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Chapter 1

The Basics

1.1 Expander Graphs and Sparse Cuts

Before giving the definition of expander graph, it is helpful to consider examples of graphs
that are not expanders, in order to gain intuition about the type of “bad examples” that
the definition is designed to avoid.

Suppose that a communication network is shaped as a path, with the vertices representing
the communicating devices and the edges representing the available links. The clearly
undesirable feature of such a configuration is that the failure of a single edge can cause the
network to be disconnected, and, in particular, the failure of the middle edge will disconnect
half of the vertices from the other half.

This is a situation that can occur in reality. Most of Italian highway traffic is along the high-
way that connect Milan to Naples via Bologna, Florence and Rome. The section between
Bologna and Florence goes through relatively high mountain passes, and snow and ice can
cause road closures. When this happens, it is almost impossible to drive between Northern
and Southern Italy. Closer to California, I was once driving from Banff, a mountain resort
town in Alberta which hosts a mathematical institute, back to the US. Suddenly, traffic on
Canada’s highway 1 came to a stop. People from the other cars, after a while, got out of
their cars and started hanging out and chatting on the side of the road. We asked if there
was any other way to go in case whatever accident was ahead of us would cause a long road
closure. They said no, this is the only highway here. Thankfully we started moving again
in half an hour or so.

Now, consider a two-dimensional
√
n×
√
n grid. The removal of an edge cannot disconnect

the graph, and the removal of a constant number of edges can only disconnected a constant
number of vertices from the rest of the graph, but it is possible to remove just

√
n edges, a

1/O(
√
n) fraction of the total, and have half of the vertices be disconnected from the other

half.

A k-dimensional hypercube with n = 2k is considerably better connected than a grid,
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although it is still possible to remove a vanishingly small fraction of edges (the edges of a
“dimension cut,” which are a 1/k = 1/ log2 n fraction of the total number of edges) and
disconnect half of the vertices from the other half.

Clearly, the most reliable network layout is the clique; in a clique, if an adversary wants to
disconnect a p fraction of vertices from the rest of the graph, he has to remove at least a
p · (1− p) fraction of edges from the graph.

This property of the clique will be our “gold standard” for reliability. The expansion and
the sparsest cut parameters of a graph measure how worse a graph is compared with a
clique from this point.

Definition 1.1 (Sparsest Cut) Let G = (V,E) be a graph and let (S, V −S) be a partition
of the vertices (a cut). Then the (normalized) sparsity of the cut is

σ(S) :=

E
(u,v)∼E

|1S(u)− 1S(v)|

E
(u,v)∼V 2

|1S(u)− 1S(v)|

the fraction of edges cut by the partition (S, V − S) divided by the fraction of pairs of edges
separated by the partition (S, V − S).

The sparsest cut problem is, given a graph, to find the set of minimal sparsity. The sparsity
of a graph G = (V,E) is

σ(G) := min
S⊆V :S 6=∅,S 6=V

σ(S)

Note that if G is a d-regular graph, then

σ(S) :=
E(S, V − S)
d
|V | · |S| · |V − S|

In a d-regular graph, the edge expansion of a set of vertices S ⊆ V is the related quantity

φ(S) :=
E(S, V − S)

d · |S|

in which we look at the ratio between the number of edges between S and V − S and the
obvious upper bound given by the total number of edges incident S.

The edge expansion φ(G) of a graph is

φ(G) := min
S:|S|≤ |V |

2

φ(S)

the minimum of φ(S) over all partitions (S, V − S), where |S| ≤ |V − S|.
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(It is common to alternatively define the edge expansion without the normalizing factor of
d in the denominator.)

We note that for every regular graph G we have that, for every set S such that |S| ≤ |V |/2,

1

2
σ(S) ≤ φ(S) ≤ σ(S)

and we have σ(S) = σ(V − S), hence

1

2
σ(G) ≤ φ(G) ≤ ·σ(G)

A family of constant degree expanders is a family of (multi-)graphs {Gn}n≥d such that each
graph Gn is a d-regular graph with n vertices and such that there is an absolute constant
φ > 0 such that φ(Gn) ≥ φ for every n.

