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Abstract
This paper presents a roadmap to the application of AI techniques and big data (BD) for
different modelling, design, monitoring, manufacturing and operation purposes of different
superconducting applications. To help superconductivity researchers, engineers, and
manufacturers understand the viability of using AI and BD techniques as future solutions for
challenges in superconductivity, a series of short articles are presented to outline some of the
potential applications and solutions. These potential futuristic routes and their
materials/technologies are considered for a 10–20 yr time-frame.
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1. Introduction

Although the superconductivity phenomenon has been dis-
covered more than a century ago, and despite the signific-
ant advantages—such as lower losses, higher efficiency, com-
pact size, lighter weight, higher magnetic field, and power
density—that superconducting technology offers over the con-
ventional counterparts, many superconducting components
and applications are at low technology readiness level and
not even near being commercialised. Apart from magnetic
resonance imaging (MRI) and nuclear magnetic resonance
which are already fully commercialised in the manufactur-
ing stage—because the level of magnetic field that they need
is not simply achievable with any conventional technology—
no other superconducting device is commercialised at a high
manufacturing production rate, and most of these devices are
in proof-of-concept or in fabricating demonstrator stage. The
reasons are including high total ownership cost, high level-
ised cost of energy, not knowing all technological limits in
manufacturing levels, especially for real scale devices, reli-
ability concerns especially when working at cryogenic tem-
perature together with a cooling system, hesitancy of some
industries regarding accepting a new technology against a
well-demonstrated conventional one, among others [1–6].

There aremany challenges related to superconducting com-
ponents, devices, and applications which need to be addressed
to pave the way for their commercialisation, especially with
the new emerging opportunities in applications such as wind
power, fusion industry, electric transportation, and hydrogen-
powered aircraft. These challenges can be generally categor-
ised into different stages such as in superconductor/supercon-
ducting device production, design, manufacturing, condition
monitoring, operation, and maintenance stages. The experi-
ence of the last 25 yr in the superconducting community and
also what we can learn from how other technologies evolved
in a much shorter time frame, prove that for addressing many
of these challenges we would need to take advantage of other

intelligent techniques, and disruptive technologies and intro-
duce them into the superconductivity. One of the popular tech-
niques which is used as a very successful tool to resolve the
challenges of many other industries/technologies is artificial
intelligence (AI) [7–11].

AI can resemble human intelligence and can be used
for learning a process, finding a pattern, and making a
decision [12]. AI techniques were successfully implemented
in many industries including automotive, aerospace, and med-
ical, among many others, some of which have higher or equal
importance, reliability requirements and risk concerns com-
pared with superconducting applications. AI techniques can
be used for modelling and simulation, design improvement
or optimisation, hot spot detection, fault detection and dis-
crimination, cost reduction, loss and efficiency improvement,
condition monitoring and operation, improving manufactur-
ing yield, quality control and assurance, sensor and testing
improvement, etc [12]. AI techniques can promise and offer—
compared with other recently implemented methods (e.g.
mathematical and look-up table approaches)—faster response,
less false outcome, a higher chance of reaching the optimal
solution, considering interdependencies of the inputs, finding
hidden patterns, and above all, real-time implementation/ap-
plication [13]. Real-time applications usually end up produ-
cing big data (BD) which again needs intelligent approaches
to be handled [11–13].

In this paper, a roadmap to the application of AI and BD for
different modelling, design, monitoring, and manufacturing
and operation purposes of different superconducting applic-
ations, is presented. To help superconductivity researchers,
engineers, and manufacturers understand the viability of using
AI and BD techniques as future solutions for challenges we
presently face in superconductivity, a series of short articles
are presented to outline some of the potential applications and
solutions. These potential futuristic routes and their mater-
ials/technologies are considered/suggested for a 10–20 yr
time-frame.
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2. Intelligent condition monitoring and design
optimisation of superconducting propulsion
machines using AI-based techniques for future
cryo-electric aircraft

Mohammad Yazdani-Asrami and Wenjuan Song

Propulsion, Electrification & Superconductivity Group, James
Watt School of Engineering, University of Glasgow, Glasgow
G12 8QQ, United Kingdom

Status

Cryo-electrification—which is the type of electrification
enabled by the combination of cryogenics and superconduct-
ing technologies—seems to be the disruptive technology and
a way forward for future aerospace electrifications. To realise
emission-free aircraft, the electrical devices (in propulsion and
power system) must become competitive with existing con-
ventional systems, and to do so, improvements inmany aspects
are needed such as weight, size, efficiency, power density,
voltage level, insulation, maintenance, reliability, safety, and
cost [1, 14, 15].

Superconducting rotating machines provide one of the
promising options for the propulsion systems in future
cryo-electric aircraft, especially with the recent development
towards the integration of hydrogen technology into modern
aviation. They exhibit great advantages in reducing size and
weight, and increasing efficiency and power density compared
with conventional machines [1, 14, 15].

To realise superconducting machines for the propulsion
system of cryo-electric aircraft, high specific power density
(SPD) i.e. power divided by the weight, with high efficiency
in a compact size is preferred, which can be achieved by optim-
ising the machine construction and manufacturing processes.
In addition, safety is a priority in aircraft electrification, there-
fore it would be crucial to monitor and detect any incipient,
short circuit, demagnetising, hot spot, mechanical damage,
drive system faults, and other types of faults in the supercon-
ducting machine at early stages before they reach to a cata-
strophic level.

AI techniques can provide solutions to effectively develop
highly intelligent optimisation procedures for designing the
superconducting machines in cryo-electrified aircraft, and
accurate real-time condition monitoring towards achieving the
highest safety standard using AI regression and estimation
tasks [16]. AI not only help design and operate a more intel-
ligent superconducting propulsion machine but also assist its
prototyping and manufacturing to reduce material waste, lev-
elised cost of production, and manufacturing tolerances.

Current and future challenges

Some challenges caused superconducting machines to not
be commercialised yet, including requirements and complex

design of the cooling system, high cost of superconducting
tapes/wires/bulks, complex machines’ structures, high manu-
facturing cost, thermal sealing of different moving and static
parts at room and cryogenic temperatures, system-level mod-
elling and integration, quench protection, liquid hydrogen tank
design optimisation, and low end-user interests [1].

In the following, some current and future challenges for
superconducting machines used in the aviation sector—that
can be addressed by AI techniques—are discussed:

SPD and efficiency. One of the major challenges to devel-
oping electric aircraft in a larger fleet is the low SPD of exist-
ing conventional electric machines (e-machines), limited to 5–
10 kW kg−1 at low speed and low size. However, for future
cryo-electric aircraft with hydrogen as fuel/coolant and pos-
sibly with the fuel cell as another source of electricity, the
SPD of e-machines should be well above 16–20 kW kg−1 [14,
17]. This means that e-machines should be built either with
higher speed, higher electromagnetic (EM) loading, or lower
weight and size of the iron core, supports, and other assembly
parts. This implies that the construction of a superconducting
e-machine and its EM circuit (armature, field, and core) need
to be optimally designed to maximise the power density.

The high efficiency of the superconducting machine is
another challenge. Losses including AC loss from the wind-
ings should be minimised, whilst maintaining low operation
and fabrication costs. Superconducting machines in future
cryo-electric aircraft will be fabricated in the full or fraction
of MW-scale, therefore, even a percent loss means bulky cool-
ing power and consequently higher weight for the cooling
system. Therefore, electro–thermo-mechanical optimisation is
required to guarantee minimum possible loss and heat load.
Online and real-time estimation of the losses in e-machines
should be considered to make sure the efficiency limit is
met [18].

Condition monitoring and reliable operation. Safe and reli-
able operation holds the top priority for electric aircraft. Cryo-
genic temperature makes the operation of aircraft more com-
plicated and hence, complexity arises reliability concerns,
especially when the technology is not even well commer-
cialised for terrestrial applications and its technology read-
iness level is relatively low compared with well-established
conventional technologies. Superconducting machines may
face a variety of faults including electrical, mechanical, cryo-
genic, and thermal faults such as incipient inter-turn faults,
short-circuit of windings, demagnetising in magnets or bulks,
winding hot spots, bearing faults, static, dynamic, and mixed
eccentricity faults, winding deformation, insulation fatigues
and faults, drive system faults, cooling system failures, among
others. However, at the moment there is no evidence of
any monitoring system neither conventional nor intelligent
specifically designed for a superconducting propulsion
system.
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Figure 1. AI techniques can be used to optimally design superconducting machines.

Advances in science and technology to meet
challenges

For design optimisation of machine construction, meta-
heuristic and swarm-based algorithms will be used aiming
for higher SPD, lower AC loss, higher efficiency, and lower
cost (as shown in figure 1). The challenge is deriving accur-
ate sizing equations and considering real-world trade-offs
together with an appropriate multi-objective fitness function.
The objective function could be AC loss, size, heat load,
cost reduction, or a combination of them. Also, the optimal
design of the cryostat will reduce the SPD of the whole sys-
tem. In addition, techniques based on reinforcement learning
can be adopted to develop automated design and modelling
of superconducting machines. Reinforcement learning tech-
niques can construct a policy with artificial neural networks
(ANNs) that determines the optimal actions for a state of
modelling.

Many AI methods combined with signal processing tech-
niques can be used for condition monitoring and fault detec-
tion purposes (see figure 2), as a classification, clustering,
and discrimination task. Some of these expert systems, signal
processing, and AI techniques are as follows: wavelet trans-
form, Hilbert–Huang transform, S-transform, support vector
machine (SVM), adaptive neuro-fuzzy interference system,
ANN, fuzzy system, long short-term memory (LSTM), deep
learning (DL)methods usingmany layers of ANN such as con-
volutional and grid neural networks (NNs), etc. It is worth not-
ing that each of the AI-based techniques would be a proper
candidate to find a specific type of fault, and for doing that
extracting the correct feature from input data (current, voltage,

vibration, back EMF, etc) is highly crucial27. Time, frequency,
or time-frequency domain data can be used to establish such
intelligent condition monitoring techniques/systems. In addi-
tion, stacked autoencoder-based approaches can be designed
and implemented for real-time condition monitoring, for fault
detection, and anomaly detection (for quenches of windings
and bulks) of superconducting machines.

The stacked autoencoder-based techniques can automatic-
ally set multiple baselines as the boundary between normal and
abnormal/faulty conditions.

For optimal design of cooling systems, multi-objective
swarm intelligence-based optimisers would be great tech-
niques to find optimal parameters of a cryogenic cooling sys-
tem such as flow rate, pressure, number and type of cold head,
size of the heat exchanger, amount/thickness of thermal insu-
lation, etc. Fitness function can be considered in such a way as
to minimise the weight, size, and/or cost of the cooling system
and/or to maximise its efficiency, reliability, and safety.

Parameter estimation of superconducting machines for
drive system adjustment can be done using meta-heuristic or
evolutionary algorithms. The optimal control of the propulsion
unit depends on properly driving motors under different oper-
ating conditions. Most controlling techniques rely on machine
parameters, and thus, precise estimation of them at the begin-
ning of the installation is important. Estimation of the super-
conducting machine parameters is more challenging than the

27 There are many different features that could help finding a specific fault
which we could not state here in this roadmap article because of page limit.
For more information regarding this point, please directly contact the corres-
ponding author.
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Figure 2. AI techniques can be effectively used for fault detection purposes in superconducting machines.

conventional counterparts, due to its superconductor nature,
and its near-zero resistivity. On the other hand, machine para-
meters will change over time by the ageing process or other
reasons (e.g. internal faults). Thus, an AI-based technique
can be designed and stored in an online cloud to estimate
machine parameters from time to time, over the length of its
life span. The new estimated parameters can be set in the con-
trolling algorithm of the drive system. In addition, any drastic
or unusual change in machine parameters should be a sign of
either dramatic fatigue or incipient fault. Also, dynamic learn-
ing algorithms are other options to meet the challenge of con-
trolling parameters in propulsion units. In these algorithms,
the system updates itself over periods of times with respect to
the changes in inputs and outputs. Thanks to such methods,
the changes in control parameters of e-machines are no more
an issue and can be handled appropriately [19].

ANN can be used for online remaining-life estimation and
failure detection of solid-state switches in cryogenic power
electronic converters supplying superconducting machines.
As all these switches are designed and fabricated to operate
at room temperature, their operation at cryogenic temperatures
will certainly affect the performance, possibly impact their life
span and impose extra heat load on the central cooling system.
Time domain signals of the switches can be used to feed the
ANN and produce healthy and faulty conditions to estimate
the remaining life of the switches [11].

AI techniques can be used for data-driven based system-
level modelling of the superconducting machine together with
other powertrain components in a cryo-electrified aircraft. At
the moment, numerical models are established for modelling
each component separately but it is computationally costly,
and not real-time for most complex applications. Surrogate-
or meta-modelling by using ANN can be done to individually
build a fast and accurate intelligent model for each compon-
ent and then connect them for a system-level modelling/study
[20]. This model can be updated to increase the accuracy of the
dynamic learning algorithms that are used. In addition, rein-
forcement learning techniques can be used to make the mod-
elling process automatic.

Another issue that AI can significantly get involved in is
quench detection [21] of superconducting bulks and wind-
ings in e-machine, especially high-temperature superconduct-
ing (HTS) ones. DL approaches can be used to detect quenches
online and perhaps up to a couple of seconds in advance.
DL methods provide dynamic and online training and learn-
ing from input data which can come from many different
sensors. DL-based approaches for quench detection are essen-
tially looking for an anomaly or abnormality in the normal pro-
file of the sensor outputs.

Digital twins (DTs), as the intersection of AI methods,
cyber-physical systems (CPSs), cloud computing, and the
Internet of Things (IoTs), can be implemented in future as a
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solution for the design, manufacturing, monitoring, and main-
tenance issues of superconducting machines in future cryo-
electric aircraft [20]. CPS presents a higher level of integration
and coordination between physical systems and computa-
tional models through coupling sensor outputs and simula-
tion routines. AI can link with sensor data in a real-time man-
ner. CPS-based digital capabilities with existing architectures,
systems and processes, the coordination of several systems
and applications require the integration of recently emerging
technologies, which are giving rise to the current and future
industrialisation challenges for the low carbon cryo-aviation.
In cryo-electric aircraft, these technologies, i.e. AI with DT
in CPS, improve the design, control, and protection of the
superconducting drivetrain and propulsion systems, so that the
reliability, efficiency, and stability of aircraft will be maxim-
ised. In addition, if a DT is developed for the superconducting
machine of an aircraft, it will provide a platform for research
and training for professionals and engineers in the aviation
industry.

Concluding remarks

Cryo-electric aircraft which take advantage of both cryogenic
and superconducting technologies seem to be one of the most
promising solutions to realise zero-emission hydrogen-based

aviation. Superconducting propulsion technology has the
potential to provide high SPD beyond 20 kW kg−1 on the
MW scale, with efficiency above 99%. However, challenges
related to superconductor performance, machine cost, cooling
system requirements and weight, quench and fault monitor-
ing, and finding innovative EM designs to lower the weight
and size of the machine are major challenges against their
potential to be integrated into hydrogen- and electric-based
aircraft. AI techniques can address some of the aforemen-
tioned challenges to make superconducting propulsion units a
competitive option against other technologies for future elec-
tric aircraft. AI-based techniques can help optimally design
a superconducting machine to increase its power density and
efficiency simultaneously. In addition, condition monitoring
and fault prognostic techniques can be established based
on AI approaches for both the machine and its cryogenic-
temperature drive system.
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3. AI-assisted real-time modelling of HTS devices
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Status

Real-time simulation/modelling is a powerful tool to assess
the performance of innovative power equipment such as large-
scale superconducting power devices under realistic operat-
ing conditions [22], thus accelerating the commercialisation
and market introduction of the tested technologies. Through
digital simulators, complex electrical grids can be simulated
in real-time, and the performance of the tested technology can
be validated through power hardware in the loop (PHIL) test-
ing [23]. More in particular, in PHIL testing the behaviour of
the simulated grid is emulated using power amplifiers that can
produce the full voltage, current, and power required by the
physical device under test (DUT), as it is schematically shown
in figure 3. PHIL systems allow reproducing a wide variety of
operating conditions in the laboratory, including contingen-
cies and faults, allowing to assess the performance (and lim-
itations) of the DUT without the need for long and extremely
costly in-field installations that often impact both the layout
and the management of the hosting grid. The real-time mod-
elling of the superconducting devices can also be developed
and validated against the results of the PHIL testing campaign.
This allows forming an integrated real-time modelling envir-
onment, comprising both the hosting system and the tested
technology, that can be used for exploring, under a holistic
perspective, any operating condition that the final-user may
want to investigate, and to gain information on possible oper-
ating conditions of the device that can drive design upgrade
or optimisation. At a more advanced stage of development
of the technology, the real-time model can also be used as a
digital-twin of the physical device that can be run in parallel
during physical operation to compare measured and calculated
data and extract information from possible mismatches due for
example to internal faults, ageing of components or need of
maintenance. AI techniques can greatly assist real-time mod-
elling and PHIL system testing.

Current and future challenges

Digital real-time simulators are high-performance computers
that allow to compute the new status of a simulated sys-
tem (e.g. an electrical grid) within a predetermined time step
(e.g. 50 µs). Typical of these systems are the strict real-time
constraints, requiring that the new system solution must be
delivered within the simulated physical time-step. It follows,
that the size of the simulated system shall be suited to the
available computational power, and mathematical modelling
requiring intense simulation time shall be avoided.

