. Matching depleted and eluted 

fractions were recombined in Proteome Discoverer, and protein accessions were identified 

using Mascot search engine and the human reference proteome. Lists of protein 

identifications were filtered in Proteome Discoverer prior to bioinformatic analysis. 



 

75 

Protein concentration  

      Plasma protein concentration was determined using the BCA Assay (Pierce), 

according to the manufacturer’s instructions. A NanoDrop (Thermo Scientific) 

spectrophotometer was used to cross-validate protein concentrations.  

1D SDS-PAGE  

      1D sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D SDS-PAGE) 

was performed by hand-casting 12% (w/v) mini-polyacrylamide gels according to 

Laemmli (344). Plasma was mixed with 2x Laemmli Reducing Sample Buffer (Bio-

Rad) and heated at 95 °C for 10 min before loading on to the SDS-PAGE apparatus. 

A pre-stained Precision Plus Protein Kaleidoscope Standard (Bio-Rad) or 

ProtoMarker Protein Standard (National Diagnostics) were used as a molecular 

weight markers. The gels were stained with GelCode Blue (Thermo Scientific).  

Plasma protein depletion 

      The complexity of the plasma proteome was reduced using Pierce Top 12 

Abundant Protein Depletion Spin Columns, according to the manufacturer’s 

instructions. The Pierce Top 12 Protein Depletion Columns reportedly deplete 

greater than 95% of the 12 most abundant plasma proteins: α1-acid glycoprotein, α1-

antitrypsin, α2-macroglobulin, albumin, apolipoprotein A-I, apolipoprotein A-II, 

fibrinogen, haptoglobin, IgA, IgG, IgM and transferrin. 

      Plasma samples were diluted to 600 μg in a 10 μl final volume and added to a 

single-use spin column. They were gently agitated to facilitate mixing before 

undergoing end-over-end mixing for 75 min. After centrifuging at 1000 x g for 2 

min, the flow-through was collected and stored at -20 oC. 

Recovery of abundant plasma proteins 

     Abundant proteins captured by the Pierce Top 12 Abundant Protein Depletion 

Spin Columns were recovered using a combination of on-column high and low pH 

washes. Protein elution consisted of: two 10 min incubations with a 100mM 

glycine.HCl pH 2.5 buffer, followed by a 10 min incubation with a 1M Tris-HCl pH 

7.4 buffer, and then two 10 min 100mM glycine.NaOH pH 10 buffer incubations. 
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Eluate collected after each buffer incubation was immediately neutralised by an 

equal volume of 1M Tris-HCl pH 7.4, and all flow-through fractions were pooled. 

Concentration of proteins  

       Depleted plasma samples were concentrated using Amicon Ultra-0.5 Centrifugal 

Filter Units (Merck Millipore) with nominal molecular weight limit (NMWL) of 3 

kDa. The samples were centrifuged at 14000 x g for 30, and the concentrated flow-

through from the device was stored at -20 oC.  

      The immunoaffinity column eluate was simultaneously concentrated and 

diafiltrated using Amicon Ultra-4 Centrifugal Filter Units (Merck Millipore) with 

NMWL of 3 kDa. Pooled eluate from the column was centrifuged at 4000 x g for 40 

min to a final volume of ~94 μl. Buffer exchange was achieved by addition of 25 

mM Ammonium Bicarbonate (AmBic) to the filter concentrate to a final volume of 4 

ml, followed by centrifugation. The process of ‘washing out’ was repeated three 

times. 

In-gel tryptic digestion 

     1D SDS-polyacrylamide gel bands were excised and individually tryptically 

digested following the in-gel trypsin proteolysis protocol outlined in Chapter 2. 

Briefly, individual bands were destained, and then reduced, alkylated and 

dehydrated, before an overnight incubation at 37 oC in a Trypsin (Thermo 

Scientific™) solution. The following day, gel slices in solution were centrifuged to 

remove insolubles and the peptide supernatant removed for LC-MS/MS analysis. 

In-solution tryptic digestion 

      Depleted plasma was prepared by diluting 20 μg protein in a final volume of 80 

µl 25 mM AmBic and 1% (w/v) RapiGest SF Surfactant (Waters), followed by an 

incubation at 80 °C for 10 min. After reduction and alkylation, samples were 

incubated overnight at 37 oC in a Tryspin (Thermo Scientific™) solution prepared at 

a 30:1 protein:trypsin ratio. To inactivate the enzyme and detergent, 1 µl 

trifluoroacetic acid (TFA) was added and samples incubated for 45 min at 37 °C. 

The samples were centrifuged at 13000 x g for 15 min to remove all insoluble 

material before removing the peptide supernatant and storing at -20 oC.    
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      Plasma and the abundant plasma protein eluate from immunoaffinity columns 

were prepared using the same protocol, but with 100 ug protein added to 160 µl 

AmBic, and all volumes of solutions used in subsequent steps were doubled. Trypsin 

solution was added at a 50:1 protein:trypsin ratio. 

RP-LC-MS/MS 

     A more detailed explanation of methodology is provided in Chapter 2. In brief, 

peptide samples were diluted to 60 ng/μl in 0.1% formic acid, and 10 µl (~600 ng 

protein) of sample was separated by reversed-phase liquid chromatography (RP-LC) 

over a 1 hour linear chromatographic gradient using a DIONEX UltiMate™ 3000LC 

chromatography system. The eluting peptides were analysed online in a LTQ-

Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Schwerte, Germany) 

coupled to the HPLC system with an electro spray ion source. The mass 

spectrometer was operated in the data-dependent mode and dynamic exclusion was 

enabled to avoid repeatedly selecting intense ions for fragmentation. 

Bioinformatic analysis 

Proteome Discoverer 

      Raw data sets were informatically processed using Proteome Discoverer software 

(Version 1.4, Thermo Scientific™) and an in-house Mascot server (Version 2.4, 

Matrix Sciences) (313). Protein identification was performed using the non-

redundant UniProt human reference database and Mascot search engine. The 

methodology is described in detail in Chapter 2.  

Protein inference in Mascot 

      Protein inference in Mascot involves protein grouping, where the minimum set 

of proteins that account for the observed peptide matches are reported as a group, 

and a lead protein accession assigned. Protein grouping was enabled to reduce 

redundancy, with one or more unique peptides identified per group. Immunoglobulin 

(Ig) accessions were comparatively excluded for some analyses due to the difficulty 

in distinguishing between specific antibody sequences at the peptide level (345, 

346).  
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Determining relative protein abundance 

      Proteins identified in Mascot are each assigned a Protein Score, which has been 

calculated from the summed score of the individual peptides (or Ions Scores) 

matching a protein. Higher scores represent a more confident overall match. The Ion 

Score is a measure of how well the experimentally observed MS/MS spectrum 

matches the theoretical peptide in the database.  

      The number of peptide spectrum matches (PSMs) identified by MS/MS for each 

protein was used as a relative measurement for assessing differences in protein 

abundances (347). The number of PSMs reported for a protein comprise the total 

number of identified peptide spectra for that protein. The number of PSMs can be 

higher than the number of peptides used for protein identification, as the same 

peptides can be repeatedly detected as PSMs. 

      Comparisons of the proteins identified between different sample types was 

performed using BioVenn (http://www.biovenn.nl/) (330). 

Statistical analysis 

      Differences in top plasma protein abundance between plasma and depleted 

plasma were assessed using Welch’s t-test, and significance threshold was set at P < 

0.05. 

 

 

Results  

1D SDS-PAGE for plasma profiling 

      1D SDS-PAGE was used to visualise the plasma protein profile (Fig. 3.3). By 

incrementally increasing the protein concentration of plasma, the resolution of other 

proteins in the sample was not significantly enhanced. A protein around the 

molecular weight (MW) of albumin (~66 kDa) dominated the plasma proteome. As 

the protein concentration was increased, the density of this band increased and 

dominated the gel, as well as affecting protein migration through the gel matrix.  
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Fig. 3. 3. Plasma protein profile with 1D SDS-PAGE. 

1D polyacrylamide gel showing classical plasma protein profile dominated by a subset of 

abundant proteins. As more protein is added, the protein profile is altered and the gel 

becomes increasingly overloaded with albumin, affecting successive protein migration down 

the gel. M: Molecular weight marker (kDa); Lane 1: plasma protein (20 μg); Lane 2: plasma 

protein (10 µg); Lane 3: plasma protein (5 µg); Lane 4: plasma protein (2.5 µg). 

 

      To ascertain the identity of the protein bands, the 22 gel bands were excised and 

analysed using LC-MS/MS. Protein identifications for individual bands were 

obtained through Proteome Discoverer, using Mascot search engine and the UniProt 

human reference proteome database. This led to the identification of seven distinct 

proteins across 22 bands (Table 3.1). The most abundant plasma protein, serum 

albumin, was the top scoring hit in 15 of the 22 (68.2%) protein bands. Albumin has 

high affinity and multiple binding sites for many classes of molecules (348), and can 

also adsorb onto many different surfaces as structural modifications are easily 

induced. The other six proteins identified were abundant plasma proteins or common 

contaminants (keratin). Separation of plasma using 1D SDS-PAGE demonstrated 

that only the highly abundant proteins in plasma can be detected, and the majority of 

proteins were masked by albumin.  
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Band 

 

Accession 

 

Description 

% Protein 

coverage 

No. 

peptides 
MW (kDa) 

1 P04114 Apolipoprotein B-100 23.67 108 515.3 

2 P02768 Serum albumin 64.86 39 69.3 

3 P02768 Serum albumin 65.68 41 69.3 

4 P02768 Serum albumin 68.80 42 69.3 

5 P02768 Serum albumin 63.38 39 69.3 

6 P02768 Serum albumin 72.74 45 69.3 

7 P02768 Serum albumin 65.02 41 69.3 

8 P02768 Serum albumin 67.32 43 69.3 

9 P02768 Serum albumin 67.16 43 69.3 

10 P02768 Serum albumin 64.86 40 69.3 

11 P02768 Serum albumin 63.71 39 69.3 

12 P02768 Serum albumin 65.02 41 69.3 

13 P02768 Serum albumin 66.83 42 69.3 

14 P02768 Serum albumin 69.79 43 69.3 

15 P02768 Serum albumin 65.02 44 69.3 

16 P02675 Fibrinogen beta chain 68.64 31 55.9 

17 P01009 Alpha-1-antitrypsin 57.89 24 46.7 

18 A0A087WU08 Haptoglobin 50.18 17 31.4 

19 P02768 Serum albumin 56.49 33 69.3 

20 P02647 Apolipoprotein A-I 78.28 26 30.8 

21 P04264 Keratin, type II cytoskeletal 1 30.12 22 66.0 

22 P04264 Keratin, type II cytoskeletal 1 35.25 27 66.0 

Table 3. 1. Plasma proteins identified by 1D SDS-PAGE and LC-MS/MS. 

The top scoring protein from each excised gel band obtained from 1D SDS-PAGE and LC-

MS/MS analyses of whole plasma. The human reference proteome database was searched 

using Mascot through Proteome Discoverer. For each excised gel band, the top scoring 

UniProt protein accession and the description is listed. The number of peptides identified for 

each protein and percentage of protein coverage by the identified peptides are also detailed. 

MW (kDa), molecular weight (kilodaltons).  
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Depletion of abundant plasma proteins 

      To overcome the vast dynamic range of the plasma proteome, the top 12 

abundant proteins (constituting ~ 95% total protein mass in plasma) were removed 

using immunoaffinity spin columns. Flow-through from the spin column was 

visualised using 1D SDS-PAGE, and the individual bands were analysed using LC-

MS/MS (Fig. 3.4) (Table 3.2). Gel bands from the depleted plasma fraction were 

fainter due to the removal of most of the plasma protein mass, and the dilution from 

a 10 μl starting volume to ~500 μl final volume from the spin column flow-through. 

Keratin, type I and II cytoskeletal proteins were the top scoring protein in most of 

the bands, indicating contamination was introduced during sample processing (349). 

Where this occurred, the next highest scoring protein listed was selected as the 

representative protein for each band.  

      LC-MS/MS analysis of the depleted plasma fraction separated by 1D-SDS-

PAGE identified 13 distinct protein accessions in 17 gel bands. This was an 

improvement on the seven distinct protein accessions identified in 22 bands by LC-

MS/MS analysis of whole plasma separated by 1D SDS-PAGE. Nine accessions 

were uniquely identified in the depleted plasma fraction relative to whole plasma, of 

which two were abundant protein variants (alpha-1-antitrypsin and fibrinogen 

gamma chain) and one was an uncharacterised protein. Four abundant plasma 

proteins (albumin, fibrinogen, alpha-1-antitrypsin and apolipoprotein A-I) targeted 

for removal by the immunoaffinity column were identified as a top scoring protein in 

six of the 17 bands (35.3%) from depleted plasma. However, the presence of 

albumin was markedly reduced in the depleted plasma fraction relative to whole 

plasma, as only two of 17 bands (11.8%) relative to 15 of 22 bands (68.2%), 

respectively, identified albumin as the top scoring protein. This indicated effective 

but incomplete removal of some abundant proteins targeted by the immunoaffinity 

column, and insufficient protein coverage of the plasma proteome using 1D SDS-

PAGE and LC-MS/MS analyses. 
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Fig. 3. 4. Protein identifications in plasma depleted of abundant proteins. 

Plasma depleted of the top 12 abundant proteins (10 μl volume) was visualised on a 12% 

(w/v) polyacrylamide gel, and the gel bands analysed using LC-MS/MS. The human 

reference proteome database was searched with Mascot through Proteome Discoverer. The 

top scoring protein identification (excluding keratins) for each gel band are indicated along 

with the Mascot Protein Score. M: Molecular weight marker (kDa). 
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Band 
 

Accession 
 

Description 
% Protein 

coverage 
No. 

peptides 
MW 

(kDa) 

1 P04114 Apolipoprotein B-100 38.31 138 515.3 

2 Q86YZ3 Hornerin 17.12 17 282.2 

3 P02768 Serum albumin 69.79 37 69.3 

4 P02768 Serum albumin 69.79 37 69.3 

5 P08603 Complement factor H 53.94 52 139.0 

6 P00450 Ceruloplasmin 47.61 37 122.1 

7 P01024 Complement C3 47.62 66 187.0 

8 B4E1Z4 Uncharacterised protein 46.37 53 140.9 

9 P01024 Complement C3 52.56 63 187.0 

10 P01024 Complement C3 52.38 69 187.0 

11 P01024 Complement C3 47.81 62 187.0 

12 P01009 Alpha-1-antitrypsin 60.53 25 46.7 

13 A0A024R6I7 Alpha-1-antitrypsin 57.66 26 46.7 

14 D6RF35 Vitamin D-binding protein 57.77 25 53.0 

15 C9JEU5 Fibrinogen gamma chain 67.87 26 50.3 

16 P06727 Apolipoprotein A-IV 62.12 25 45.4 

17 P02647 Apolipoprotein A-I 71.91 22 30.8 

 

Table 3. 2. Plasma proteins identified by 1D SDS-PAGE and LC-MS/MS after 

abundant protein depletion. 

The top scoring protein from each excised gel band obtained from 1D SDS-PAGE and LC-

MS/MS analyses of a depleted plasma sample. Keratin contaminated samples had keratin 

removed as the top scorer. For each excised gel band, the top scoring protein accession and 

the description is listed. The number of peptides identified for each protein accession and 

percentage of protein coverage by the identified peptides are also provided. MW (kDa), 

molecular weight (kilodaltons).  

 

Whole proteome in-solution proteolysis 

      To improve the plasma proteome coverage by LC-MS/MS, a whole proteome in‐

solution proteolysis method was adopted. Following in-solution digestion of a single 

plasma and depleted plasma sample, both were analysed by LC-MS/MS. The 

resultant output following bioinformatic processing was a list of proteins that had 

been identified in a sample ranked by the Mascot Protein Score (supplementary 
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Table S1). The top 20 highest scoring proteins identified from a single LC-MS/MS 

analysis of plasma (Table 3.3) and abundant protein depleted plasma (Table 3.4) 

were compared.  

 

No. 
 

Accession 
 

Description 
% Protein 

coverage 
No. 

peptides 
No. 

PSMs 

1 P02768 Serum albumin 78.98 55 1243 

2 A0A087X130 Ig kappa chain C region  49.78 7 200 

3 A0A087WZW8 Protein IGKV3-11 45.49 6 199 

4 P01024 Complement C3 43.48 64 137 

5 P01023 Alpha-2-macroglobulin 40.16 43 108 

6 P04114 Apolipoprotein B-100 21.63 76 90 

7 P02787 Serotransferrin 59.03 36 94 

8 P00738 Haptoglobin 64.78 25 95 

9 A0A087WV47 Ig gamma-1 chain C region 42.92 15 102 

10 P01009 Alpha-1-antitrypsin 45.22 17 77 

11 P00739 Haptoglobin-related protein 43.68 17 75 

12 A0A0G2JL54 Complement C4-B 29.74 37 55 

13 A0A0G2JPR0 Complement C4-A 28.96 37 55 

14 P02671 Fibrinogen alpha chain 22.63 19 56 

15 P02679 Fibrinogen gamma chain 59.38 21 66 

16 P02647 Apolipoprotein A-I 62.92 18 45 

17 P02675 Fibrinogen beta chain 52.92 19 50 

18 A0A087WXL8 Ig gamma-3 chain C region 31.72 11 57 

19 E9PFZ2 Ceruloplasmin 32.45 21 40 

20 P01861 Ig gamma-4 chain C region  42.51 9 60 

Table 3. 3. Top 20 high scoring proteins identified in plasma by in-solution proteolysis 

and LC-MS/MS. 

The 20 highest scoring proteins in plasma, based on the Mascot Protein Score. The number 

of peptides and peptide spectrum matches identified for each protein accession, and 

percentage of protein coverage by the identified peptides are provided.  
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No. 

 

Accession 

 

Description 

% Protein 

coverage 

No. 

peptides 

No. 

PSMs 

1 P01024 Complement C3 72.70 126 346 

2 P0C0L5 Complement C4-B 46.39 66 114 

3 A0A0G2JPR0 Complement C4-A 45.93 65 113 

4 P08603 Complement factor H 61.66 61 122 

5 P02774 Vitamin D-binding protein 66.24 37 108 

6 P02790 Hemopexin 65.58 30 100 

7 P00450 Ceruloplasmin 53.80 51 100 

8 P04114 Apolipoprotein B-100 22.24 85 102 

9 P02671 Fibrinogen alpha chain 40.18 33 92  

10 P02768 Serum albumin 73.73 40 82 

11 P01009 Alpha-1-antitrypsin 68.66 31 87 

12 P02675 Fibrinogen beta chain 68.02 34 85 

13 P04264 Keratin, type II cytoskeletal 56.37 34 62 

14 P00738 Haptoglobin 71.18 33 73 

15 P04003 C4-binding protein alpha chain 52.43 26 54 

16 P04217 Alpha-1B-glycoprotein  45.25 16 68 

17 P13645 Keratin, type I cytoskeletal 58.73 30 52 

18 P02749 Beta-2-glycoprotein 1 69.57 22 61 

19 P04196 Histidine-rich glycoprotein 39.05 21 52 

20 B4E1Z4 Uncharacterised protein 36.18 45 67 

Table 3. 4. Top 20 high scoring proteins identified in depleted plasma by in-solution 

proteolysis and LC-MS/MS. 

The 20 highest scoring proteins in depleted plasma, based on the Mascot Protein Score. The 

number of peptides and peptide spectrum matches identified for each protein accession, and 

percentage of protein coverage by the identified peptides are provided.  

 

      Albumin was the top scoring protein in plasma, and Ig protein accessions were 

the 2nd and 3rd highest scoring proteins (Table 3.3). The number of peptide spectrum 

matches (PSMs) identified for albumin and the 2nd highest scoring protein was 1243 

and 200 PSMs, respectively. PSMs can serve as relative measure to determine 

differences in the abundance of proteins identified in a LC-MS/MS analysis (347). 

The relative abundance of albumin detected was therefore more than 6 times higher 

than that of the other abundant plasma proteins. Eight of the top 12 plasma proteins 
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were identified (IgG subclasses and fibrinogen chain accessions were counted as 

single parent proteins, respectively), and only one lower abundance plasma protein 

(haptoglobin-related protein) was identified within the 20 highest scoring proteins. 

      In the plasma depleted of abundant proteins, albumin was the 10th top scoring 

accession (Table 3.4). Although albumin had not been completely removed and 

remained an abundant protein, there was a significant reduction in the number PSMs 

identified for albumin in the depleted plasma relative to whole plasma by LC-

MS/MS. Eighty-two PSMs compared to 1243 were detected in the depleted plasma 

and whole plasma, respectively. Therefore, the relative abundance of albumin 

detected by LC-MS/MS had decreased by 93.4% after using the immunoaffinity spin 

columns for abundant plasma protein removal. Additionally, no Ig accessions were 

identified in the top 20 of depleted plasma compared to five identified in whole 

plasma. Seven proteins not among the 22 most abundant plasma proteins were also 

identified as high scoring proteins in depleted plasma. Of the 12 proteins specifically 

targeted for removal, four were identified within the top 20 highest scoring proteins 

in the depleted sample: albumin, fibrinogen, α1-antitrypsin and haptoglobin.  

Performance of immunoaffinity depletion  

      In order to evaluate the overall efficiency of the immunoaffinity column for 

removal of the top 12 abundant protein targets, the number of PSMs for each protein 

was compared in the depleted plasma and whole plasma. The immunoglobulins 

targeted for removal (IgG, IgA and IgM) were not included due to the difficulty in 

distinguishing between specific antibodies at the peptide level (345, 346). PSMs for 

fibrinogen subchain (α, β, γ) accessions were also grouped into the one parent 

protein.  