Constant-degree graphs of constant expansion are sparse graphs with exceptionally good
connectivity properties. For example, we have the following observation.

Lemma 1.2 Let G = (V,E) be a regular graph of expansion φ. Then, after an ε < φ
fraction of the edges are adversarially removed, the graph has a connected component that
spans at least 1− ε/2φ fraction of the vertices.

Proof: Let d be the degree of G, and let E′ ⊆ E be an arbitrary subset of ≤ ε|E| =
ε · d · |V |/2 edges. Let C1, . . . , Cm be the connected components of the graph (V,E − E′),
ordered so that |C1| ≥ |C2| ≥ · · · ≥ |Cm|. We want to prove that |C1| ≥ |V | · (1 − 2ε/φ).
We have

|E′| ≥ 1

2

∑
i 6=j

E(Ci, Cj) =
1

2

∑
i

E(Ci, V − Ci)

If |C1| ≤ |V |/2, then we have

|E′| ≥ 1

2

∑
i

d · φ · |Ci| =
1

2
· d · φ · |V |

but this is impossible if φ > ε.

If |C1| ≥ |V |/2, then define S := C2 ∪ · · · ∪ Cm. We have

|E′| ≥ E(C1, S) ≥ d · φ · |S|

which implies that |S| ≤ ε
2φ · |V | and so C1 ≥

(
1− ε

2φ

)
· |V |. �

In words, this means that, in a d-regular expander, the removal of k edges can cause at
most O(k/d) vertices to be disconnected from the remaining “giant component.” Clearly,
it is always possible to disconnect k/d vertices after removing k edges, so the reliability of
an expander is essentially best possible.
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1.2 Eigenvalues and Eigenvectors

Spectral graph theory studies how the eigenvalues of the adjacency matrix of a graph, which
are purely algebraic quantities, relate to combinatorial properties of the graph.

We begin with a brief review of linear algebra.

If x = a+ ib is a complex number, then we let x̄ = a− ib denote its conjugate. If M ∈ Cm×n
is a matrix, then M∗ denotes the conjugate transpose of M , that is, (M∗)i,j = Mj,i. If
x,y ∈ Cn are two vectors, then their inner product is defined as

〈x,y〉 := x∗y =
∑
i

xi · yi (1.1)

Notice that, by definition, we have 〈x,y〉 = 〈x,y〉 and 〈x,x〉 = ||x||2.

If M ∈ Cn×n is a square matrix, λ ∈ C is a scalar, x ∈ Cn − {0} is a non-zero vector and
we have

Mx = λx (1.2)

then we say that λ is an eigenvalue of M and that x is eigenvector of M corresponding to
the eigenvalue λ.

When (1.2) is satisfied, then we equivalently have

(M − λI) · x = 0

for a non-zero vector x, which is equivalent to

det(M − λI) = 0 (1.3)

For a fixed matrix M , the function λ→ det(M −λI) is a univariate polynomial of degree n
in λ and so, over the complex numbers, the equation (1.3) has exactly n solutions, counting
multiplicities.

If G = (V,E) is a graph, then we will be interested in the adjacency matrix A of G, that is
the matrix such that Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. If G is a multigraph or
a weighted graph, then Aij is equal to the number of edges between (i, j), or the weight of
the edge (i, j), respectively.

The adjacency matrix of an undirected graph is symmetric, and this implies that its eigen-
values are all real.

Definition 1.3 A matrix M ∈ Cn×n is Hermitian if M = M∗.

Note that a real symmetric matrix is always Hermitian.
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Lemma 1.4 If M is Hermitian, then all the eigenvalues of M are real.

Proof: Let M be an Hermitian matrix and let λ be a scalar and x be a non-zero vector
such that Mx = λx. We will show that λ = λ∗, which implies that λ is a real number.

We first see that

〈Mx,x〉

= (Mx)∗x

= x∗M∗x

= x∗Mx

= 〈x,Mx〉

where we use the fact that M is Hermitian. Then we note that

〈Mx,x〉 = 〈λx,x〉 = λ̄||x||2

and

〈x,Mx〉 = 〈x, λx〉 = λ||x||2

so that λ = λ̄. �

We also note the following useful fact.