Multiphysics finite element (FE) modelling is an estab-
lished approach for predicting the behaviour of practical
superconducting devices. An alternative to FE models is using
empirical equivalent circuits, with intrinsically reduced calcu-
lation time, but lower predicting capability and accuracy. In
FE models the solution of the interior field problem (distribu-
tion of current density and electric and magnetic fields inside
the superconductor) is first obtained and a variety of other
information, such as AC loss, temperature, voltage, or quench
behaviour, which is of interest for practical applications, are
deduced accordingly [24, 25]. However, a very complex beha-
viour is obtained when dealing with HTS materials due to
high non-linearity and hysteresis, strong anisotropy, temper-
ature dependence, high aspect ratio, 3D configurations and
complex composite structure of practical wires and tapes. As
a result, FE models suffer from large execution time and com-
putation burden, which makes them incompatible with digital
real-time simulator applications that, as mentioned above, are
limited by sharp real-time constraints. The current challenge
is to reduce the complexity of FE models, to make them suit-
able for real-time applications. One approach to reach this
goal is to carry out a specialised research effort aimed at
introducing specialised methodologies for reducing the stor-
age and inversion requirement of the FE problem. Along this
line, coupling finite-element method (FEM) with PEEC meth-
ods or homogenisation and multi-scale methods have been
recently introduced [26, 27]. Homogenisation consists ofmod-
elling a subdomain made of different composite HTS tapes as
a homogeneous, though anisotropic, material. In multi-scale
methods, the modelled system is split into a set of localised
detailed models that are individually solved while interpola-
tion is used to guess the solution on the other subdomains that
act as magneto-static source terms only. As a result, the size
and the CPU time of the problem are greatly reduced and real-
time modelling can be obtained, for example in the case of
slow ramping of large HTS magnets in which the 1D approx-
imation is assumed for the HTS tapes [28]. An alternative to
FE models is using empirical equivalent circuits, with intrins-
ically reduced calculation time It must be pointed out, how-
ever, that these advantages come at the cost of a lower accur-
acy of the results. To achieve real-time computation capability
in the wide variety of 3D problems occurring in practical HTS
applications, while maintaining accuracy, substantial innova-
tion still need to be introduced in the calculation approach and
AI can play a role in this [12, 17, 29], especially when system
level analysis must be carried out, as it is discussed next.

Advances in science and technology to meet
challenges

To address the challenge, this section explores the poten-
tial of AI-based models, that, trained on off-line FE simu-
lations, represent a low computation-time alternative to on-
line FE models for real-time simulations. In the example of
figure 4, an HTS-based superconductingmagnetic energy stor-
age (SMES) system supports the grid frequency control dur-
ing large disturbances. A complete FE model of the device
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Figure 3. PHIL testing of physical power superconducting equipment.

Figure 4. Power grid incorporating an HTS SMES for frequency control. Real-time modelling of HTS SMES obtained by combined use of
FEM modelling and AI.

is first developed and implemented on a dedicated computa-
tion resource for calculating the status of the SMES. More in
particular the FE model can calculate the AC loss and pre-
dict the final temperature of the HTS coil based on prescribed
operational inputs in terms of exchanged (absorbed/delivered)
power and duration of power exchange and taking the ini-
tial state of charge (i.e. operating current) and temperature
into account. The solution to the FE problem is essential to
assess the compatibility of the power input with the safe oper-
ation of the HTS coil and to calculate the maximum power
exchangeable (subject to limitation, due to AC loss) and the
residual energy in the newly reached state. However, such
a calculation involves a large number of state variables, it
is time-consuming, and it cannot be executed in real-time.
To achieve real-time computation, an AI layer is added to
the FE layer where the solution of the problem for a spe-
cified operating condition is obtained by regression on a set
of pre-calculated FE solutions [17, 29]. Overall, the power

grid controller generates the power versus time curve to be
supplied (or absorbed) by the HTS SMES asset and the AI
layer, implemented on the digital real-time simulators, eval-
uates the evolution of the SMES status following the service
input received and checks the compatibility with safe SMES
operation. It should be pointed out that a bidirectional interac-
tion is needed between the power system controller and the AI
layer to cope with the case where the requested power profile
cannot be satisfied by the SMES due to incompatibility with
its current state. It is also stressed that more data can be collec-
ted and stored during the lifelong operation of the system and
can be used for correcting the model to include new factors
or events, like ageing or possible permanent effects of a fault.
AI offers a large variety of algorithms which have shown suit-
able performances for the purposes both in terms of dynamics
and accuracy, such as Decision Trees, K-Nearest Neighbour,
Support-Vector Machines, ANNs, and XGBoost, among oth-
ers. It is also important to point out that the combined AI-FEM
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approach described here for SMES can also be applied to a
wide range of power HTS apparatus including, transformers,
power cables, fault current limiters, and rotating machines.

Concluding remarks

Real-time simulation and PHIL testing are powerful tools for
validating the performance of HTS-based technologies, such
as superconducting power equipment. However, they are sub-
jected to strict real-time constraints that limit the suitability of
extremely complex models, such as the 3D FE models typ-
ically needed for superconducting applications. Data-driven

AI-based modelling solutions can solve this issue. Through
off-line complex FEM simulations, the model can be trained
to solve a specific power system issue of interest, avoiding
the model’s over-complexity and reducing the needed com-
putational time without compromising simulation accuracy.
To increase the model flexibility, making it able to meet new
grid conditions, a supervisor AI layer can be implemented
in the real-time simulator that updates the model paramet-
ers depending on the operating point. Concluding, the AI-
based solution enables simulating complex HTS-based mod-
els under real-time constraints without reducing the simulation
accuracy.
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Status

HTS bulks are foreseen as promising options for several high-
power applications, such as bearings in flywheels, or high-
power, compact electrical machines [3]. The characteristics
of real, heterogenous bulks need to be included in the design
stage of devices, e.g., to assess the interaction of the trapped
field with distinct current-carrying conductors. Flux dens-
ity can be calculated by Biot–Savart law everywhere, but it
requires the knowledge of current density distribution in bulks.
Sand-pile modelling [30], figure 5, is a practical, fast numer-
ical modelling approach to describe those currents, provid-
ing accurate results in parallelepipedal and cylindrical single-
grain bulks when compared to experimental measurements
[30, 31]. Currents inside the bulk are assumed to form loops
parallel to its limits, and often the Bean model is used. Each
loop thus carries a constant critical current density, JC. This
unknown can be determined from experiments by a simple
mean squared error minimisation between the experimental
trapped field surface and the one generated by the sand-
pile model.. Real-scale, high-power/field applications require
increasingly larger bulks, where multiple grains improve the
trapping flux ability due to the effects of inter and intragrain
currents [32]. The sand-pile model was already applied to
bulks with two and three grains (figure 5), where distinct cur-
rent densities were inferred through genetic algorithms (GAs)
[33], a metaheuristic inspired by natural evolution, widely
used in diverse optimisation problems [34]. Yet, its applica-
tion in this context requires a priori knowledge that is often
unavailable or may be unfeasible in more complex bulks and
newmanufacturing concepts. AI based paradigms, such as DL,
may change this scenario.

Current and future challenges

Modelling of large multi-grain bulks: high-power/field applic-
ations require flux density values that can be one order of
magnitude higher than those of permanent magnets [35].
Large multi-grain bulks, manufactured in different shapes and
dimensions, are a practical solution for this [32]. Yet, to use
sand-pile modelling, all the exact dimensions of the grains,
as well as the intergrain paths must be known. When grains
are more than three, the number of possible paths boosts, but
several may be irrelevant. All these unknowns can be integ-
rated into optimisation algorithms as GA, but with a dramatic
increase in the search domain and computational effort, as well
as convergence issues.

Figure 5. Examples of sand-pile modelling of HTS bulks. Single
grain bulks require only the knowledge of one current density, JC. A
two-grains bulk may be modelled as the superposition of two
intragrain current densities, JC1 and JC2, and one intergrain current
density, JC3.

Trapped field fluctuations and current density dependen-
cies: sand-pile models are suited for static applications, with
nearly constant trapped fields. Yet, in real ones, bulks are sub-
jected to flux creep and changing external fields caused by the
relative motion of parts and/or varying electrical sources [3].
These cause fluctuations in the trapped field that are not cap-
tured by the sand-pile model, which should be dynamically
reconfigured. Also, the Bean model is limited, as JC is affected
by flux density.
3D printed bulks: new ways for producing low-cost, on-

demand configurations of HTS bulks are emerging, such as
3D printing [36]. It allows the manufacturing of complex geo-
metries with porous microstructure where current paths vary
with the configuration of the deposited layers of HTS mater-
ial. Current loops depend, ultimately, on the paths followed
by the printer nozzle, and this information is often absent, an
increased complexity that avoids using the previous methods.
Data availability: the application of AI methods usually

relies on the availability of data that can be used to learn
patterns. To build general models, large datasets need to be
made available for the learning process. Trapped field meas-
urements, characterising bulks, are either the property of
researchers or spread in scientific literature, often in formats
that are not transferable to digital workable structures (e.g., as
images instead of tables of numeric values).

Advances in science and technology to meet
challenges

Modelling of large multi-grain bulks: there are few studies
on the macroscopic intergrain currents of bulks with more
than three grains. Yet, these can be manufactured with a
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larger number of grains, such as eight [32] or higher [37].
For example, in an eight-grain bulk, more than 20 intergrain
loops can be expected, and previous GA-based methodolo-
gies will not be viable. To address these challenges, the use of
hybrid methods, involving both evolutionary or meta-heuristic
algorithms and ANN, is foreseen. ANN are universal inter-
polators, and they can learn the fitness function, decreasing
the processing effort of the latter as they are simultaneously
trained, also allowing the removal of irrelevant unknowns.
Since ANN are implemented by an analytical function, they
improve computation time by replacing the calculation of
Biot–Savart law, which must be determined for all current ele-
ments in all the loops. In addition, new paradigms are fore-
seen to emerge from the AI field, such as DL for processing
trapped field surfaces. DL is a class of machine learning (ML)
algorithms that use multiple processing layers of data to learn
patterns in it, and have been successfully applied in many
fields, such as medical imaging automated analysis [38]. DL
addresses both labelled and unlabelled data. Regression mod-
els, in semi-supervised learning paradigms, can be researched,
where flux density at any point in space will be predicted from
trapped field surfaces.
Trapped field fluctuations and current density dependen-

cies: the effect of the complex EM environment of the devices
on the trapped field attenuation, including its long-term oper-
ation and measures to mitigate it, needs more research [3]. As
before, the use of DL is envisaged to capture patterns and learn
from observations, e.g. updating JC (B) on each loop.
3D printed bulks: as this is an emerging field, there is little

knowledge reported on the configuration of loops and these

may be hardly labelled. Unsupervised DL provides a prospect-
ive approach to building regression models, but new develop-
ments are required, as related to the parametrisation of current
loops, that may differ depending on the layer of the deposited
material.
Data availability: the amount of data required to train

the DL networks depends on the complexity of the problem,
i.e., the number of features to predict. Thousands of trapped
field surfaces may be required, and it is not feasible to generate
them individually. Collaborative repositories, where data can
be uploaded and automatically validated need to be developed
for this paradigm to succeed.

Concluding remarks

Sand-pile modelling with evolutionary algorithms such as
GA has shown to be a fast methodology to model trapped
fields, yet, in limited applications. For realistic operating con-
ditions and advanced concepts, new methodologies need to be
developed. DL techniques, in distinct learning paradigms and
datasets nature are foreseen to allow for building regression
models. The availability of large datasets highlights as one of
the main challenges for DL success, where collaborative data-
gathering approaches are required.
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Modelling of superconducting materials and applications is of
great importance in two aspects: (a) design and optimisation
of superconducting components without the need of building
prototypes; (b) detailed analysis of physical properties, such
as electro-magnetic fields, mechanical stress, and temperature.
Superconductors have a very peculiar EM behaviour, requir-
ing dedicated models to obtain the distribution of macroscopic
electrical currents and magnetic fields. The existing model-
ling approaches are grouped into two categories, analytical and
numerical.

A notable example of an analytical model is the Crit-
ical State Model [24, 39], which provides formulas for AC
loss calculation—a key quantity for the efficiency of super-
conducting applications. Analytical models are of almost
instantaneous use but present important limitations, e.g. they
are restricted to simple geometries and assume constant phys-
ical properties; they are of limited usability for most realistic
problems.

Numerical models exhibit high-fidelity in simulating com-
plex superconducting applications. To simulate the EM beha-
viour of superconductors, different mathematical formulations
and methods have been proposed [24, 40–43]. Among these,
commercial solutions (mostly based on the FEM) have gen-
erally a user-friendly interface and a straightforward model-
building; circuit models have relatively fast calculation speed
as compared to FEM whilst maintaining a good accuracy; in-
house codes, such as those based on variational and spectral
methods [41–43], can be computationally much more efficient
[42]. Despite the high-fidelity of numerical models, heavy
computing load remains an obstacle to fully benefit the super-
conducting community, particularly for large-scale applica-
tions and 3D shapes, solving which could take up to days
and weeks on a desktop computer. Massive parallel comput-
ing could potentially reduce the running time, but with high
implementation costs.

In summary, neither analytical nor numerical models can
achieve high fidelity and fast computation simultaneously.
However, surrogate models could provide satisfactory accur-
acy, versatility, and real-time computation [17, 44, 45]. Sur-
rogate models are based on AI approaches, including neut-
ral networks, DL, ML, etc [17, 44, 45]. They need input
data obtained from experiments or physics-basedmodels, such
as numerical models. AI-based surrogate models have been

adopted in numerous studies to solve engineering problems.
However, few studies used data-driven physics-based surrog-
ate models for superconductors and their applications, and
most of them fall into the performance assessment like AC
loss and design optimisation [11].

Current and future challenges

The current challenge in the modelling and simulation of
superconductors and their applications with complex geomet-
ries, is the compromise between the model’s high-fidelity and
instantaneous computation, by current modelling approaches,
either analytical or numerical models.

Apart from this, the existing simulation models would be
struck harder with the need to model the system response
where multiple applications exist with complex connections.
In addition, the existing simulation models will most prob-
ably fail to tackle emerging new functionalities in many fields,
including electrified transportation systems, power grids, and
other electric systems where applicable. For instance, the
superconducting technology has been foreseen to be the
enabling technique for electric aircraft powertrain systems to
reduce aviation emissions, and hence more and more regional
electric aircraft or powertrain demonstrators will require cryo-
genic superconducting components and applications on board
to increase efficiency, reduce weight and size, and increase
power density in the next 10 yr. Therefore, it is demand-
ing to have a high-fidelity and extra-fast computing simula-
tion model, in a couple of seconds and down to ms, which
could achieve real-time condition monitoring, fault diagnosis,
system control and performance assessment. Therefore, a
physics-based highly precise and fast computing surrogate
model will be urgently required. To establish surrogate mod-
els, data are required either from experimental systems or sim-
ulation models, such as analytical and numerical models.

The areas shown below will be at the forefront of the emer-
ging challenges confronting the modelling and simulation of
superconducting applications and systems in future, and prop-
erly validated surrogate models are promising to tackle these:

(a) Performance assessment in the design stage, including
AC loss and electro-thermal quench of superconducting
components.

(b) Design optimisation. The surrogate model will help
multi-objective design optimisation for superconducting
applications.

(c) Operating stage: Real-time condition monitoring for
superconducting cables (SCs), superconducting machines,
superconducting fault current limiters (SFCLs), and other
electrical devices on board, such as thermal management.

(d) Fault detection. It is crucial to build a fast, accurate, and
reliable fault detection system for the protection of super-
conducting magnets.

(e) System control, such as electric machines, SMES, super-
conducting circuit breaker, flux pump, etc.
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Advances in science and technology to meet
challenges

Surrogate models will bring game-changing solutions to meet
the challenges for superconductors and their applications.
Figure 6 shows the procedure to build an accurate surrogate
model.

The advances of using surrogate models to resolve the chal-
lenges are explained below, for instance, but are not limited to
these.

• AI-based surrogate models will significantly contribute
to design improvements of large-scale superconducting
applications [11]. For instance, in electric machines, arma-
ture windings, stator iron yoke, and field windings are the
most susceptible parts to minimise weight and size, and
swarm or evolutionary-based AI algorithms could benefit
from this; GA is usually used to deal with the power density
and efficiency increment.

• Online condition monitoring systems could be achieved via
surrogate models. For instance, superconducting construc-
tions are normally integrated with many varieties of sensors
to log, report, and analyse their multidisciplinary perform-
ance. These sensor data would be received and analysed by
an AI-based surrogate model, most probably DL, to update
and adjust the model simultaneously.

• AI-based surrogate models can dynamically estimate and
optimise the control systems of superconducting devices.
For instance, superconducting machines and energy stor-
age systems demand accurate and real-time control systems,
considering the dynamic nature during operation (e.g. con-
trolling the speed and torque in machines). Swarm-based
optimisation techniques together with DL can be implemen-
ted to update the controlling parameters simultaneously at
both device and system levels.

Though great advancements will be brought by physics-
based, accurate and fast-computing surrogate models, some
further improvements are still needed to fully benefit these
areas.

• To feed and build a highly accurate and physics-based sur-
rogate model, high-fidelity numerical models and system-
atic experimental testing systems are strictly required.

• More advanced AI algorithms should be improved and
explored, which can maintain highly stable and accurate,
despite numerous input variables and signals.

• High-performance computing hard-ware facilities are
demanding to make the numerous data capable with the
established AI model for real-time analysis. These efforts

Figure 6. Flowchart of building a surrogate model.

are well deserved in the field of fusion, and future electric
aircraft, for instance.