      As was previously discussed, the number of albumin PSMs was significantly 

higher in the LC-MS/MS analysis of whole plasma compared to depleted plasma 

(Fig. 3.5). Six proteins (albumin, α2-macroglobulin, apolipoprotein A-1, 

apolipoprotein A-11, haptoglobin and transferrin) were significantly reduced (P 

<0.05) in the depleted plasma. Two proteins (fibrinogen and α1-acid glycoprotein) 

were significantly more abundant in depleted plasma relative to plasma, and no 

significant difference was observed in α1-antitrypsin between the two samples. The 

greater number of PSMs in depleted plasma for two of the proteins targeted for 
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removal is most likely due to the significant reduction of albumin, which enabled 

more efficient surveying of ion signals from the less abundant peptides. 

 

Fig. 3. 5. Relative abundance of the top 12 abundant proteins (-Ig accessions) in plasma 

and depleted plasma. 

The number of PSMs identified for nine of the 12 abundant plasma proteins targeted for 

removal in both plasma and the depleted plasma. IgG, IgA and IgM were excluded due to 

the difficultly accurately assigning ambiguous Ig peptides. Six proteins (albumin, α2-

macroglobulin, apolipoprotein A-1, apolipoprotein A-11, haptoglobin and transferrin) were 

significantly reduced (P <0.05) in the depleted plasma relative to plasma following removal 

by the immunoaffinity column. Fibrinogen and α1-acid glycoprotein were significantly more 

abundant in depleted plasma relative to plasma, while there was no significant difference in 

α1-antitrypsin (P > 0.05).  

      Use of the immunoaffinity spin column did not appear to have a notable effect on 

the number of proteins that could be identified in plasma by LC-MS/MS, as 168 and 

143 proteins were detected in the depleted plasma and whole plasma, respectively 

(Fig. 3.6). Eighty-two proteins were identified in both samples, and so the number of 

proteins uniquely identified in plasma and depleted plasma was comparable. 

However, after removal of all ambiguous Ig accessions, 80 and 29 proteins were 

novel to depleted plasma and whole plasma, respectively. Therefore, 63.7% fewer 
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novel protein accessions were identified when abundant plasma proteins were not 

removed prior to LC-MS/MS analysis. Nine Ig accessions were identified in the 

depleted fraction compared to 35 Ig accessions in plasma, three of which overlapped. 

Following the removal of Ig accessions, depletion of abundant proteins was effective 

for increasing the plasma proteome coverage detectable by LC-MS/MS. 

        

Fig. 3. 6. Number of proteins in the depleted plasma and whole plasma. 

The number of protein accessions identified from depleted plasma and whole plasma after 

in-solution proteolysis and LC-MS/MS analysis. The number of proteins identified were 

initially comparable in the two samples until the Ig accessions were removed. Considerably 

more novel proteins were identified by LC-MS/MS after removal of the abundant plasma 

proteins and ambiguous Ig accessions.  

 

Reproducibility of discovery LC-MS/MS  

      To assess the reproducibility of shotgun LC-MS/MS, three repeat LC-MS/MS 

analyses were conducted for depleted plasma and whole plasma, respectively. The 

three LC-MS/MS analyses of depleted plasma showed a 66.3% overlap in the protein 

accessions identified, with a total of 150, 153 and 168 proteins detected from the 

individual analyses (Fig. 3.7A). There was a 56.7% overlap in protein accessions 

identified in whole plasma, with a total of 135, 134 and 143 proteins per replicate 

LC-MS/MS analysis (Fig. 3.7B). The top scoring and higher abundance proteins of 
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both plasma and depleted plasma were consistently detected across their respective 

replicate series. However, the lower abundance proteins, which were identified by a 

limited number of PSMs, were differentially detected over the repeat LC-MS/MS 

analyses. This demonstrated that detection of the more abundant proteins is 

reproducible using LC-MS/MS analyses, but lower abundance proteins can be 

variably detected due to sampling bias in discovery LC-MS/MS analyses.  

 

Fig. 3. 7. Reproducibility of LC-MS/MS analyses. 

A. Depleted plasma was analysed in triplicate LC-MS/MS analyses, and the protein 

accessions identified in each replicate analysis were compared. Of the proteins identified, 

66.3% were present in all three replicates, and novel proteins were also identified in every 

replicate.   

B. Whole plasma was analysed in triplicate LC-MS/MS analyses and the protein accessions 

identified were compared. There was a 56.7% overlap between the three replicates, and 

novel proteins were detected in each analysis. 

  

Protein profile of the eluted abundant protein fraction 

 

      To investigate the proteins that were bound to the Pierce Top 12 Abundant 

Protein Depletion Spin Columns, plasma was depleted and an extreme pH buffer 

wash protocol was used to elute the bound abundant proteins off the column. The 

depleted plasma and abundant protein eluate were digested in-solution and analysed 

using LC-MS/MS (protein lists supplied in Table S2). Although the immunoaffinity 
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column targeted 12 abundant plasma proteins, 133 protein accessions were identified 

in eluted fraction. Of these, 94 were not Ig accessions. The bound protein fraction 

was therefore effectively eluted by the buffer washes. Nine of the top 12 proteins 

targeted by the columns for removal were identified as the highest scoring proteins, 

although all 22 abundant plasma proteins were detected in the eluted fraction. After 

excluding Ig accessions 45 proteins (33.8%) were detected by 1-3 PSMs, indicating 

low abundant proteins which were not targeted for removal, were bound to the 

immunoaffinity column.  

        

Fig. 3. 8. Number of proteins in the depleted plasma and eluted fraction. 

Number of protein accessions identified from a depleted and eluted fraction subject to in-

solution proteolysis and LC-MS/MS analysis. The number protein accessions identified in 

both fractions was initially comparable, despite the columns only targeting 12 abundant 

proteins. After removal of Ig accessions, considerably more novel proteins were identified in 

the depleted sample relative to the eluted fraction. However, a number of novel and shared 

proteins remained in the eluted fraction, even after removal of Ig accessions. 

 

      A comparable number of protein accessions, 145 and 133, were identified in the 

matching depleted and eluted abundant protein fractions, respectively (Fig. 3.8). 

Eighty-seven and 75 accessions were novel to the depleted and eluted fractions, and 

58 protein accessions were common to both samples. Six Ig accessions were 

identified in the depleted plasma compared to 39 in the eluted fraction, two of which 
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were common to both fractions. Therefore, a total of 38 protein accessions were 

uniquely identified in the eluted fraction after exclusion of ambiguous Ig accessions. 

Of all the proteins that were unique to the bound fraction, 19 (25.3%) were not Ig, 

keratin or protein fragment accessions (Table 3.5). This verified that there is 

unspecific binding of non-targeted proteins to the immunoaffinity column and/or 

binding to proteins targeted by the column, and that eluting the abundant proteins 

will identify additional accessions unique to the eluted fraction. 

 

Accession 

 

Description 

% Protein 

coverage 

No. 

peptides 

No. 

PSMs 

P68871 Hemoglobin subunit beta 68.03 8 9 

P00751 Complement factor B 12.07 9 10 

Q8IZF3 
Adhesion G protein-coupled receptor 

F4 
2.01 1 4 

P69905 Hemoglobin subunit alpha 28.87 4 4 

P00748 Coagulation factor XII 1.46 1 1 

H9KV48 Plasma protease C1 inhibitor 4.54 2 2 

A0A096LPE2 Protein SAA2-SAA4 13.94 3 3 

C9JEV0 Zinc-alpha-2-glycoprotein 5.29 1 1 

G3V2D1 
Ribosomal protein S6 kinase  

alpha-5 
2.74 1 1 

O43866 CD5 antigen-like  4.03 1 1 

Q9BXE4 FKSG51 6.45 1 1 

H0Y4U7 
ATP-binding cassette sub-family A 

member 9 
0.38 1 1 

Q8WZ42 Titin 0.03 1 1 

Q99459 Cell division cycle 5-like protein 1.12 1 1 

E7EQY3 
Pregnancy-specific beta-1-

glycoprotein 5 
2.70 1 1 

Q5T0H8 Gelsolin 4.35 1 1 

Q9Y2H5 
Pleckstrin homology domain-

containing family A member 6 
0.76 1 1 

F5GX11 Proteasome subunit alpha type-1 2.94 1 1 

Q9ULJ8 Neurabin-1 1.37 1 1 

Table 3. 5. Protein accessions unique to the bound abundant protein fraction. 

Nineteen accessions identified as novel to the high abundant protein eluate fraction 

following in-solution digestion; excluding Ig, keratin and protein fragment accessions. 
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Global plasma proteome analysis 

      To establish a global view of the plasma proteome, and reduce redundancy by 

pooling protein identifications that may have overlapping peptides, the depleted 

plasma and eluted abundant protein fractions were recombined in silico (Table S3). 

The plasma proteome coverage was increased from 145 to 208 (43.4%) protein 

identifications in the depleted and combined sample, respectively. The number of 

concatenated proteins identified was a small reduction from the 220 total proteins 

(shared protein accessions and those unique to both fractions) identified in the 

separate depleted and eluted fraction analyses (Fig. 3.9).  

 

Fig. 3. 9. Protein identifications in depleted and eluted fractions combined in silico. 

The contribution of the protein accessions that were unique to and shared by the depleted, 

eluted and concatenated fractions are shown. Six proteins uniquely identified in both the 

depleted and eluted fractions were not found in the concatenated sample.  

 

Six additional accessions were identified in the depleted and eluted sample that were 

not in the recombined plasma. This was due to the peptides (used for protein 

inference) being reassigned to other protein accessions as more peptide evidence 

became available from combining eluted and depleted fractions. Therefore, analysis 

of abundant plasma protein and depleted fractions by LC-MS/MS and concatenation   

of the fractions in silico improved coverage of the plasma proteome relative to LC-

MS/MS analysis of whole or depleted plasma.
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Discussion 

The aim of this study was to develop a proteomic workflow to reduce the 

redundancy in plasma proteome analysis by LC-MS/MS, in order to improve 

detection of less abundant circulating proteins while maintaining throughput for 

larger experimental applications. The data presented verifies that plasma as a clinical 

sample for untargeted proteomic profiling is inherently complex, and the presence of 

a subset of high abundant proteins, most notably albumin, will impact the number of 

proteins that can be identified using LC-MS/MS. Use of immunoaffinity depletion 

columns to remove ~95% of the abundant plasma proteome revealed that targeted 

proteins remained present at high levels in depleted plasma, but considerably more 

novel proteins were still identified relative to whole plasma. Analysing the depleted 

plasma fraction and bound abundant protein fraction using LC-MS/MS and then 

concatenating the protein identifications in silico improved the proteome coverage 

relative to LC-MS/MS analysis of whole plasma or depleted plasma. Furthermore, as 

the number of PSMs for individual proteins in the eluted abundant protein and 

depleted fraction are also combined in silico, merging the two fractions provides a 

better indication of the relative protein abundances in plasma for quantitative 

analyses. This proteomic workflow reduced the redundancy of plasma analyses by 

discovery LC-MS/MS, which improved plasma proteome coverage and increased the 

number of novel low abundance circulating proteins identified. 

      Shotgun LC-MS/MS of plasma is confounded by the vast dynamic range in 

protein mass, whereby only a small fraction of the proteome can be surveyed (310, 

333, 343). In our plasma analysis, albumin was detected at a relative abundance 6 

times higher than that of the 2nd highest scoring Ig protein accession (1243 and 200 

PSMs, respectively). Reducing the dynamic range in plasma is therefore essential to 

improve the proteome coverage in discovery-based LC-MS/MS. Techniques such as 

abundant protein depletion or low abundant protein enrichment are typically used to 

achieve this. We opted to use immunodepletion, as while several studies have shown 

the two methods to be comparable (350-354), enrichment requires greater sample 

volumes (>1.0 ml) (353). 1D SDS-PAGE was initially used to visualise the plasma 

protein profile, but it did not have sufficient resolution to separate more than 22 

protein bands, and albumin was consistently identified as the lead protein in 15 of 

the 22 (68.2%) excised gel bands. This resulted in a massive underrepresentation of 
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the plasma proteome, and even many other high abundance proteins were omitted 

from this profile. The depletion of albumin and 11 other abundant plasma proteins 

using immunoaffinity depletion columns showed that more distinct proteins could be 

identified following separation by 1D SDS-PAGE. The presence of albumin was 

markedly reduced, as only two of 17 bands (11.8%) compared to 15 of 22 bands 

(68.2%) in the depleted plasma and whole plasma, respectively, identified albumin 

as the lead protein. However, four of the abundant proteins targeted for depletion 

(albumin, fibrinogen, α1-antitrypsin and apolipoprotein A-I) were still the high 

scoring proteins in some depleted plasma gel bands. This demonstrated that the top 

12 abundant plasma proteins targeted by the immunoaffinity column had not been 

completely removed following depletion, and that 1D SDS-PAGE and LC-MS/MS 

analyses yielded inadequate coverage of the plasma proteome. 

      In-solution proteolysis of plasma and depleted plasma for bottom-up shotgun LC-

MS/MS enabled protein identifications to be ranked according to the individual 

Mascot Protein Scores, and the relative abundance of individual proteins could be 

compared by using the number of PSMs. The abundant protein profile in depleted 

plasma included seven proteins that are not among the 22 most abundant plasma 

proteins, compared to one identified in the top 20 highest scoring proteins in whole 

plasma. This showed an improved depth of proteome coverage was achieved 

following depletion. However, four abundant plasma proteins were still identified in 

the top 20 highest scoring proteins in the depleted plasma (albumin, fibrinogen, α1-

antitrypsin and haptoglobin). Furthermore, albumin was the 10th top scoring protein, 

indicating there was still high levels of abundant plasma proteins in the depleted 

sample. Incomplete depletion of abundant plasma proteins using depletion methods 

has been frequently reported (355-357). 

      To evaluate the immunoaffinity columns, the relative levels of the individual top  

abundant proteins in whole plasma and depleted plasma were comparatively 

assessed by the total number of PSMs for each protein, excluding IgG, IgA and IgM 

(347). The relative abundance of albumin detected by LC-MS/MS had decreased by 

93.4% following depletion, and six proteins (albumin, α2-macroglobulin, 

apolipoprotein A-1, apolipoprotein A-11, haptoglobin and transferrin) of nine 

analysed were significantly reduced in the depleted plasma relative to plasma. 

Fibrinogen and α1-acid glycoprotein were significantly more abundant in depleted 
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plasma relative to plasma, and there was no significant difference in abundance of 

α1-antitrypsin. Comparison of depleted plasma and whole plasma showed that 

63.7% fewer novel protein accessions were identified when abundant plasma 

proteins were not removed prior to LC-MS/MS analysis. The improved proteome 

coverage in the depleted plasma was due to the significant reduction of albumin, as 

this enables more efficient peptide separation and data-dependent selection of low-

abundance ions in LC-MS/MS analyses (358). Therefore, although there was not 

total depletion and high levels of the top 12 abundant proteins remained, the depth of 

plasma proteome coverage had been considerably improved following 

immunoaffinity depletion.  

      The number of proteins that were identified in both plasma and depleted plasma 

are similar to that of other studies using similar methodologies. One study that 

depleted the top 20 abundant plasma proteins identified 120 proteins in plasma and 

154 in the depleted plasma across three LC-MS/MS replicates (359). In another 

study, 114, 118 and 113 proteins were identified in three depletion columns after 

depletion of the top 14 abundant proteins and bioinformatic exclusion of Ig 

accessions (360). Liu and colleagues also identified an average of 122 proteins from 

five separations of plasma using IgY-12 depletion column and five individual LC-

MS/MS analyses (361). Only proteins with >2 distinct peptides from all the replicate 

analyses were included, and the Ig identifications were removed (361). Many 

proteomic experimenters exclude proteins detected by fewer than two peptides as 

they are considered low confidence protein identifications (362). Proteins identified 

by a single unique peptide were included here, as the depletion of single peptide 

protein identifications can result in a large portion of the proteome (20-25% of all 

expressed proteins) being lost (363). The likelihood of selecting and identifying a 

peptide, let alone several peptides, from a low abundance, and possibly more 

biologically significant, protein during LC-MS/MS analysis is extremely small 

(364). Furthermore, the ‘two-peptide’ rule can actually result in increased false 

discovery rates and a substantial loss in sensitivity relative to when single-peptide 

protein hits are not removed (363-365).  

      The reproducibility of technical LC-MS/MS replicates was assessed using three 

repeat LC-MS/MS analyses for both a depleted plasma and plasma sample. While a 

similar number of proteins were detected across the three LC-MS/MS replicate 
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analyses for both samples, there was a 66.3% and 56.7% overlap in the protein 

accessions identified for depleted plasma and plasma, respectively. Under-sampling 

is one explanation for the limited overlap in proteins identified from repeat LC-

MS/MS analyses of a sample (342). Similar findings were reported in another study 

assessing replicate analyses of fractions obtained from a plasma depletion/elution 

workflow (366). He, et al analysed four distinct fractions (male-bound fraction, 

female-bound fraction, male-unbound fraction and female-unbound fraction) in 

duplicate and found a 40.1%, 44.7%, 52.3%, 45.8% overlap, respectively, in the 

proteins identified from duplicate analyses of each sample (366). Abundant protein 

identifications are typically reproducible in discovery-based LC-MS/MS, while the 

lower abundance proteins cause most of the perceived variability. The protein 

accessions that differed between technical replicates were primarily proteins with 

identified by one peptide. Variation in the peptide sequences identified for a given 

protein also contributed to the lower reproducibility in replicate analyses. Therefore, 

technical LC-MS/MS replicates are not sufficiently reproducible in protein discovery 

studies of complex biological mixtures, and perhaps not worth the increased MS 

analytical time.  

      Immunodepletion of abundant plasma proteins can result in biases and 

incomplete proteome coverage due to cross-reactions with the column antibodies, or 

because proteins bind to carrier proteins like albumin (367). Several studies have 

recovered a high number of non-targeted proteins following their elution off the 

column (360, 361, 366, 368, 369). Therefore, excluding this plasma fraction may 

mean valuable biological information is lost. Despite the immunoaffinity depletion 

column reportedly targeting 12 abundant plasma proteins, 133 protein accessions 

were identified in the eluted fraction following in-solution proteolysis and LC-

MS/MS. All 22 abundant plasma proteins were detected in the bound portion, 

however 33.8% of the protein accessions had 1-3 PSMs and were low abundance 

plasma proteins. In the bound plasma proteome, 56.4% of proteins were unique and 

were not detected in the depleted plasma. Of all the proteins that were novel to the 

bound fraction, 25.3% were not ambiguous Ig, contaminating keratin or protein 

fragment accessions. This verified that untargeted proteins are removed by 

immunoaffinity depletion columns, and that recovering the bound protein fraction 

improved the plasma proteome coverage. In addition to albumin being a carrier 
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protein, some of the proteins that were identified are known to associate with or are 

structurally similar to target proteins of the column. For example, fibronectin binds 

to fibrinogen (370), and the sequence of haptoglobin-related protein is  >90% 

identical to that of haptoglobin (371). Other studies that have investigated the eluted 

protein fraction also identified several plasma proteins that were identified here, 

including apolipoprotein B-100 (360), zinc-α2–glycoprotein, haemoglobin and 

complement proteins 3, 4 and H (361). Although non-targeted proteins bind to the 

depletion columns to different extents, individual non-target proteins have been 

shown to bind in a reproducible manner (361). This is important if the elution 

method is to be used for quantitative analyses. 

      The plasma proteome coverage was further improved by recombining the 

depleted plasma and eluted abundant protein fractions in silico. This enabled a more 

comphrehensive view of the plasma proteome to be established, and increased the 

proteome coverage by 43.4% relative to when only the depleted plasma was 

analysed using LC-MS/MS. Recombining the fractions also provided additional 

peptide evidence for protein inference, and therefore the likelihood of reporting the 

‘correct’ representative protein was increased. An additional benefit of evaluating 

both fractions by LC-MS/MS and bioinformatically analysing as a unified sample is 

that the number of PSMs for individual proteins identified from the eluted and 

depleted fraction are also combined. Concatenating the two fractions provides a 

more accurate indication of the relative protein abundances in plasma for 

comparative quantitative LC-MS/MS analyses.  

      To further increase the number of proteins identified by discovery LC-MS/MS, 

more pre-fractionation or separation steps are required ahead of MS-based analysis. 

Multi-dimensional separations of complex samples can be achieved using 2-D strong 

cation exchange-RP-LC separation (SCX/HPLC or MudPIT), capillary 

electrophoresis coupled to HPLC (HPLC/CE), as well as various affinity-based 

separations (372). The inclusion of multi-dimensional LC-MS/MS can increase the 

proteome coverage up to 200-700 protein identifications (355, 373). However, even 

the Human Proteome Organization (HUPO) plasma proteome study, involving 18 

laboratories with diverse methods and instruments, produced fewer than 900 high 

confidence protein identifications (341). Although advances in proteomic workflows 

have since enabled the identification of over 1,000 (374, 375) and 5,000 plasma 
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proteins (376), a major bottleneck of large-scale MS-based approaches is the labour 

and time required to perform the additional steps. The inclusion of several different 

sample preparation steps decreases throughput by increasing the overall analysis 

time in terms of manual handling and at the MS-level (367).  