Fact 1.5 If M is an Hermitian matrix, and x and y are eigenvectors of different eigenval-
ues, then x and y are orthogonal.

Proof: Let x be an eigenvector λ and y be an eigenvector of λ′, then, from the fact that
M is Hermitian, we get

〈Mx,y〉 = (Mx)∗y = x∗M∗y = x∗My = 〈x,My〉

but

〈Mx,y〉 = λ · 〈x,y〉

and
〈x,My〉 = λ′ · 〈x,y〉

so that
(λ− λ′) · 〈x,y〉 = 0

which implies that 〈x,y〉 = 0, that is, that x and y are orthogonal. �
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We will be interested in relating combinatorial properties of a graph G, such as connectivity
and bipartiteness, with the values of the eigenvalues of the adjacency matrix of G.

A step in this direction is to see the problem of computing the eigenvalues of a real symmetric
matrix as the solution to an optimization problem.

Theorem 1.6 (Variational Characterization of Eigenvalues) Let M ∈ Rn×n be a
real symmetric matrix, and λ1 ≤ . . . ≤ λn be its real eigenvalues, counted with multi-
plicities and sorted in nondecreasing order. Let x1, · · · ,xk, k < n, be orthonormal vectors
such that Mxi = λixi for i = 1, . . . , k. Then

λk+1 = min
x∈Rn−{0}:x⊥x1,...,x⊥xk

xTMx

xTx

and any minimizer is an eigenvector of λk+1.

In particular, Theorem 1.6 implies that

λ1 = min
x∈Rn−{0}

xTMx

xTx

and, if we call x1 a minimizer of the above expression, then

λ2 = min
x∈Rn−{0}:x⊥x1

xTMx

xTx

and a minimizer x2 of the above expression is an eigenvector of x1, and so on.

In order to prove Theorem 1.6, we first prove the following result.

Lemma 1.7 Let Let M ∈ Rn×n be a real symmetric matrix, and let x1, . . . ,xk, k < n be
orthogonal eigenvectors of M . Then there is an eigenvector xk+1 of M that is orthogonal
to x1, . . . ,xk.

Proof: Let V be the (n − k)-dimensional subspace of Rn that contains all the vectors
orthogonal to x1, . . . ,xk. We claim that for every vector x ∈ V we also have Mx ∈ V .
Indeed, for every i, the inner product of Mx and xi is

〈xi,Mx〉 = xTi Mx = (MTxi)
Tx = (Mxi)

Tx = λix
T
i x = λ · 〈x1,x〉 = 0

Let B ∈ Rn×(n−k) be the matrix that computes a bijective map from Rn−k to V . (If
b1, . . . ,bn−k are an orthonormal for basis for V , then B is just the matrix whose columns
are the vectors bi.) Let also B′ ∈ R(n−1)×n be the matrix such that, for every y ∈ V , B′y is
the (n− k)-dimensional vector such that BB′y = y. (Let B′ = BT where B is as described
above.) Let λ be a real eigenvalue of the real symmetric matrix

M ′ := B′MB ∈ R(n−k)×(n−k)
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and y be a real eigenvector of M ′.

Then we have the equation

B′MBx = λy

and so
BB′MBy = λBy

Since By is orthogonal to x1, . . . ,xk, it follows that MBy is also orthogonal to x1, . . . ,xk,
and so

BB′MBy = MBy ,

which means that we have
MBy = λBy

and, defining xk+1 := By, we have

Mxk+1 = λBxk+1

�

We note that Lemma 1.7 has the following important consequence.

Corollary 1.8 (Spectral Theorem) Let M ∈ Rn×n be an real symmetric matrix, and
λ1, . . . , λn be its real eigenvalues, with multiplicities; then there are orthonormal vectors
x1, . . . ,xn, xi ∈ Rn such that xi is an eigenvector of λi.

We are now ready to prove Theorem 1.6.