Concluding remarks

Modelling and simulation of superconducting materials and
applications are of great importance due to their significant
contributions to the design stage and performance analysis.
Nowadays, analytical and numerical models are widely used.
However, they still face challenges to deal with complex geo-
metries in very short computing times, the trade-off between
running many simulations and high accuracy, and the emer-
ging modelling functions for superconducting power applic-
ations, including real-time condition monitoring, fault dia-
gnosis, system control and performance assessment. On the
contrary, data-driven physics-based surrogate models show
strong advances to tackle these problems. Surrogate models,
together with analytical and numerical methods, can assist
each other in the design optimisation problem. In particular,
we discussed the future challenges in the next 10–20 yr within
the modelling of superconducting power applications. Eventu-
ally, the advances brought by surrogate models are given and
discussed.
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At the current stage, AI is not broadly used in the design,
manufacturing, and testing of superconducting magnetic MRI
magnets yet. This section presents how the latest AI develop-
ments can open new opportunities for the MRI industry. AI-
based modelling and optimisation approaches may help in the
design of the high-uniformity high-persistence superconduct-
ing magnets including coil location, conductor optimisation,
loss analysis, aggressive quench protection, shim assembly
design, and cryogenic system optimisation. This section
reviews the existing preliminary-stage design and optimisation
of the superconducting magnet and other components for MRI
systems using AI techniques. The knowledge-basedmodelling
may be used to address system component interactions such as
magnet-to-gradient interaction. The classification and cluster-
ing methods may find application in quench origin and cause
identification when very limited information is available. Dif-
ferent AImethods could be used for the selection of the lowest-
cost manufacturing methods, identification of cost-effective
manufacturing tolerances, shimming optimisation, fault mode
analysis, etc. AI promises to be helpful in the development of
higher-performance, more affordable commercial MRI scan-
ners and for the design of extremely challenging ultra-high
field (>10 Tesla) MRI scanners.

The working principle using AI technology to optimise the
homogenous magnetic field of the MRI HTS magnet is shown
in figure 7. For example, the GA can use the strategy shown in
figure 7 to reduce computation burden and time, and efficiently
optimise the homogeneity of background magnetic fields of
MRI scanners.

Figure 8 presents the homogenous magnetic field of the
HTS magnet in a mobile MRI for extremities, before and
after using the GA. It can be seen that the homogeneity
after AI optimisation (15 cm × 17 cm diameter elliptical
volume (DEV), 17.98 ppm peak–peak) is much better than the
homogeneity before AI optimisation (15 cm × 17 cm DEV,
6.57 ppm peak–peak). Furthermore, the AI-processed DEV
cross-section has a much more clean area of ppm < 1, which
implies the AI technology has superior advantages of reducing
the harmonics over conventional optimisation methods.

Current and future challenges

The AI methods find applications in clinical diagnostics for
MRI, from image acquisition to image interpretation and pro-
gnostic evaluation. Multiple AI approaches are used in the

diagnostic practice including DL, ANNs, and supervised and
unsupervised ML. Although AI approaches are not broadly
used in MRI magnets yet beyond the design of specific
components [46], the methods show significant potential. MRI
scanner is a commercial product, with thousands of scanners
shipped to customers annually.

Superconducting MRI magnets must meet multiple chal-
lenging and conflicting requirements:

• Because of the resonance nature of the scanning modality,
commercial scanners must deliver the exact required mag-
netic field. Even a 1% deficiency of the magnetic field below
nominal is not acceptable.

• High magnetic field homogeneity in a large volume. The
typical magnet uniformity for whole-body MRI scanners
shall be about ten parts per million (ppm) in 45 cm diameter
spherical volume (DSV) [47].

• High-quality imaging requires persistent operation of the
magnet. Magnetic field decay shall be below the averaged
0.1 ppm hr−1, or 0.088% yr−1 [12]. The total voltage drop
across a typical 1.5 T magnet shall be below 0.3 mV, or the
total circuit resistance shall be below 1 nΩ.

• The magnet must generate a minimum stray magnetic field.
The typical 5-gauss line of the commercial whole-body
magnets is approximately 4× 2.5 m from the magnet centre
for 1.5 T units and 5 × 3 m for the 3 T scanners [47]. Even
the ultra-high field 7 Tesla and 11.7 T Iseult magnets utilise
the actively-shielded architecture [48, 49].

• In the whole-body scanners, the patient-accessible warm
bore needs to be maximised to at least 60 cm, better
70 cm, while themagnet should be compact, with minimised
weight, length, and overall diameter. The compact scanner
design assumes not only magnet optimisation but also mul-
tiple system trade-offs including dimensional constraints for
the scanner components such as magnet and gradient coils
that compete for the same space.

• Conductor selection for MRI magnets includes multiple
trade-offs. The typical monolith or wire-in-channel con-
ductor offers better winding quality, lower conductor cost,
and persistent operation with known techniques for super-
conducting joints. The relatively low current causes high
voltages during a quench. A long single-piece conductor
length on the order of 5 km is required.

• To deliver the required image quality, EM, mechanical, and
thermal interactions between the magnet components shall
be minimised.

• The MRI scanners are commercial units, so their procure-
ment and life-cycle costs must be minimised. The costs are
minimised if manufacturing and test methods are optimised
while the yield of the scanners shipped to customers shall be
maximised.

Advances in science and technology to meet
challenges

AI techniques can be used for MRI magnet design, protection,
manufacturing, testing, and performance analysis.
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Figure 7. Working principle using AI technology to optimise the homogenous magnetic field of the superconducting MRI magnet.

Figure 8. Homogeneous magnetic field of the HTS magnet in a mobile MRI, before and after using the AI technology.

Magnet design. The magnet design is a multi-dimensional
problem that includes weight and cost minimisation within
dimensional and performance constraints. Higher cur-
rent density in the coils promises lower conductor and
manufacturing costs, however, it may result in unacceptable

hot spot temperature and voltage during quenches, and high
mechanical stresses. The peak magnetic field on the conductor
should be minimised to deliver a lower conductor price. The
random search feature of AI-based optimisers makes the
whole searching process much faster than the conventional
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trial and error method or even a mathematical search method,
especially for the design of ultra-high field (>10 Tesla) MRI
magnets [50–53].

Several optimisation algorithms may be considered to
address a variety of EM, thermal and structural problems that
could depend on the magnet configuration and application
such as commercial magnets versus one-of-a-kind, ultra-high
field MRI, etc. So far, the GA optimiser is most frequently
used for addressing a specific issue of optimisation of the loc-
ation and configuration. For example, the GA optimiser is suit-
able for the homogeneity optimisation of the main background
magnetic fields of MRI magnets, and a case study has proved
the homogeneity could potentially be less than 1 ppm in a
10 cm DSV of an HTS MRI magnet, with a decent optim-
isation speed [53]. However, in the future other AI techniques
such as ANN [54], together with meta-heuristic and swarm-
based optimisation algorithms, may be considered.

There are relevant optimisation methods for supercon-
ducting magnets discussed in section 4 ‘surrogate mod-
elling of superconducting materials and applications’ and
section 6 ‘integrated magnet design environment via surrog-
ate modelling-based optimisation’ that can be considered in
future for HTS magnet designs.

Magnet protection. The magnet protection must be safe and
reliable in any mode of operation including magnet ramp at
low- and high-currents, insertion or retraction of the current
leads, or persistent operation. Quench shall not cause any
degradation of the magnet performance. At the same time,
faulty activation of the protection is unacceptable. Safety con-
cerns require that MRI magnets are equipped with the emer-
gency field shut down unit for fast ramp-down in case of emer-
gency. Supervised and knowledge-based modelling methods
may be used for the analysis of multiple quench scenarios.
AI will help in the selection of a reliable, low-cost protection
approach.

The MRI scanner consists of multiple subsystems includ-
ing magnet, gradient and RF coils, shimming assembly, con-
ductive cryostat vessel, etc. Although every effort is made to
minimise the sub-system interaction, it is either very expensive
or not feasible to assure zero interference including localised
interference, especially taking into account all manufacturing
tolerances. The interference may require slower component
operation thus increasing the scanning time and reducing
patient throughput. The interference may affect the image
quality or even cause a system fault, such as a magnet quench.
Regression and prediction, and modelling methods may help
in the proper component design and minimisation of the sub-
system interaction.

Manufacturing. AI methods will be very helpful in the com-
mercial manufacturing of MRI scanners. The field decay in
persistent MRI magnets depends on the conductor margins,
the quality of superconducting joints and the transition rate
from superconducting to resistive state often described by the
index N. These factors are highly variable, although at differ-
ent rates. It is expensive and often not possible to repair the
magnet with high field decay: likely, the decaying magnet will
be scrapped. Reliable optimisation shall guarantee an accept-
able decay while minimising the material and manufacturing
costs. DL for analysing conductor andmanufacturing datamay
be used.

Due to unavoidable manufacturing tolerances, the magnets
as-built have a non-uniformity of several 100 ppm. In addi-
tion, the effects of a magnetic environment such as metal
beams or passive shielding of the room must be compensated
for. Shimming system is used to reduce the non-homogeneity
to the necessary level of 10 ppm. Over-design of the shim-
ming system is counter-productive: the oversized shims may
occupy expensive space in the system, increasing interaction
with other components. Statistical analysis of the manufactur-
ing tolerances and environment, regression and prediction, and
classification methods may be applied.

Testing. All superconducting MRI magnets are tested for
performance before shipment to customers. AI methods may
reduce testing time and minimise unnecessary quenches. For
example, quench analysis may help in the identification of the
quench scenarios, quench origin, and identify specific con-
ditions that result in quenches. MRI components including
switches and diodes are often 100% tested at cryogenic tem-
perature before integration with the magnet. Regression and
prediction methods may reduce full testing to sample testing.
AI analysis of the test results will reduce the qualification time
and assure better access of customers worldwide to MRI ima-
ging opportunities.

Concluding remarks

AI algorithms can powerfully optimise the homogeneity of the
magnetic field from the superconducting MRI magnet. In the
future, AI technologies will have great involvement in theMRI
industry, for the cost-effective manufacturing, high-quality
optimisation, high-efficiency testing, and high-performance
operation of MRI scanners.
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The superconducting magnet design process includes several
highly coupled design tasks as presented in figure 9. Using
domain-specific modelling and simulation software, the cur-
rent design practices, however, are loosely coupled and lightly
integrated with a simulation process chain during the design
and optimisation procedures. Additionally, simulations during
superconducting magnet design can be costly in terms of exe-
cution time, which can limit the design space exploration and
consequently the performance of the solutions.

In future particle accelerators, the magnets are expected to
reach targets significantly beyond the present state-of-the-art,
and their cost will be driving the cost of the entire acceler-
ator project [55, 56]. The magnet design optimisation for per-
formance and cost will thus become increasingly important.
Streamlined design optimisation is also essential to develop
superconducting applications for future greener energy and the
environment [1, 4].

Advances in ML are guiding modelling methodologies,
multi-disciplinary design optimisation (MDO), as well as sur-
rogate modelling. This may lead to a new form of simulation
modelling. This development can follow some strategic dir-
ections such as standardising the modelling process, integrat-
ing simulation models, and considering untapped sources of
knowledge. As a result, this will speed up the simulation pro-
cess while supporting a better design space exploration and
decision-making process for superconducting magnet design.

Current and future challenges

Forming an integrated design framework for superconducting
magnets is challenging because of the complexity of the phys-
ics, the limitations of computational resources, and the lim-
ited multi-physics coupling capacity of current FE simulation
software. For example, a simulation of magnetic field distribu-
tion in a relatively simpleHTS tape-based solenoidmagnet can
take 30 min (figure 10). The computational time can increase
to hours when dealing with more complex structures. Addi-
tionally, the exploration of the design space implies design
iterations and repetition of multi-physics simulations on EM
design, superconductor working points, mechanical design,
quench protection, cooling system, and integration with the
rest of the operating environment [55]. Moreover, a lack of
detailed knowledge relating to material properties or inter-
face conditions can increase uncertainties during the design
process. The strong coupling between different design object-
ives and design disciplines complexifies the optimisation pro-
cess and can reduce the ability to explore the entire design
space due to time constraints. Ultimately, all those limitations
have an impact on the performance of the design solution.

Therefore, to develop a truly integrated design environment in
the future, reducing computational cost, chaining more effi-
ciently coupled simulations, and iteratively providing guid-
ance towards improved optimal design, are demanded. Addi-
tionally, approaches allowing the integration of unexploited
sources of knowledge and providing explainable and parsimo-
nious models are required.

Advances in science and technology to meet
challenges

Simulation, surrogate modelling, and the need for fidelity,
explainability, and parsimony. Simulation models in super-
conducting magnet design aim at representing specific phys-
ics phenomena. Fidelity is a measure of how well simulation
models represent physics while also considering the intended
purpose and scope of the models. In the future, when ML
-based models are used in magnet design, the fidelity of a
model should be assessed by developing a fidelity evaluation
for ML models. This does not yet exist. Future ML solutions
should take into consideration untapped sources of knowledge,
to increase the fidelity level of models and their scope. In
the future, fundamental dimensions and their derived system
should be used as an important source of additional knowledge
to form ML models. This should lead to better specifying the
purposes and intended usage of ML simulation models to be
able to decide if they match the required expectations.

The semantic fidelity prism developed by Roca can be a
promising answer to these challenges [57]. The Dimensional
Analysis Conceptual Modelling (DACM) framework [58, 59]
offers the basic concepts to operationalise, fidelity measure-
ments in superconductor modelling and simulations. Future
solutions in surrogate modelling for superconductors will
benefit from explainability and parsimony properties because
they should be analysed and understood by humans, contrary
to DL solutions that are black boxes. Fidelity measurement
and DACM shall support those future developments.

Surrogate model-based optimisation methodologies. In the
future, surrogate model-based optimisation (SMBO) meth-
odologies will reduce the number of multi-physics simula-
tions by replacing the expensive simulation model with a
computationally cheaper surrogate model. Some researches
already applied surrogate modelling in magnet design, but
their usage remains usually static [60]. To further improve effi-
ciency factors, surrogate models should be able to be dynamic-
ally updated by automatically generating new samples where
needed. The sample generation from the numerical multi-
physics simulations can be guided by optimisation algorithms,
which are interfaced with the multi-physics simulation tools.
An initial proof of concept, applied to the EM design of a
HTS magnet, combining Lasso, ANNs, and grey wolf optim-
iser (GWO), is ongoing inside the SMARAGDI project [61]
at Tampere University. This future vision is presented in
figure 10. In the algorithm, the simulation results are learned
by Lasso and ANN to distinguish the design variables that
have a large influence on the objectives. By focusing on
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Figure 9. A schematic showing an example of different tasks in magnet design and their possible connections. The design criteria are input
based on performance requirements and engineering limitations given by other design aspects.

Figure 10. Using Lasso-ANN-GWO in COMSOL finite element analysis (FEA) simulation-based magnetic design.

and updating those variables, the optimisation algorithm can
obtain better solutions within a limited computational cost.
Conjointly, the knowledge and experience of the designers
can guide the generation of new samples [62]. For example,
instead of searching in a black-box design space, knowledge
of cause-effect relations and the use of Bayesian networks will
provide insight by supporting the discovery of themost attract-
ive design areas. Additionally, by extracting the sensitivity and
fidelity information, new samples, and new surrogate models
will become more parsimonious and consequently more effi-
cient in terms of running time and explainability while main-
taining the other performance criteria constant.

Multidisciplinary design and optimisation framework. To
integrate more design aspects, future optimisation solutions
should systematically employ MDO frameworks. An ideal
MDO framework provides a platform to combine all the sim-
ulation models for different disciplines and all the design
and optimisation algorithms together. The MDO must also
remain flexible to allow extension to new algorithms. The
second function of the MDO framework is to provide decom-
position strategies to deal with coupling between discip-
lines at system-level design. Decomposition strategies propose
policies to reduce the number of system-level simulations and
the number of simulations in each discipline. A direction for
future research is to develop more generic functional-based
and variable-based decomposition strategies providing more

flexible and standardised design processes. Combining data
mining methods (e.g. clustering, classification, and rule learn-
ing) and the existing knowledge from the designers, a more
detailed system-level model centred on functions and variables
of the superconducting magnet design can be constructed to
replace the traditional disciplinary-based model. As a result,
new decomposition strategies can be developed based on the
information obtained from the detailed models. A promising
research direction is to develop generic causal graphs rep-
resentations of MDO problems using the DACM framework
[58, 59], combined with physical contradictions detection and
reduction using the Theory of Inventive Problem Solving sep-
aration principles since contradictions are the root cause of
optimisation processes.

Concluding remarks

With the increasing demand for high-performance particle
accelerators, the coupling and interaction between different
multiphysics simulations should be considered during super-
conducting magnet design. However, the high computational
cost of the simulations or the lack of methodologies capable
of integrating different simulations and design areas can form
a major challenge to the successful design of the next gen-
eration of superconducting magnets. An intelligent combin-
ation of surrogate models, SMBO, MDO, ML, and design
optimisation is a promising direction to improve system-level
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superconducting magnet design and optimisation, resulting in
reduced computational cost both at performance prediction
and optimisation stages. Combining surrogate modelling and
SMBO in the MDO framework can provide an environment
to perform the system-level design considering all the interac-
tions among disciplines. Future work should take advantage of
all the available information during SMBO and MDO stages
to further improve the design results.
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Superconducting magnets are an indispensable technology
when fields >1 T are required. HTS can operate at higher
temperatures and larger critical magnetic fields than con-
ventional superconductors; making the high magnetic fields
(>20 T) required for commercial fusion energy a realistic
proposition [2]. While the manufacture and design of HTS
magnets are rapidly progressing, the low quench propagation
velocity (QPV) leads to difficulties in quench detection [63].

Quench behaviour is highly material and application
dependent [64]. In HTSs, the large enthalpy margin makes
them resilient to small temperature fluctuations which, in com-
bination with specific coil winding techniques, can mitigate
quenches [65]. However, once a quench is initiated, the heat
generated is concentrated by the low QPV leading to danger-
ous hot spots. Therefore, quench protection will remain vital
for large-scale HTS fusion magnets. In conventional monitor-
ing, voltage fluctuations across the magnet are used to detect
quenches. Unfortunately, low QPV correlates to a decrease
in the generated voltage making accurate detection of voltage
anomalies problematic [63]. This issue will be accentuated by
the high mechanical strain and EM noise environment anticip-
ated in many fusion magnet systems [2].