     In conclusion, this proteomic workflow consisted of abundant plasma protein 

depletion and abundant protein recovery, followed by analysis of each fraction by 

LC-MS/MS and recombining the fractions in silico. This has been shown to reduce 

the redundancy in plasma proteomic analyses and improve the depth of plasma 

proteome coverage. This method will increase the likelihood of detecting less 

abundant circulating parasite and host proteins in the onchocerciasis plasma 

proteome. In addition, another method that could further increase the number of 

protein identifications and be integrated into our proteomic workflow is the use of 

longer RP-LC separation gradients. A study that used this method increased the 

number of proteins identified from 154 to 192, simply by doubling the RP-LC 

separation time (359). Incorporation of longer RP-LC gradients in subsequent 

analyses would improve the accessibility of the plasma proteome for discovery LC-

MS/MS, while maintaining sufficient throughput, as no additional manual handling 

would be required.  
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Chapter 4.  The onchocerciasis plasma proteome – a 

longitudinal survey 

 

Abstract 

A point-of-care diagnostic test for onchocerciasis that has high sensitivity and 

specificity for active infection with adult Onchocerca volvulus is a high priority for 

programmatic support for disease elimination. This study used an untargeted liquid 

chromatography tandem-mass spectrometry (LC-MS/MS)-based proteomic 

workflow to identify circulating protein markers that are present in the host plasma 

during infection and dynamically change over two years following macrofilaricidal 

treatment. We applied the proteomics methodology developed in Chapter 3 to a 

longitudinal plasma sample set from five individuals, collected pretreatment and at 

months four, 12 and 21 post-treatment. Sixteen O. volvulus proteins were identified 

in plasma, and no Wolbachia proteins were detected. Five of the O. volvulus proteins 

were identified consistently in individuals, and three consistently in most 

individuals, over the two year period. Three O. volvulus proteins changed in 

detection frequency among individuals by month 21. Ten of the 16 (62.5%) parasite 

proteins are enriched in male worms, while one protein, A0A044VCM8, consistently 

identified in individuals over time is enriched in female worms. None of the O. 

volvulus proteins identified here are predicted to be secretory, and so the proteins are 

most likely either derived from excreted products or released from moribund or dead 

parasites. The current study has therefore identified the O. volvulus protein 

A0A044VCM8 as a potential circulating candidate marker for adult female infection 

in plasma. However, no proteins met our biomarker criteria, and all but one of the O. 

volvulus proteins were still present in one or more individuals 21 months after 

treatment. The onchocerciasis plasma proteome was largely unchanging following 

macrofilaricidal treatment, as no parasite or human proteins statistically significantly 

changed over time, and no proteins were present in all individuals at baseline and 

absent at a later sampling time. It may be that 21 months is too short a follow-up 

time to kill all worms and clear parasite proteins from the host. Furthermore, during 

the long term follow-up period patients may become re-infected, in addition to the 

inter-individual variability in infection intensity and response to treatment, 

influencing changes in protein abundance.  



 

100 

Introduction  

The progression from an onchocerciasis control to an elimination programme 

in Africa poses considerable challenges for disease diagnosis and the detection of 

ongoing infection transmission or recrudescence. A point-of-care diagnostic test with 

high sensitivity and specificity for active O. volvulus infection is urgently needed to 

accurately map hypoendemic areas with low levels of ongoing transmission, and 

make informed decisions regarding treatment provision and intervention cessation. 

An O. volvulus-specific marker of the adult worms would also be advantageous for 

quantifying treatment efficacy for both established and candidate antifilarial drugs 

and for monitoring patient drug response (251). The Ov16 antigen, to which 

antibodies develop during the pre-patent period of infection (228), can be used for 

serological evaluation of infection exposure in children under 10 years in sentinel 

populations, in order to identify areas with ongoing transmission (87). However, the 

major shortcoming of antibody-profiling assays is that due to the long half-life of 

antibodies, antibody detection tests are unable to distinguish between past and 

current infections (247).  

      Rapid format tests to detect circulating filarial antigens (CFA) are commercially 

available for W. bancrofti causing lymphatic filariasis (258, 259), and the dog 

heartworm D. immitis (261). Several longitudinal macrofilaricidal drug trials have 

also demonstrated that levels of CFA significantly decline in over the months and 

years following macrofilaricidal treatment (262-265). Additionally, studies have 

shown that the levels of filarial antigens may correlate to the adult worm infection 

intensity (266-268) and to mf densities in the blood or skin (254, 260). Circulating 

filarial markers may therefore be used to determine infection prevalence, infection 

intensity and treatment efficacy.  

      Multiomic-based discovery methods and metabolite profiling of infection-

associated markers for onchocerciasis have identified a number of novel antigens 

(269, 271) and metabolites able to discriminate between infected and non-infected 

individuals (273, 274). Metabolomic analysis of urine from infected individuals has 

additionally identified a neurotransmitter-derived secretion metabolite from O. 

volvulus, N-acetyltyramine-O-glucuronide (NATOG), which is elevated only in the 

presence of O. volvulus in samples with mono-infection and co-infections with L. loa 
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and M. perstans (275, 277). NATOG has also been detected at a significantly 

reduced concentration in urine from individuals tested 20 months post-doxycycline 

treatment compared with untreated O. volvulus-positive patients and placebo-treated 

patients (275). However, the limited diagnostic applicability of NATOG for 

discriminating between amicrofilaridermic nodule-positive and control groups was 

reported in a separate evaluation (278). Analyses of nematode-specific phospholipids 

in plasma and serum of uninfected and infected hosts have also shown limited 

diagnostic potential, as the parasite phospholipids were below the limit of detection 

(279). While the overall progress in this research area has been encouraging, no 

potential biomarkers identified in recent years have been progressed to diagnostic 

development for field use. Additionally, all studies have identified the potential O. 

volvulus biomarkers in the host by testing infected vs uninfected cohorts. Therefore, 

aside from NATOG, whether any of the markers could be used to monitor treatment 

efficacy or patient drug response is unknown. 

      Proteomics provides a potential platform for discovery of circulating biomarkers 

in human plasma, and proteins are also a practical target as they more tractably 

translate into a point-of-care diagnostic format, such as an antigen detection test. In 

Chapter 3, it was shown that plasma is a challenging clinical sample to analyse using 

LC-MS/MS due to a subset of high abundant proteins and a dynamic range in protein 

concentration spanning over 10 orders of magnitude (310, 332). A proteomic 

pipeline for plasma was presented that would be amenable to scale-up for an 

onchocerciasis biomarker discovery study, using a unique longitudinal plasma 

sample set (157). This sample set will enable tracking of the dynamics of infection 

clearance over two years within the onchocerciasis plasma proteome, and allow each 

patient to serve as their own control rather than infected vs uninfected of a random 

sample cohort 

 

Aim of the study 

The aim of this study was to use a discovery proteomic workflow to identify 

protein biomarkers from O. volvulus, the Wolbachia endosymbiont of the parasite, or 

the host, that are present in the host plasma during infection and dynamically change 

over 21 months following macrofilaricidal treatment. We applied the proteomics 
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methodology developed with human plasma in Chapter 3 to a longitudinal plasma 

sample set of individuals infected only with O. volvulus. Plasma from five 

individuals collected pretreatment, and at four, 12 and 21 months post-doxycycline 

treatment, were analysed using untargeted label-free LC-MS/MS to discover protein 

markers of infection, infection intensity and/or treatment efficacy in the 

onchocerciasis plasma proteome. For a potential biomarker of onchocerciasis 

infection and infection clearance, we sought: i) proteins that were present at baseline 

and absent at one or more successive time points; ii) proteins that statistically 

significantly changed (P = <0.05) over time, with >1.5 fold change in protein 

abundance between the time points. 

 

 

Methods  

Onchocerciasis plasma samples 

Plasma samples were obtained from a double-blind, randomised, field trial 

conducted over two years in Cameroon (157). The trial was community based and 

was undertaken in Widikum, in the North West Province of Cameroon. Details of the 

trial are available in the study report by Turner et al (157), and also outlined in more 

detail in Chapter 2. Briefly, adults aged 15–60, in good health and with O. volvulus 

skin microfilaridermia > 10 mf/mg were enrolled in the trial. There were three 

treatment arms in the study: 1) doxycycline + placebo (DOXY), 2) doxycycline + 

ivermectin (DOXY+IVM), 3) and placebo + ivermectin (IVM). Participants in the 

DOXY group only were selected for this pilot study in order to track the effects of 

worm killing from macrofilaricidal treatment on the onchocerciasis plasma 

proteome. The DOXY regime consisted of: 

DOXY: Doxycycline (2 × 100 mg capsules daily) for six weeks plus 

non-matching ivermectin-dummy pill at month four (lactose tablet). 

      Plasma from the trial participants was collected at baseline, and then at four, 12 

and 21 months post-treatment. At each time point, O. volvulus microfilaridermia was 

assessed by microscopy. The prevalence and density of L. loa and M. perstans 

microfilaraemia in participants was also recorded at every time point of the trial. 
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Pilot study sample set 

      The pilot sample set selected here for proteomic analysis consisted of five 

individuals from the DOXY group, with non-haemolysed plasma available at all four 

time points of the study. Of the 21 individuals in the DOXY group, four participants 

had a plasma sample absent at one or more time points and nine participants had 

visible haemolysis in plasma taken at one or more time points. Haemolysis was 

determined by visually inspecting samples for pink/orange/red colour. Haemolysed 

samples were preferentially excluded as lysis of erythrocytes causes the liberation of 

intracellular components, such as proteins and metabolites, which could modify the 

proteomic profile of the sample (377). In addition, iron from haemoglobin can 

catalyse oxidation and protein cleavage reactions, further contributing to pre-

analytical variability between samples (378). A small number of participants were 

selected for the pilot study as MS-based proteomic biomarker discovery studies 

typically involve analysing a small number of samples in considerable depth, after 

which targeted analyses are used to identify the candidates of interest in a larger 

sample set (379, 380). 

      Parasitological details of participants for this study can be found in Table 4.1. 

The median age was 40 years, with a range from 25 to 49 years. The ratio of female 

to male participants was 2:3. Men and women of different ages were selected to 

identify a biomarker indicative of infection and infection clearance in a general 

onchocerciasis population, and reduce the effect of confounding variables. Patients 

were also selected considering nodulectomy data, which was collected from seven 

participants. One patient with low microfilaridermia (9 mf/mg) was included in this 

analysis as this patient had <20% live worms in nodules removed at 21 months, and 

therefore evidence of macrofilaricidal treatment response was available. 

      The trial plasma samples were stored at -80 oC, and gently thawed on ice before 

use. A 100 μl aliquot was spun at 16 000 x g to pellet and remove any cellular 

debris, and all samples were processed at the same time throughout the experiment. 
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Patient 

ID Sex 

 

Age 

Baseline mf count 

(mf/mg) 

T4 mf count 

(mf/mg) 

T12 mf count 

(mf/mg) 

T21 mf count 

(mf/mg) 

1 M 49 31.5 2 57.5 9 

2 F 45 9.5 14 37.5 0 

3 M 26 120 0 5.5 0 

4 M 40 15.5 0 0 0 

5 F 25 40 1 2 0 

Table 4. 1. Parasitology of participants selected for the current study (157). 

Parasitology of the five patients selected for longitudinal analysis, detailing the number of 

mf/mg skin snip at baseline, and four, 12, and 21 months post-treatment. T4, month four; 

T12, month 12; T21, month 21. F, female; M, male. 
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Proteomic workflow 

      Twenty plasma samples, from the five individuals sampled at four time points, 

were processed using the protein processing methodology outlined in Chapter 2 and 

Chapter 3, and bioinformatic analysis described in Chapter 2. The method has been 

briefly described and illustrated in Fig. 4.1. 

 

Fig. 4. 1. Proteomic workflow. 

Plasma samples from five trial participants at four time points (N = 20) were each separated 

into two distinct fractions: a low abundance protein fraction with the top 12 abundant plasma 

proteins depleted (N = 20), and an eluted abundant protein fraction (N = 20). Depleted and 

eluted fractions were both concentrated and then tryptically digested in-solution for bottom-

up proteomics. Each fraction was analysed once by discovery LC-MS/MS (N = 40). 

Matching depleted and eluted fractions were recombined in the MaxQuant proteomic 

software prior to further bioinformatic analysis. Proteins were identified using the integrated 

Andromeda search engine (N = 20), using a custom concatenated proteome comprising the 

reference proteomes of human, O. volvulus and the Wolbachia endosymbiont of O. ochengi. 

Data output from MaxQuant/Andromeda platform was bioinformatically processed using 

Perseus software. N = Number of samples analysed.  
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Plasma proteome fractionation 

      Pierce Top 12 Abundant Protein Depletion Spin Columns were used to deplete 

the top 12 abundant plasma proteins, as per the manufacturer’s instructions. The 12 

plasma protein targets for depletion include: α1-acid glycoprotein, α1-antitrypsin, 

α2-macroglobulin, albumin, apolipoprotein A-I, apolipoprotein A-II, fibrinogen, 

haptoglobin, IgA, IgG, IgM and transferrin. The bound abundant plasma proteins 

were then eluted off the column by end-over-end mixing using a combination of two 

10 min 100mM glycine.HCl pH 2.5 buffer washes, followed by two 10 min 100mM 

glycine.NaOH pH 10 washes, with a 10 min 1M Tris-HCl pH 7.4 neutralisation 

wash interspersed. Eluate collected from every glycine buffer wash was immediately 

neutralised by an equal volume of 1M Tris-HCl pH 7.4 and all flow-through 

fractions were pooled to a final volume of ~3.6 ml per individual sample. 

Sample preparation for LC-MS/MS 

       Protein concentration for the depleted plasma fractions was achieved using 

Amicon Ultra-0.5 Centrifugal Filter Units (Merck Millipore) with nominal molecular 

weight limit (NMWL) of 3 kDa, as per manufacturer’s instructions. The pooled 

eluted abundant protein fractions were simultaneously concentrated and diafiltrated 

using Amicon Ultra-4 Centrifugal Filter Units (Merck Millipore) with NMWL of 3 

kDa, following the manufacturer’s instructions. Buffer exchange was achieved by 

the addition of 25 mM AmBic to the filter concentrate followed by centrifugation. 

All samples were then tryptically digested in-solution.  

RP-LC-MS/MS 

      Peptide samples were initially separated by RP-LC using a DIONEX UltiMate™ 

3000LC chromatography system. Peptide samples (10 µl = 600 ng) were separated 

over two hours using linear chromatographic gradients. All peptide samples from the 

depleted protein fractions were injected on column prior to the eluted fraction 

peptide samples. The eluting peptides were analysed online in a LTQ-Orbitrap Velos 

mass spectrometer (Thermo Fisher Scientific, Schwerte, Germany) coupled to the 

HPLC system with an electro spray ion source. The mass spectrometer was operated 

in the data-dependent mode and dynamic exclusion was enabled to avoid repeatedly 

selecting intense ions for fragmentation.  
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Protein identification: MaxQuant and Andromeda  

      Details of the protein identification parameters, and the bioinformatic and 

statistical analyses are provided in Chapter 2, and have been briefly outlined here. 

Raw data from LC-MS/MS analyses were informatically processed using MaxQuant 

(Version 1.5.3.30) software and integrated search engine, Andromeda (319, 320). 

MaxQuant was selected for this analysis as it is a quantitative proteomics software 

package that has been designed for analysing large MS data sets (321). Briefly, 

Thermo raw files obtained from individual LC-MS/MS analyses were uploaded to 

MaxQuant, where the depleted and eluted protein fraction files for an individual 

were recombined as one file for proteomic analysis.  

      Search parameters and settings were: default settings for orbitrap instrument, two 

missed cleavages allowed, carbamidomethylation was set as fixed modification, and 

methionine oxidation and deamidation as variable modifications. Target decoy 

reverse database search was applied with a peptide and protein FDR <0.05. The 

‘match between runs’ feature was also activated. Label-free quantitation was 

performed with a minimum ratio count of 1 (322). 

       The ‘match between runs’ feature enables the transfer of peptide identifications 

from an LC-MS run, where a peptide was identified by MS/MS, to a different LC-

MS run file, where MS/MS data was not acquired for this peptide, or no peptide was 

assigned (321, 323). This increases the number of peptides available for 

quantification, thereby producing a more complete quantitative profile across 

samples (321). ‘MaxLFQ’ is the label-free quantification (LFQ) technology 

incorporated in the MaxQuant workflow for comparative proteomic analyses (322). 

Briefly, LFQ intensity is the relative protein quantification across all samples, and is 

represented by a normalised protein intensity profile (321).  

Custom proteome database  

      A custom proteomic database was prepared in-house by concatenating three 

reference proteomes: human, O. volvulus and Wolbachia endosymbiont of O. 

ochengi. A common contaminants database provided by MaxQuant was also used 

during database searching. 
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Bioinformatic analysis: Perseus 

      The protein identifications from MaxQuant were uploaded to Perseus software 

(Version 1.5.2.6), which is provided as part of the MaxQuant computational platform 

for data analysis (324). Protein grouping is automatically applied in MaxQuant. 

Proteins marked as ‘only identified by site’ and ‘reverse’ were filtered out of the data 

matrix. Proteins marked as ‘contaminants’ were screened, and the majority filtered 

out. Proteins with >1 unique peptide were retained and the LFQ intensities of the 

final data set were log2 transformed. 

       For a potential biomarker of onchocerciasis infection and infection clearance 

following treatment, we sought: 

i) Proteins that were present at baseline and absent at one or more 

successive time points. 

ii) Proteins that statistically significantly changed (P = <0.05) over time, 

with >1.5 fold change in protein abundance between the time points. 

      Data imputation was performed within Perseus ahead of conducting statistical 

analyses. Imputation was achieved by simulating random low abundance protein 

intensities meant to mimic protein expression below the detection limit (324).  

Functional analyses of Onchocerca volvulus proteins 

      UniProt BLAST search was used to assess sequence conservation between the O. 

volvulus proteins experimentally identified here and proteins of geographically 

relevant parasite species, such as L. loa, W. bancrofti and STHs (325). Other filarial 

species that are not endemic to Africa or not infective to humans were excluded from 

this analysis. The percentage sequence similarity over the total protein length of the 

top BLAST protein hit for each O. volvulus protein was determined with the Clustal 

Omega global alignment tool (326). The UniProt Peptide Search tool was used to 

verify whether O. volvulus peptides experimentally detected were also present in 

proteins from other relevant parasite species. Gene ontology searching was 

performed using the EBI QuickGO web-browser (327). Data from the recent stage-

specific proteome analyses of O. volvulus by Bennuru and colleagues (269) was also 

used in our bioinformatic analyses. 
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Statistical analysis 

      The reproducibility of the LFQ values between any two LC-MS/MS runs was 

assessed using scatter plots of protein LFQ intensities to calculate R2 values (322). 

To compare changes in protein abundance between the trial sampling times for the 

imputed data set, multiple paired t-tests were used for pairwise comparisons of all 

time points. Volcano plots were used to plot -log10 transformed p-values against log2 

fold change in average protein intensity between two time points. Principal 

component analysis (PCA) and unsupervised hierarchical clustering were also 

conducted on imputed data in Perseus. 

 

       

Results 

Protein identification  

To identify potential protein markers of O. volvulus infection and infection 

clearance, plasma from five individuals with onchocerciasis sampled at baseline and 

at successive time points following macrofilaricidal treatment were analysed using 

LC-MS/MS. MaxQuant/Andromeda proteomic software searched 691081 spectra in 

40 LC-MS/MS analyses, which identified 141658 PSMs in total, corresponding to 

4062 distinct peptides. The use of different plasma/serum samples, sample 

preparation, depletion, fractionation, and bioinformatic analyses in proteomics 

experiments are known to result in significantly different proteins being identified 

(381). However, the data output here is line with what we could expect based on the 

data from the HUPO Plasma Proteome Project (362) and Plasma PeptideAtlas (381). 

Proteins identified as ‘reverse’, ‘only identified by site’, and most common 

contaminants were removed from the data set. Albumin, gelsolin, hornerin and 

thrombospondin-1, although marked as contaminants, were included in the data set 

as they can localise extracellularly and appeared consistently among the samples. 

Protein identifications after filtering are provided in Table S4. 

      The resultant filtered output yielded a total of 1165 proteins corresponding to 

352 protein groups with one or more unique peptide, and an FDR <0.05% at the 

peptide and protein level. Eighty-one percent of proteins were identified by two or 

more peptides. Of the proteins identified, 336 (95.5%) were of human origin, 16 
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(4.5% of the data set) originated from O. volvulus, and none were detected from 

Wolbachia (Table 4.2). The onchocerciasis plasma proteome contained 80 Ig 

accessions (22.7%), six accessions (1.7%) with a variant/isoform/alternative peptide 

sequence from the canonical protein form, and 17 uncharacterised proteins (4.8%). A 

total of 89357 PSMs were detected for the included proteins, corresponding to 2771 

unique peptides and a total of 4001 peptides in the entire data set. The protein groups 

were identified primarily by MS/MS, with 64% of the data set having associated 

PSMs and 23% identified using the match-between runs feature, leaving only 13% 

missing values in the data set.  

Proteome 
Protein 

groups 

Ig 

accession 

Protein 

variant 

Uncharacterised 

protein 

Unique 

peptides 
Peptides 

Human 336  80 (23.8%) 6 (1.8%) 3 (0.9%) 2749 3979 

O. volvulus 16  0 0 14 (87.5%) 22 22 

Wolbachia 0 0 0 0 0 0 

Total 352 80 (22.7%) 6 (1.7%) 17 (4.8%) 2771 4001 

Table 4. 2. Protein identifications in the onchocerciasis plasma proteome. 