Proof:[Of Theorem 1.6] By repeated applications of Lemma 1.7, we find n− k orthogonal
eigenvectors which are also orthogonal to x1, . . . ,xk. The eigenvalues of this system of n
orthogonal eigenvectors must include all the eigenvalues of M , because if there was any
other eigenvalue, its eigenvector would be orthogonal to our n vectors, which is impossible.
Let us call the additional n− k vectors xk+1, . . . ,xn, where xi is an eigenvector of λi. Now
consider the minimization problem

min
x∈Rn−{0}:x⊥x1,...,x⊥xk

xTMx

xTx

The solution x := xk+1 is feasible, and it has cost λk+1, so the minimum is at most λk+1.

Consider now an arbitrary feasible solution x. We can write

x = ak+1xk+1 + · · ·+ anxn

and we see that the cost of such a solution is

∑n
i=k+1 λia

2
i∑n

i=k+1 a
2
i

≥ λk+1 ·
∑n

i=k+1 a
2
i∑n

i=k+1 a
2
i
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and so the minimum is also at least λk+1. Notice also that if x is a minimizer, that is, if the
cost of x is λk+1, then we must ai = 0 for every i such that λi > λk+1, which means that x
is a linear combination of eigenvectors of λk+1, and so it is itself an eigenvector of λk+1. �

Sometimes it will be helpful to use the following variant of the variational characterization
of eigenvalues.

Corollary 1.9 Let M ∈ Rn×n be a real symmetric matrix, and λ1 ≤ λ2 ≤ · · · ≤ λn its
eigenvalues, counted with multiplicities and sorted in nondecreasing order. Then

λk = min
V k−dimensional subspace of Rn

max
x∈V−{0}

xTMx

xTx

1.3 The Basics of Spectral Graph Theory

From the discussion so far, we have that if A is the adjacency matrix of an undirected
graph then it has n real eigenvalues, counting multiplicities of the number of solutions to
det(A− λI) = 0.

If G is a d-regular graph, then instead of working with the adjacency matrix of G it is
somewhat more convenient to work with the normalized Laplacian matrix of G, which is
defined as L := I − 1

d ·A.

In the rest of this section we shall prove the following relations between the eigenvalues of
L and certain purely combinatorial properties of G.

Theorem 1.10 Let G be a d-regular undirected graph, and L = I − 1
d ·A be its normalized

Laplacian matrix. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the real eigenvalues of L with multiplicities.
Then

1. λ1 = 0 and λn ≤ 2.

2. λk = 0 if and only if G has at least k connected components.

3. λn = 2 if and only if at least one of the connected components of G is bipartite.

Note that the first two properties imply that the multiplicity of 0 as an eigenvalue is precisely
the number of connected components of G.

1.4 Proof of Theorem 1.10

We will make repeated use of the following identity, whose proof is immediate: if L is the
normalized Laplacian matrix of a d-regular graph G, and x is any vector, then

xTLx =
1

d
·
∑
{u,v}∈E

(xu − xv)2 (1.4)
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and so

λ1 = min
x∈Rn−{0}:

xTLx

xTx
≥ 0

If we take 1 = (1, . . . , 1) to be the all-one vector, we see that 1TL1 = 0, and so 0 is the
smallest eigenvalue of L, with 1 being one of the vectors in the eigenspace of 1.

We also have the following formula for λk:

λk = min
S k−dimensional subspace of Rn

max
x∈S−{0}

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

So, if λk = 0, there must exist a k-dimensional space S such that for every x ∈ S we have∑
{u,v}∈E

(xu − xv)2 = 0 ,

but this means that, for every x, and for every edge (u, v) ∈ E of positive weight, we have
xu = xv, and so xu = xv for every u, v which are in the same connected component. This
means that each x ∈ V must be constant within each connected component of G, and so
the dimension of V can be at most the number of connected components of G, meaning
that G has at least k connected components.

Conversely, if G has at least k connected components, we can let S be the space of vectors
that are constant within each component, and S is a space of dimension at least k such that
for every element x of S we have ∑

{u,v}∈E

(xu − xv)2 = 0

meaning that S is a witness of the fact that λk = 0.