Many innovative condition monitoring techniques have
been proposed including optical fibre sensing (OFS), mag-
netic, acoustic, and RF-based methods [66]. These methods
utilise non-voltage signals potentially allowing hot spot detec-
tion before damaging heating occurs. However, they require
more complex signal analysis techniques [67]. To date, no
alternative technique has demonstrated better performance
than voltage detection. This originates from two factors: (a)
sub-optimal signal detection and (b) limitations in signal pro-
cessing techniques. Thus, the simultaneous development of
underlying detection techniques and signal processing meth-
odology is required. In this article, we focus on OFS tech-
niques which are insensitive to EM noise.

Considering the inherent complexity of the derived OFS
signals and the rapid analysis required, ML approaches appear
indispensable to solving this challenge. Therefore, developing
a proven AI hot spot detection technique will help propel HTS
fusion magnets from the promising to the game-changing. In
this article, we will outline the processing challenges, and dis-
cuss how AI can assist before reviewing the necessary actions.

Figure 11. (a) Wavelength–Domain spectrum for Rayleigh-,
Brillouin-, Raman- and continuous fibre Bragg grating (cFBG)
reflected scattering. (b) Waterfall plot of cFBG spectra during a 10 s
heat pulse illustrating underlying complexity of signal (unpublished
data).

Current and future challenges

From the hot spot detection techniques available, we consider
OFS to be the most promising. Optical fibres have a long his-
tory of successful condition monitoring in a range of extreme
environments [68]. In the context of fusion magnets, OFS
works by measuring local strain and temperature perturba-
tions which will precede a quench. Therefore, they can poten-
tially identify quench-like signatures before thermal runaway
occurs [63].

The dominant OFS techniques utilise internally reflected
light originating from two broad classes: randomly gener-
ated intrinsic backscattering centres or specifically designed
fibre periodic Bragg gratings (FBGs), as shown schematic-
ally in figure 11(a). Local temperature measurement derives
from thermal and strain transfer to the optical fibre subtly
altering the reflected spectrum. While different OFS meth-
odologies offer varying strengths and weaknesses [67, 69],
the fundamental design challenge remains similar irrespect-
ive of the precise approach: temporal spectra variations must
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be isolated from the generic optical response in real-time
(<100 ms).

The measured perturbations are highly dependent on the
exact conditions experienced by the optical fibre including the
magnitude of the hot spot, the pre-existing strain and temper-
ature profiles, the local thermal transfer sensitivity, the signal-
to-noise ratio, and signal processing capabilities. This makes
predicting the spectral response a-priori extremely difficult.
As an example, figure 11(b) displays a representative tem-
poral response for an OFS technique. Existing signal pro-
cessing techniques use simple algorithms which underutilised
the wealth of spectral data available [69]. These approaches
may have insufficient sensitivity to rapidly detect hot spots in
real-world systems. Furthermore, in the extreme environment
anticipated in fusion energy magnets, the long-term evolution
of the OFS spectra, caused by the high radiation environment,
will alter the generic spectral response. Therefore, the evolu-
tion of the processing algorithm may be necessary to counter-
act signal deterioration.

AI signal processing methodologies appear the ideal tool
for overcoming these challenges. The inherent adaptability
of machine-learning approaches should ensure accurate pat-
tern recognition and provide the required algorithm evolu-
tion. Additionally, developing AI techniques for post-hoc ana-
lysis can help to guide the rapidly developing field of HTS
magnet quench modelling. Therefore, fusion magnet hot spot
detection represents an ideal test-bed for developing machine-
learning techniques.

Advances in science and technology to meet
challenges

To become application-ready, OFSs must improve the existing
signal-to-noise ratio. This requires simultaneous optimisation
of the optical fibre response and signal processing techniques
[67, 69]. To illustrate the challenge, in figure 12, repres-
entative spectral maps for artificially generated hotspots are
displayed for two different state-of-the-art OFS techniques.
These datasets originate from small-scale proof-of-concept
experiments. In real-world systems, not only will the signal-to-
noise ratio be significantly diminished but the baseline spectra
more complex.

A range of AI techniques applies to this challenge, includ-
ing genetic programming, SVMs, transfer learning, feature
selection and feature learning. The signal processing can be
approached as a (symbolic) regress, classification, or cluster-
ing task. However, we suggest that convolutional neural net-
works (CNNs) may satisfy all the processing requirements.
CNNs are DL models designed to develop spatial hierarch-
ies automatically and adaptively using training databases [70].
They are composed of multiple computational layers and have
been shown to analyse complex signals in real-time [70].

Any approach will require, at least, partially supervised
learning. Therefore, it is essential that the experimental

Figure 12. Representative responses for different OFS techniques
when a short heat pulse is applied: (a) cFGB (unpublished data) and
(b) Rayleigh backscattering [67]. For further details of each
experimental approach see [69] and [67] respectively. Note that the
spectral response in (a) corresponds to a 10 m monitoring region
compared to 24 cm in (b). As the monitoring region increases,
signal processing will become increasingly difficult.

community generates a comprehensive database of labelled
spectra illustrating a variety of expected responses. This lib-
rary will provide a testing ground enabling AI researchers
throughout the world to engage in the challenge, ensuring
rapid benchmarking of the possible AI approaches.

However, each individual HTS magnet will have complex
strain and temperature profiles leading to unique spectral sig-
natures. This implies that specialised training databases are
required for each experimental system. Generating these data-
bases may be onerous or even impossible before the imple-
mentation of the system. Physics-based modelling will allow
representative training data to be generated but integrating the
complex interactions required for accurate predictions is chal-
lenging. Despite these difficulties, the development and exper-
iment validation of these models may play a pivotal role in
simultaneously creating realistic datasets and verifying the AI-
based techniques.

Another alternative are semi-supervised ML approaches
[71]. These circumvent any ‘black-box’ issues allowing opera-
tion without extensive training databases. Therefore, the exact
solution satisfying the unique criteria for fusion magnet hot
spot detection is not established. However, any technique
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will require collaboration between experimentalists and AI
experts.

Concluding remarks

Hot spot detection represents a key challenge in the
development of HTS magnets. Despite the difficulties, the
society-altering consequences of HTS fusion magnets justify
significant attention. Commercial fusion energy is a rapidly
growing area with quench detection a known difficulty. OFS
may offer the best hot spot detection solution in high EM
noise and cryogenic environments. By directly observing the
temperature profile, OFS could increase the speed and accur-
acy of detection. However, the intricate evolution and inherent
unpredictability of the spectral signal indicate that AI signal
processing may be necessary.

This article is a clarion call to the experimental OFS and
AI communities. For the experimentalists, a well-categorised
spectral library with labelled data must be developed. To the
AI experts, we present an unexplored experimental territory
which has the potential for global change, a clear set of pro-
cessing requirements and a motivated community ready to
engage.
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A fast, and reliable quench detection system is extremely
important for the safe operation of a superconducting mag-
net. Indeed, being able to detect a quench immediately after
its occurrence allows it to trigger the magnet quench protec-
tion in a short time, and therefore limit the peak temperature
and peak voltage of themagnet. A fast quench detection, there-
fore, enables the design of higher performance magnets, able
to carry larger current without protection problems.

Today, most used quench detection systems are based on
the measurement of the resistive voltage growth due to the
propagation of the quench inside the coils. For this reason,
the reliability of existing quench detection systems depends
on the QPV. While this technique is well-established for low-
temperature superconductors (LTSs), where propagation is
fast (∼10 m s−1) and a quench can be detected only a few
milliseconds after its occurrence, it is still unknown whether
it will be possible to use the same approach for HTSs, where
quench propagation is much slower (∼0.1 m s−1) [72]. HTS
is likely to be the future of high-field superconducting mag-
nets, enabling the use of >20 T magnetic fields, especially
for most advanced machines like future particle accelerators
or fusion energy plants. It is important to ensure that quench
can be detected safely in HTS, and new detection techniques,
independent of the QPV, will be needed.

In magnet diagnostic data we can observe quench
precursors [73]. The resistive voltage growth is the con-
sequence of a previous release of energy, and therefore it
should be anticipated by ‘anomalies’ in other kinds of data,
such as acoustic, optics or EM data. Being able to monitor
quench precursors in real-time could therefore be a game-
changer in the quench detection approach. Indeed, the iden-
tification of quench precursors is not dependent on quench
propagation. Furthermore, the detection of precursors can be
done before a resistive zone is formed.

It is trivial how much the design of HTS magnets would
earn from the possibility of detecting a quench independent
of quench propagation. But LTS magnets have a margin for
improvement too: one of the current challenges in LTS (Nb3Sn
in particular) is indeed finding how to reduce magnet train-
ing. Detection of precursors can feedback the power supply
before the formation of the resistive zone, and ideally com-
pletely avoid the quench.

Current and future challenges

While we can see quench precursors in post-processing dia-
gnostics, the big challenge is being able to detect them in real-
time during magnet operation.

Figure 13. Anomaly events detected by a prototype machine
learning algorithm in post-processing analysis of acoustic data taken
during the training of MDPCT1b magnet. Anomalous events are
detected in the majority (77%) of quenches. © [2021] IEEE.
Reprinted, with permission, from [74].

Quench precursors can have different shapes and different
time-length and can appear in different types of data, depend-
ing on the quench origin event, which can be a coil move-
ment as well as a heat release. Moreover, the same release
of energy can cause a quench at a high current but can be
ignored at a low current, due to the larger enthalpy margin.
A classical threshold approach is therefore out of the ques-
tion. Instead, quench precursor detection can be reliably done
only by cross-monitoring different types of diagnostic data
(e.g. voltage, EM, optics, acoustic, etc), and associating the
energy of the anomalies with the margin to quench, to pre-
dict it. Simply, there is not a straightforward threshold over
which a quench is certain and under which it is not, like we do
today with resistive voltage detection. We, therefore, conclude
that the detection of quench precursors can be allowed only by
using AI techniques.

ML algorithms can indeed be trained to learn how the
magnet ‘normally’ behaves during operation, and therefore
be able to identify anomalies in monitored data. These anom-
alies should be analysed in real-time, compared with margin
to quench, and flagged as a possible cause of a quench. In that
case, we could trigger the quench protection before quench
formation. But we should also explore the possibility of redu-
cing the current in the magnet by driving the power supply
instead. In this way, the margin to quench is increased, and the
energy released during the anomaly event could be absorbed
by the magnet instead of generating a quench.

A first demonstration study is presented in [74] where
acoustic sensor data for various locations across a supercon-
ducting magnet are used to detect quenches. High-level fea-
tures derived from spectral data are used as input into a fully
connected multilayer perceptron. Because each magnet can be
unique, the non-anomalous behaviour of the magnet is dynam-
ically learned as themagnet is trained. In this particular config-
uration, a quench is detected 77% of the time in a randomised
experiment (see figure 13).
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Advances in science and technology to meet
challenges

To address the challenge of understanding, predicting, and
characterising quench events, deploying real-time ML tech-
niques will be critical. Because precursors can arrive only
seconds to milliseconds before the actual quench, fast data
acquisition and data processing is required at kHz data rates to
identify anomalous sensor signals potentially originating from
a quench.

Approaches thus far, first use unsupervised ML techniques
such as an autoencoder for anomaly detection. Then, anom-
alies can be classified by clustering similar quench events
based on the latent (hidden) information in the NNs. Because
several sensing modes can be used to identify quenches, com-
bining those different modes could be even more powerful,
and a multi-modal ML approach would be critical.

We are still just in the early exploration stage of what is pos-
sible with ML for magnet quench detection. There is still quite
a lot of room for advancement in better identifying quench
events, characterising and classifying the different types of
events, and then building a system which can operate, learn,
and react in real-time.

In designing ML algorithms, future studies should explore
raw data features besides simple high-level features. For
example, using the raw signal spectrum or data pre-processing
in the frequency domain and constructing a deep NN archi-
tecture with convolutional layers has shown promising res-
ults for detecting anomalous sounds [75]. Furthermore, com-
binations of DL models into ensembles could provide a
more robust determination of anomalies. In natural language
processing, recurrent neural network (RNN) architectures,
including LSTM layers [76], or attention [77] or graph-based

architectures have shown promise for analysing time-series
data and could also be explored. The latter may be particularly
relevant in the case of multi-modal input data from a variety
of sensor data with different representations, time scales, and
geometries. Beyond the structure of the DL architectures, it
will be very important to understand the similarities and dif-
ferences between anomalous quench events and their signific-
ance and related uncertainties. There have been several studies
in physics related to this [78, 79]. Building variational autoen-
coders (VAEs) [80], as one example, can provide probabilities
models for characterising quench events, within a single mag-
net and across many different magnets.

Concluding remarks

The possibility of detecting quench precursors in supercon-
ductingmagnets should be explored. Indeed, quench precursor
detection independent of the QPV, will solve the problem of
quench detection [20] in HTS magnets, where quench propag-
ates slowly.Moreover, knowing that a quench is going to occur
before its appearance can be of great help with reducing/elim-
inating LTS magnet training.

However, quench precursors are statistical events, with dif-
ferent shapes and time-length, depending on the type of event
that causes the quench. We are confident that detecting pre-
cursors with reliability is possible only using advanced ML
and DL techniques, able to learn how diagnostic data behave
and to identify eventual anomalies in real-time monitoring.
We are convinced that in the next few years, the magnet
community should make some efforts towards this achieve-
ment, which can be a game-changer in the quench detection
techniques.
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Today’s particle colliders are large installations built for high
energy physics (HEP) or medical purposes. It seems that for
a long time, this kind of installation will rely on supercon-
ductivity to generate high magnetic fields. Therefore, search-
ing for an intelligent and effective method to forecast undesir-
able events (e.g. quenches) is essential to ensure the safety of
colliders. Quench is unavoidably connected with the applica-
tion of superconductivity, especially in the presence of a high
magnetic field and limited geometry to host enough stabilising
conductors.

Currently, active systems for protection against the con-
sequences of quench events are used in the protection systems
of huge colliders. The need for a forecasting system arises
already in the High-Luminosity Large Hadron Collider (HL-
LHC) and especially with the Future Circular Collider (FCC)
on the horizon. Let us recall that the LHC is 27 km of super-
conducting installation, and the FCCwill be almost 4× longer.
There are several points to consider for development in this
direction: various kinds of sensors to be used for quench detec-
tion, the sampling rate for digitising a sensor’s signal, con-
ditioning, and pre-processing of the signal, and finally, the
algorithms for online analysis of signals.

In general, five detection methods can be distinguished:
voltage, magnetic, optical, acoustic, and capacitive [81], each
of which has many complex kinds of realisations. Acoustic
methods using the so-called coda signals seem to be the most
promising. However, combining signals from several sensors
of different types could be the most interesting solution for
forecasting algorithms. The algorithm should detect anom-
alies that precede the quench event, and they should work with
multichannel time series signals. The most commonly used
ML algorithms in the anomaly detection field are autoregress-
ive integrated moving average, evolution strategy, regression-
based approaches, and NNs.

Current and future challenges

The analogue signals coming from the sensors are digitised.
The key parameters of this process are the sampling rate, the
input range, and the resolution. The choice of those parameters
is a trade-off between the noise level and the speed of physical
processes, which needs to be analysed. The RNNs were used
to model magnet signals and introduced the concept of data
quantisation using adaptive intervals that best use the dynamic

range of data representation [82, 83]. It is also worth mention-
ing that quantised data are more susceptible to compression,
potentially increasing the system bandwidth.

Signal processing should be designed to enable efficient
processing on embedded devices to avoid the time uncer-
tainty introduced by data transmission from the source (edge)
to a remote server (cloud). The architecture is presented in
figure 14. Therefore, it is crucial to compress ML models
using dedicated techniques to enable hardware implementa-
tion close to the monitoredmachinery, providing a low-latency
response.

In the context of NN-based models, it means that the struc-
ture of the NN should be computationally light to allow hard-
ware implementation of the limited resources that exist near
the data source [85], taking into account the shortening of an
inference time between the appearance of the anomaly and
the response of the classifier. It means that lowering the pre-
cision of the calculation and eliminating useless operations
[86] must be applied when designing a detection or forecasting
device.

The analogue and digital signal processing should also be
designed to eliminate interference. In traditional quench detec-
tion schemes, spurious triggering is a critical issue that limits
the availability of superconducting installations. In the case of
particle accelerators, the influence of radiation on electronics
as single event effects (SEEs) limits the usefulness of detec-
tion, and the system must be considered a highly depend-
able system dedicated to safety-critical applications. There-
fore, redundancy and voting logic is recognised as necessary to
be applied to mitigate SEE in the detection hardware. In prin-
ciple, NNs are resistant to SEE due to inherent high levels of
redundancy [87]. However, the successful implementation of
a NN as hardware requires pruning [85] of excess connections
in the structure. Unfortunately, the pruning process reduces
the level of redundancy, leading to a higher susceptibility
to SEE.

Advances in science and technology to meet
challenges

There are two directions of development: algorithms and hard-
ware implementations. In the field of algorithms, the idea of
third-generation NNs as bioinspired spiking neural network
(SNN) [88] gains a dominant position in the anomaly detection
domain.

It is also possible to use transformer-based architectures for
anomaly detection [89]. However, this class of neural architec-
tures will require more demanding forms of model compres-
sion since transformers are vast architectures. A multimodal
approach can help alleviate the problem of very aggressive
transformer compression. For example, both acoustic and elec-
tric signals can be used simultaneously.

For the hardware implementation of the neural algorithm,
three options are available when choosing a platform: micro-
controller (µC), field programmable gate array (FPGA),
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Figure 14. The conceptual view of the anomaly detection system with the voltage input signal (green). This system is similar to the Quench
Detection System [84] currently operating in the LHC tunnel. The Anomaly Detection block (red) should contain a hardware
implementation of the neural detection/forecasting algorithm.