The contributions of the three reference proteomes to the total data set are shown. The table 

details the total number of protein groups identified and the number per proteome. The total 

number of protein groups and the number contributed by individual reference proteomes for 

Ig accessions, protein variants and uncharacterised proteins are also listed, along with the 

number of unique peptides and peptides in the data set. The proportion of a protein subset 

(i.e. Ig accession) within each proteome is also detailed.  

 

Quality assessment of the proteomic analysis  

      Prior to analysis of the data set, experimental variability was assessed using 

scatterplots for pairwise comparison of log2 transformed LFQ protein intensities 

between the 20 samples. The coefficient of determination (R2) for multi-scatter plot 

comparisons ranged between 0.898-0.989, indicating a strong positive association 

between intensities of individual proteins identified across different samples, and 

that the protein quantification in the untargeted analysis had good reproducibility 

(Fig. S1). The distribution of protein intensities in each sample was examined by 
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plotting histograms to confirm an approximately normal distribution (Fig. S2). The 

total number of proteins detected across different patients at a given time point 

ranged between 261–302, with a data set average of 289 ± 9.631 (SD) proteins 

identified (Fig. 4.2). This showed there was generally good concurrence in the 

numbers of proteins identified. 

 

Fig. 4. 2. Number of protein groups identified in each individual at each time point. 

Of the 352 protein groups identified, 182 (51.7%) were identified in all patients at all time 

points. The core proteins in this data set are indicated below the horizontal dashed line. T0, 

baseline; T4, month four; T12, month 12; T21, month 21. 

 

The onchocerciasis plasma proteome 

      The top 20 most abundant proteins in the onchocerciasis plasma proteome are 

listed in Table 4.3. The top abundant proteins were identified by descending order of 

total PSMs to determine which proteins were identified most frequently by MS/MS 

in all samples collectively. These proteins encompass 54055 (60.5%) of the total 

PSMs used for peptide assignment. All of the top 20 proteins identified in the 

onchocerciasis plasma proteome are secreted human proteins, however only six 

(complement C3, albumin, α2-macroglobulin, serotransferrin, fibrinogen, 

apolipoprotein A-I) are among the 22 most abundant proteins in plasma. Albumin 

was the 2nd most abundant protein here, and only five of the 12 top abundant proteins 

that were targeted for depletion were identified (same as the previous listed minus 
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complement C3). Furthermore, no Ig accessions were in the top 20 most abundant 

proteins. Therefore, our fractionation of plasma prior to LC-MS/MS analyses 

enabled more low abundance proteins to be identified. All 12 depleted abundant 

proteins were still consistently detected in every patient at every time point. The core 

proteome included 177 human proteins (97.3%) and five O. volvulus proteins (2.7%) 

that were present in every individual at every time point. The remaining proteins 

consisted of 159 from human (93.5%) and 11 from O. volvulus (6.5%). 

No. Accession Description 
Protein 

coverage (%) 

No. 

peptides 

Total 

PSMs 

1 P01024 Complement C3 72.7 135 10181 

2 P02768 Serum albumin  94.6 111 9834 

3 P01023 Alpha-2-macroglobulin 71.6 95 4708 

4 P02787 Serotransferrin 83 83 3451 

5 P02790 Hemopexin 66.9 29 3041 

6 P02671 Fibrinogen alpha chain 51.7 46 1893 

7 P00747 Plasminogen 69.8 60 1856 

8 P01042 Kininogen-1 43.2 37 1826 

9 P02749 Beta-2-glycoprotein 1 60.9 22 1771 

10 P04217 Alpha-1B-glycoprotein 58.2 19 1732 

11 P04196 Histidine-rich glycoprotein  55.8 26 1708 

12 P01008 Antithrombin-III 56.2 37 1684 

13 P02647 Apolipoprotein A-I 77.2 32 1650 

14 P01011 Alpha-1-antichymotrypsin 40.9 22 1554 

15 P02675 Fibrinogen beta chain 79.4 45 1299 

16 P01031 Complement C5 43.1 65 1227 

17 P00734 Prothrombin 60.1 32 1223 

18 P19823 
Inter-alpha-trypsin inhibitor 

heavy chain H2 
38.1 35 1206 

19 P02765 Alpha-2-HS-glycoprotein 49 12 1124 

20 P43652 Afamin 45.4 31 1087 

Table 4. 3. The 20 most abundant proteins in the onchocerciasis plasma proteome. 

The 20 most abundant proteins collectively detected across the data set was determined by 

the total number of PSMs identified by MS/MS per protein across all samples. 
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Longitudinal analysis: the search for a biomarker 

      To identify potential markers of infection and infection clearance in the 

onchocerciasis plasma proteome, the data set was first screened in search of proteins 

that were present in all five individuals at baseline and absent at one or more follow-

up time points. However, no O. volvulus or human proteins met this criterion. 

Proteins that were identified as distinct to a single time point were human proteins 

found to be only present in one individual (Table 4.4), indicating that their 

appearance was not a consequence of infection or treatment.  

Time 

point 
Accession Description 

% Protein  

coverage 

No. 

peptides 

No. 

patients 

0 P02452 Collagen alpha-1 (I) chain 1.2 2 1 

      

4 A0A0C4DH31 Protein IGHV1-18 12 2 1 

4 P01593 Ig kappa chain V-I region AG 27.8 3 1 

4 Q8NH87 Olfactory receptor 9G1 6.9 1 1 

      

12 A6NKQ9 
Choriogonadotropin subunit 

beta 
36.4 3 1 

12 A0A075B6J0 Protein IGLV1-40 31.4 2 1 

      

21 A0A075B7D8 Protein IGHV3OR15-7 18.5 2 1 

21 A0A0B4J1X8 Protein IGHV3-43 18.6 2 1 

21 J3KN67 Tropomyosin alpha-3 chain 22.5 8 1 

21 P31749 
RAC-gamma serine/threonine-

protein kinase 
8.7 1 1 

21 Q96CW1 AP-2 complex subunit mu 3.1 1 1 

21 A0A087WVW2 Ig gamma-3 chain C region 3.1 1 1 

Table 4. 4. Proteins present at only one of four time points in the trial. 

Proteins specific to an individual time point and the number of individuals the proteins were 

detected in. T0, baseline; T4, month four; T12, month 12; T21, month 21. 

 

      A presence/absence based assessment was next used to identify changes in 

protein detection frequency among individuals at each time point. Proteins that were 

present in ≥80% individuals at a time point, that showed ≥60% increase/decrease in 

the detection frequency among individuals at another time point of the study were 
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investigated further. Thirteen proteins met this criterion, 10 from human and three 

from O. volvulus. Of the human proteins, 60% declined in detection frequency 

among individuals at month four relative to baseline, but were detected in more 

individuals again at months 12 and 21 (C-reactive protein, leukocyte 

immunoglobulin-like receptor subfamily A member 3, peroxiredoxin-2, 

prostaglandin-H2 D-isomerase, TBC1 domain family member 2A and vascular cell 

adhesion protein 1). Two human proteins also increased in detection frequency from 

baseline over the duration of the study (14-3-3 protein epsilon and fibrous sheath-

interacting protein 2). Among the three O. volvulus proteins, two (A0A044SN57 and 

A0A044U885) declined in frequency of detection at month 21 relative to the earlier 

time points, while one protein (A0A044TBP5) was present in all five individuals at 

months four, 12 and 21, but only two individuals at baseline. No human proteins 

showed a convincing decline or increase in detection among individuals to indicate a 

change as a result of ‘infected’ vs ‘treated’. Although it is a small sample set, the 

three O. volvulus proteins showed interesting detection frequency profiles among 

individuals, with a change by month 21.  

     In order to statistically infer differential protein expression over time, the data 

matrix was further filtered down to 269 proteins based on detection in at least three 

of the five patients at every time point. The 269 proteins included 261 (97%) human 

proteins and 8 (3%) from O. volvulus. Missing values, that were here considered to 

be below the limit of detection, were imputed by simulating random numbers meant 

to mimic LFQ intensities of low abundance proteins (324). Correct imputation of 

low abundance LFQ values and normal data distribution was confirmed by 

visualising a histogram of LFQ intensities for each sample (Fig. S3). Multiple paired 

t-tests were used to conduct pairwise comparisons of differential expression of 

individual proteins between each of the time points. The average fold-change versus 

significance for proteins was visualised in volcano plots (Fig. 4.3). Proteins were 

considered to be potentially interesting here if the change in expression was 

statistically significant (P = <0.05) and a fold change in average expression >1.5 was 

observed. Only one protein, haemoglobin subunit β, met this criterion in one 

pairwise comparison (P = 0.0082; 1.95 fold decrease in abundance from baseline to 

month four). Haemoglobin subunit β had statistically significantly declined from 

baseline to month four of sampling. Haemoglobin indicates lysis of erythrocytes in 
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the plasma samples, and this result is likely indicative of various degree of 

haemolysis detected between different samples. Haemoglobin subunit α also 

decreased 2 fold in abundance by month 12, although this was not statistically 

significant (P = 0.0514).  

 

Fig. 4. 3. Statistical evaluation of protein expression level changes over time. 

Volcano plots displaying the results of multiple paired t-tests for pair-wise comparison of 

changes in protein intensities between each time point. The p-value was transformed to the 

negative log10 scale and plotted on the y axis, and the log2 fold change in mean protein 

intensity between two time points was plotted on the x axis: horizontal and vertical lines 

indicate p values <0.05 and fold change >1.5, respectively. Red dots signify proteins with a 
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statistically significant change in expression and >1.5 fold change in the averaged protein 

abundance between a given sampling period, while black dots represent proteins that did 

not. Therefore, only one protein, haemoglobin subunit β (HBB), met this criterion between 

baseline and month four. T4, month four; T12, month 12, T21, month 21. 

Onchocerca volvulus proteins in plasma 

      Although no clear biomarkers of infection clearance or treatment efficacy were 

identified in this study, 16 protein markers of O. volvulus infection were identified. 

We sought to evaluate these 16 proteins further by assessing LFQ protein intensity 

profile plots and further investigating what is currently known about the O. volvulus 

proteins.  

      Averaging patient LFQ intensities for individual O. volvulus proteins at each 

time point showed that the relative abundance of all parasite proteins was fairly 

stable over time (Fig. 4.4). Although missing values for the proteins that were not 

consistently detected means this is not a true representation of this population 

average, there was still no notable change in the mean protein abundance at any 

sampling time. One exception was protein A0A044U885, ribonucleoside-

diphosphate reductase, which showed a 2-fold decline in the average abundance 

from baseline to four months, and then a very gradual increase at both months 12 

and 21. However, a 6-fold decrease in patient 2 skewed the average fold change at 

month four, and by month 12 A0A044U885 was detected at near baseline values 

again in this patient. Earlier longitudinal analyses in this study identified 

A0A044U885 as a protein that declined in patient detection frequency at month 21 

relative to the preceding time points. The protein was detected in three patients at 

baseline, four patients at months four and 12, but only one patient at 21 months.  
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Fig. 4. 4. Profile plots of O. volvulus proteins in plasma. 

The relative quantitative value (LFQ intensity) of individual O. volvulus proteins was plotted 

for the frequency of appearance and abundance profile in each patient over time. The 

averaged protein profile is included where there are sufficient data points. 

 

      The protein accessions from O. volvulus were searched using EBI Quick-GO to 

gain insight into the cellular origin within the parasite, and the biological processes 

and functions that they may be involved with. All the parasite proteins identified in 

this data set were TrEMBL accessions, therefore all annotations were obtained 

electronically from predicted or partially confirmed proteins. The search identified 

annotations for 10, 11 and 10 of the proteins for cellular compartment, biological 

process and molecular function, respectively. An overview of the main GO terms 

identified for all proteins are provided in Fig. 4.5, and the complete list of GO terms 

identified for each protein is provided in Table S5. Of the annotated proteins, the 

majority were membrane-associated or nuclear, and the remaining were intracellular 

and cilium-related. The biological processes identified were diverse, but proteins 

linked to multicellular organism development, protein modification and transport 

were the most frequently observed processes. Response to stress, reproduction, 

signal transduction and oxidation-reduction processes were less frequently observed 

among the proteins. Binding was the predominant molecular function, followed by 

catalytic and receptor activity. There was no obvious link between the biological 

processes or molecular functions of the five proteins consistently detected across the 

data set. 
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Fig. 4. 5. Overview of GO annotations for the O. volvulus proteins. 

The cellular compartment, molecular function and biological process GO terms were 

investigated for the 16 O. volvulus proteins. Gene ontology searching of protein accessions 

was performed using the EBI QuickGO web-browser with no search restrictions. 
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      The 16 O. volvulus proteins identified in the host plasma here were also 

identified in a recent stage-specific proteomic analysis of O. volvulus (269). We 

searched this large and comprehensive bioinformatic data set to try and obtain 

information pertinent to our proteins. Their stage-specific analysis revealed that the 

expression of 1 and 10 of the proteins identified here were enriched in the female 

and male worms, respectively, relative to the other stages. The remaining five 

proteins were enriched in the mf, L1 or L2 stages. An uncharacterised 11 kDa 

protein, A0A044VCM8, was highly associated with expression in female worms, 

and this protein functions in cytochrome-c oxidase activity and copper ion binding. 

Bennuru and colleagues also reported that cytochrome c oxidase activity was 

enriched in the adult females compared to all other stages (269). This may provide 

preliminary evidence for the identification of a female worm protein in the host 

plasma. Furthermore, A0A044VCM8 was identified relatively consistently (in 4-5 

individuals) at every time point, and could be a potential marker for assessing the 

infection prevalence of adult female O. volvulus. Four of the five proteins that were 

present in every individual across the duration of the trial were enriched in the adult 

males relative to all other stages. Two of these proteins, A0A044RT47 and 

A0A044U8X5, were annotated, and reportedly function in nucleic acid binding and 

protein tyrosine phosphatase activity, respectively. This ties in with the findings by 

Bennuru et al that identified nucleotide binding, peptidase activity and 

phosphoprotein phosphatase activity as the top GO processes enriched in adult male 

O. volvulus (269). The O. volvulus proteins that were either detected less frequently 

in individuals at baseline (A0A044TBP5) or less frequently at month 21 

(A0A044SN57 and A0A044U885) relative to other time points were also enriched in 

the adult males. A0A044TBP5 functions in DNA and zinc ion binding, transcription 

factor activity, steroid hormone receptor activity. A0A044SN57 functions in 

catalytic activity, Rab geranylgeranyltransferase activity, protein kinase activity and 

ATP binding. A0A044U885 functions in ribonucleoside diphosphatereductase 

activity, ATP binding and oxidoreductase activity. 

      The stage-specific O. volvulus data set from Bennuru et al was also further 

evaluated to identify whether any of our proteins had been recognised as a secreted 

protein using SignalP-HMM prediction (269, 328). All 16 O. volvulus proteins 

detected in the onchocerciasis plasma proteome are not predicted to be secretory 
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proteins. Consequently, there is not an obvious presence of secreted proteins, and so 

the O. volvulus proteins are either derived from excreted products or released from 

moribund or dead parasites.  

Specificity of Onchocerca volvulus proteins 

      The O. volvulus proteins and the peptides used for protein identification were 

evaluated using BLAST and global alignment tools to evaluate sequence 

conservation among other relevant parasite species. The top BLAST hit among 

geographically relevant parasite species (such as W. bancrofti, L. loa and STHs, as 

described in the Methods) and percentage sequence identity are listed (Table 4.5). 

All O. volvulus proteins experimentally identified here showed the highest levels of 

sequence conservation with L. loa or W. bancrofti, two filarial nematodes with 

overlapping geographical distributions to O. volvulus. Thirteen (81.3%) of the O. 

volvulus proteins had a high level of sequence identity (>70% ID) to orthologs from 

W. bancrofti or L. loa. However, only five (38.5%) of these proteins had a high level 

of sequence similarity along the total length of the O. volvulus protein (>70% 

length). Therefore, although the majority of the O. volvulus proteins had highly 

conserved sequence segments, 10 (62.5%) of the 16 proteins had peptide sequences 

that were not highly conserved along the total length of the protein. Additionally, a 

search of the peptides identified from our LC-MS/MS analyses revealed that only 4 

(25%) are present in other relevant parasites, thus providing more confidence that the 

proteins identified were indeed from O. volvulus. The peptide sequences are 

provided in Table S6.  

      Encouragingly for a potential marker for female worm infection, a protein 

identified here that was previously found to be enriched in female worms, 

A0A044VCM8, had only 26.3% total sequence similarity with the top BLAST hit 

protein from L. loa. Although the peptide of A0A044VCM8 identified by LC-

MS/MS was also found to be present in L. loa and W. bancrofti, individuals 

evaluated here were negative for co-infective mf . The O. volvulus protein that was 

detected less frequently in individuals at baseline relative to other time points, 

A0A044TBP5, had a high level of sequence identity and sequence similarity along 

the protein length with a L. loa protein (79.5% ID, with 87.5% similarity over the 

protein length). Of the two O. volvulus proteins detected less frequently at month 21 
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compared to all earlier time points, A0A044SN57 had a high level of sequence 

identity with a L. loa protein, but a low level of sequence similarity over the total 

length of the protein (88.2% ID, with 35.0% similarity over the protein length), 

while A0A044U885 had both high levels of sequence identity and similarity (90.7% 

ID, with 94.3% similarity over the protein length) with a L. loa protein. The peptides 

identified by MS/MS for A0A044TBP5, A0A044SN57 and A0A044U885 were only 

found in O. volvulus among the relevant parasite species.  

 

Table 4. 5. Specificity of the 16 O. volvulus proteins detected in plasma. 

The 16 O. volvulus proteins, with the length of peptide experimentally identified and the 

length of parent protein (number of amino acids) recorded. The top BLAST hit among 

relevant parasite species, and the percentage of sequence identity is listed. Clustal Omega 

global alignment of the top BLAST hit and the O. volvulus protein was used to determine the 

number of identical and similar sequences and calculate the percentage sequence similarity 

along the total length of the protein. The peptides experimentally identified for O. volvulus 

by LC-MS/MS were also searched for sequence conservation among relevant parasite 

species. All O. volvulus proteins identified shared high sequence identity to orthologs from 

L. loa or W. bancrofti, however 10 of the 16 proteins had peptide sequences that were not 

highly conserved along the total length of the protein. The majority of the peptides identified 

by LC-MS/MS, from which the O. volvulus proteins were inferred, were also not found in 
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other relevant species, and therefore they can be confirmed as circulating O. volvulus 

proteins. 

 

Intra- and inter-individual variability of the plasma proteome 

     In the absence of any candidate biomarker meeting our criteria, unsupervised 

hierarchical clustering was performed to elucidate grouping among samples and 

visually identify any patterns in the data. Clustering of protein expression levels by 

individual patients rather than by time point was evident (Fig. 4.6A). This indicated 

that overall, the plasma proteomes did not cluster by time, but there was 

considerably higher inter- rather than intra-individual variability. Principal 

component analysis (PCA) was also used to investigate underlying differences 

between samples. The most obvious grouping was observed in all plasma samples 

taken from patient 3, while an individual sample from patient 2, 4 and 5 appeared to 

be outliers (Fig. 4.6B). These same samples also showed distinct branching in the 

hierarchical clustering.  

      Inspection of the drivers of the PCA separation revealed that complement factor 

H-related protein 1, haemoglobin subunits α and β, pregnancy zone protein (PZP), 

and a canonical and a variant sequence of α1-antitrypsin 1 were the main outliers. A 

natural variant of α1-antitrypsin 1 with a single amino acid difference was identified 

in all individuals except patient 3, while the canonical peptide sequence was not 

detected in patient 5. Complement factor H-related protein 1 was also 5-6 fold higher 

in patient 3 at months 12 and 21 compared to in the other patients. Similarly, there 

was up to a 6 fold difference in relative abundance of haemoglobin α and β between 

different individuals, likely due to varying degrees of haemolysis between plasma 

samples. The relative protein abundance of PZP in both female patients (2 and 5) 

was on average 3.6 - 4.6 fold higher than in the male patients (1, 3 and 4) over the 

duration of the study. PZP is one of the main pregnancy associated proteins, and is 

present in plasma at higher concentrations in pregnant and non-pregnant females 

relative to that in males (382). The six protein outliers were removed and the 

analyses repeated; however, intra-individual proteome similarity was still the main 

driver of clustering and correlation among protein expression levels. Although such 

heterogeneity is not ideal, our label-free workflow was robust enough to capture the 

natural variation of protein abundances and isoforms between individuals. 
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Fig. 4. 6. Unsupervised hierarchical clustering and principal component analysis. 

A. Unsupervised hierarchical clustering identified clustering by individual patients rather 

than by time point, indicating considerable inter-individual variability of plasma proteomes. 

Scale represents log2 relative protein intensities from highest (red) to lowest (green). 

B. PCA of the LFQ intensities at baseline (blue); month four (red); month 12 (green); and 

month 21 (black). Individual patients are indicated by: Patient 1 (circle); Patient 2 (triangle); 

Patient 3 (square); Patient 4 (star); Patient 5 (diamond). PCA did not differentiate by any 

time point, but samples from patient 3 were grouped, while three other plasma samples were 

notable outliers.   
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Discussion 

The work presented here describes a shotgun LC-MS/MS analysis of the 

onchocerciasis plasma proteome, and for the first time, an assessment of the 

longitudinal effect of macrofilaricidal treatment on the host plasma proteome. 