Finally, to study λn, we first note that we have the formula

λn = max
x∈Rn−{0}

xTLx

xTx

which we can prove by using the variational characterization of the eigenvalues of −L and
noting that −λn is the smallest eigenvalue of −L.

We also observe that for every vector x ∈ Rn we have

2− xTLx =
1

d

∑
{u,v}∈E

(xu + xv)
2

and so

λn ≤ 2

9



and if λn = 2 then there must be a non-zero vector x such that∑
{u,v}∈E

(xu + xv)
2 = 0

which means that xu = −xv for every edge (u, v) ∈ E.

Let v be a vertex such that xv = a 6= 0, and define the sets A := {v : xv = a}, B :=
{j : xv = −a} and R = {v : xv 6= ±a}. The set A ∪ B is disconnected from the rest of
the graph, because otherwise an edge with an endpoint in A ∪ B and an endpoint in R
would give a positive contribution to

∑
u,v Au,v(xu +xv)

2; furthermore, every edge incident
on a vertex on A must have the other endpoint in B, and vice versa. Thus, A ∪ B is a
connected component, or a collection of connected components, of G which is bipartite,
with the bipartition A,B.
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Chapter 2

Eigenvalues and Expansion

2.1 Expansion and The Second Eigenvalue

Let G = (V,E) be an undirected d-regular graph, A its adjacency matrix, L = 1− 1
d ·A its

Laplacian matrix, and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L.

We proved that λ2 = 0 if and only if G is disconnected, that is, λ2 = 0 if and only if
φ(G) = 0. In this lecture we will see that this statement admits an approximate version
that, qualitatively, says that λ2 is small if and only if φ(G) is small. Quantitatively, we have

Theorem 2.1 (Cheeger’s Inequalities)

λ2

2
≤ φ(G) ≤

√
2 · λ2 (2.1)

2.2 The Easy Direction

In this section we prove

Lemma 2.2 λ2 ≤ σ(G) ≤ 2φ(G)

From which we have one direction of Cheeger’s inequality.

Let us find an equivalent restatement of the sparsest cut problem. We can write

σ(G) = min
x∈{0,1}V −{0,1}

∑
{u,v}∈E |xu − xv|

d
n

∑
{u,v} |xu − xv|

(2.2)
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Note that, when xu, xv take boolean values, then so does |xu − xv|, so that we may also
equivalently write

σ(G) = min
x∈{0,1}V −{0,1}

∑
{u,v}∈E |xu − xv|2

d
n

∑
{u,v} |xu − xv|2

(2.3)

In a previous section, we gave the following characterization of λ2:

λ2 = min
x∈RV −{0},x⊥1

∑
{u,v}∈E |xu − xv|2

d ·
∑

v x
2
v

Now we claim that the following characterization is also true

λ2 = min
x∈RV −{0,1}

∑
{u,v}∈E |xu − xv|2

d
n

∑
{u,v} |xu − xv|2

(2.4)

This is because

∑
u,v

|xu − xv|2

=
∑
u,v

x2
i +

∑
u,v

x2
v − 2

∑
u,v

xuxv

= 2n
∑
v

x2
v − 2

(∑
v

xv

)2

so for every x ∈ RV − {0} such that x ⊥ 1 we have that∑
v

x2
v =

1

2n

∑
u,v

|xu − xv|2 =
1

n

∑
{u,v}

|xu − xv|2 ,

and so

min
x∈RV −{0},x⊥1

∑
{u,v}∈E |xu − xv|2

d ·
∑

v x
2
v

= min
x∈RV −{0},x⊥1

∑
{u,v}∈E |xu − xv|2

d
n

∑
{u,v} |xu − xv|2

To conclude the argument, take an x that maximizes the right-hand side of (2.4), and
observe that if we shift every coordinate by the same constant then we obtain another
optimal solution, because the shift will cancel in all the expressions both in the numerator
and the denominator. In particular, we can define x′ such that x′v = xv− 1

n

∑
u xu and note

that the entries of x′ sum to zero, and so x′ ⊥ 1. This proves that

min
x∈RV −{0},x⊥1

∑
{u,v}∈E |xu − xv|2
d
n

∑
u,v |xu − xv|2

= min
x∈RV −{0,1}

∑
{u,v}∈E |xu − xv|2
d
n

∑
u,v |xu − xv|2

12



and so we have established (2.4).