Figure 15. The graphical summary of algorithms options (right side) and hardware implementation options (left side) discussed in this text.

and application specific integrated circuit (ASIC). In many
common cases, the computational performance of modern
microcontrollers dedicated to the NN is sufficient. How-
ever, using an FPGA may result in faster applications with
lower power consumption and more robust to SEE. The tradi-
tional FPGA design flow employs hardware description lan-
guage (HDL), but high-level synthesis (HLS) tools become
widely available from FPGA vendors. The most challenging
option is to design an ASIC. The performance of the result-
ing device is the best. However, the design flow is complic-
ated, requires deep expertise, and usually includes the fab-
rication of one or more prototypes. This option is reason-
able only in the case of large quantities of desired chips.
On the other hand, the ASIC approach gives the opportunity
to integrate analogue building blocks with digital hardware,

shortening the latency and lowering the power consumption.
All these approaches are presented together in one graph
in figure 15. The missing component for hardware imple-
mentations is a full-stack solution that would enable compre-
hensive simulation and deployment, as is currently done for
solutions utilising general purpose graphics processing units
(GPUs)s.

Memristors with many resistance states are emerging build-
ing blocks of SNNs such as synapses of neurons [90]. They
promise to overcome the von Neumann bottleneck thanks to
analogue in-memory computing (AIMC), which becomes a
new paradigm for future hardware NNs. The array of memris-
tors can perform matrix multiplication following Ohm’s law
and Kirchhoff’s current law. However, once again there are no
efficient simulation platforms and compilers that would enable
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reliable mapping to memristor hardware networks preserving
the working parameters achieved in the simulation.

Concluding remarks

The real-time low-latency response in systems based on ML
algorithms is a huge challenge that future research needs to
address. A bioinspired approach, such as the SNN, became
dominant when designing neural algorithms.

The dawn of modern analogue computing AIMC opens a
new horizon for low-latency training and inferring. Consid-
ering emerging technologies, one can also imagine a fully

analogue forecasting system integrated with the monitored
devices for superconducting machinery.
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Status

The deployment of SCs is identified as a promising solu-
tion for modern power grids, especially for off-shore wind
power-plants, high voltage direct current (HVDC) power
systems, and sensitive applications [91–93]. This is due to
their technically-attractive features such as very low losses,
fault-current limiting capability, high-current capacity, com-
pact structure, and light-weight. Nevertheless, to enable the
broad adoption of SCs, there are significant challenges to be
resolved such as the requirement for coupled electro–thermo–
magneto-mechanical analysis, high-fidelity system-level mod-
elling, mechanical and thermal stabilities and cooling issues
for long-length cables, joints and terminations, and last but
not least, efficient fault management (accounting for protec-
tion, fault location, and analysis) both for AC and DC grid
applications [91–93].

Power grids with deployed SCs would be a multi-variable
multi-physics system, and more dependent on a control that
requires commensurate models. The complexities will only
increase in the presence of distributed energy resources in both
on-grid and off-grid (i.e. islanding mode) applications. Only
mathematical expressions cannot be directly utilised to repres-
ent the state and behaviour of power grids, since those expres-
sions are of high order and multi-dimensional. For such reas-
ons, AI methods are utilised recently to analyse big sets of data
and real-time measurements towards better understanding the
behaviour of power grids. AI has been used in the area of pro-
tection for conventional systems for a wide range of purposes
including derivation of fault levels, selection of settings, adapt-
ive protection fault detection and classification. In this work,
we will mainly discuss how AI techniques could help address
the challenges in efficient fault management for the protection
of SCs.

Current and future challenges

The SCs pose new fault-related challenges accounting for fault
analysis and power system protection, due to their unique

electro-thermal properties and the quench phenomenon. In
particular, the transition to the normal metal state imposes a
dynamic change to the equivalent system impedance which
affects the fault current magnitudes, and subsequently intro-
duces an adverse impact on (a) the well-established pro-
tection schemes (such as over-current, differential, and dis-
tance relays) and (b) existing fault analysis and approximation
methods.

A SC model developed in [93] was utilised to investigate
the impact of internal and external faults and load-switching
on the overcurrent protection. The sensitivity analysis depic-
ted in figure 16, clearly demonstrates that even the detec-
tion of faults occurring on SCs can pose significant chal-
lenges in terms of sensitivity and stability of well-established
protection solutions. For instance, any protection threshold
above 1.1 p.u. reduces the sensitivity of protection below 60%
while compromising stability. When a high degree of stabil-
ity is achieved, the SCs remain unprotected against internal
electric faults. This challenge is anticipated to become more
pronounced in modern grids as more converter-interfaced
resources and HVDC interconnectors will be integrated. This
is because such converters have limited fault current contri-
bution capability [94], and consequently SCs will not quench
to enable faster and more reliable fault protection. Addition-
ally, the presence of fault resistance may result in peculiar and
unexpected fault current magnitudes [95], which in turn can
impose unpredicted or even no quenching states.

Eventually, the resulting behaviour of the SCs during elec-
tric faults, will be a high-complexity problem comprising
of (a) multi-physics dynamic phenomena introduced by the
SCs, and (b) a high-order control interaction of converter-
interfaced resources in line with the presence of fault res-
istance. Undoubtedly, such a transition to a modern power
grid creates an emerging need to reassess protection, fault
management and control strategies paradigms (for both exist-
ing conventional and future SC-based grids). Practically, it is
anticipated that new criteria and approaches will be required
for a wide range of fault management solutions, to main-
tain a high degree of sensitivity, stability, accuracy and
reliability.

Advances in science and technology to meet
challenges

The following advancements can form a significant part of
future solutions towards intelligent faults management of SCs
in the next few decades:

AI. A range of AI-based methods can be used to (a) discrim-
inate between faults and other transients, (b) identify undetec-
ted faults, (c) accurately locate fault points, and (d) precisely
approximate prospective fault currents. These methods require
(a) DT models trained offline and/or run in real-time, and
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Figure 16. Performance of over-current relay for a wide range of thresholds, for faults and load switch events occurring on an SC feeder.
The results include different fault types (i.e. three-phase, three-phase–ground, phase–phase, phase–phase–ground and phase–ground) as
well as solid and highly resistive.

(b) efficient data exchange among devices, platforms, and
databases [96, 97].

AI-based methods should be evolved in a way to include
the unique electro-thermal properties and characteristics of the
associated materials and relevant control systems of SCs. The
development of AI-based high-fidelity DT models (capable of
running in real-time), should be accompanied by some degree
of standardisation—currently amissing element for SC cables.
Training AI algorithms can be achieved by data emanating
from simulations, laboratory experiments, or field trials and
records (from normal operations, faults, and other events).

Some examples of AI-based fault diagnosis methods for
SCs include the utilisation of ANNs and SVM algorithms
which can form the fault detection on SCs to a binary classi-
fication problem. ANN can tackle the fault-related challenges
imposed by the integration of SCs (i.e. fault detection and dis-
crimination) due to their capability to incorporate dynamic
changes in the power systems. ANNs follow time series phe-
nomena, reveal hidden patterns, and make the search process
faster. Accordingly, SVM is a supervised learning algorithm
capable of dealing with complex high-dimensional data that
provides an optimal solution with hyper-plane and classifies
non-linearly separable data.

AI algorithms could be also utilised for fault location
estimation [98]. The fault location on SCs can be formed as
a regression problem using image processing techniques and
spectral analysis. Particularly, the time domain signals can
be transformed into the image domain, by forming the cor-
responding spectrograms. After the proper normalisation pro-
cess, the 2D spectrograms are utilised as inputs to CNNs—
a DL algorithm—for image processing. The most anticipated
data-driven methods for fault location studies are CNNs, the

long-short term memory RNNs—which are well-suited for
regression problems to extract temporal correlation of time
series data (serial correlations) and parallel dependencies—
(correlations of the input feature data), S-transformer, and
wavelet-transform.

Setting-less protection & smart algorithms. In estimation-
based protection, all existing measurements in the protection
zone are utilised and compared to the dynamic model of the
zone via a dynamic state estimation procedure that quantifies
how well the measurements satisfy the mathematical model
[99, 100]. This setting-less protection is independent of fault
current levels, which is very important for SC systems, as well
as it is independent of other protection functions. It can detect
all faulty conditions including those that do not draw high fault
currents (i.e. they are characterised by a high degree of sensit-
ivity) such as when a SC goes into different quenching states.
This approach requires a high-fidelity model of SCs which in
this case is a multi-physics nonlinear model which needs to be
entered and tested at the time of commissioning. Furthermore,
this approach is applicable to local, and wide area protection,
hence further improving the margins for stability and sensit-
ivity. Overall, the estimation-based protection is the ultimate
adaptive protection as its operation and performance are inde-
pendent of system conditions or other protection functions.

Figure 17 presents an envisioned framework for fault man-
agement of SCs, integrating a wide range of inputs, functions,
and outputs. The combination of meaningful data, together
with intelligent and sophisticated SC modelling and analysis,
is anticipated to deliver profound insights and indicators for
reliable and efficient fault management of SCs.
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Figure 17. Envisioned framework enabling artificial intelligence and smart algorithms for fault management of superconducting cables.

Concluding remarks

Alongside the integration of converter-interfaced resources,
the gradual deployment of SCs into multi-variable and multi-
physics power systems is bringing additional challenges, with
fault management being one of the most prominent. In the
presence of digital transformation of power grids, an envi-
sioned framework entailing AI and smart algorithms has
been presented which is capable of producing meaningful
real-time indicators and informed decisions for efficient fault

management and high-fidelity modelling of SCs. In the near
future, the envisioned framework is anticipated to be instru-
mental towards the reliable and large-scale deployment of SCs.
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Status

The determination of short-circuit levels of power grids
is mandatory for establishing protection ratings and their
coordination. Yet, the increasing penetration of renewable-
based generation in grids, required to achieve the grid flexibil-
ity demanded by the energy transition goal [101], raises exist-
ing short-circuit levels that ultimately lead to exceeding the
ratings of existing protections. Significant investments in grid
reinforcement or new/updated protections are thus required.
SFCLs, particularly of saturated cores type, can mitigate this
problem [102], keeping short-circuit levels within limited val-
ues. This type of SFCL has been deployed already in a few
power systems (figure 18). It uses a DC HTS coil to saturate
iron cores, providing a variable inductance that is connected to
the grid. During normal operation, the SFCL behaves as an air-
core reactor due to saturation, being nearly invisible to the grid.
Under a fault, current excursion leads the cores alternately in
and out of saturation, providing a dynamic inductance that
limits current. To comply with existing regulations, grid rat-
ings, and distinct operation scenarios, accurate design tools for
these devices are required, allowing, simultaneously, to simu-
late their performance in distinct grids. Real-time online mon-
itoring and fault detection of these systems is also mandatory,
as events like sudden quenchesmay compromise the grid oper-
ation and security of supply. Numerical techniques, namely
those based on the FEM, despite being the most accurate com-
putational tools, lead to impractical simulation times when
the previous tasks are intended. AI techniques allow for the
development of faster tools to address those challenges, with
unprecedented reduction of computation times while keeping
the required accuracy.

Current and future challenges

AI paradigms can be applied in all the lifecycle of SFCL or
other devices, as depicted in figure 19, where typically data-
driven,MLmodelling is a core task.Models support the design
stage, wheremultiple goals need to be addressed. This is intim-
ately linked to simulation stages, allowing validating models,
or running use case scenarios with real data. It also enables
new paradigms for real-time monitoring of the operation of
devices, as provided by DTs.
Multiobjective design methodologies: one relevant chal-

lenge is the establishment of design methodologies that can
simultaneously address economic goals while fulfilling the

Figure 18. SFCL of saturated cores type: representation of its
structure, where each phase is series connected to coils in diametric
limbs, wounded in opposite directions. © [2018] IEEE. Reprinted,
with permission, from [103].

Figure 19. AI application in the full lifecycle of SFCL (as well as
other engineering systems).

technical requirements of grid operators. The SFCL econom-
ics depends on several design factors, such as the amount of
superconducting HTS tape used in the DC coil, the losses
generated under faults and the associated cryogenic cooling
system, or the volume of iron, among others. As mentioned,
FEM packages allow defining and accurately simulating dis-
tinct designs, but they lead to unreasonable computation time
if, e.g., thousands of evaluations are needed in the optimisation
process.
Seamlessly integrated simulation toolboxes: being able to

fully assess the operation of the device, namely its perform-
ance under grid events or the ability to address multiple faults
in a short time, are mandatory aspects. For such, new simula-
tion toolboxes, able to be seamlessly integrated with existing
software packages used by grid operators, must be developed.
Running co-simulations with FEM packages, if integration is
possible, is again unfeasible due to the required computational
effort.
SFCL online monitoring and fault detection: several tech-

nical problems may arise from the integration of SFCL in
grids, such as the malfunction of the device [104] or lack of
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coordination with existing protections. A quench in the HTS
coil may deceptively suggest a fault in the grid, causing the
protections to operate. On the other hand, a grid fault may be
masked by the actuation of the limiter, preventing the actu-
ation of protections and the elimination of the fault. Enough
operational information is lacking, and advanced monitoring
tools for this breakthrough technology must be developed to
demonstrate and assure its reliability.

Advances in science and technology to meet
challenges

Multiobjective design methodologies and seamlessly integ-
rated simulation toolboxes: metaheuristic and evolutionary
strategies, such as GAs [105], have already been used to
design SFCL devices by multiobjective optimisation address-
ing distinct design parameters while complying with technical
and economic requirements [103, 106]. One such methodo-
logy relies on representing the SFCL by a reluctance-like cir-
cuit, whose characteristics depend on several parameters of
the limiter. For each possible solution, the finite-differences
method allows determining a first estimation of its correspond-
ing behaviour. GA then performs a parallel search among the
domain of the multiple decision variables (e.g., the number
of turns of the AC coils, and the cross-section area of the
DC limb) to find the best solutions. Yet, FEM simulations
are needed in several steps of the optimisation process, and
these do not capture all the existing complex interactions and
dynamics. AI-based optimisation algorithms provide a meth-
odology to search global optimum in a multivariable domain
with a fitness function which should be minimised. Examples
of such functions are the core volume, the length of HTS
tape for the DC coil, the value of the first peak of the lim-
ited current, or the thermal energy released (losses) during
faults.

New data-driven methodologies need to be developed,
addressing power quality disturbances (e.g. current harmon-
ics), HTS material ageing, mechanical stresses, or cryogenics
performance, among many others. Surrogate models based on
DL approaches are envisaged to infer patterns in data that can
be incrementally generated by experiments and simulations
[107, 108], mapping input-output relationships of interest and

replacing or reducing the amount of required FEM runs in the
optimisation design stage and/or in co-simulations when integ-
rating the SFCL model in software packages of grid operators
[109].
SFCL online monitoring and fault detection: new

paradigms are being developed with applications in multiple
contexts, where data from physical devices is collected to
build virtual models for condition assessment and decision.
One of those is the DT, where the virtual model is updated in
real-time with operational data. This is an emerging concept
enabled by the advent of IoT sensors (to harvest data from the
physical device), BD (for analytics), and ML (for modelling)
[110]. Data-driven modelling tools integrated into the DT,
e.g., based on ANNs, may provide new predictive models for
the online monitoring of devices in power grids. Data mining
will allow supporting ANN, which is suited for the detection
and classification of faults, particularly at the SFCL level.
Those depend on the dynamics of several endogenic (e.g.,
cryogenics condition, hot spots formation) and exogenic (grid
disturbances, meteorological variables) factors, and huge data-
sets may be generated continuously, where techniques such as
Principal Component Analysis may be appropriate to reduce
its dimension. Yet, little operational data is available and con-
siderable R&D is required to allow the intended digitalisation.

Concluding remarks

Although some methodologies have already been developed
for the design and simulation of SFCL, these are usually
based on FEM, so full optimisation, grid simulation under
realistic conditions, and real-time online condition assessment
require the development of new tools that accelerate unpre-
cedentedly those tasks. AI techniques, particularly data-driven
methods, provide such tools and has been successfully applied
before. Yet, reliable data, particularly operational, must be
made available.
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Status

Conventional transformers are widely used in power systems
or transportation applications (as traction transformers), and
their performance greatly influences the reliability of the con-
nected system. Although conventional transformers can reach
an efficiency above 99%, many concerns still exist around
their environmental footprint (CO2 emission and oil hazards),
safety (risks of explosion and fire), insulation (fatigue and fail-
ure due to thermal stress), and reliability (due to produced
gas in transformer oil). Superconducting transformers could
address the above concerns and, in some occasions, could
offer better efficiency and lighter weight and smaller size [111,
112], e.g. superconducting traction transformers (shown in
figure 20) could reduce systemweight by half and achieve effi-
ciency up to 99.5% from 94% which is the typical efficiency
of oil-based conventional traction transformers [113].

Current and future challenges

Despite the advantages offered by superconducting trans-
formers, some challenges need to be tackled within this dec-
ade to highlight the figure of merits of superconducting trans-
formers against their conventional counterparts. Some of these
challenges are explained as follows:

(a) Purchasing price. Small- and medium-scale supercon-
ducting transformers are not economically competitive
with conventional ones yet, mainly due to extremely
high purchasing prices, including the cost of the super-
conducting tape/wire and cooling system. However, if
the total ownership cost is considered, superconducting
transformers, in some cases, would be cheaper than oil-
immersed ones in the course of 35 yr of their lifetime
[114].

(b) Weight and size. Weight and size reduction are always
desirable for the transportation sector, including electric
aircraft and high-speed train traction systems. Accurate
purpose-based sizing of transformers should be implemen-
ted to design a superconducting transformer with optimal
geometry and optimised EM performance [113].

(c) Fault tolerance performance. Superconducting trans-
formers provide intrinsic fault current limiting function
due to the multi-layer structure of coated superconductors.

However, it is still vulnerable against short circuit faults
longer than a couple of 100 ms without proper design,
whilst a conventional one can tolerate short circuit faults
for up to 2 s [115, 116].