Sixteen proteins from O. volvulus were detected in the plasma of individuals with 

onchocerciasis, while proteins from the Wolbachia intracellular bacteria of the worm 

were not detectable. Five O. volvulus proteins were identified consistently in all 

individuals at every time point over the two year period following doxycycline 

treatment, and a further three identified in nearly all individuals over two years. 

Three O. volvulus proteins changed in detection frequency among individuals by 

month 21; two proteins were detected less frequently at the final follow-up while one 

protein was detected in more patients at months four, 12 and 21 relative to baseline. 

Potential parasite protein candidates for infection prevalence and ongoing infection 

clearance were therefore identified in this data set. However, the onchocerciasis 

plasma proteome was found to be largely unchanging over 21 months following 

macrofilaricidal treatment, as no parasite or human proteins statistically significantly 

changed in abundance over time, and no proteins were present in all individuals at 

baseline and absent at a later time point. 

      The current study aimed to track the dynamic profile of onchocerciasis protein 

markers over time in the host following macrofilaricidal treatment, using an unbiased 

proteomic analytical approach. However, the statistical analyses identified only one 

human protein between baseline and month four that met our candidate criteria for a 

biomarker, showing a statistically significant difference in protein relative 

abundance, with >1.5 average fold change between the time points. This protein was 

haemoglobin subunit β, and the differential expression will be as a result of varying 

degrees of haemolysis between individual samples. Assessment of the protein 

detection frequency among individuals at each time point showed that no human 

proteins declined or increased in detection among individuals to indicate 

macrofilaricidal treatment efficacy. Three worm proteins were either more or less 

frequently detected among individuals by month 21 relative to baseline. Two O. 

volvulus proteins, A0A044SN57 and A0A044U885, were the closest to an indicator 

of treatment efficacy, as these proteins were detected less frequently among the five 

patients at 21 months relative to preceding time points. Conversely, the parasite 
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protein A0A044TBP5 was detected less frequently at baseline relative to successive 

time points.  

      In addition to the three O. volvulus proteins as potential indicators of treatment 

efficacy at month 21, five O. volvulus proteins (A0A044U8X5, A0A044RIT0, 

A0A044RT47, A0A044UWJ8 and A0A044V370) were identified in every 

individual at every time point, and a further three (A0A044SEX9, A0A044VCM8 

and A0A044V503) were identified in almost every individual (4-5 patients) at every 

time point. These eight proteins could potentially serve as markers of adult worm 

infection prevalence. Based on the O. volvulus proteomic data by Bennuru and 

colleagues, all but two of the potential parasite markers of infection or infection 

clearance were shown to be enriched in the adult males relative to other worm 

stages, and one to be enriched in the female and one during the mf stage (269). 

Therefore, the higher expression in the male worms relative to females indicates that 

the majority of these proteins may not be circulating markers of adult female worms. 

However, one 11 kDa uncharacterised protein consistently detected over time, 

A0A044VCM8, is enriched in female worms compared to the other worm stages 

(269), and could potentially serve as a circulating marker of adult female worm 

infection. This protein is annotated as a membrane protein. As five individuals is a 

very small sample size, these observations would need to be verified in a larger 

cohort to verify the consistency of the findings. 

      The stage-specific O. volvulus data set from Bennuru et al was also evaluated to 

identify whether any of our parasite proteins had been recognised as a secreted 

protein (269, 328). Approximately 20% of O. volvulus genes are believed to be 

secreted by classical secretion mechanisms, and around 42% are thought to be 

secreted through non-classical mechanisms (269). Excretory/secretory (E/S) products 

are released by all filarial worms, and they are important components of the parasite 

which are involved in diverse functions such as host immune response modulation, 

host tissue remodelling, alteration of host tissue nutritional status, and larval tissue 

migration enhancement (383, 384). However, all 16 O. volvulus proteins detected 

here in the onchocerciasis plasma proteome are not predicted to be secretory 

proteins. Therefore, the O. volvulus proteins are either excreted products or released 

from moribund or dead parasites. Although we did not identify any secreted proteins, 

the relative concentration of proteins from skin-dwelling parasites will be very low 
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relative to plasma proteins, even after depletion of the top 12 abundant plasma 

proteins. Of all the proteins detected in plasma, 4.5% originated from O. volvulus. 

All the O. volvulus proteins detected here by LC-MS/MS had less than three peptides 

used for protein identification, and many were identified by a single peptide. O. 

volvulus proteins in plasma are likely present below the detection limit for MS/MS, 

and the more abundant peptides of the complex biological mixtures will tend to 

‘drown out’ or suppress ion signals from the less abundant peptides.  

      All but one of the O. volvulus proteins were still present in one or more 

individuals 21 months after treatment with doxycycline. This indicates adult worms 

were still present in the host and, actively or not, excreting or shedding proteins. This 

may mean treatment was not completely efficacious, or that the 21 month follow-up 

time period was too short to observe a significant change in the onchocerciasis 

plasma proteome following macrofilaricidal treatment. Filarial worm proteins, such 

as the CFA marker for W. bancrofti, have been shown to markedly decline but not 

completely clear from plasma by two years following macrofilaricidal treatment 

(263, 264). Doxycycline is an effective macrofilaricide that permanently sterilises 

female worms and causes a slow and sustained killing of the adult parasites, causing 

the worms to die or degenerate after 18–27 months (158). However, it has frequently 

been observed that not all worms are dead by 21 months follow up. In the Turner et 

al study from which our patient samples originated (157), a 6-week doxycycline 

(200 mg/day) treatment course resulted in the death of 65% of adult female worms 

from the seven patients examined at 21 months (157). In another study providing a 

6-week course of 200 mg/day doxycycline and ivermectin at six months, no 

macrofilaricidal effect was observed by six months, while at months 20 and 27 a 

macrofilaricidal activity in female worms of more than 60% was observed (152). A 

shorter 5-week course of doxycycline at 100 mg/day resulted in 51% of the female 

worms still alive after two years, indicating a reduced level of macrofilaricidal 

activity of doxycycline with this treatment regimen (156). The incidence of new 

infections in areas with ongoing transmission after treatment with doxycycline could 

also potentially confound the identification of a biomarker that shows a dynamic 

change as an outcome of treatment. New drug-naïve adult worm infections can 

become established over the 21 month period, thus diluting the perceived antifilarial 

effects and therapeutic efficacy of treatment in different patients evaluated at 
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different times thereafter (158). Individuals may have deep onchocercomas with live 

adult worms, or new prepatent infections that are not yet producing mf. Although it 

is unknown whether these O. volvulus proteins are immunogenic and form immune-

complexes in plasma, the parasite proteins may have an extended presence in plasma 

due to an association with immune complexes (385). Different parasite proteins may 

also have a different half-life in plasma due to the highly size and charge selective 

glomerular barrier, where filtration of larger proteins is almost totally restricted 

(386). The molecular weight cutoff for glomerular filtration is believed to be 70 kDa 

(387), and half of the 16 O. volvulus proteins were >70 kDa in mass.  

     The majority (13 of 16) of the identified O. volvulus proteins shared high protein 

sequence ID with two geographically relevant filarial worms, W. bancrofti and L. 

loa. However, 10 of the 16 proteins were shown to have lower (< 70%) sequence 

similarity along the total length of the protein. The potential marker for female worm 

infection prevalence, A0A044VCM8, had only 26.3% total sequence similarity with 

the top matching orthologous L. loa protein, while the O. volvulus protein detected 

less frequently at month 21 relative to baseline, A0A044SN57, had a high level of 

sequence identity with a L. loa protein, but a low level of sequence similarity over 

the total length of the protein (88.2% ID, with 35.0% similarity over the protein 

length). Although it cannot be directly inferred from our LC-MS/MS analyses 

whether these proteins are immunoreactive, or the potential for antibody cross-

reactivity from total protein sequence similarity, higher levels of sequence homology 

with co-infective parasite species would render proteins less robust as potential 

diagnostic candidates. Peptides could be of use as diagnostic markers if one were to 

raise antibodies to recombinant peptides representing only the nonconserved 

region(s) of the candidate protein. However, this area of the protein sequence may 

not contain the epitope(s) that interacts with the antibody, and there still may be a 

risk of cross-reactivity (271). Achieving the necessary specificity and sensitivity has 

been a major bottleneck for the development of antigen detection diagnostic test for 

onchocerciasis (388). For example, a recent multi-omics study that attempted to 

identify candidate antigens for serodiagnosis of onchocerciasis using 

immunoprecipitation techniques found 181 of the 241 O. volvulus immunoreactive 

proteins identified in their study shared over 70% amino acid sequence identity over 

more than 70% of the entire protein length with proteins from geographically 
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relevant species (271). The issue of specificity has not been limited to 

onchocerciasis. The ICT, a point-of-care test for detecting lymphatic filariasis CFA 

has been widely used since the mid 2000’s to detect active infection with adult W. 

bancrofti. However, in recent years it has been shown to produce false positives 

when there is a high infection prevalence of L. loa (389, 390). The O. volvulus short 

peptides experimentally detected here using LC-MS/MS were found to be O. 

volvulus specific for 75% of the proteins identified, verifying the definite parasite 

origin of these peptides.  

      Notable heterogeneity was observed between the plasma proteomes of 

individuals from the trial using LC-MS/MS. With the exception of three outlier 

samples, expression profiles of proteins clearly clustered by the individual rather 

than time point. Although the inter-individual variability between samples may have 

hampered the identification of a potential biomarker in the human proteome, these 

findings confirm that our experimental analyses were robust enough to capture the 

natural variation between individual patients, and even distinguish between men and 

women (by differential expression levels of PZP). The plasma proteome is known to 

have much greater inter- than intra-individual variability (367, 391, 392), and the 

nature of the disease and treatment under investigation, which included large gaps in 

time between sampling time points with potential re-infections, make it very 

challenging to capture and discern potentially relevant changes in protein levels 

related to treatment. There is also the variability of response to treatment among 

individuals, for example individuals with lower levels of infection may show a 

different circulating biomarker profile over time compared to individuals with higher 

parasite burdens (some may clear the worm protein by 12 months, some >27 

months). The host response to onchocerciasis infection will also consist of 

individual-specific dynamic immune and cellular interactions with the parasite (393, 

394). From the host proteome perspective, an additional caveat is that countless 

diseases provoke the same response, such as inflammation, which are not specific.  

      In conclusion, of the sixteen O. volvulus proteins identified in onchocerciasis 

plasma proteome, half could be potential markers of infection prevalence as they 

consistently persisted in individuals over the duration of the trial. One of these 

uncharacterised proteins, A0A044VCM8, which shares a low level of overall 

sequence similarity to a L. loa protein, could be a marker of the adult female worm. 
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However, no individual showed a complete absence of parasite proteins at the final 

follow up, and all but one O. volvulus protein was still detected in plasma at 21 

months. No proteins met our prespecified biomarker criteria, and a convincing 

biomarker of infection clearance in the onchocerciasis plasma proteome by 21 

months post-treatment was not identified. At least for this sample set, 21 months was 

too short a follow-up time to observe a macrofilaricidal effect on parasite protein 

profile in the host plasma. Our findings may be confounded by persisting living 

worms, persistence of plasma proteins and new worms acquired during the two-year 

follow-up. 
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 Chapter 5.  Nucleic acid markers of Onchocerca 

volvulus in plasma  

 

Abstract 

Diagnosis of onchocerciasis has typically been achieved through use of the ‘gold 

standard’ skin snip and morphological evaluation of emergent microfilariae (mf) by 

microscopy. However, this test has reduced sensitivity when mf densities in the skin 

are low, as is often the case for several months following annual mass drug 

administration (MDA) with ivermectin. Parasite-derived miRNAs and DNA as 

potential circulating biomarkers of Onchocerca volvulus in blood provide clear 

benefits over invasive skin snips that do not detect adult worm infections. The aim of 

this study was to assess whether O. volvulus miRNA markers miR-71 and lin-4 

(previously identified by sequencing serum from individuals with onchocerciasis in 

Cameroon) and the specific DNA marker O-150 could be used for diagnosis of 

onchocerciasis from host plasma. We utilised a longitudinal plasma sample set from 

Cameroon to assess the potential of the molecular markers for detecting infection at 

baseline and in the follow up period after receiving microfilaricidal, macrofilaricidal, 

or a combination of the two treatments. The parasite-derived miRNAs, cel-miR-71-

5p and bma-lin-4, were detected in 2.8% of the longitudinal plasma sample set at 

very low abundance, even after extensive optimisation of the RT-qPCR protocol. 

The two miRNAs were also detected in RNA extracted from both Onchocerca 

ochengi and Loa loa at distinct life cycle stages by RT-qPCR. Cel-miR-71-5p and 

bma-lin-4 therefore do not have the necessary specificity or sensitivity to be 

circulating diagnostic markers for onchocerciasis. By comparison, the O. volvulus-

specific TaqMan qPCR assay for the O-150 repeat DNA sequence identified a higher 

proportion of individuals at baseline (44.4%) by qPCR in the longitudinal plasma 

sample set, with a decline in the frequency of positive individuals detected after 

receiving any treatment. This may indicate mf as a source of circulating DNA. A 

small number of mf negative participants were also positive by qPCR. However, 

62.1% of qPCR negative samples had microfilaridermia. The detection of either 

parasite-derived miRNAs or DNA in host plasma does not have the necessary 

sensitivity to be used for diagnostic purposes in elimination ‘end game’ strategies. 
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Introduction 

Diagnosis of onchocerciasis is typically achieved through use of the ‘gold 

standard’ skin snip and morphological evaluation of emergent mf by microscopy. 

While skin snips are specific and more sensitive than clinical examinations, this test 

has reduced sensitivity when mf densities in the skin are low (182), as is often the 

case for several months following annual MDA with ivermectin (231) and in 

populations with long-term exposure to CDTi. To increase sensitivity, skin 

snips/skin scratches can be analysed for Onchocerca genus-specific 150 bp tandem 

repeat sequence using PCR (194, 195). Over 4000 copies of this sequence were 

thought to be present per haploid genome of O. volvulus (195), however a recent 

estimate of the true genome-wide copy number of the O-150 repeats is 5,920 (199). 

To achieve species-specificity, hybridisation with an O. volvulus specific probe can 

also be used (198). In addition to conventional PCR analysis, real time qPCR assays 

and loop mediated isothermal amplification (LAMP) methods have been developed 

for highly sensitive and specific amplification of O. volvulus DNA targets (200-204).  

      Detection of the O-150 repeat sequence in skin snips by molecular testing offers 

improved sensitivity and specificity over parasitological and immunological 

methods, however there are also inherent limitations. In order to detect O. volvulus 

DNA from skin snips by PCR, mf must have initially been present in the skin. This 

test is therefore not appropriate for use for a number of months following ivermectin 

treatment, and results may also be confounded by DNA detected from dead or dying 

mf. Furthermore, skin snips are unpopular and invasive, and the procedure has been 

refused by entire communities (181). An attractive alternative would be the diagnosis 

of onchocerciasis from a circulating O. volvulus molecular marker, where blood 

sample collection is less invasive and detection is not reliant on the presence of mf in 

the skin. PCR has been used to detect O-150 DNA repeats from Onchocerca gibsoni 

in cattle serum (395); however, to the best of our knowledge, PCR of the O-150 

sequence has solely focussed on skin snips for O. volvulus diagnosis in humans. The 

onchocercomas where adult worms reside are highly vascularised (249, 250), and 

therefore parasite DNA may be detectable in the blood using a sensitive qPCR 

platform. The detection of an O. volvulus-specific DNA sequence in the host 

circulation has the potential to identify active infection by adult worms irrespective 
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of mf status, and the levels of parasite DNA detected may provide an indication of 

infection intensity.  

      Another avenue that has been proposed for onchocerciasis diagnostics is the 

detection of parasite small RNAs in the host circulation. RNA-based methods may 

be of particular use in diagnosing filarial infections, as this could distinguish active 

infection, as well as facilitate the identification of species- and stage-specific 

expression (289, 290). MicroRNAs (miRNAs) are small (~22 nt in length) non-

coding RNAs that function as post-transcriptional gene regulators, typically by 

inducing gene silencing of their target (281). In nematodes, miRNAs have been 

implicated in several important physiological processes such as development, 

differentiation and homeostasis, and possibly drug resistance (284). The small RNAs 

are also present in mammalian extracellular body fluids such as plasma, where they 

are believed to be particularly stable due to their association with specific proteins or 

by encapsulation in small lipoprotein vesicles (298, 299). In recent years, it has been 

established that miRNAs secreted/excreted by parasitic nematodes, including filarial 

worms such as O. volvulus, O. ochengi, L. loa, D. immitis, B. pahangi and L. 

sigmodontis, and trematodes, S. japonicum and S. mansoni, can be detected in the 

serum of their respective animal hosts (251, 287, 291, 294-297). In addition, 

preliminary studies have shown that miRNAs originating from S. mansoni enabled 

the differentiation between uninfected and infected serum in humans (295).  

      Six O. volvulus miRNAs were identified in the serum and plasma of individuals 

with onchocerciasis from Ghana and Cameroon using Illumina high-throughput 

sequencing (291). Of these, lin-4 and miR-71 were the only parasite-derived 

miRNAs identified in the Cameroon serum. These two miRNAs were also detected 

in bovine nodule fluid from O. ochengi, and in the plasma of baboons infected by L. 

loa through deep-sequencing (296), but have not yet been experimentally confirmed 

in the parasites using RT-qPCR. Although several studies have demonstrated the 

conserved nature of miRNA secretion by nematodes (251, 287, 291, 296, 307), the 

identification of novel miRNAs from O. ochengi in nodule fluid holds promise that 

O. volvulus-specific miRNAs may also be present in the host circulation (291). 

Verifying conserved circulating O. volvulus-associated miRNAs would therefore 

provide information on the diagnostic potential of parasite-derived miRNAs for 

onchocerciasis. 
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Aim of the study 

The aim of this study was to assess the potential of O. volvulus nucleic acid 

markers in host plasma for diagnosis of active infection and antifilarial treatment 

efficacy. A longitudinal plasma sample set from Cameroon was screened to assess 

the potential of molecular markers for detecting adult worm infection pre-treatment, 

and in the two year follow-up period after receiving microfilaricidal (ivermectin), 

macrofilaricidal (doxycycline), or a combination of the two treatments. Lin-4 and 

miR-71 were selected as the O. volvulus miRNA targets for investigation, as they 

have previously been detected by sequencing plasma from individuals with 

onchocerciasis in Cameroon (291). A TaqMan qPCR assay (201) for the O. volvulus 

specific O-150 tandem repeat sequence was selected to detect circulating O. volvulus 

DNA in the host. 

 

 

Methods  

Plasma samples 

Plasma from onchocerciasis infected-individuals was collected over 2003 - 

2005 as part of a randomised Phase II community based trial conducted in the market 

town of Widikum, in the North West Province of Cameroon. Full details of the trial 

and original sample acquisition can be found in the study report (157), and relevant 

details have been outlined in Chapter 2. In brief, enrolled individuals were aged 

between 15 - 60 with O. volvulus microfilaridermia (>10 mf/mg skin snip), and they 

were assigned to one of three drug regimens: 

(i) DOXY: Doxycycline (2 × 100 mg capsules daily) for six weeks plus non-

matching ivermectin-dummy pill at month four (lactose tablet). 

(ii) DOXY+IVM: Doxycycline (2 × 100 mg capsules daily) for six weeks 

plus ivermectin (150 µg/kg oral dose) at month four. 

(iii) IVM: Matching doxycycline-placebo for six weeks plus ivermectin (150 

µg/kg oral dose) at month four. 

      Plasma from the trial participants was collected at baseline and then at four, 12 

and 21 months after the start of DOXY or DOXY-placebo treatment. At each time 
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point, O. volvulus microfilaridermia was assessed by microscopy. Some patients had 

or developed co-infections with L. loa and M. perstans over the duration of the trial. 

As the parasite miRNAs miR-71 and lin-4 are believed to also be present in L. loa 

and their expression is unknown in M. perstans, individuals infected only by O. 

volvulus across the entire trial follow-up were selected for the longitudinal study. 

After de-risking co-occurrence of L. loa/M. perstans infections by deselecting those 

samples derived from patients who were positive for L. loa/M. perstans mf at any 

time point, and those with insufficient sample volumes, the final sample set 

included: DOXY group (n = 9), DOXY+IVM (n = 5) and IVM (n = 4). Their median 

age was 39 years, with a range from 15 to 55 years. The ratio of female to male 

participants was 1:1, and they were evenly distributed between the three treatment 

groups. Parasitological details of patients selected for this study can be found in 

Table 5.1. European control plasma was obtained from the national health service 

(NHS), UK. All plasma samples were stored at -80 oC prior to use. 

miRNA extraction 

       Small RNA was extracted from 200 μl human plasma samples using the 

miRCURY™ RNA Isolation Kit – Biofluid (Exiqon), following the manufacturer’s 

instructions. Further details can be found in Chapter 2. A synthetic RNA spike-in 

mixture (Exiqon) was added to the lysis buffer to monitor technical variation 

between samples. Exiqon RNA spike-in mixture is used to monitor RNA isolation, 

and consists of three pre-mixed synthetic miRNAs Sp2, Sp4 and Sp5, corresponding 

to high, medium and low abundance miRNAs, respectively. On-column DNase 

treatment was applied, and the eluted small RNA was stored at -80 oC pending use. 

RNA used in downstream applications was based on sample volume input. 