Comparing (2.4) and (2.3), it is clear that the quantity λ2 is a continuous relaxation of
σ(G), and hence λ2 ≤ σ(G).

2.3 Other Relaxations of σ(G)

Having established that we can view λ2 as a relaxation of σ(G), the proof that φ(G) ≤√
2 · λ2 can be seen as a rounding algorithm, that given a real-valued solution to (2.4) finds

a comparably good solution for (2.3).

Later in the course we will see two more approximation algorithms for sparsest cut and
edge expansion. Both are based on continuous relaxations of σ starting from (2.2).

The algorithm of Leighton and Rao is based on a relaxation that is defined by observing
that every bit-vector x ∈ {0, 1}V defines the semi-metric dist(u, v) := |xu − xv| over the
vertices; the Leighton-Rao relaxation is obtained by allowing arbitrary semi-metrics:

LR(G) := min
dist : V × V → R
dist semimetric

∑
{u,v}∈E dist(u, v)

d
n

∑
{u,v} dist(u, v)

It is not difficult to express LR(G) as a linear programming problem.

The algorithm of Arora-Rao-Vazirani is obtained by noting that, for a bit-vector x ∈ {0, 1}V ,
the distances dist(u, v) := |xu−xv| define a metric which can also be seen as the Euclidean
distance between the xv, because |xu− xv| =

√
(xu − xv)2, and such that dist2(u, v) is also

a semi-metric, trivially so because dist2(u, v) = dist(u, v). If a distance function dist(·, ·)
is a semi-metric such that

√
dist(·, ·) is a Euclidean semi-metric, then dist(·, ·) is called a

negative type semi-metric. The Arora-Rao-Vazirani relaxation is

ARV (G) := min
dist : V × V → R
dist negative type semimetric

∑
{u,v}∈E dist(u, v)

d
n

∑
{u,v} dist(u, v)

The Arora-Rao-Vazirani relaxation can be expressed as a semi-definite programming prob-
lem.

From this discussion it is clear that the Arora-Rao-Vazirani relaxation is a tightening of the
Leigthon-Rao relaxation and that we have

σ(G) ≥ ARV (G) ≥ LR(G)

It is less obvious in this treatment, and we will see it later, that the Arora-Rao-Vazirani is
also a tightening of the relaxation of σ given by λ2, that is

13



σ(G) ≥ ARV (G) ≥ λ2

The relaxations λ2 and LR(G) are incomparable.

2.4 Spectral partitioning and the proof of the difficult direc-
tion

The proof of the more difficult direction of Theorem 2.1 will be constructive and algorithmic.
The proof can be seen as an analysis of the following algorithm.

Algorithm: SpectralPartitioning

• Input: graph G = (V,E) and vector x ∈ RV

• Sort the vertices of V in non-decreasing order of values of entries in x, that is let
V = {v1, . . . , vn} where xv1 ≤ xv2 ≤ . . . xvn

• Let i ∈ {1, . . . , n− 1} be such that max{φ({v1, . . . , vi}), φ({vi+1, . . . , vn})} is minimal

• Output S = {v1, . . . , vi} and S̄ = {vi+1, . . . , vn}

We note that the algorithm can be implemented to run in time O(|V | log |V | + |E|), as-
suming arithmetic operations and comparisons take constant time, because once we have
computed E({v1, . . . , vi}, {vi+1, . . . , vn}) it only takes time O(degree(vi+1)) to compute
E({v1, . . . , vi+1}, {vi+2, . . . , vn}).
We have the following analysis of the quality of the solution:

Lemma 2.3 (Analysis of Spectral Partitioning) Let G = (V,E) be a d-regular graph,
x ∈ RV be a vector such that x ⊥ 1, define

R(x) :=

∑
{u,v}∈E |xu − xv|2

d ·
∑

v x
2
v

and let S be the output of algorithm SpectralPartitioning on input G and x. Then

φ(S) ≤
√

2R(x)