(d) Cooling cost. A cooling system is required to provide the
cryogenic temperature for superconducting transformers,
which will increase the total weight and reduce the total
efficiency of the system due to its low efficiency capped
by Carnot’s theory. Cryogenic cooling systems should be
optimised and designed considering heat loads, operating
temperature, and all other thermodynamic parameters such
as pressure and flow rate if forced circulation cooling is
adopted [117].

(e) Condition monitoring. Superconducting transformers
require unique condition monitoring techniques due to
the fragile multi-layer conductor structure and cryogenic
working environment inside the cryostat. Therefore, non-
destructive intelligent techniques are required, to not only
detect any inter-turn faults in superconducting windings
but also detect potential hotspots in superconductors
before causing any disastrous damage [118]. In addi-
tion, lifetime estimation models can be developed using
AI techniques (e.g. based on ANNs) using the reliability,
fault, and maintenance data, that essentially assist in better
condition monitoring of superconducting transformers.

(f) Tape/wire performance and manufacturing challenges.
It is still challenging for manufacturers to produce high-
performance low-cost superconductors competitive with
copper/aluminium wires. Keeping high critical current
uniformity over long-length and having high in-field crit-
ical current performance requires continuous improve-
ment in manufacturing technology [119]. 2D homogen-
eity of the critical current density of conductors is critical
to avoid hotspots and produce high-quality Roebel cables
[120]. In addition, the magnetic properties of the con-
ductor substrate influence the AC loss characteristics of
the superconductors when exposed to AC magnetic fields.

Advances in science and technology to meet
challenges

AI techniques could be used to tackle the design, fabrica-
tion, and manufacturing challenges of superconducting trans-
formers, as shown in figure 21.

Multi-objective AI optimisation reduces size, mass, and
cost by finding the optimal geometry/design of a supercon-
ducting transformer to satisfy constraints such as AC loss, effi-
ciency, total weight, initial price, voltage regulation, fault per-
formance, etc. Superconducting transformer parameters, such
as the size and material of the iron core, tape, coil wind-
ing, flux diverters, and cryostat can be the outcome of such
optimisation problems. AI together with transformative man-
ufacturing techniques such as additive manufacturing, will
lead to rapid prototyping and efficient manufacturing, espe-
cially for the insulation, winding former, and cryostat. The
optimal design of the cooling system can be achieved by
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Figure 20. Comparison between a conventional and a superconducting traction transformer for Chinese Fuxing high-speed train (note that
the right figure shows suggested positioning of each component for the superconducting traction transformer in the standard space
(4.036 m × 2.4 m × 0.735 m)).

Figure 21. AI techniques can help to address challenges of superconducting transformers.

solving an optimisation problem considering EM and ther-
modynamic parameters, such as winding heat load, heat leak-
age, heat transfer coefficients, pressure, LN2 flow rate, pres-
sure drop, operating temperature, etc. The constraints could
include the cooling curves of generativemodel (GM) and Stirl-
ing cryocoolers. The optimisation outcomes/results would be
optimal values for the number and type of cold heads, pres-
sure, and flow rate. The minimum cost or the maximum effi-
ciency of the cooling system could be obtained as well. For
such optimisation problems, meta-heuristic algorithms, evol-
utionary algorithms, or bio-inspired techniques can be used,

including particle swarm optimisation, grey wolf optimisation,
and firefly optimisation, among others.

Fault and recovery performances of superconducting trans-
formers can be dramatically improved by a multi-objective
optimisation problem to find the optimal thickness, and best
material composition of different layers (substrate, supercon-
ductor, buffers, and stabiliser layers) to meet a specific fault
impedance. Note that the electro-thermal parameters of each
material candidate are temperature and magnetic field depend-
ent. AI is able to consider all these interdependencies simultan-
eously. Constraints can be specific heat transfer, desired fault
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impedance, specified recovery time, and cost. Meta-heuristic
algorithms as mentioned above, are the best option for such a
study.

Non-destructive condition monitoring methods for super-
conducting transformers must be developed in the near future
to detect inter-turn faults, hot spots, and deformation in wind-
ings. Traditional relay-based protection systems are sensitive
to large external short circuit currents but cannot detect inter-
turn faults for superconducting transformers in the early stages
of fault development and this can be catastrophic if the fault
lasts long. AI techniques can detect inter-turn faults in a super-
conducting winding by comparing the time and/or frequency
domain data of some faulty and healthy samples of transformer
current. Fibre optic sensor is currently used to detect hot spots
of superconducting windings, which its implementation adds
the complexity of the winding assembly process and changes
the heat transfer of LN2 near the winding. AI techniques can
detect the hot spot by analysing the current and voltage wave-
forms of the windings. Sufficient experimental data on the crit-
ical current of an intentionally damaged tape are necessary.
This is a classification and clustering task for AI techniques,
which can be done through different ML approaches. In addi-
tion, if real-time detection is desired, DL approaches which
use CNNs can be used as very efficient options.

Intelligent simulation models of superconducting trans-
formers can be established based on surrogate or meta-
modelling methods. The existing modelling/simulation is
performed through analytical, equivalent circuit-based, or
FE-based models that are incapable of offering real-time ana-
lysis. AI-based meta-models composed of multilayer NNs
could achieve fast computation and acceptable accuracy com-
pared to other models. For instance, once a meta-model of a
transformer is established, online AC loss estimation/predic-
tion is accessed by logging the input current and voltage of

windings. Any drastic drift of AC loss from the base value
would indicate an anomaly in transformer winding, e.g. early
quench, hot spot, critical current degradation, etc.

Real-time intelligent quality monitoring of superconductor
production lines can be designed to analyse the output data
of the sensors. ML and image processing techniques will
help find important parameters to produce superconducting
tape/wire with high uniformity of critical current density along
the length. ML methods can be adopted to predict the critical
temperature of new superconductors.

Concluding remarks

AI techniques can address and tackle the challenges that a
superconducting transformer is confronted with, i.e. purchas-
ing price, weight and size, fault tolerance performance, cool-
ing cost, condition monitoring, and tape performance and
manufacturing challenges. The opportunities offered by AI
can lead to producing a smart superconducting transformer
in the next decades. Many AI techniques including those of
heuristic and meta-heuristic optimisation algorithms, ANNs,
deep NNs, etc can be used to address the aforementioned
challenges.
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14. AI and BD for improvement of the
manufacturing process of superconductors
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Status

The industrial production of second-generation (2G) HTS
tapes beganwith key technological developments in the 2000s.
The first pilot lines with relevant throughput were established
in the 2010s. Today, there are about seven companies world-
wide that have production capacities in the range of 100–
300 km or are in the process of scaling up to 1000 km yr−1

(e.g., the production line of THEVA in figure 22). With the
installation of these production capacities and continuous
improvements in the manufacturing processes, the manufac-
turing costs have been reduced from several 100 $ m−1 to less
than 50 $ m−1 for 12 mm wide tapes. At the same time, the
average current carrying capacity has increased. Today, HTS
tapes with a critical current of 400–600 A cm−1-width at 77 K,
self-field are offered as a standard. This means that the man-
ufacturing costs in relation to the current-carrying capacity
are considerably less than 100 $ kAm−1. Despite this very
encouraging development, the total cost of many applications
of HTSs is still dominated by the price of the tape. It is expec-
ted that most applications only become economically viable at
a price of less than 30 $ kAm−1.

Even though the degree of automation varies in the differ-
ent production lines, a large amount of process data is recorded
in-line in most lines. It is used to monitor and partly control the
coating processes [121, 122]. Almost all manufacturers use in-
line tools such as the TapeStar XL to determine the critical
current and other quality parameters of the finished product.
Further data on the properties of the individual layers are col-
lected in random tests during regular quality inspection. How-
ever, a comprehensive evaluation of this already gathered data
to gain new insights is rather a rarity today.

Current and future challenges

Many applications of HTS tapes are technically superior to
their conventional counterparts. Other applications are even
only made possible by high-temperature superconductivity.
Among these are SCs and busbars [21, 123, 124], fusion
reactors [125, 126] as well as motors and generators [1, 14].
However, all these applications are to a large extent not eco-
nomically viable due to the high cost of the HTS tape. A major
challenge for the HTS industry is therefore to reduce the man-
ufacturing costs of the tape and thus make its application eco-
nomically feasible.

To a large extent, this can be achieved by scaling up pro-
duction capacities combined with an increase in the degree of
automation. However, this is associated with high investments
that cannot be covered by today’s realisable sales.

An important lever to significantly reduce manufacturing
costs, however, is the production yield. The yield for HTS

Figure 22. View into the pilot production of THEVA
Dünnschichttechnik GmbH.

tapes is a function of the tape length and the critical cur-
rent demanded by the customer. Over hundreds of metres, a
near-perfect crystallographic structure must be maintained to
ensure high and homogeneous critical currents. Variations in
the process parameters, the properties of the material batches
used and, to some extent, the environmental conditions in pro-
duction can affect the current carrying capacity of the con-
ductor overall or locally. If those variations in the critical cur-
rent or other quality parameters fail the requirements of the
customer, the yield is reduced.

To keep production yields high, it is necessary to know
exactly the effect of variations in the process parameters and
to have direct control to keep them in their optimal range.
Given a large number of influencing factors, this can hardly
be achieved within the scope of normal development activ-
ities. Also, tests to determine these dependencies are very
expensive. Just verifying process capability for a limited
number of parameters with a representative number of tapes
can easily cost several hundred thousand dollars. Influences
of parameters of previous manufacturing steps or material
batches often cannot even be detected in such development
campaigns.

Advances in science and technology to meet
challenges

The use and evaluation of these enormous amounts of data that
have been acquired in production over the years can provide
important insights into fundamental dependencies that usually
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remain hidden during development campaigns. Even using
simple methods of data analysis, such as regression analysis,
correlations of the quality parameters from the entire produc-
tion chain can be established. Even with the typically small
variations of the influencing factors in production, important
trends for quality improvement can be discovered. By using
classification methods, entire parameter sets producing high-
performance HTS tapes can be identified and clearly distin-
guished from parameter sets that yield low quality.

The complexity of the data analysis due to a large num-
ber of existing parameters can also be reduced by employing
suitable methods to reduce the dimensionality. Principal com-
ponent analysis, for example, allows the variation in quality
parameters to be traced back to a comparatively small number
of factors or components.

A major advantage of the information obtained from soph-
isticated data analysis is that it is based on a large number of
data points and therefore its statistical significance is much
greater than that of individual trials. Prediction models based
on this data are therefore much more reliable, which in the
long run also increases the quality and yield in production. In
addition, the data can be used to define tolerance ranges for
key influencing factors and thus identify problems at an early
stage before they lead to quality defects in the finished product.

The application of AI can also contribute significantly to
cutting production costs. Deep NNs can automatically recog-
nise patterns that later lead to defects in the product. One
classic example is image recognition and classification using
CNNs. CNNs are not only able to reliably detect defect struc-
tures on the HTS tape but also help to classify and evalu-
ate them (as shown in figure 23). The human factor in qual-
ity assessment is thus eliminated and the labour for quality
inspections is minimised. In addition, information obtained in
this way can be processed to generate statistics on the occur-
rence of certain defect categories, which are valuable in quality
assurance. Furthermore, NNs can be trained to evaluate data
from various sensors to predict the failure of manufacturing
equipment. The often quite expensive preventive approach to
maintenance can be replaced by a more predictive approach
while avoiding failures during production processes.

The architecture of the layers in HTS coated conductors
can be subjected to a single- or multi-objective optimisation
study to produce tapes with specific features for specific pro-
jects or applications. For example, materials widths and thick-
nesses of the substrate, superconductor, buffers, and stabiliser
layers can be considered as variables to maximise or minim-
ise outputs such as cost of production, tape price, or reaching

Figure 23. With the help of convolutional neural networks, quality
defects can not only be detected automatically, but also classified
without the subjective judgement of a human affecting the result. In
this SEM image three different types of defects have been identified.

specific technical requirements such as AC loss values, imped-
ance, recovery time after fault, etc [12].

Concluding remarks

In today’s HTS tape production, there is still an enormous
potential to reduce costs simply by making efficient use of
the data that is already generated in production. As demon-
strated in this article, development costs can be significantly
reduced by exploiting the potential of sophisticated data ana-
lysis. Valuable information can be obtained to set priorities
for development. Often, development campaigns can be saved
completely, as essential dependencies can be extracted from
the data with high statistical significance.

In addition, as has already been shown in many other indus-
tries, AI and data analysis can be applied to automate quality
inspection to a large extent. In this way, effective and cost-
efficient quality assurance can be established that ensures high
yields in production.
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Superconducting magnets are made of superconducting wires
or cables winded to form a coil. There are multiple mag-
net applications with different designs, but a constant is the
requirement for higher magnetic fields to increase: the power
density in fusion reactors; the energy of a collider for HEP; the
resolution in MRI or nuclear magnetic resonance. A higher
field implies higher operating currents, and because of high
current and high magnetic field, the conductor ends up being
under extreme electromagnetic loads. Therefore, the limit-
ing factor in magnet design is not only the critical current
of the superconductor but also the mechanical tolerance of
the wire, which requires constant improvement in both mater-
ial technology and wire design. For example, to design new
Nb3Sn dipole magnets capable of operating at 16 T, CERN
has launched the Conductor Development Program for the
FCC [127]. This program is driving the worldwide effort to
develop new high-performance Nb3Sn wires improving the
wire critical current density (Jc) above 1500 A mm−2, and at
the same time increasing the wire stress limit above 200 MPa.
The latter aspect is particularly important because Nb3Sn brit-
tleness is already posing problems in other accelerator magnet
developments.

Current and future challenges

Magnets are designed using sophisticated multi-physics FE
models that include electrical, mechanical, and thermal prop-
erties of the superconducting wire or cable [128]. The limit
of these simulations is that superconducting wires, which
are composite materials made of superconducting filaments
embedded in a metallic matrix, are modelled as homogen-
eous materials with properties averaged over the cross-section
and across the entire length. This approximation has the draw-
back of not fully capturing the real properties of the wire,
and thus represents a limitation when optimising the magnet
designs. Guided by the practical need of making efficient use
of the superconductor while coping with large EM stresses, it
is becoming essential to improve FE models by reproducing
the internal characteristics of wires, and this requires the cre-
ation of new methods to map and reconstruct their internal
structures. Nevertheless, increasing the accuracy of the FE
models needs the benchmark of dedicated experiments able
to reproduce the magnet operating conditions [129].

This approach was applied to investigate the correlation
between the wire microstructural features and the irreversible
degradation of Jc under axial loads for Nb3Sn wires produced
by the bronze route [130]. X-ray micro-tomography was used
to map the wire internal structures, including the Kirkend-
all voids formed during the reaction heat treatment (RHT).
Finally, the distribution of the voids was implemented in a
mechanical FEmodel to quantify the role of voids in the reduc-
tion of the electro-mechanical limits.

These studies based on the identification of specific fea-
tures in wire images represent the ideal playground for AI
techniques, thanks to the impressive advancements reached
recently in object detection [131]. In particular, micro-
tomography can be easily combined with ML and ANNs tools
to reconstruct the internal structures of wires and also provide
new insights for the improvement of their performance.

Advances in science and technology to meet
challenges

One of the breakthroughs of AI is the use of ANNs for com-
puter vision applications, and the development of the next gen-
eration of superconducting wires could greatly benefit from
this advancement. Presently, when optimising the design of
a superconducting wire, the consequences on its microstruc-
ture after reaction are disregarded. This can be attributed to
the difficulties of analysing the internal structure and to the
lack of ability to systematically process large amounts of
data. The former challenge can be addressed by x-ray micro-
tomography. The latter issue can be solved by the ability of
AI to process large quantities of data in a fast and reliable
way. In addition, the possibility of analysing images with
high precision of AI techniques will allow to highlight the
presence of defects or deformations which can be respons-
ible for decreasing the wire’s mechanical, electrical or thermal
performances. The ANNs learn by processing examples and
forming an association between inputs and outputs, and the
large amount of data generated by tomography is the ideal
condition for training an ANN. Among the ANNs, the CNNs
have proven to be effective for medical images analysis,
and among different variants of CNNs, U-Net is recommen-
ded for components detection because of the high precision
reached in the segmentation even with few training images
with, moreover, the capability to operate in both 2D and
3D [132].

In the future, both ML and ANN will be applied to tackle
different issues in various wire materials and technologies to
improve wire performances, such as:

• Nb3Sn: during the RHT of the wires, the formation of
the Nb–Sn phase generates Kirkendall voids, which cause
a degradation of the microstructural homogeneity and act
as stress concentrators and nucleation points for cracks
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Figure 24. 3D reconstruction of an Nb3Sn wire. Unsupervised
machine learning was applied to the wire tomographic images to
separate the different wire components, i.e. sub-elements, voids and
copper matrix [133].

initiation. For this reason, the voids need to be considered
in a wire mechanical FE model to reproduce the wire prop-
erties, faithfully. ML and CNN can detect and separate the
voids from the other components allowing the 3D recon-
struction of the wire’s internal structures (see figure 24)
[133, 134].

Another CNN potential application is by detecting
sub-elements barriers failures. Barriers are used to avoid
tin pollution in the high-purity copper stabiliser during the
RHT. Barrier failures can generate Kirkendall voids cross-
ing the barrier which a CNN is capable of recognising facil-
itating the improvement of the wire design (see figure 25).

• Bi2212 (Bi2Sr2Ca1Cu2Ox): it is the only HTS available
in the form of round wire, which simplifies the cabling
and winding of the coils. During the RHT, Bi2212 wires
can be subjected to filament bridging. The merging of the
filaments causes a reduction of the critical current and
an increase in the effective filament diameter [135]. ML
or ANN can map the filaments bridges allowing them to
guide the optimisation of the RHT conditions. In this case,
images are not necessarily tomographic scans; quantitat-
ive information can also be extracted from simple wire
cross-sections.