      Adult male O. ochengi and L4 L. loa were sourced from a biobank at the LSTM, 

UK stored at -80 oC in RPMI. Due to scarcity of O. volvulus material and as the 

miRNAs of interest have also been reported in the closely related O. ochengi (291), 

total RNA was extracted from O. ochengi to validate the two parasite miRNA qPCR 

assays and use as a positive control. Total RNA was obtained from two adult male 

O. ochengi using the miRCURY™ RNA Isolation Kit – Cell and Plant (Exiqon), 

following the manufacturer’s instructions. On-column DNase treatment was 

performed and eluted RNA was stored at -80 oC pending use. This extraction 
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procedure was also used to extract total RNA from two L4 L. loa worms. Total RNA 

and absence of contaminating DNA was quantified using the Qubit RNA BR Assay 

Kit and Qubit dsDNA HS Assay Kit, respectively, for Qubit 3.0 Fluorometer. 

 

 

Patient ID 

 

 

Treatment 

 

Baseline mf  

(mf/mg) 

 

T4 mf    

(mf/mg) 

 

T12 mf 

(mf/mg) 

 

T21 mf 

(mf/mg) 

1 (a.1) DOXY 40 1 2 0 

2 DOXY 73.5 0 23.5 1 

3 DOXY 9.5 14 37.5 0 

4 DOXY 124.5 0 5.5 0 

 

a.1 

 

DOXY 

 

40 

 

1 

 

2 

 

0 

a.2 DOXY 15.5 34 6.5 0 

a.3 DOXY 14 2 0 0 

a.4 DOXY 20.5 10 0 0 

a.5 DOXY 16.5 2 0 3.5 

a.6 DOXY 23.5 1 0 8.5 

a.7 DOXY 13 0 1 0 

a.8 DOXY 19 93 11.5 0 

a.9 DOXY 45 6 0 0 

      

b.1 DOXY+IVM 18 9 1.5 0 

b.2 DOXY+IVM 24 1 0 0 

b.3 DOXY+IVM 34.5 13 0.5 0 

b.4 DOXY+IVM 88 0 0 1 

b.5 DOXY+IVM 61.5 28 0 0 

      

c.1 IVM 90.5 99 0.5 0 

c.2 IVM 12 0 0 0.5 

c.3 IVM 15.5 1 0 2 

c.4 IVM 23.5 2 30 8.5 

Table 5. 1. Parasitology of participants selected for the current study. 

Parasitology of the 18 onchocerciasis-infected individuals eligible for longitudinal analysis 

(a.1 - c.4) and the four included for pilot studies (1 - 4). For each participant, the allocated 

treatment group and the mean number of mf/mg skin snip at baseline, and four, 12, and 21 

months after starting the trial, is detailed. Patient 1 was also included in the longitudinal 

analysis, designated a.1 here, as they had sufficient sample volumes and met the inclusion 

criteria of being O. volvulus positive and M. perstans/L. loa mf negative at every time point. 

DOXY, doxycycline; DOXY+IVM, doxycycline + ivermectin; IVM, ivermectin.   
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miRNA primers 

      All miRNAs in plasma and parasite RNA samples were reverse transcribed into 

cDNA using a universal reverse transcription (RT) reaction. Prior to cDNA 

synthesis, the synthetic miRNA spike-in Sp6 (Exiqon) was added to plasma RNA 

samples to monitor technical variation in the RT step. 

      LNA-enriched miRNA-specific qPCR primers from Exiqon were used to 

enhance specificity for target templates. Lin-4 and miR-71 are here referred to as 

bma-lin-4 and cel-miR-71-5p, respectively, following the naming convention 

assigned by their homology to miRNAs listed in miRBase (release 21, 

http://www.mirbase.org). The linearity of cel-miR-71-5p and bma-lin-4 qPCR assays 

(Exiqon) was determined by preparing five log10 serial dilutions of O. ochengi 

cDNA for each assay, with each dilution performed in triplicate. Assay 

reproducibility was assessed by repeating experiments three times on consecutive 

days to enable calculation of the inter- and intra-assay coefficient of variation (CV) 

for cel-miR-71-5p and bma-lin-4. The limit of detection (LOD) for the parasite 

qPCR assays was determined by preparing a 1:10 dilution series spanning over 105  

to 100 copies from amplicon stocks of cel-miR-71-5p and bma-lin-4. Nine reactions 

were conducted per dilution. The 95% LOD for each assay was determined using a 

probit regression analysis. Specificity of the parasite miRNA assays was evaluated 

using European control plasma and by melt curve analysis. 

      Six human miRNA qPCR assays were tested with European control plasma to 

identify an endogenous control for plasma samples: hsa-miR-16-5p, hsa-miR-103a-

3p, hsa-miR-425-5p, hsa-miR-93-5p, hsa-miR-191-5p, and hsa-miR-484. The 

linearity of the hsa-miR-16-5p qPCR assay was determined by preparing standard 

curves with five log10 serial dilutions of European control plasma cDNA, in three 

replicates. The experiment was repeated three times on consecutive days. Assays 

provided by Exiqon for synthetic miRNA spike-ins, Sp2, Sp4, Sp5 and Sp6, were 

also used to monitor technical reproducibility and extraction efficiency. 

miRNA RT-qPCR 

      For both plasma and parasite samples, the two-step miRCURY LNA™ Universal 

RT microRNA PCR (Exiqon) methodology was utilised. For clinical human 

http://www.mirbase.org/
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samples, RNA and cDNA input volumes into the RT and qPCR systems, 

respectively, were empirically determined in European control plasma and a subset 

of four trial plasma samples. RNA volumes tested were 2 µl, 4 µl and 7 µl 

(maximum volume for RT reaction), and cDNA was prepared in dilutions of 1:5, 

1:10, 1:20 and 1:40. 

      All experiments included a positive control, a no reverse transcriptase (–RT) 

control for each sample, and a ‘no template’ control (NTC) obtained from a mock 

RNA extraction. Each sample was initially tested in duplicate. A qPCR assay was 

considered positive if the amplification signal crossed the threshold in fewer than 40 

cycles and was amplified in both replicates. A single peak at the correct melting 

temperature (Tm) was also required for each product, as determined by the melt 

curve analysis. The anticipated Tm for bma-lin-4 and cel-miR-71-5p in clinical 

samples was determined from repeated standard curves prepared from O. ochengi 

cDNA. Samples with amplification in one reaction were re-tested in triplicate, and 

were only considered positive if amplification occurred in two or more reactions, 

with a Cq < 40 and the correct Tm in the melt curve.  

DNA extraction 

      DNA was extracted from 200 µl plasma using the QIAamp DNA Blood Mini Kit 

(Qiagen), following the manufacturer’s instructions. To control for technical 

variation between samples, phocine herpes virus 1 (PhHV-1) was also spiked into 

the lysis buffer prior to DNA extraction. The eluted DNA was stored at -80 oC 

pending use. Plasma DNA input used in downstream applications was based on 

initial sample volume input. 

      O. volvulus DNA was sourced from a biobank at LSTM, UK. The DNA had been 

extracted from a human onchocercoma and stored at -80 oC.  

Primers for Onchocerca volvulus O-150 DNA experiments 

      For detection of O. volvulus DNA, a pre-validated TaqMan qPCR assay specific 

to O. volvulus tandem repeat O-150 DNA sequence (accession no. J04659) (201) 

was used. The details of the primers/probe and their design have been reported 

elsewhere (201). O-150 qPCR assay specificity was verified by testing in European 

control plasma and NTC reactions. The linearity of the TaqMan assay was assessed 
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from standard curves prepared from five 1:1 serial dilutions of O. volvulus DNA, in 

three replicates. Three standard curves were prepared over consecutive days. The 

LOD for the assay has been reported elsewhere (201).  

      A qPCR assay (Sigma) for the plasma endogenous control glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) was assessed by preparing a series of five 1:1 

dilutions of European control plasma DNA, in three replicates. Standard curves were 

repeated three times on alternate days. Primers for viral spike-in PhHV-1 were also 

obtained (IDT).  

qPCR for Onchocerca volvulus O-150 DNA experiments 

      Experiments included a positive control and a NTC obtained from a mock DNA 

extraction. Each sample was initially tested in duplicate. A qPCR assay was 

considered positive if the amplification signal had a Cq < 40 and was amplified in 

both replicates. Samples with amplification in one reaction were re-tested in 

triplicate, and were only considered positive if amplification occurred in two or more 

reactions.  

Statistical analysis 

      All analyses were performed using GraphPad Prism 5 with the exception of the 

probit regression analysis, which was performed using SPSS (Version 23, IBM 

Corp). Relative levels of the plasma reference miRNA and DNA between the 

different treatment groups at each time point were both compared using non-

parametric Kruskal-Wallis test. To assess whether the endogenous molecular marker 

levels were consistent in individuals over time for each treatment group, non-

parametric Friedman’s test, followed by Dunn’s post hoc test (with 95% confidence 

intervals) was used.  
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Results 

Parasite miRNA qPCR assays 

Both bma-lin-4 and cel-miR-71-5p miRNAs were detected in RNA extracted 

from adult male O. ochengi and in L4 L. loa. The efficiency of the cel-miR-71-5p 

qPCR assay was 99.9%, with an R2 value of 0.979 (Fig. 5.1A). The overall inter and 

intra assay coefficient of variation (CV) from three qPCR experiments was 1.87% 

and 0.15%, respectively. The average (± SD) efficiency of the qPCR across the three 

experiments was 102.7% (3.41). The linear dynamic range of the assay was over 105 

to 102 copies, and the mean Cq value across nine reactions at the last linear point of 

the curve was 34.13 ± 1.50 (± SD). Probit regression analysis determined the 95% 

LOD as 140 copies (95% confidence interval, CI: 95 - 325 copies) of cel-miR-71-5p. 

Melt analysis detected a single peak at a Tm of 69.5 oC. 

      The efficiency of the bma-lin-4 qPCR assay was 97.3%, and the R2 was 0.993 

(Fig. 5.1B). The overall inter and intra assay CV was 1.76% and 0.09%, respectively. 

The average (± SD) efficiency of the qPCR across the three experiments was 95.0% 

(3.08). The linear dynamic range of the bma-lin-4 assay was 105 to 102 copies, with a 

mean Cq value of 35.30 ± 0.76 (± SD) at the final linear point of the curve. The 95% 

LOD was 73 copies (95% CI: upper and lower bound could not be determined). Both 

parasite miRNA qPCR assays tested negative in control plasma, and in NTC and –

RT reactions. Melt analysis detected a single peak at a Tm 71.5 oC.   
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Fig. 5. 1. Standard curves of two parasite miRNA qPCR assays. 

A. Efficiency and precision of the cel-miR-71-5p qPCR assay tested over five cDNA 1:10 

dilutions. The average of three reactions and ± SD per dilution is shown. 

B. Efficiency and precision of the bma-lin-4 qPCR assay over five 1:10 cDNA dilutions. The 

mean of three replicates and ± SD per dilution are displayed.  

 

Plasma miRNA qPCR assays 

     Six qPCR assays were tested to identify a plasma endogenous control miRNA: 

hsa-miR-16-5p, hsa-miR-103a-3p, hsa-miR-425-5p, hsa-miR-93-5p, hsa-miR-191-

5p and hsa-miR-484. Hsa-miR-16-5p was the most abundant miRNA in the 

European control plasma and was selected as the reference control (Fig. 5.2A). The 

efficiency of the hsa-miR-16-5p qPCR assay was 106.7%, with an R2 of 0.990 (Fig. 

5.2B). The overall inter and intra assay CV over three qPCR experiments was 1.34% 

and 0.04%, respectively. The average (± SD) efficiency of the qPCR assay across the 

triplicate qPCR experiments was 109.9% (3.20).  
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Fig. 5. 2. Assessment of plasma reference miRNAs. 

A. Six miRNA qPCR assays were evaluated to determine a suitable endogenous control for 

plasma samples. Hsa-miR-16-5p was the most abundant miRNA in European control 

plasma. For each assay, the mean of three replicates with minimum and maximum values are 

displayed. 

B. Efficiency and precision of the hsa-miR-16-5p qPCR assay tested over five 1:10 cDNA 

dilutions. Graph shows average of three replicate reactions and ± SD.  

 

miRNA RT-qPCR  

      To verify that the RNA extraction and RT-qPCR methods were comparable in 

different plasma samples for miRNAs, a pilot study was conducted with European 

control plasma and plasma taken at baseline from four participants in the DOXY 

group. The plasma endogenous miRNA hsa-miR-16-5p and synthetic miRNAs, Sp2, 

Sp4, Sp5 and Sp6, were used as quality controls (Fig. 5.3). 

      The expression of hsa-miR-16-5p was comparable in samples from different 

individuals, with an average Cq of 24.16 ± 0.3 (SEM). The synthetic miRNAs Sp2, 

Sp4 and Sp5, corresponding to miRNAs at high, medium and low abundance, 

respectively, added to plasma prior to RNA extraction were comparably detected in 

all samples by RT-qPCR. The synthetic spike-in Sp6, added to the RNA eluate prior 

to RT, was also similarly detected in the plasma samples. The spike-ins 
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demonstrated that the RNA extraction and RT steps were both reproducible, and the 

expression levels of hsa-miR-16-5p showed that extracellular miRNA concentrations 

between plasma samples were comparable. The extraction spike-ins, Sp2, Sp4 and 

Sp5, and hsa-miR-16-5p were less abundant in the European control plasma relative 

to the four trial plasma samples, indicating there may be some PCR inhibition in this 

sample.  

      The four trial samples were negative for parasite miRNAs cel-miR-71-5p and 

bma-lin-4, as were the NTC and –RT reactions. However, the Sp5 spike-in 

corresponding to low abundance miRNAs was not always detected in all sample 

replicate reactions. Therefore, other low abundance miRNAs in the plasma samples, 

such as parasite miRNAs, may also be undetected using the current method. 

    

Fig. 5. 3. Plasma reference and spike-in miRNA controls. 

A. Expression of plasma endogenous control miRNA hsa-miR-16-5p was comparable in 

plasma samples collected at baseline from four trial participants, confirming the presence of 

extracellular miRNAs and a similar RNA input across trial samples. European control 
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plasma had notably lower abundance of hsa-miR-16-5p detected relative to trial individuals. 

Graph shows mean of three replicates and ± SD for each sample. 

B. To monitor RNA extraction, synthetic miRNAs, Sp2, Sp4, Sp5, were spiked into plasma 

prior to RNA extraction at a pre-mixed volume corresponding to high, medium and low 

abundance miRNAs, respectively. The synthetic miRNA Sp6 was spiked into RNA eluate to 

monitor RT. Spike-ins were comparably detected across the plasma samples collected at 

baseline from four trial participants, indicating that the extraction and RT of samples was 

performed with similar efficiency. The mean of three replicates and ± SD are displayed for 

each sample. 

 

Optimisation of the miRNA RT-qPCR workflow 

      RNA from European control plasma and the four trial plasma samples was added 

in incremental volumes to the RT reaction mix, and the resultant cDNA for each 

sample was progressively concentrated. The qPCR assay for plasma reference 

miRNA hsa-miR-16-5p was used to monitor PCR inhibition, which can occur when 

RT or qPCR inhibitors present in a sample become more concentrated. The 

expression levels of hsa-miR-16-5p showed that inhibition did not occur in the trial 

plasma samples with increasing volumes of RNA and cDNA input (Fig. 5.4B-E). 

However, the hsa-miR-16-5p assay showed signs of inhibition at higher RNA 

volumes in the European control plasma sample (Fig. 5.4A).  

      Increasing the volumes of RNA and cDNA into RT-qPCR workflow identified 

one of the four trial participants as positive for worm miRNA cel-miR-71-5p (Fig. 

5.5). Patient 4 was very weakly positive for cel-miR-71-5p, with average Cq values 

> 37. However, the parasite miRNA was consistently detected at several of the 

increased RNA and cDNA inputs. The three other trial samples were negative after 

repeat testing in triplicate reactions.  

      The absence of observable PCR inhibition and the detection of a worm miRNA 

(albeit at very low abundance) justified increasing the RNA input from the initial 

volume of 2 μl to the maximum 7 μl, and concentrating the cDNA from a 1:40 

dilution to a 1:5 dilution for subsequent RT-qPCR analyses.  
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Fig. 5. 4. Monitoring PCR inhibition using a plasma endogenous control miRNA. 

A-E. The relative change in Cq value of plasma reference miRNA hsa-miR-16-5p in 

European control plasma (A) and plasma taken at baseline from four individuals from the 

trial (B-E). No inhibition appeared to occur in the trial samples after increasing RNA and 

cDNA inputs into the RT and qPCR reactions, respectively. Inhibition occurred in the 

European control plasma with 7 μl RNA. Graph shows the result of single wells due to 

limitions on RNA sample volumes. 
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Fig. 5. 5. Detection of a parasite miRNA in plasma after optimising the RT-qPCR. 

Parasite miRNA cel-miR-71-5p was detected in one onchocerciasis positive individual at 

baseline after increasing the RNA volume and concentrating the resultant cDNA. The 

average of two replicates and the ± SD are displayed. 

 

Detection of parasite miRNAs in clinical plasma samples  

      To further evaluate whether cel-miR-71-5p was positive in plasma as a result of 

onchocerciasis infection at baseline, plasma RNA from patient 4 (testing positive at 

baseline) collected pre-treatment and at months four, 12 and 21 post-doxycycline 

treatment was compared to plasma RNA from patient 2 (testing negative at baseline). 

Patient 4 was positive for cel-miR-71-5p at baseline and month four, and negative at 

months 12 and 21 (Fig. 5.6A). In patient 4, the relative level of cel-miR-71 was 

higher at month four compared to baseline; however, we noted a co-infection with 

M. perstans had developed by this time (n = 60 mf/ml blood). Therefore, we can not 

be certain the cel-miR-71-5p positive in the plasma of patient 4 originated from O. 

volvulus at month four. Patient 2 was negative at all time points. 

      The endogenous control hsa-miR-16-5p showed that the patient samples had 

comparable initial levels of extracellular miRNAs. The spike-in miRNA Sp5, 

corresponding to low abundance miRNAs, showed that miRNAs present at low 

levels were consistently detected and the samples were processed with equivalent 

efficiency (Fig. 5.6B). 
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Fig. 5. 6. Longitudinal evaluation of cel-miR-71-5p in two individuals with 

onchocerciasis before and after doxycycline-treatment. 

A. Patient 4 was positive for cel-miR-71-5p at baseline and at four months of the trial, and 

negative at months 12 and 21. Graph shows mean of two replicates and ± SD. 

B. Relative levels of the endogenous control miRNA hsa-miR-16-5p and synthetic spike-in 

Sp5 were comparable between patient 2 and patient 4 at baseline, and at months four, 12 and 

21 of the trial post-doxycycline treatment. The mean of two replicates and ± SD per sample 

are displayed. 

 

Longitudinal analysis of parasite-derived miRNAs in plasma following 

antifilarial treatment  

      A larger longitudinal analysis was conducted to test individuals O. volvulus 

positive and M. perstans/L. loa mf negative before and after receiving one of three 

antifilarial treatment regimens. To reduce the risk of detecting cel-miR-71-5p as a 

result of a co-infecting parasite, we selected individuals from the DOXY group 

(n=9), the DOXY+IVM group (n=5), and the IVM group (n=4) infected with O. 

volvulus mf and with no detectable M. perstans/L. loa mf. From the 18 individuals 

tested at the four time points, 32 samples were re-tested in triplicate after one of two 

qPCR reactions was positive for a parasite miRNA. Two of the 72 samples in total 

(2.8%) were accepted as positive after re-testing. Cel-miR-71-5p was very weakly 

positive in one DOXY group patient at month four, and bma-lin-4 was also weakly 
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positive in one patient in the DOXY group at month 12 (Table. 5.2). All qPCR 

controls tested negative for worm miRNAs.  

Patient ID Treatment Time point miRNA Cq (± SD) 

a.5 DOXY T4 cel-miR-71-5p 38.02 ± 0.33 

a.7 DOXY T12 bma-lin-4 36.75 ± 0.21 

Table 5. 2. Clinical plasma samples positive for worm miRNAs. 

Average Cq from three replicates and SD for the two trial individuals positive for worm 

miRNAs, cel-miR-71-5p and bma-lin-4, by qPCR.  

 

      The plasma endogenous control miRNA hsa-miR-16-5p was consistently 

detected in all samples and no significant difference (Kruskall Wallis test, P = >0.05) 

in expression levels was found between the three treatment groups at any time point 

of sampling (Fig. 5.7A). The IVM group and DOXY+IVM group also showed no 

significant change in hsa-miR-16-5p expression in individuals across sampling time-

points (Friedman’s test, P = >0.05). However, a statistically significant difference in 

expression levels of hsa-miR-16-5p was detected in participant samples from the 

DOXY group over time (Friedman test, P = 0.0191). Dunn’s post hoc test revealed 

that a significant difference was observable between months four and 12 (Dunn’s 

multiple comparisons, P = <0.05). 

     Hsa-miR-16-5p had higher average Cq values in plasma samples at month four 

relative to samples taken at month 12 from the same individuals in the DOXY group. 

This was also observed to a lesser extent with the spike-in Sp5. The difference in 

time points is therefore likely a result of a small degree of inhibition in some samples 

at month four relative to those from month 12. Overall, Sp5 was consistently and 

comparably detected in all treatment groups and time points of sampling (Fig. 5.7B). 

Therefore, we have verified that number of parasite miRNA-negative individuals 

was not as a result of the quality of the samples or methodology used. 
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Fig. 5. 7. Longitudinal detection of plasma endogenous control and spike-in miRNAs in 

trial individuals before and after following one of three antifilarial treatment regimens. 