Remark 2.4 If we apply the lemma to the case in which x is an eigenvector of λ2, then
R(x) = λ2, and so we have

φ(S) ≤
√

2 · λ2

which is the difficult direction of Cheeger’s inequalities.
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Remark 2.5 If we run the SpectralPartitioning algorithm with the eigenvector x of the
second eigenvalue λ2, we find a set S whose expansion is

φ(S) ≤
√

2 · λ2 ≤ 2
√
φ(G)

Even though this doesn’t give a constant-factor approximation to the edge expansion, it gives
a very efficient, and non-trivial, approximation.

As we will see in a later lecture, there is a nearly linear time algorithm that finds a vector
x for which the Rayleigh quotient R(x) is very close to λ2, so, overall, for any graph G we
can find a cut of expansion O(

√
φ(G)) in nearly linear time.

2.5 Proof of Lemma 2.3

We saw that λ2 can be seen as a relaxation of σ(G), and Lemma 2.3 provides a rounding
algorithm for the real vectors which are solutions of the relaxation. In this section we will
think of it as a form of randomized rounding. Later, when we talk about the Leighton-
Rao sparsest cut algorithm, we will revisit this proof and think of it in terms of metric
embeddings.

To simplify notation, we will assume that V = {1, . . . , n} and that x1 ≤ x2 ≤ · · ·xn.
Thus our goal is to prove that there is an i such that φ({1, . . . , i}) ≤

√
2R(x) and φ({i +

1, . . . , n}) ≤
√

2R(x)

We will derive Lemma 2.3 by showing that there is a distribution D over sets S of the form
{1, . . . , i} such that

ES∼D E(S, V − S)

ES∼D d ·min{|S|, |V − S|}
≤
√

2R(x) (2.5)

We need to be a bit careful in deriving the Lemma from (2.5). In general, it is not true
that a ratio of averages is equal to the average of the ratios, so (2.5) does not imply that

Eφ(S) ≤
√

2R(x). We can, however, apply linearity of expectation and derive from (2.5)
the inequality

E
S∼D

1

d
E(S, V − S)−

√
2R(x) min{|S|, |V − S|} ≤ 0

So there must exist a set S in the sample space such that

1

d
E(S, V − S)−

√
2R(x) min{|S|, |V − S|} ≤ 0

meaning that, for that for both the set S and its complement, we have φ(S) ≤
√

2R(x); at
least one of the sets has size at most n/2, and so we are done. (Basically we are using the
fact that, for random variables X,Y over the same sample space, although it might not be
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true that EX
EY = E X

Y , we always have P[XY ≤ EX
EY ] > 0, provided that Y > 0 over the entire

sample space.)

From now on, we will assume that

1. xdn/2e = 0, that is, the median of the entries of x is zero

2. x2
1 + x2

n = 1

which can be done without loss of generality because, if x ⊥ 1, adding a fixed constant c
to all entries of x can only reduce the Rayleigh quotient:

R(x + (c, . . . , c)) =

∑
{u,v∈E} |(xu + c)− (xv + x)|2

d
∑

v(xv + c)2

=

∑
{u,v∈E} |xu − xv|2

d
∑

v x
2
v − 2dc

∑
v xv + nc2

=

∑
{u,v∈E} |xu − xv|2

d
∑

v x
2
v + nc2

≤ R(x)

Multiplying all the entries by a fixed constant does not change the value of R(x), nor does
it change the property that x1 ≤ · · · ≤ xn. The reason for these choices is that they allow
us to define a distribution D over sets such that

E
S∼D

min{|S|, |V − S|} =
∑
i

x2
i (2.6)

We define the distribution D over sets of the form {1, . . . , i}, i ≤ n− 1, as the outcome of
the following probabilistic process:

• We pick a real value t in the range [x1, xn] with probabily density function f(t) = 2|t|.
That is, for x1 ≤ a ≤ b ≤ xn, P[a ≤ t ≤ b] =

∫ b
a 2|t|dt.