• MgB2: it is an intermetallic compound that can be pro-
duced in the form of multifilamentary round wires. During
the RHT of in-situ MgB2 wires, voids are generated from
the reaction of Mg and B, and are detrimental to electrical
connectivity, and thus wire critical current, and mechanical
limits [136]. The map of the internal components can be

Figure 25. Sub-element barrier failure in a Restacked-Rod-Process
Nb3Sn wire detected by U-Net. U-Net can separate sub-elements
voids (in red) from voids generated by barrier leakages (in yellow).

used to provide indications on how to tailor the void dis-
tribution by optimising the RHT conditions.

Concluding remarks

Magnet applications are demanding for higher magnetic field
levels. Continuous developments in superconducting wire
technology are therefore crucial to reach the required electrical
and mechanical capabilities. The improvement of conductors
can be achieved by broadening the understanding of internal
wire structures and using it to guide wire design and optim-
isation. When combined with techniques capable of map-
ping the wire’s internal characteristics, such as x-ray micro-
tomography, AI can significantly contribute to achieve this
goal. In particular, AI can detect and separate the different wire
components, unlocking the possibility of using the real geo-
metry of the wire as input in the FE models. Moreover, prop-
erly trained ANNs can recognise specific wire characteristics
and detect them among thousands of images. Such capability
allows addressing and quantifying the impact of specific issues
in the existing wire technology and, more generally, providing
new paths for wire development.
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HTS tapes are enabling materials for many disruptive tech-
nologies such as compact nuclear fusion [119], fault current
limiters [137], future cryo-electrified aircraft [14], energy-
efficient railway [138] and data centres [139], among others.
The availability of affordable high-quality HTS tapes is abso-
lutely vital for realising these technologies. In other words, the
essential elements of future success are large scale and low-
cost productions of HTS tapes. However, the task to increase
the production of HTS tapes is everything else but simple.
Sophisticated multi-stage production processes, very com-
plex nano-scale defect landscapes and multi-element oxide
chemistry make the production of HTS tapes an extremely
competence-intensive endeavour [140]. Simply increasing the
number of today’s production lines will not do the job unless
the highly skilled professionals operating these machines are
multiplied accordingly. We came to a point where new digital
technologies using BD, and AI, may prove effective to make
a leap to a new level of quality and price at a very large
production scale. From the producer’s perspective, we, at S-
Innovation of SuperOx, have recognised the potential of new
digital tools equipped with machine intelligence and have
already started to use some of them in routine production pro-
cesses a few years ago. As it seems, there are at least two
different directions for AI techniques and tools concerning
HTS tape production: process control with the help of in-situ
digital tools and process development with AI helping to pro-
actively optimise processing conditions. Process control is
more straightforward and is being already used while using
AI for process development is still a largely ongoing activ-
ity. By 2022, we have introduced automatic image processing
in various stages of our production (each day, up to 0.5 mil-
lion images are being collected and processed) and began to
create BD production analytics (our production database con-
tains 100s of relevant process parameters and quality metrics
of nearly each HTS tape produced since 2019). The result of
this effort should be a scalable production process with less
human control, and yet higher quality and product yield.

Current and future challenges

The superconducting layer in an HTS tape is typically less
than 3 µm thick, while a typical tape length is 300 m [141].
With the aspect ratio of HTS material of about 108, minor
disturbances in the production process can cause a detri-
mental disruption of HTS layer continuity. To ensure product

Figure 26. Typical defects, detected optically in various steps of
HTS tape production. These defects are extremely detrimental for
tape quality and directly affect the product economics. Future
challenge is based on effective use of neural networks to detect
these defects in-situ and mitigate their appearance by proper
closed-loop process control.

quality, defects need to be strictly located, reasons analysed
and countermeasures taken. HTS tapes production consists
of multiple processes which can introduce defects: chemical
treatment, vacuum deposition of layers, annealing, slitting, etc.
Most of these defects are visible to the naked eye. As it is very
costly to examine kilometres of tape surface daily, we have
developed a quality control instrument based on in-situ tape
surface image processing that allows us to find most of the
contrast defects, but cannot specify the defect type [121].

Recently, we have significantly upgraded the method. Dif-
ferent production steps were equipped with high-resolution
cameras filming tape surfaces as they moved along. Currently,
a tape image consists of multiple 16mm long frames. Based on
a daily production rate of 2.7 km per day (1000 km yr−1), each
camera collects about 170 000 frames every day. Provided
this type of control is used in the three most critical tech-
nological stages like electro-polishing, buffer stack and HTS
layer deposition, more than half a million daily images with
a total raster of more than 260 000 megapixels will be pro-
duced, requiring 50 GB of storage space. Storing this amount
of graph data is impractical and costly, thus data flow is imme-
diately processed and converted to a data log with informa-
tion on defect type, area and location. As a first step, we have
developed an image post-processing system based on a NN
approach. Surface defects (see figure 26) are initially analysed
by a human and are assigned into various categories for further
ML analysis. To date, our NN-based technique can locate and
specify the defect type with at least 90% accuracy.

The scheme of the current system is given in figure 27. This
relatively simple technique reduced our need by at least six
full-time production jobs. At the same time, the instrument
increased our process understanding and troubleshooting.
Further development of our NN-based technique will allow
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Figure 27. The scheme of optical control system built for neural network analysis of HTS tape surface quality.

us to have in-situ process control and will provide immedi-
ate feedback with minimum human resources involved. The
approach can be easily scaled up with further production
increases. In addition, the AI image processing technology
can be applied to other characterisation methods including
RHEED diffraction of MgO IBAD buffer layers [142], plasma
control in magnetron sputtering processes [143], and others. In
nearest future, the SuperOx group plans to use it in virtually
every production step.

Advances in science and technology to meet
challenges

Often, a producer has access to process parameters (pressure,
temperature, growth rate, to name a few) and quality metrics
(critical current) of HTS tape as a function of its coordin-
ate. Usually, these data are neither collected nor used for fur-
ther process development. AI-enabled technologies possess an
enormous hidden potential here. In this section, we present our
view on how this approach should be realised.

First, all relevant process and quality parameters are
accumulated in the database with the assignment of HTS
tape coordinates along the length and/or width. Second,
ML algorithms construct a regression model out of col-
lected data and range process parameters in the relevant
order, based on the degree of their influence on product
quality. Finally, statistical data processing refines optimal
technological parameters in the search for higher product
quality. If implemented, such a digital system will adjust

production conditions based on the complex analysis of 100s
of parameters, being able to predict where the optimal set of
conditions will move next. It is important to note that HTS tape
quality is a function of many difficult-to-measure conditions,
such as the ageing of production equipment (e.g. changing the
reflection coefficient of vacuum chambers with time), vary-
ing vacuum leaks, unexpected variations in raw material qual-
ity, etc. Today, this uncertainty gap limits HTS tape quality
and yield, but AI techniques should help to solve this problem
efficiently.

Recently, we have started to build such a system around
our HTS production. To date, the system collects data from all
production equipment and quality control items into a single
database. We collect and store more than 9000 records per
each metre of HTS tape produced. The ML software module
processes this dataset and plots a partial dependency graph
with recommendations on further adjustment of processing
parameters.

The ultimate goal is real-time process development via AI-
controlled auto-tuning of process conditions. To do so, the
AI system should be able to detect quality-relevant changes
in a technological environment and provide calibrated influ-
ence to process controls. Still, a lot of challenges remain.
For example, a proper model for regression analysis should
be found for each production step—based on its performance
in real production conditions. Accumulation of BD, correct
position assignment and data quality are further important
challenges. Finally, a lot of data needs to be properly processed
to reduce the amount of data storage volume. To give a scale,
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it takes 25 million data points per day even with a modest pro-
duction level of 1000 km of HTS tape per year. Thus, optimal
volume management of data is very important in itself.

As we are obviously at the very beginning of this path
today, further development could require the application of
more complex techniques like DL. The further direction will
become clearer after enough data are collected in the existing
database and statistically meaningful experience of using ML
software will be obtained and evaluated. We are looking for-
ward to keeping reporting these results in future.

Concluding remarks

With the HTS production process being very sophisticated and
multi-parametric, it is unlikely that extremely stable techno-

logy with wide process windows will emerge or that human
control will prove to be any viable route for truly large-scale
production in the 2020s. From an HTS tape producer’s per-
spective, we rather look for new digital technologies to open
the way to cheaper and better HTS tape. Moreover, our assess-
ment is that the turning point is now, it is today, when advanced
tools like BD, NNs and AI should be integrated into the pro-
cess development and control to enable further technological
success.
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High-Tc superconductivity (HTCS) in cuprates is one of the
most profound physics problems since 1986. The strong elec-
tronic correlations, which are intrinsically a quantum many-
body (QMB) effect, responsible for the superconducting,
pseudo-gap, and other measured phases in unconventional
HTCS cuprates remain an unresolved problem in condensed
matter physics to date. This is famously known as the ‘HTCS
conundrum’ [144]. There has not been a consensus on a con-
vincing model that can provide a consistent explanation for all
experimentally measured aspects related to HTCS in cuprates.
Arriving at a working theoretical model for resolving the
conundrum in HTCS constitutes one of the ‘Holy Grails’ in
condensed matter physics. Apart from arriving at the right the-
oretical model, the other major challenge concerns the difficult
task of solving these many-body physics models which are,
generically, computationally expensive if not practically for-
midable. Specifically, the classification of quantum phases in a
generic QMB model Hamiltonian with existing, conventional
computational approaches is known to be particularly expens-
ive computationally.

The call for a falsifiable model that is simple, physically
well-motivated, predictive, admitting no exotic contrivance,
theoretically consistent, and can provide a holistic solution to
the HTCS conundrum is clearly desirable. Constructing and
probing the physics of such models should be part of the
concerted effort for solving the HTCS conundrum. Falsify-
ing a specific model against experimental observations nar-
rows down the possible ‘phase space’ of possible explana-
tions or mechanisms as a viable explanation to the conun-
drum. It serves the benefit of feedback that hints at the dir-
ection in which we should be heading or avoiding. On the
other hand, if verified, such a solution shall become the ref-
erence model for understanding the structure of HTCS in
cuprates. The knowledge of the mechanism occurring at the
atomic level giving rise to the emergence or disappearance of
HTCS phases in the cuprates has practical significance, i.e. it
can pave the way to the exciting possibility of engineering
materials at the atomistic level to achieve optimised high-Tc

superconductors.

Current and future challenges

Models for unconventional HTCS generically involve QMB
effects. Quantum many-body problems (QMPs) are known
to be computationally daunting due to the nontrivial correla-
tions encoded in the exponential complexity of the many-body
wave function [145]. An exponential amount of information

is needed to fully encode a generic many-body quantum
state, rendering reliable numerical solutions for the ground
state technically difficult to come by. Conventionally, many-
body calculations are performed through highly sophisticated
computational methods with some extent of approximations,
such as quantum Monte Carlo (QMC) methods, density mat-
rix renormalisation group [146], matrix product states [147],
tensor networks and general tensor networks [148]. However,
there are many instances where these conventional approaches
converge poorly due to, e.g. the Fermion sign problem or the
inefficiency in handling the exponentially huge degree of free-
dom inherent in these systems. Fundamentally, the quandary
inQMP lies in the failure of finding a general strategy to reduce
the exponential complexity of the full many-body wave func-
tion down to its most essential features. This is known as the
‘curse of dimensionality’ [149]. The 2D Hubbard model, a
prototype QMB theory, provides a working model that cap-
tures some if not all essential features in copper-oxide super-
conductors. Mainly due to the inherent sign problem, the
2D Hubbard model remains a daunting model to be com-
pletely solved despite relentless computational efforts spent
for so many years to abstract the embedded physics respons-
ible for the HTCS in cuprates. Heroic efforts had attemp-
ted to obtain the ground state of the prototype 2D Hub-
bard model using state-of-the-art, but non- ML, computational
methods. These include, e.g. an auxiliary field QMC, dens-
ity matrix renormalisation group, density matrix embedding,
infinite projected entangled pair states [150] and dynamical
cluster approximation [151] which attempt to map out the
quantum phases along with other physical insights, e.g. the
transition temperatures as a function of the dopant concentra-
tion, in the 2D Hubbard model. It is well known that these
non-ML-inspired approaches are highly expensive and expert-
knowledge demanding. Even after many years of advance-
ment in computational physics, dealing with QMP using
non-ML numerical approaches has not become tremendously
simplified.

Advances in science and technology to meet
challenges

ML is a powerful tool for solving QMP. It can classify,
identify, and interpret massive data sets, hence is ideal for
handling exponentially large data sets embodied in the state
space of a QMB system. The pioneering works [145] have
achieved phase classification and transitions in selected QMB
using a restricted Boltzmann machine (RBM) without know-
ing a priori the boundary of the phases. The key ingredient
was the effectiveness of RBM to compress the information
of the many-body wave function in high-dimensional systems
into the NN representing them, tremendously reducing the
dimensionality to represent the QMP. The computational cost
was reduced by many orders of magnitude. The approach also
probes into parametric regions that are otherwise not possible
using conventional numerical approaches per se.

A relatively conservative, non-exotic but physically well-
motivated mechanism for modelling HTCS in cuprates was
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Figure 28. An example of the contour plot of the approximated gap
function ∆k as predicted by the EHM (a quantum many-body
model) in the 1BZ using a conventional numerical approach.
Machine learning offers a promising and potentially superior
alternative to probe the physics embedded in such models.

proposed in [152], the extended Hubbard model (EHM). The
EHM is an extended version of the 2D Hubbard model and
admits additional terms for the lattice–electron interactions
induced by theQ2 mode. By construct, the EHM has a built-in
structure to accommodate the superconducting and pseudogap
phases to a common origin, namely, a Jahn–Teller type inter-
action induced by an electron interacting with a nonlinear
Q2 mode of the oxygen clusters in the CuO2 plane. The gap
function and extended terms embedded in the EHM in prin-
ciple allow specific prediction of Tc and the emergence of the
pseudogap phase [152]. Figure 28 shows an example of the
contour plot of approximated gap function as predicted by the
EHM in the 1BZ using a conventional numerical approach. It
is technically feasible to probe the quantum phases and their
transitions driven by the parameters in the EHMusing a similar
ML technique [145]. The phases embedded in the EMH can be

identified by first systematically generating a labelled dataset
of the EMHHamiltonian using e.g. auxiliary field QMC [153].
A NN is then trained in the manner of [145] to ‘predict’ the
phase of never-been-seen-before configurations. A satisfact-
orily trained and sufficiently accurate NN representation can
then be used to systematically map out the phases embedded
in the EHM. The predicted phases by the trained NN should be
verified against those obtained via ‘conventional’ approaches
e.g. [150, 151].

Concluding remarks

QMB theories for HTCS are generally plagued by the curse
of dimensionality and/or Fermion sign problem despite the
advancement of many powerful (conventional) computational
methods. Recently RBM has showcased successful ameli-
oration of these formidable numerical hindrances in selec-
ted Hubbard-like models with QMC simulations. EHM is an
extended Hubbard-like QMB model that embeds the neces-
sary ingredients to explain the pseudogap and superconduct-
ivity phases in cuprates in a unified manner, and without intro-
ducing exotic physics. ML techniques can be generalised and
applied to the EHM for solving the embedded MB physics
relevant to the superconducting, pseudogap and other phases
seen in cuprates. It is anticipated that such an approach could
allow the interplay between the many-body effects and phases
embedded in the EHM to be revealed, providing a possible
solution to the cuprates HTCS conundrum.With the capability
of ameliorating the sign problem and curse of dimensionality,
ML offers a promising tool to probe into previously (almost)
inaccessible gold mine of QMB models. How the search for
the solution to the HTSC conundrum with the new tool will
play out is strongly anticipated.
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Status

Recent years have witnessed tremendous breakthroughs in
achieving record-high superconducting transition (critical)
temperature Tc in high-pressure hydrides, which exhibit high
Debye temperature and strong electron–phonon coupling for
good conventional phonon-mediated superconductors. First-
principles density functional theory (DFT) and crystal struc-
ture prediction (CSP) have played important roles in discov-
ering high-Tc hydrides. For example, the ‘clathrate’ structure
of LaH10 (Tc ∼ 260 K at 190 GPa) was predicted first by
DFT and CSP [154, 155], and later confirmed experiment-
ally. For practical applications, it would be crucial to dis-
cover new room-temperature superconductors at reduced pres-
sure. To date, most binary hydrides have been investigated
using these computational methods, and it is timely to explore
doped and ternary (or even quaternary) hydrides. However,
first-principles structure predictions are challenging in these
systems, due to large unit cells and huge search phase space.
Data-driven ML approaches can be promising and powerful
tools to largely expedite the process of predicting new crystal
structures and modelling their electron–phonon properties for
estimating the Tc.

At ambient pressure, the cuprate superconductors are the
record holders of Tc, but their unconventional superconduct-
ivity remains one of the greatest mysteries. Due to the parent
magnetic insulating state and the d-wave pairing symmetry
in the cuprate phase diagram, it has been assessed that the
strong correlation effect of d-orbital electrons is the primary
reason for a high Tc, and the system is usually described
by Hubbard-type Hamiltonians. Prominent spin fluctuations
caused by correlation effects act as the pairing glue of the
correct symmetry. This mechanism has been demonstrated in
a quasi-one-dimensional Hubbard model [156]. In two spa-
tial dimensions, the mechanism is not yet fully established,
as no exact numerical solutions are available. More recently,
experimental evidence about other coexisting degrees of free-
dom, such as phonons, has been revealed by spectral meas-
urements. For example, it is shown that interfacial electron–
phonon coupling can be applied to enhance the Tc of FeSe
[157], which is another type of unconventional supercon-
ductor. The interplay between electron correlation and phonon
degrees of freedom might hold the key to unlocking the mys-
tery of high-Tc unconventional superconductivity.