A. The plasma endogenous control miRNA hsa-miR-16-5p was detected in the European 

control plasma and all trial participant plasma samples. Graph shows the mean of duplicate 

reactions for individual samples, and the ± SEM for each treatment group at each time point. 

There were no significant differences in hsa-miR-16-5p between groups at any time point. 

Differences in the miRNA marker over time in the IVM and IVM+DOXY group were also 

non-significant. A significant difference (P = 0.0191) in hsa-miR-16-5p in individuals over 

time in the doxycycline group was detected. Dunn’s post hoc test identified a significant 

difference in these individuals between month four and month 12.  

B.  The spike-in miRNA Sp5 was positive in the European control and all trial participant 

plasma samples. The average of two replicates for each individual, and the ± SEM for the 

treatment groups at each time point are displayed.  

 

qPCR assay for Onchocerca volvulus O-150 DNA 

     We next sought to establish whether O. volvulus DNA could be detected in the 

host plasma. An O. volvulus-specific TaqMan qPCR assay for the O-150 DNA 

sequence was assessed. The efficiency of the O-150 qPCR assay when tested with 
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1:2 serial dilutions of O. volvulus DNA was 97.7%, with an R2 value of 0.964 (Fig. 

5.8A). The overall inter and intra assay CV over the three qPCR experiments was 

0.69% and 0.04%, respectively. The average (± SD) efficiency of the qPCR across 

the three experiments was 97.4% (7.05). The O-150 qPCR assay tested negative in 

European control plasma and in NTC reactions.  

      The efficiency of the qPCR assay for the endogenous plasma control GAPDH 

when tested with European control plasma DNA was 100.1%, with an R2 value of 

0.942 (Fig. 5.8B). The overall inter and intra assay CV over three experiments was 

1.46% and 0.19%, respectively. The average (± SD) efficiency of the qPCR across 

the three experiments was 110.7% (11.54). 

 

Fig. 5. 8. Standard curve of the O. volvulus O-150 qPCR assay and endogenous plasma 

control GAPDH qPCR assay. 

A. Efficiency and precision of the O-150 DNA qPCR assay tested over five 1:2 O. volvulus 

DNA dilutions. The average of three reactions and ± SD per dilution are displayed. 

B. Efficiency and precision of the GAPDH qPCR assay over five 1:2 plasma DNA dilutions. 

The mean of three replicates and ± SD per dilution is shown. 

 

Detection of O-150 DNA in clinical plasma samples  

       The O-150 qPCR assay was initially assessed in plasma collected at baseline 

from four individuals in the DOXY group. Two of the four individuals, patients 3 

and 4, tested positive for O-150 (Fig. 5.9A). Of note, patient 4 was also positive for 

parasite miRNA cel-miR-71-5p in the miRNA pilot study. The European control 
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plasma and NTC reactions were negative for O-150. The endogenous control 

GAPDH assay was detected at comparable levels across the control and trial 

participant samples, with the exception of patient 4. Patient 4 had higher levels of 

GAPDH DNA relative to the other individuals tested, and the highest level of O. 

volvulus DNA detected (Figure 5.9B). However, patient 3 was also positive for O-

150 and had comparable levels of GAPDH relative to the other individuals tested.  

 

Fig. 5. 9. O. volvulus DNA positive and endogenous control DNA positive individuals. 

A. The qPCR assay for the O. volvulus O-150 DNA sequence was positive in two of the four 

baseline plasma samples tested from trial individuals, and negative in the European control 

plasma. Graph shows mean of two replicates and ± SD for each sample. 

B. The plasma endogenous control DNA GAPDH was detected in the control plasma and in 

samples collected at baseline from the four trial individuals. GAPDH DNA was comparably 

detected in all samples except patient 4, where levels were higher in this sample relative to 

the others. The mean of two replicates and ± SD for each sample are shown. 

 

Longitudinal analysis of O-150 DNA in plasma following antifilarial treatment  

      To verify the detection of O-150 in the plasma of individuals with onchocerciasis 

and determine whether treatment affects detection over time, the O-150 qPCR assay 

was used to assess the 18 participants screened in the miRNA study. The O-150 

assay was positive in eight of 18 (44.4%) baseline samples with skin snip-confirmed 

onchocerciasis. At month four, four of 18 (22.2%) plasma samples were positive for 



 

153 
 

O-150 by qPCR, and this declined to one (5.6%) positive sample detected at both 

months 12 and 21. The positive and negative samples among the 72 samples tested 

are provided in Table 5.3.  

  
O-150 qPCR 

Patient Treatment Baseline Month 4 Month 12 Month 21 

a.1 DOXY Neg Neg Neg Neg 

a.2 DOXY 39.26 ± 1.24 Neg Neg Neg 

a.3 DOXY 37.28 ± 1.05 Neg Neg Neg 

a.4 DOXY 38.22 ± 1.24 Neg Neg Neg 

a.5 DOXY Neg Neg Neg Neg 

a.6 DOXY Neg Neg Neg Neg 

a.7 DOXY 34.31 ± 0.54 36.88 ± 0.44 38.43 ± 1.02 37.47 ± 0.65 

a.8 DOXY Neg Neg Neg Neg 

a.9 DOXY Neg Neg Neg Neg 

b.1 DOXY+IVM Neg Neg Neg Neg 

b.2 DOXY+IVM Neg Neg Neg Neg 

b.3 DOXY+IVM 38.79 ± 0.52 Neg Neg Neg 

b.4 DOXY+IVM 38.37 ± 1.66 38.61 ± 0.84 Neg Neg 

b.5 DOXY+IVM 38.61 ± 0.46 Neg Neg Neg 

c.1 IVM 38.26 ± 0.26 36.03 ± 0.38 Neg Neg 

c.2 IVM Neg Neg Neg Neg 

c.3 IVM Neg Neg Neg Neg 

c.4 IVM Neg 38.42 ± 0.99 Neg Neg 

Table 5. 3. Individuals positive and negative for O-150 in plasma by qPCR. 

Trial participants that were positive and negative for O. volvulus O-150 DNA sequence in 

plasma by qPCR over the duration of the trial. The time point of positive or negative qPCR 

detection for each individual is listed. Mean Cq value and ± SD for positive results are 

displayed. Neg, Negative.  

 

      The proportion of O-150 positive patients in each treatment group is shown in 

Fig. 5.10A. For all treatment groups, the greatest number of O-150 positive results 

were at baseline and month four. By month four, the number of O-150 positive 

patients had declined from four to one (75% decrease) in the DOXY group, and three 

to one (66.7% decrease) in the DOXY+IVM group. The number of O-150 positive 

individuals increased in the IVM group from one to two (50% increase) by month 
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four, however IVM was not provided until month four of the trial. Two individuals, 

one from DOXY+IVM group and one from IVM group, were positive both at 

baseline and at month four, but negative at months 12 and 21. One individual treated 

with DOXY was positive at every time point over the two years of the trial (Fig. 

5.10B). This patient had 13 mf/mg at baseline, and <1 mf/mf at all subsequent time 

points of sampling. Of note, this patient was also positive for bma-lin-4 at month 12. 

 

Fig. 5. 10. O-150 positive plasma samples by treatment group and time point. 

A. Percentage of O-150 positive individuals in each treatment group at each time point.  

B. The three individuals that were positive for O-150 by qPCR at more than one time point. 

Patient a.7 was positive at all time points, while patients b.4 and c.1 were only positive at 

baseline and month four. Average Cq from three reactions and ± SD are shown for each 

sample.  
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      Around 1/3 of all samples tested were negative for O. volvulus by both qPCR and 

skin snip. Of the total 14 O-150 qPCR positive plasma samples, 11 (78.6%) had 

microfilaridermia, and two of these mf positive individuals (18.2%) had <10 mf/mg. 

The vast majority of the O-150 positive samples were therefore positive by skin snip; 

however, some individuals with very low or negative mf burdens in skin were also 

positive by qPCR of plasma. Of the 58 samples in total that were negative for O-150 

by qPCR, 36 (62.1%) had microfilaridermia. Of these mf positive individuals, 20 

(55.6%) had <10 mf/mg. Therefore, over half of the mf positive individuals negative 

by qPCR had very low mf burdens. The number and proportion of individuals that 

were qPCR or mf positive, or both, at each time point is shown in Table 5.4. 

 
Baseline Month 4 Month 12 Month 21 

Test Positive Negative Positive Negative Positive Negative Positive Negative 

 

 

qPCR 

 

8 

(44.4%) 

10 

(55.6%) 

4 

(22.2%) 

14 

(77.8%) 

 

1 

(5.6%) 

 

17 

(94.4%) 

 

1 

(5.6%) 

 

17 

(94.4%) 

Skin 

snip 

18 

(100%) 

0 

(0%) 

15 

(83.3%) 

3 

(16.7%) 

8 

(44.4%) 

10 

(55.6%) 

6 

(33.3%) 

12 

(66.6%) 

 

Both 

 

8 

(44.4%) 

0 

(0%) 

2 

(11.1%) 

2 

(11.1%) 

1 

(5.6%) 

10 

(55.6%) 

0 

(0%) 

11 

(61.1%) 

Table 5. 4. Test results obtained by qPCR of plasma and by mf detection in skin snips.                                                                                                                                                 

Results obtained by qPCR of O. volvulus DNA in plasma and by microscopy of mf in skin 

snips in the 18 individuals with onchocerciasis at baseline, and at subsequent time points 

after receiving one of three antifilarial treatments. 

 

      The endogenous control GAPDH was detected in all samples (Fig. 5.11A), and 

relative levels did not significantly differ between different treatment groups at any 

time point (Kruskall-Wallis test, P = >0.05), or in individuals over time (Friedman’s 

test, P = >0.05). This demonstrated that the O-150 positivity or negativity of samples 

was not a result of different initial DNA levels in individual plasma samples. A viral 

control PhHV-1, additionally spiked into plasma samples prior to DNA extraction, 

also showed that DNA was extracted uniformly across all samples (Fig. 5.11B).  
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Fig. 5. 11. Plasma reference and spike-in DNA controls. 

A. The plasma reference DNA marker GAPDH was detected in the European control plasma 

and all trial plasma samples. Graph shows the mean of two replicates for individual samples, 

and the ± SEM for each treatment group at successive time points.  

B. The viral spike-in PhHV-1 was detected uniformly in the uninfected control and all trial 

plasma samples. The mean of two replicates for individual samples, and the ± SEM for each 

treatment group at each time point are displayed.  
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Discussion 

This study reports the first use of RT-qPCR and qPCR for the detection of O. 

volvulus miRNAs and DNA, respectively, in plasma from individuals in an 

onchocerciasis-endemic community before and after macrofilaricidal or 

microfilaricidal treatment. The parasite-derived miRNAs, cel-miR-71-5p and bma-

lin-4, were both detected in a very small subset of plasma samples by RT-qPCR. 

However, almost all samples tested negative, even after extensive optimisation of the 

RT-qPCR protocol. We also confirmed by RT-qPCR that the two miRNAs are 

expressed in L. loa, and therefore conclude that cel-miR-71-5p and bma-lin-4 

therefore do not have the necessary specificity or sensitivity to be circulating 

diagnostic markers for onchocerciasis. Future work could investigate miRNAs in 

individuals with O. volvulus and L. loa or M. perstans co-infections, where the mf 

reside in the blood, to better understand the dynamics of parasite-derived circulating 

miRNAs for onchocerciasis. By comparison, the O. volvulus-specific O-150 DNA 

marker was detected in plasma in almost half the individuals at baseline, with a 

decline in positive patients detected after treatment with microfilaricidal, 

macrofilaricidal, or a combination of the two treatments. However, a high proportion 

of samples that were positive by parasitological evaluation of O. volvulus in skin 

snips were negative by qPCR in plasma. Therefore, qPCR of O. volvulus DNA in the 

host plasma did not have sufficient sensitivity to be a diagnostic test for 

onchocerciasis. 

     The results presented here demonstrate that even though O. volvulus does not 

reside in the circulatory system of the host, parasite miRNAs and DNA are 

detectable in plasma, albeit sporadically and in very low copy numbers. This has 

provided important information with regard to the diagnostic utility of these markers 

compared to the gold standard skin snip for detecting onchocerciasis positive 

individuals. Additionally, the use of a unique longitudinal sample set comprising 

patients enrolled in one of three filaricidal treatment regimens allowed us to assess 

the influence of treatment on detection of the parasite-derived nucleic acids over 

time. In a miRNA pilot study of four individuals with onchocerciasis sampled at 

baseline, one individual was positive for cel-miR-71-5p and all were negative for 

bma-lin-4. The same individual, patient 4, was also positive for O-150 DNA at 

baseline. The mf density in the skin of patient 4 was notably higher than in the other 
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three individuals (n = 124.5 mf/mg skin snip, compared to 73.5, 40 and 9.5 mf/mg), 

suggesting that cel-miR-71-5p may be correlated with higher infection intensity. The 

same individual was positive for cel-miR-71-5p four months after starting a six week 

course of daily doxycycline treatment, but was negative at 12 and 21 months. At four 

months this patient was O. volvulus mf negative, but a co-infection with M. perstans 

had developed (n = 60 mf/ml blood). It is not currently known whether cel-miR-71-

5p is expressed in M. perstans, however its conservation across several nematode 

species renders it difficult to ascertain the origin of the miRNA at month four.  

      Testing an additional 18 participants infected solely with O. volvulus before and 

after their assignment to one of the three antifilarial treatment regimens identified 

only two of 72 samples as positive for a parasite miRNA. One participant was very 

weakly positive for cel-miR-71-5p, and one was weakly positive for bma-lin-4. 

While both worm miRNA positive individuals were from the doxycycline treated 

group, their positivity was not related to mf counts (mf density was < 2 in both 

patients), or sampling time. This study was unique in comparison to other O. 

volvulus miRNA studies conducted thus far (251, 291, 297) in that the use of plasma 

samples from O. volvulus-infected patients and excluding those with detectable co-

infection at baseline suggested the miRNAs detected originated from O. volvulus.  

      A recent study also investigated cel-miR-71-5p and bma-lin-4 (there referred to 

as ‘ov-miR-71 23nt’ and ‘ov-lin-4’, respectively), as well as 15 other putative O. 

volvulus miRNAs, in plasma of individuals with onchocerciasis using LNA-enriched 

RT-qPCR (297). In their work, plasma samples from 23 nodule positive individuals 

and 20 microfilaridermic individuals were tested using a similar methodology, and 

the authors reported that seven parasite-derived miRNAs (including the ‘ov-miR-71 

23nt’) showed a detectable signal. To validate their assays, 5′-phosphorylated 

miRNA oligoribonucleotides were synthesised for three variants of miR-71 plus 

plasma reference miRNAs. However, as a result of a significant difference in the 

melt curve analysis Tm for the synthetic worm miRNAs and worm miRNAs in 

clinical samples, they concluded that the amplification detected was non-specific and 

did not reflect true positive signals. Their work is in agreement with the current 

study in a number of ways. Namely, levels of these extracellular parasite-derived 

miRNAs are very low, if they are present at all in the plasma of individuals with 

onchocerciasis. Lagatie and colleagues (297) detected few worm miRNAs in 
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samples, and the miRNAs were not universally present in all or most infected 

individuals. Inadequate specificity was also highlighted as a concern due to the 

detection of worm-derived miRNAs in supposedly healthy samples, as well 

discrepancy in miRNA qPCR melt curve analyses.  

      Our work differed from the Lagatie study in several ways. While they reported 

considerably more parasite-miRNA positive individuals relative to our study, they 

did not rule out the potential for co-infected samples. As miRNAs from blood-

localised parasites appear to more abundant in host circulation relative to parasites in 

other tissues (251, 287), there is a possibility that the miRNAs detected in their study 

originated from another parasite. Variants of miR-71 and their corresponding 

synthetic templates were also not assessed here as the assays were validated in 

relevant biological reference species. The Tm for cel-miR-71-5p and bma-lin-4 were 

the same when tested with RNA from both O. ochengi and L. loa, and only clinical 

samples with the correct Tm and meeting all other criteria outlined were accepted as 

positive. Additionally, the European control sample and NTC were negative. 

Specificity can be an issue for miRNA studies, as the very short length and sequence 

similarity of miRNAs pose unique challenges to assay design. A caveat of SYBR 

Green is unspecific amplification through primer-dimer formation, and this may 

confound defining weak positives and unspecific products, particularly as primer 

dimers will be of similar length to miRNAs. While these caveats raise caution over 

the source of miRNA in the few very weakly positive samples detected in our work, 

the consistent detection of cel-miR-71-5p in patient 4 over various RNA and cDNA 

concentrations supports the likelihood of a true positive. 

     Although our findings did not support the use of extracellular parasite-derived 

miRNAs as diagnostic markers for onchocerciasis, their potential for detection of 

blood-borne filarial infections and other parasitic worms have been investigated 

(251, 287, 291, 294-297). From a diagnostic standpoint, the utility of parasite-

derived miRNAs as a marker for infection will depend on how consistently they are 

secreted/excreted into extracellular fluids and their stability once in plasma. 

Individuals infected by worms with life cycle stages in the blood will also likely 

have higher concentrations of parasite-derived miRNAs in their circulation relative 

to individuals with parasites infecting other tissues. For example, Tritten et al. 

consistently detected the parasite miRNAs miR-71 and miR-34 in the circulation of 
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dogs infected by D. immitis and B. pahangi, where the mf are present in peripheral 

blood, and adult worms of D. immitis also reside in the pulmonary arteries (251). Of 

note, in this study the infected dogs had significantly higher infection intensities (> 

8000 mf/ml in positive samples), whereas all but one participant tested in the current 

study had <100 mf/mg per skin snip. Other studies have identified parasite-derived 

miRNAs in the serum of mice infected by L. sigmodontis (localised in the pleural 

cavity) (287), however they were not identified in the serum of mice infected with H. 

polygyrus (localised in the gut lumen) (287).  

      Of the extracellular parasite-derived miRNAs that have been identified thus far, 

miR-71 has been detected in the host fluids and linked to several filarial worms, 

including O. volvulus, O. ochengi, L. loa, L. sigmodontis, D. immitis and B. pahangi, 

as well as in extracellular exosomes and vesicles from other helminths  (285, 287, 

297, 307). MiR-71 promotes longevity in Caenorhabditis elegans (396, 397) and 

miR-71 knockout worms had shortened lifespans from around 20 to 10 days. Levels 

of miR-71 are also up-regulated in L1 diapause and dauer larvae (398). With regard 

to parasitic worms, Poole et al discovered that miR-71 was one of the most 

abundantly expressed miRNAs in B. malayi mf, comprising ∼27% of all miRNAs 

identified (289). The authors postulated that it may be involved in the regulation of 

mf longevity as the larval stage can persist in the host for up to a year (although the 

adult worms live considerably longer) (32). Lin-4 has also been identified from 

several parasitic worms in the host fluid and in secreted exosomes. Lin-4 was the 

first nematode miRNA to be discovered over 20 years ago in C. elegans (399), and 

its function has since been extensively characterised. In C. elegans, mature lin-4 

amasses towards the end of first larval stage (L1), and is involved in regulating the 

transition from the L1 to later larval stages by repressing the heterochronic proteins 

LIN-14 and LIN-28 (400, 401). The literature therefore suggests that miR-71 and lin-

4 may be more sensitive, albeit still non-specific, markers for the parasite larval 

stages.  

     The use of an O. volvulus-specific DNA marker for screening plasma of 

individuals with onchocerciasis identified a higher proportion of infected individuals 

than the worm-derived miRNAs. Of all the baseline samples assessed (including the 

pilot study), the O-150 qPCR assay identified 45.5% of positive trial participants that 

were all positive by skin snip. The number of positive individuals identified had 
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declined in the doxycycline and doxycycline + ivermectin groups by four months, 

although one patient from each group was still positive for O-150 at this time. One 

additional individual was identified as positive in the ivermectin group at month four 

relative to at baseline. By months 12 and 21, only one individual (patient code a.7) 

from the doxycycline group remained positive. This participant was positive 

consistently over the two years of the trial. While the adult worm status of this 

patient is unknown, other longitudinal studies tracking macrofilaricidal treatment 

efficacy on adult O. volvulus worms have shown that a period of 20 and 27 months is 

required to observe the macrofilaricidal effects (152). As most O-150 positive 

individuals were at baseline and four months and then negative at 12 and 21 months 

for all treatment groups, our results showed no discernible difference in treatment 

type on the dynamics of O-150 detection over time. 

      An important feature of this study is that it mimicked the typical situation of low 

mf densities encountered in communities undergoing ivermectin treatment, and in 

hypoendemic communities that will be targeted in elimination programs. Therefore, 

the utility of O-150 qPCR of plasma as a diagnostic tool for real-world elimination 

‘end game’ scenarios could be assessed. The assay detected O. volvulus infection in 

almost half of the individuals at baseline that were also positive by skin snip. 

Additionally, the qPCR assay was positive in three mf negative individuals and two 

individuals with < 10 mf/mg. However, the skin snip was found to be far superior 

over qPCR of O. volvulus DNA in plasma. Around 2/3’s of qPCR negative samples 

were mf positive. Over half of these samples with microfilaridermia had low 

numbers of mf (< 10 mf/mg), and they were not detected using qPCR. Therefore, 

qPCR of the O. volvulus O-150 DNA marker in plasma was not as sensitive as skin 

snip for detecting light infection with O. volvulus. The number and viability of the 

adult worm population, which can infect deeper tissues, over the duration of the trial 

is not known. The trial of Turner et al (157) demonstrated superior killing of adult 

worms in doxycycline + ivermectin and doxycycline groups, but some adult worms 

persisted at 21 months and low levels of mf were still detected in skin snips at 12 and 

21 months for some participants. It is difficult to gauge the level of infection 

required to detect circulating DNA of adult worms in plasma of the host, but plasma 

qPCR will likely be more sensitive in meso- and hyperendemic areas with higher 

infection densities. 
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      A recent study using the same O-150 qPCR assay for the detection of O. volvulus 

DNA in skin snips reported greater sensitivity in identifying positive samples 

compared to microscopy of skin snips and nodule palpation, and their results 

provided a semi-quantitative estimate of mf intensity (201). However, they also 

observed that 56.3% of individuals who did not have palpable nodules had positive 

qPCR or skin snip results. Likewise, they noted that 63.4% of individuals that had 

negative skin snip microscopy results had palpable nodules or positive qPCR results. 