Current and future challenges

The Eliashberg theory provides a quantitative tool to estimate
the superconducting Tc in phonon-mediated superconductors.
A key quantity in the theory is the Eliashberg spectral function
α2F(ω) for computing the electron–phonon coupling para-
meter λ. Once λ is known, Tc can be estimated with reasonable
accuracy by analytical expressions such as the McMillan or
Allen–Dynes formula (obtained by fitting to numerical solu-
tions of the Eliashberg equations). The function α2F(ω) can
be obtained from tunnelling experiments or computed from
first principles. However, phonon calculations from DFT or
ab initiomolecular dynamics remain computationally expens-
ive, and they require the knowledge of stable crystal struc-
tures at a given pressure. For a priori unknown structure, CSP
aiming at finding stable structures knowing only the chem-
ical composition (and the pre-specified number of atoms in
the unit cell) can be performed, using e.g. particle swarm
optimisation or evolutionary algorithms. In the actual imple-
mentation, CSP usually begins with randomly generated struc-
tures or user-provided seed structures. Some unlikely struc-
tures of extremely small bond angles or unphysically short
bond lengths can be directly eliminated during the optimisa-
tion to speed up the search process. However, thousands of
time-consuming DFT structure relaxations are still needed in
a typical CSP calculation. Therefore, to achieve large-scale
computational predictions of new potential Bardeen–Cooper–
Schrieffer (BCS) superconductors with higher-Tc at reduced
pressure, the challenges would be to efficiently generate stable
structures and model their electron–phonon properties from
first principles.

For unconventional superconductors, the presence of strong
correlation effects and intertwined orders hinders a compre-
hensive characterisation of the collective excitations. While
experimental synthesis and characterisation techniques have
been substantially advanced, one of the major challenges lies
in the lack of accurate simulation tools for model Hamilto-
nians to address their properties in the thermodynamic limit.
On one hand, DFT-based methods without static correlations
usually fail to properly capture the electronic structures of
correlated materials. On the other hand, unbiased solutions
via wavefunction-based or QMC approaches are restricted
to small clusters or relatively high temperatures. The chal-
lenge is even more severe when both correlation and non-
perturbative electron–phonon coupling have to be considered
simultaneously [158].

Advances in science and technology to meet
challenges

Data-driven approaches are becoming powerful tools for
materials modelling and discovery. The advances are due
to the availability of materials databases, progress in com-
puter architectures, and the development of ML algorithms. In
principle, NNs can bypass manual feature creations, thereby
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Figure 29. Schematic of materials discovery using generative
models. The framework first learns a continuous representation of
materials (the latent space) from a discrete space of known
materials, and then builds a model for new discovery using a
decoder to map latent space vectors back to crystal structures.
Reprinted from [160], Copyright (2019), with permission from
Elsevier.

being suitable for large-scale materials prediction. It has been
shown recently that the phonon density of states (DOSs) can
be predicted by Euclidean NNs (which capture full crys-
tal symmetry), using only atomic species and positions as
input [159]; the training is based on a DFT phonon data-
base of ∼1500 examples with over 64 atom types. Therefore,
it is expected that the Eliashberg spectral function α2F(ω)
(which is closely related to the phonon DOS) can be machine
learned as well, once a suitable DFT or experimental database
is available. Moreover, GMs are promising new approaches
to expedite structure prediction. GMs can learn the distribu-
tion of a dataset, and then sample new structures from the
learned distribution. An example is a VAE consisting of two
NNs, an encoder and a decoder. As shown in figure 29, the
encoder maps data points (e.g. a crystal structure) to a low-
dimensional continuous vector space (the latent space), and
the decoder maps latent vectors back to data points. VAE using

Figure 30. Schematic of extracting electron–phonon coupling in
FeSe unconventional superconductor, using combined time-resolved
x-ray diffraction and time-resolved ARPES techniques. The
coherently excited A1g mode (left) leads to an oscillation of the
x-ray diffraction peak (blue dots). Along with the atomic
oscillations, the energy of the dxz/dyz orbitals also oscillates with the
same frequency, detectable by time-resolved ARPES measurements
(orange curves). From [162]. Reprinted with permission from
AAAS.

invertible image-based representation can reconstruct experi-
mentally known materials, and create new structures synthes-
izable thermodynamically [160]. The materials created from
GMs also can be utilised as seed structures in other CSP tech-
niques. Together with the development of other DL algorithms
such as graph and CNNs [161], large-scale materials discov-
ery with image-based tasks can be substantially advanced in
the future.

To overcome the experimental challenges in characterising
unconventional superconductors, a promising route is to com-
bine multiple spectroscopic tools. For example, the combin-
ation of time-resolved x-ray diffraction and time-resolved
angle-resolved photoemission spectroscopy (ARPES) has
been employed to extract information on the electron–phonon
coupling from correlated materials (see figure 30) [162].
Some phenomenological principles also can be summar-
ised from data analysis of massive spectral measurements.
For example, it is found that the charge-transfer energy
between the highest-occupied and lowest-unoccupied molecu-
lar orbitals is anti-correlated with the maximal Tc in cuprate
superconductors. To overcome the theoretical challenges,
it is necessary to accelerate the speed of accurate sim-
ulations by orders of magnitude. Unlike the BCS super-
conductors, the database for unconventional superconduct-
ors does not directly support a high-throughput materials
design. Therefore, a crucial step is to construct a reliable
connection between the microscopic model Hamiltonians and
the superconducting Tc. ML simulations also can help in
this regard, as recent studies have demonstrated that NNs
can largely accelerate wavefunction-based simulations for
QMPs [145].

Finally, data-driven approaches combined with rapid com-
binatorial materials synthesis methods also can have an
enhanced impact to accelerate the prediction-to-experimental
validation cycle. One strategy is synthesis combined with
structural and transport characterisation of compounds under
high pressure. Another promising avenue is to utilise vapour
phase methods for rapid combinatorial synthesis of thin
metastable film materials stabilised by strain fields from

48



Supercond. Sci. Technol. 36 (2023) 043501 Roadmap

suitable film/substrate configurations. The obtained thin
films can be fully characterised by various spectroscopic
or thermodynamic measurements, yielding experimental data
that can be fed into data-enabled predictions for honing in on
the novel compound discovery.

Concluding remarks

The ability to model, predict, and synthesise new higher-
Tc superconductors at reduced or ambient pressures will
open up unprecedented opportunities to revolutionise energy,
transportation, and information technologies. The associated
challenges can potentially be overcome with future endeav-
ours from the scientific community, by constructing relevant
computational and experimental databases, especially for
dynamical spectra, by extending deep generative algorithms

for inverse designs of electron–phonon and superconducting
properties, and by applying data analysis, interpretation, and
decision-making to spectroscopic measurements and combin-
atorial materials synthesis methods. With the revolution on the
fourth paradigm of scientific discovery, it is expected that data
science andML approaches will play crucial roles in achieving
these goals.
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Status

AI refers to systems that show smart behaviour by analys-
ing their environment and taking actions to achieve specific
goals, with some degree of autonomy [163]. AI has the poten-
tial to offer tools for learning, knowledge discovery, pattern
recognition, and decision-making to resemble human abilit-
ies such as the ability to reason, discover meaning, and learn
from experience. As a scientific discipline, AI includes sev-
eral approaches such as (a) ML that gives computers the abil-
ity to learn without being explicitly programmed [164], (b)
DL methods that use sophisticated, multi-layered NNs, where
the level of abstraction gradually increases through nonlinear
transformations of input data [165], (c) BD describes large,
hard-to-manage volumes of data (structured and unstructured)
generated in the processes.

AI techniques were used as a solution to complex prob-
lems and challenges in the superconductivity community, for
(a) design of large-scale superconducting devices aiming for
optimum weight, cost, and AC loss; (b) detection of faults,
abnormalities, hot spots, and quench detection; for critical cur-
rent, and AC loss estimations; (c) predicting the new supercon-
ducting composites and materials and also the price of super-
conducting devices [12, 45, 166].

A fundamental shift to the existing operating models is
clearly happening. A digital reinvention is occurring in asset-
intensive industries that are changing operating models in a
disruptive way, requiring an integrated physical plus digital
view of assets, equipment, facilities and processes. DTs arise
in this context as a vital part of that realignment—a virtual
model designed to accurately reflect a physical object or sys-
tem that spans its lifecycle is updated from real-time data
and uses simulation, ML and reasoning to support decision-
making [165].

Current and future challenges

Research in superconductivity can produce large amounts of
experimental and simulation data on microstructures, syn-
thesis, critical behaviour, design stage, testing stage, and man-
ufacturing process at component, device, and system levels.
Modern computing systems provide the speed, power and

flexibility needed to efficiently access massive amounts and
types of BD, but perhaps not enough yet for real-time ana-
lysis in some superconducting applications. AI/ML/DL arises
as efficient tools for data analysis under scenarios in which we
are interested in superconductivity and DT to study the inter-
action of physical components. The virtual model can be used
to run simulations, study performance aspects, identify pos-
sible improvements and produce valuable insights, which can
be applied back to the original physical object/component.

Some challenges of AI can be expressed as follows [163,
164, 167–169]:

(a) Fusion of AI and robotics to create an intelligence that
can make decisions and remotely control superconducting
devices in case of an anomaly, for instance in a quench
event in superconducting magnets.

(b) Processing unstructured data (UD), coming from many
sensors which are likely to be used in commercial
superconducting devices including acoustic and vibration
sensors. Managing and processing UD brings major chal-
lenges in the scale of data and sharing them.

(c) Integration to augmented intelligence, which is essentially
using AI/ML/DL techniques to provide actionable data or
models for humans, as they work as virtual assistance. For
example, if a quench happens in the superconducting mag-
net of a fusion system, then augmented intelligence will
provide information on how bad it is or it can be but leave
the final decision-making on how to control or approach
it to the fusion system operator. It is an essential part of
our future superconducting industry, as when BD is avail-
able using augmented intelligence is inevitable. Another
example is the predictive maintenance of superconducting
systems according to previous BD stored.

(d) AI integration with Cloud, for instance, to update a real-
time model according to new parameters of superconduct-
ing systems over the years.

(e) Over-fitted data and bad data, that can cause malfunction
for already designed AI-based systems for superconduct-
ing applications.

(f) Advances in adversarial learning and explainability to
avoid poisoned data sets and bias problems.

(g) Data storage and processing limitations, when it comes
to BD produced in superconducting manufacturing and
condition monitoring processes, especially over the life-
time of a superconducting device. On the other hand, high-
performance computing systems are needed to reduce the
computation burden when DL is used for superconducting
applications.

(h) Multi-cloud would need to be evolved with different data
strategies.

(i) Edge AI security, for example, if an AI system is used for
superconducting devices in sensitive applications such as
electric aerospace applications or the fusion industry, it
is very important to keep the models secure against any
cyber-attacks.

(j) The challenge of unseen data, which concerns the inab-
ility of AI methods to simply express the term ‘I do not
know’. For example, when an AI system is designed to
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Figure 31. AI technologies for superconductivity.

discriminate between two cases, i.e. short circuit fault
with high current and low voltages, and steady-state with
normal voltage and current. Suppose that a third type of
state occurs in a cable system with high voltage and low
current. Under such circumstances, the AI method would
not be capable of saying ‘I do not know’ and will classify
the state into one of the two mentioned states.

(k) Federated learning as a distributed and collaborative ML
framework is becoming the standard for accomplishing
some of the new regulations for handling and storing
private and critical data.

AI and ML/DL as transforming technologies, create con-
cerns about human incapacity to understand the rationale
of gradually more complex approaches to decision support.
Currently, we can identify other AI challenges: increas-
ing computing resources (power, costs), limited knowledge,
human-level performance, trust deficit, ethics, data privacy
and security.

Advances in science and technology to meet
challenges

The data age is driven by the emergence, adoption, and mat-
uration of technologies that change the way we deal and
interact with data (figure 31): 5G wireless technology, IoT,
AI/ML, augmented and virtual reality (AR/VR), Blockchain,
DTs, and Edge Computing. Some of these technologies (IoT,
AR/VR, Blockchain) directly create data, and others (5G,

Cloud Computing, Edge Computing, and AI/ML) create the
conditions for data to be created.

AI tools perform tasks at a greater speed, scale, or degree
of accuracy than a human. Traditionally, managing data meant
collecting, storing, and accessing structured data. Nowadays,
as superconducting applications look for critical information,
they can pull from the massive amounts of data generated,
accessed, and stored in many locations, from corporate data
centres to the cloud and the edge, from data warehouses to
data lakes.

Additionally, superconducting applications need to rapidly
parse through data (much of it unstructured) to find the inform-
ation that will support decisions. Data Science methods and
systems have the capability to extract knowledge and insights
from superconducting data, and AI has the potential to offer
tools for learning, knowledge discovery, and decision-making
that try to outperform human abilities and can be used in
many applications. AI is also used in engineering and physics
fields as a shortcut to solve problems, discover new/optimal
structures and devices, find new materials, control, or manage
the systems intelligently, etc. To do this, many AI techniques
require data to improve their performance, avoid overfitting
and some effort in parameter tuning and selecting proper AI
techniques. Once they perform well, they can help improve
and automate decision-making.

Modelling research in superconductivity produces large
amounts of data. This has become a promising approachwithin
the critical current-by-design and data-driven paradigms,
for designing superconductors with desired properties
using sophisticated numerical methods replacing traditional
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trial-and-error approaches [170]. It is expected to see an
increased focus on trust, ethics, transparency, and governance
of AI systems. The identification of bias, data quality and
explainability/interpretability to inform stakeholders about
how specific decisions were done and what factors could
update and change those decisions.

Hyper-automation arises in this context as the process
of applying innovative developments to speed up and sim-
plify tasks with minimal human intervention and knowledge.
Another challenge is related to the quantum autoencoders-
based approaches that may enable increased use of resources
and potential implementations with trapped ions, supercon-
ducting circuits, and quantum photonics.

Several efforts were developed to support AI challenges
by using conventional silicon microelectronics in conjunc-
tion with light. However, the production of silicon chips with
electronic and photonic circuit elements is difficult for many
physical/practical reasons related to the used materials [170].
Large-scale AI that focuses on integrating photonic compon-
ents with superconducting electronics could be a solution.
Using light for communication in conjunction with complex
electronic circuits for computation could enable AI systems
of scale and functionality.

DT is defined as a virtual model that is characterised in a
highly accurate manner that receives data, and after that, the
data are used to model the characteristics of superconducting
devices and make decisions about the performance, design,
control, protection, manufacture, and even maintenance of the
device. Then the made decisions are sent towards the physical
twin to be applied in related components. In fact, DT is the
intersection of AI methods, cloud computing, the IoTs, and
most importantly, CPSs. CPS is a smart and highly intelligent
technology that is used for the integration of sensing, control,
computation, and networking in a physical system or device,
such as superconducting devices [170]. Thus, in near future not
only non-real-time AI techniques would be applied to increase
the accuracy of models, simulations, predictions, etc related to
superconducting devices but also DTs and CPSs based on real-
time computations would be applied to many superconduct-
ing apparatuses and devices. On the other hand, DT and CPS
could be used in the design stage of superconducting devices
not only with respect to initial constraints but also according
to requirements that could be different for each application or
customer. This can also improve the efficiency and general-
ity of the design process. Estimation of precise maintenance
time is another challenge that is possible to be rid of employ-
ing DT and CPS. For this purpose, DT receives the opera-
tional condition of the superconducting device from sensors
and accesses some historical data about the previous repairs
and maintenance. After that, using AI methods, an accurate
estimation would be presented as the next possible mainten-
ance timeline.

In near future, it is expected that AI methods will be imple-
mented in:

• Discovery of novel superconductors with specific critical
temperature or critical current condition monitoring of
large-scale superconducting power devices such as rotating

machines, MRI, transformers, fault current limiters and also
in the fusion industry

• Design development of superconductingmachines andmag-
nets concerning all possible trade-offs

• Protection of SCs and transformers
• The manufacturing process of superconductors and super-

conducting components
• Using DTs for real-time modelling, monitoring, fault detec-

tion and design of superconducting devices
• Modelling sophisticated multiphysical characteristics of

superconducting devices
• Improving the performance of superconducting quantum

computers, and Superconducting Quantum Interference
devices

• Calculating electron-boson spectral function
• Predicting the maintenance time of superconducting devices
• Weak-points detection
• Modelling the characteristic of superconductors
• Using autoencoders together with other AI and signal-

processing techniques for fault detection in superconducting
devices

Concluding remarks

AI as a strategic technology is developing fast and could cer-
tainly change manufacturing, materials, physics, and engin-
eering fields by increasing the quality of processes, improving
the efficiency of systems production through predictive main-
tenance, finding optimal solutions, and contributing to real-
time monitoring, fault detection and asset management. AI
offers important efficiency, productivity, and agility benefits
that can strengthen the competitiveness of a technology such
as superconductivity and improve its applications. AI has the
potential to offer tools for learning, knowledge discovery, and
decision-making that try to outperform human abilities and
can be used in many applications.

AI-related techniques involve a multidisciplinary approach
of using mathematical models, statistics, graphs, databases,
and business/scientific logic. Hardware manufacturing in a
scalablemanner could contribute to large systems construction
at a reasonable cost. Superconducting optoelectronic integra-
tion could also contribute to scalable quantum technologies
and lead to new ways of leveraging the strengths of quantum-
neural hybrid systems.

Current Research indicates that with the introduction of
CPS, machines will be able to communicate with each other
and decentralised control systems will be able to optimise pro-
duction, mainly through the integration of several paradigms,
like AI, DT, IoT, and Cloud Computing.

The exponential growth of data, the digital transformation
process and all the related technological evolutions have to be
complemented by a long-term industrial strategy that prepares
the governments and society in interaction with stakeholder-
s/industries for the digital and low carbon economy. The integ-
ration of emergent, smart and AI-based technologies arises as
the main strategy to support the trends in the superconduct-
ivity area, which main current challenges involve additional
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production capacity, high production costs, inflationary effects
and real market demand.
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