A further 52 individuals had palpable nodules but were mf negative by both 

microscopy and qPCR. Thus, combining positive results from all three tests 

significantly increased the accuracy of diagnosis and assessment of the infection 

prevalence in the sampled population. The O-150 assay could therefore be useful for 

mapping endemic areas for adult worm infection using pooled representative plasma 

samples of populations or sentinel groups alongside taking skin snips. Pool screen 

PCR has been widely implemented for estimating filarial prevalence in insect vectors 

(206), as well as in human blood samples for estimating the filarial infection 

prevalence in Indonesia (402). 

     On a technical note, robust controls for DNA and RNA experiments were used to 

ensure plasma nucleic acids were not degraded or affected by plasma-derived 

inhibitors, and that RT-qPCR and qPCR analyses among different samples was 

consistent. The relative stability of the human extracellular miRNA hsa-miR-16-5p 

and GAPDH DNA in trial plasma samples showed that initial miRNA and DNA 

levels were comparable when using the same plasma starting volume. The synthetic 

miRNA spike-in Sp5 and viral spike-in PhHV-1 verified that the samples in miRNA 

and DNA experiments were extracted with similar efficiency, and the combined use 

of plasma reference nucleic acids and spike-ins controlled for inhibition. The 

negative samples for O. volvulus nucleic acids in plasma were therefore not as a 

result of sample or methodological quality. Plasma is naturally very low in host 

RNA and DNA, making detection and accurate quantification of host, let alone 

parasite nucleic acids, from this sample type particularly challenging (403-406). An 

advantage of molecular markers is that they can be amplified by qPCR preceding 

their detection. As this study aimed to detect multiple miRNAs in individual 

samples, universal primers for cDNA synthesis of all miRNAs were utilised, 

followed by amplification of target templates using LNA™-enhanced microRNA-
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specific forward and reverse primers, with SYBR Green for detection. However, 

other miRNA detection platforms, such as stem-loop RT with TaqMan PCR, may 

produce a different outcome with regard to sensitivity and specificity for targets 

(407, 408). Greater sensitivity may have been achieved in these experiments by 

increasing the RNA/cDNA or DNA input into their respective reactions. However, 

the limitations imposed by commercial reaction mix components and potential 

presence of inhibitors in plasma, as well as the limited availability of clinical 

samples, places restrictions on the amount of sample that can be tested in practice. 

Enriching for parasite nucleic acids preceding their detection, such as through 

selective concentration of miRNA-harbouring exosomes (287), may improve the 

sensitivity in samples where the parasite material will be greatly exceeded by the 

host material.  

      The conclusions that can be drawn from the current work are therefore in-line 

with the findings of others investigating extracellular parasite-derived miRNAs; that 

they are present at very low concentrations in the host circulation, and for O. 

volvulus-derived miRNAs this is likely due to the parasite's locality in the host. The 

diagnostic utility of cel-miR-71 and bma-lin-4 for detecting onchocerciasis in plasma 

is therefore very limited due to insufficient technical sensitivity. The O-150 qPCR 

assay showed some potential as an indicator of infection and treatment efficacy, and 

could be used to screen pooled plasma samples from endemic areas alongside the use 

of other diagnostic tools. However, it could not be used to identify onchocerciasis 

infection in hypoendemic areas. In conclusion, detection of parasite derived miRNA 

and DNA in plasma by qPCR was not as sensitive as the skin snip for detecting 

infection with onchocerciasis. 
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Chapter 6.  Discussion 

 

Plasma proteomics for Onchocerca volvulus biomarker discovery 

This thesis aimed to develop a discovery proteomic workflow for plasma, 

and then use this workflow to identify circulating protein markers of onchocerciasis 

that show a dynamic change in protein abundance or prevalence over 21 months 

following macrofilaricidal treatment. Following the development of an untargeted 

plasma proteomic method, this study has identified O. volvulus proteins in the 

circulation of individuals infected with onchocerciasis, and found that almost all the 

parasite proteins were still detectable in the host circulation 21 months post-

doxycycline treatment (Chapters 3 and 4). No proteins from the Wolbachia obligate 

endosymbiont of the parasite were identified in the host circulation. Of the 16 O. 

volvulus proteins identified, half were detected in almost every individual at all four 

time points over 21 months, while three parasite proteins had increased or decreased 

in detection frequency among individuals by the final follow-up. The parasite 

proteins identified are not predicted to be secretory (269), and therefore are likely 

detected in the host circulation due to excretion or death of the adult worm. 

However, the onchocerciasis plasma proteome was found to be largely unchanging 

over 21 months after treatment, as no parasite or human proteins statistically 

significantly changed in abundance over time, and no proteins were present in all 

individuals at baseline and absent at a later time point. The O. volvulus proteins 

identified in this data set are therefore primarily candidates for adult worm infection 

prevalence, and three proteins may be markers of ongoing infection clearance. The 

persistence of circulating parasite proteins over years following macrofilaricidal 

treatment is in line with trials measuring CFA of W. bancrofti, where the antigen has 

been shown to markedly decline but not completely clear from plasma up to 24 

months post-doxycycline treatment (263, 264). Although doxycycline causes a slow 

and sustained killing of the adult parasites after 18–27 months (157), it has regularly 

been observed that not all worms are dead by 21 months. A 6-week doxycycline 

(200 mg/day) regimen can result in >60% of adult female worm death 21 to 27 

months post-treatment (152, 157). Importantly, an uncharacterised O. volvulus 

protein, A0A044VCM8, that was identified at every time point almost consistently 

in every individual has been shown to be enriched in female worms (269). This 11 
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kDa membrane protein could therefore be a circulating marker for the female worms 

in the host. Although this is a small protein, the closest orthologous protein from L. 

loa showed minimal (26.3%) sequence similarity over the total protein length, with a 

large continuous portion (73 aa) of the sequence showing no conservation with the 

orthologous L. loa protein. Similarly, although the short peptide (11 aa) identified by 

MS/MS and used for protein inference of A0A044VCM8 is also present in L. loa 

and W. bancrofti, the individuals tested were mf negative for co-infections by 

parasitological assessment. Therefore, A0A044VCM8 may provide a diagnostic 

marker of onchocerciasis to which antibodies could be raised. The major conclusion 

that can be drawn from this study is that 21 months was too short a follow-up to 

detect dynamic changes in the onchocerciasis plasma proteome as a result of 

treatment; however, further research in a larger cohort is needed to investigate 

whether these proteins form circulating immune-complexes in plasma, and determine 

whether A0A044VCM8 is a circulating marker of female worm infection, if this 

protein declines/disappears following infection clearance, and if so, how long is 

needed to clear it from the host circulation following treatment. 

      To increase the likelihood of detecting onchocerciasis-related proteins or protein 

changes in the plasma proteome, we first had to improve the protein coverage of 

discovery LC-MS/MS analyses (341, 343). Use of immunoaffinity depletion 

columns to selectively remove abundant plasma proteins enabled identification of 

considerably more novel proteins relative to in whole plasma. The number of 

proteins identified in both plasma and depleted plasma was also in line with what we 

could expect using similar methodologies (359-362). Furthermore, it was shown that 

many non-targeted plasma proteins remained bound to the spin-column, several of 

which were unique to the eluted abundant protein fraction (360, 361, 366, 368, 369). 

Analysing the depleted plasma fraction and eluted abundant protein fraction using 

LC-MS/MS and then concatenating the protein identifications in silico improved the 

proteome coverage relative to LC-MS/MS analysis of whole plasma or depleted 

plasma, as well as providing a better basis for quantitative analyses. The use of this 

proteomic method for onchocerciasis clinical plasma samples, with a longer RP-LC 

separation gradient (2 hours compared to 1 hour) prior to MS further increased the 

number of proteins identified per individual relative to the control plasma tested in 

Chapter 3. This result may have been due to differences in initial protein 
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concentrations, or due to use of different bioinformatic software to analyse the 

control and trial plasma samples (409); however, increasing RP-LC gradient time 

enables better peptide separation and therefore more proteins can be identified (359, 

410). Our proteomic workflow for a comparative semi-quantitative analysis of the 

onchocerciasis plasma proteome was shown to be robust, with similar numbers of 

proteins identified and very little experimental variability in the LFQ protein 

intensities between individual samples. 

      Despite the detection of several O. volvulus proteins in all five individuals 

screened, the proteomic analysis of a longitudinal onchocerciasis sample set 

following treatment detected no parasite or human proteins that significantly 

changed in abundance, or were absent among all individuals post-treatment. We 

therefore did not detect a protein marker of infection clearance and treatment 

efficacy in our data set. As several potential markers of infection prevalence from O. 

volvulus were consistently detected over the 21 months, we may have failed to 

identify a protein significantly changing as the adult worm infection had not yet 

cleared (157), or proteins from dying/degraded worms were continuously detected. 

Furthermore, three proteins showed either a decrease (A0A044SN57 and 

A0A044U885), or increase (A0A044TBP5), in detection frequency among 

individuals at month 21 relative to baseline, which may have resulted in a more 

conclusive outcome if individuals had been observed over a longer period of time. 

Contrary to our proteomic findings, a metabolomic study identified a significant 

reduction in the concentration of an O. volvulus neurotransmitter-derived secretion 

metabolite, NATOG, in urine from individuals tested 20 months post-doxycycline 

treatment compared with untreated O. volvulus-positive patients and placebo-treated 

patients (275). However, NATOG was also not completely cleared from the host 

urine by 20 months, and this metabolite may be cleared faster than a protein marker 

due to its intimate relationship with the human host metabolic pathway (275).  

      While longitudinal analyses such as the current study are inherently useful and 

findings more applicable to real-world scenarios relative to diseased vs healthy 

cohorts (273, 274), a number of factors may have confounded such analyses. The 

nature of the disease and treatment under investigation, which included large gaps in 

time between sampling time points, make it very challenging to capture and discern 

potentially relevant changes in protein levels related to treatment. New adult worm 
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infections may have become established over the 21 month period, thus diluting the 

perceived antifilarial effects and therapeutic efficacy of treatment in different 

patients evaluated at different times thereafter (158). With respect to the human 

proteins, the plasma proteome is known to have much greater inter- than intra-

individual variability (367, 391, 392), and plasma proteomes of individuals tested 

here were found to cluster together rather than by specific time points of the trial. 

The host response to onchocerciasis infection will consist of individual-specific 

dynamic immune and cellular interactions with the parasite (393, 394), which may 

have been over-looked by grouping individuals by time point. Proteins relating to 

onchocerciasis treatment that change in abundance over time may have also had 

differences in signals too subtle for our semi-quantitative untargeted MS analyses in 

a small sample set (309). Furthermore, proteins are inferred by identification of short 

peptide sequences in discovery LC-MS/MS, and therefore proteins that vary as 

cleavage products or according to post-translational modifications are also likely to 

be missed with this method (309). 

      For future efforts investigating biomarkers of active infection with 

onchocerciasis and infection clearance following macrofilaricidal treatment, it will 

be important to try and improve the sample sets analysed and reduce potential for 

confounding variables. Ideally, human sample sets would be collected from areas of 

low endemicity or in a confirmed elimination setting so that reinfections are less 

likely to occur over follow up (or from migrant populations that will not remain in 

the endemic area). Clinical samples would also be collected from areas where there 

are not coinfective parasites, such as L. loa, M. perstans or W. bancrofti, to ensure 

that biomarker(s) are from infection with O. volvulus only. Additionally, patients 

would respond well to treatment and show a total macrofilaricidal response. A 

macrofilaricide drug that elicits a total macrofilaricidal effect on the adult worms and 

acts rapidly would be preferable for identifying biomarkers compared to samples 

from people treated with doxycycline, where follow up time must be at least 21 

months due to the slow (and potentially incomplete) killing of the adult worm 

population. In the absence of a perfect human sample set, animal models, such as 

new immunodeficient mouse models for onchocerciasis, would also be useful for 

conducting preclinical studies where samples can be readily obtained and conditions 

optimally controlled. 



 

168 
 

Parasite-derived nucleic acid markers in plasma for diagnosis of onchocerciasis  

      The final aim of this project was to verify whether parasite-derived miRNAs and 

DNA are detectable in the plasma of individuals with onchocerciasis, and if so, to 

determine whether the type of antifilarial intervention alters their detection over time 

post-treatment (Chapter 5). This study has identified both parasite-derived miRNAs 

and O. volvulus-specific DNA in the circulation of the host, and reports the first use 

of RT-qPCR and qPCR for the detection of O. volvulus nucleic acids in plasma from 

individuals in an onchocerciasis-endemic community before and after 

macrofilaricidal or microfilaricidal treatment. However, the longitudinal analysis of 

18 participants infected solely with O. volvulus, before and after treatment with 

either doxycycline, doxycycline + ivermectin or ivermectin, identified only two of 

72 samples as very weakly positive for parasite miRNAs cel-miR-71-5p and bma-

lin-4. Therefore, almost all samples tested negative, even after extensive 

optimisation of the RT-qPCR protocol. We also verified by RT-qPCR that the two 

miRNAs are expressed in L. loa, and therefore have experimentally confirmed that 

cel-miR-71-5p and bma-lin-4 do not have the necessary specificity or sensitivity to 

be circulating diagnostic markers for onchocerciasis. Future work could investigate 

miRNAs in individuals with O. volvulus and L. loa or M. perstans co-infections, 

where the mf reside in the blood, to better understand the dynamics of parasite-

derived circulating miRNAs in the host circulation. By comparison, the O. volvulus-

specific O-150 DNA marker was detected in plasma in almost half of the same 18 

individuals tested at baseline, with a decline in positive patients detected in all 

treatment groups over time. However, a high proportion of samples that were 

positive by parasitological evaluation of O. volvulus in skin snips were negative by 

qPCR in plasma. Therefore, qPCR of O. volvulus DNA in the host plasma had the 

necessary specificity but not the sensitivity to be a diagnostic test for onchocerciasis. 

      The results presented here demonstrate that even although O. volvulus does not 

reside in the circulatory system of the host, parasite miRNAs and DNA are 

detectable in plasma. This has provided important information with regard to the 

proposed diagnostic utility of these markers compared to the ‘gold standard’ skin 

snip for detecting onchocerciasis positive individuals. Additionally, the use of a 

unique longitudinal sample set comprising patients enrolled in one of three filaricidal 

treatment regimens allowed us to assess the influence of treatment on detection of 
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the parasite-derived nucleic acids over time. An important feature of this study is that 

it was representative of the typical situation of low mf densities encountered in 

communities undergoing ivermectin treatment, and in hypoendemic communities 

that will be targeted in elimination programs. Therefore, the utility of parasite 

nucleic acids in plasma as a diagnostic tool for real-world elimination ‘end game’ 

scenarios could be assessed. This study was also unique in comparison to other O. 

volvulus miRNA studies conducted thus far (251, 291, 297) in that plasma samples 

from O. volvulus positive and M. perstans/L. loa mf negative individuals were 

tested, as samples with co-infections assessed by parasitological evaluation were 

excluded. This enabled us to report the O. volvulus origin of the parasite-derived 

miRNAs with greater confidence. Our work is in agreement with a recent study 

investigating circulating miRNAs in individuals with onchocerciasis (297), in that 

levels of these extracellular parasite-derived miRNAs are very low, if they are 

present at all in the host plasma. Lagatie and colleagues (297) detected few worm 

miRNAs in diverse samples, and the miRNAs were not universally present in all or 

most infected individuals. However, this study did not rule out the potential for co-

infected samples. As miRNAs from blood-localised parasites appear to more 

abundant in host circulation relative to parasites in other tissues (251, 287), there is a 

possibility that the miRNAs detected in their study originated from another parasite. 

From a diagnostic standpoint, the utility of parasite-derived miRNAs as a marker for 

infection will depend on how consistently they are secreted/excreted into 

extracellular fluids and their stability once in plasma. Although our findings did not 

support the use of extracellular parasite-derived miRNAs as diagnostic markers for 

onchocerciasis, their potential for detection of blood-borne filarial infections and 

other parasitic worms have been investigated (251, 287, 291, 294-297). Worms with 

life cycle stages in the blood have shown higher levels of parasite-derived miRNAs 

in the host circulation (251, 287), relative to individuals with parasites infecting 

other tissues (287, 297). Therefore, the conclusions that can be drawn from the 

current work are in-line with the findings of others, that parasite-derived miRNAs 

are present at very low concentrations in the host circulation, and for O. volvulus-

derived miRNAs this is likely due to the parasite's locality in the host. There is no 

diagnostic utility of cel-miR-71 and bma-lin-4 for detecting onchocerciasis in plasma 

as they are likely below the limit of detection for RT-qPCR, and there is extensive 

homology with secreted/excreted miRNAs of other parasitic worms. 
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     The use of an O. volvulus-specific DNA marker to screen plasma from 

individuals with onchocerciasis by qPCR identified a higher proportion of infected 

individuals in baseline samples, and the number of positive individuals detected 

declined over time following all treatment regimens. The qPCR assay was also 

positive in three mf negative individuals and two individuals with < 10 mf/mg. In 

addition, one doxycycline treated individual remained positive for O-150 by qPCR 

over the duration of the trial. However, parasitological evaluation of skin snips was 

found to be far superior over qPCR of O. volvulus DNA in plasma, as around 2/3’s 

of qPCR negative samples were positive for mf by skin snip. The O-150 qPCR assay 

also did not detect many samples from individuals with low numbers of mf (< 10 

mf/mg). Therefore, plasma qPCR may be a more sensitive in meso- and 

hyperendemic areas with higher infection densities. A recent study using this O-150 

qPCR assay in skin snips reported greater sensitivity compared to skin snip 

microscopy and nodule palpation, and their results provided a semi-quantitative 

estimate of mf intensity (201). However, they also observed that 56.3% of 

individuals who did not have palpable nodules had positive qPCR or skin snip 

results. Likewise, they noted that 63.4% of individuals that had negative skin snip 

microscopy results had palpable nodules or positive qPCR results. A further 52 

individuals had palpable nodules but were mf negative by both microscopy and 

qPCR. Therefore, combining positive results from all three tests significantly 

increased the accuracy of diagnosis and assessment of the infection prevalence in the 

sampled population. The O-150 qPCR assay showed some potential as an indicator 

of infection, and could be used for mapping endemic areas for adult worm infection 

using pooled representative plasma samples of populations or sentinel groups, 

alongside the use of other diagnostic tools. PCR with pooled blood samples has been 

used to gauge the filarial infection prevalence in Indonesia (402). However, it could 

not be used to identify onchocerciasis infection in hypoendemic areas or to reliably 

monitor efficacy of any antifilarial treatment. 

Conclusion 

      A circulating biomarker for O. volvulus to detect active infection, determine 

infection intensity and/or monitor treatment efficacy would be highly advantageous 

over the currently available diagnostic tools for onchocerciasis. Despite several 

decades of active and ongoing research to identify markers with the necessary 



 

171 
 

specificity and sensitivity to diagnose current infection with O. volvulus, no potential 

biomarkers have been progressed to diagnostic development for field use. 

Particularly now, as we progress from an onchocerciasis control to an elimination 

programme in Africa, a robust biomarker for O. volvulus is urgently needed in order 

to accurately map hypoendemic areas with low levels of ongoing transmission, 

identify areas with recrudescence, and make informed decisions regarding treatment 

provision and intervention cessation. O. volvulus has a complex life cycle within the 

host and an overlapping geographic distribution with other co-infective parasite 

species. The challenge for diagnostic development of a circulating marker for O. 

volvulus for use in elimination programmes therefore lies in addressing and 

overcoming the issues of sensitivity and specificity (411, 412). The increasing 

availability of filarial worm genomes and advances in transcriptomics and 

proteomics will go a long way in helping to better understand the unique biology of 

the parasite and interaction with the human host (199, 269), and aid in identifying 

novel targets for diagnostic tools (269, 271), as well as novel drug targets (199) and 

vaccine candidates (269). Using discovery proteomics, this thesis has identified O. 

volvulus proteins in the plasma of individuals during patent infection with 

onchocerciasis and in the many months following macrofilaricidal treatment. Several 

of these proteins could be markers of infection in the host from excretion or death of 

adult worms, and one may be a marker of the female worm. Additionally, most of 

the proteins had low sequence similarity along the total protein length with 

orthologous proteins from W. bancrofti and L. loa. Detection of circulating DNA 

specific to O. volvulus showed variable sensitivity for identifying infected 

individuals, while diagnosis of O. volvulus by circulating parasite-derived miRNAs 

completely lacked specificity and sensitivity. Although three O. volvulus proteins 

showed some potential, no protein, DNA or miRNA markers of infection clearance 

and treatment efficacy were identified by 21 months post-doxycycline treatment 

among the individuals tested. Future work should determine whether the O. volvulus 

proteins detected are indeed markers of active infection, in order to progress specific 

and sensitive targets for future diagnostic development.  
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