Doing the calculation, this means that P[a ≤ t ≤ b] = |a2 − b2| if a, b have the same
sign, and P[a ≤ t ≤ b] = a2 + b2 if they have different signs.

• We let S := {i : xi ≤ t}

According to this definition, the probability that an element i ≤ n/2 belongs to the smallest
of the sets S, V − S is the same as the probability that it belongs to S, which is the
probability that the threshold t is in the range [xi, 0], and that probability is x2

i . Similarly,
the probability that an element i > n/2 belongs to the smallest of S, V − S is the same
as the probability that it belongs to V − S, which is the probability that t is in the range
[0, xi], which is again x2

i . So we have established (2.6).
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We will now estimate the expected number of edges between S and V − S.

E
1

d
E(S, V − S) =

1

2

∑
i,j

Mi,j P[(i, j) is cut by (S, V − S)]

The event that the edge (i, j) is cut by the partition (S, V − S) happens when the value t
falls in the range between xi and xj . This means that

• If xi, xj have the same sign,

P[(i, j) is cut by (S, V − S)] = |x2
i − x2

j |

• If xi, xj have different sign,

P[(i, j) is cut by (S, V − S)] = x2
i + x2

j

Some attempts, show that a good expression to upper bound both cases is

P[(i, j) is cut by (S, V − S)] ≤ |xi − xj | · (|xi|+ |xj |)

Plugging into our expression for the expected number of cut edges, and applying Cauchy-
Schwarz

EE(S, V − S) ≤
∑
{i,j}∈E

|xi − xj | · (|xi|+ |xj |)

≤
√ ∑
{i,j}∈E

(xi − xj)2 ·
√ ∑
{i,j}∈E

(|xi|+ |xj |)2

Finally, it remains to study the expression
∑
{i,j}∈E(|xi|+ |xj |)2. By applying the inequality

(a+ b)2 ≤ 2a2 + 2b2 (which follows by noting that 2a2 + 2b2 − (a+ b)2 = (a− b)2 ≥ 0), we
derive

∑
{i,j}∈E

(|xi|+ |xj |)2 ≤
∑
{i,j}∈E

(2x2
i + 2x2

j ) = 2d
∑
i

x2
i

Putting all the pieces together we have

EE(S, V − S)

dEmin{|S|, |V − S|}
≤

√∑
{i,j}∈E |xi − xj |2 ·

√
2d
∑

i x
2
i

d
∑

i x
2
i

=
√

2R(x) (2.7)

which, together with (2.6) gives (2.5), which, as we already discussed, implies the Main
Lemma 2.3.
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Chapter 3

More on Eigenvalues and Cut Problems

3.1 Spectral graph theory in irregular graphs

Let G = (V,E) be an undirected graph in which every vertex has positive degree and A
be the adjacency matrix of G. We want to define a Laplacian matrix L and a Rayleigh
quotient such that the k-th eigenvalue of L is the minimum over all k-dimensional spaces of
the maximum Rayleigh quotient in the space, and we want the conductance of a set to be
the same as the Rayleigh quotient of the indicator vector of the set. All the facts that we
have proved in the regular case essentially reduce to these two properties of the Laplacian
and the Rayleigh quotient.

Let dv be the degree of vertex v in G. We define the Rayleigh quotient of a vector x ∈ RV
as

RG(x) :=

∑
{u,v}∈E |xu − xv|2∑

v dvx
2
v

Let D be the diagonal matrix of degrees such that Du,v = 0 if u 6= v and Dv,v = dv. Then
define the Laplacian of G as

LG := I −D−1/2AD−1/2

Note that in a d-regular graph we have D = dI and LG = I − 1
dA, which is the standard

definition.

Since L = LG is a real symmetric matrix, the k-th smallest eigenvalue of L is

λk = min
k−dimensional S

max
x∈S

xTLx

xTx

Now let us do the change of variable y← D−1/2x. We have
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λk = min
k−dimensional S′

max
y∈S′

yTD1/2LD1/2y

yTDy

In the numerator, yTDy =
∑

v dvy
2
v , and in the denominator a simple calculation shows

yTD1/2LD1/2y = yT (D −A)y =
∑
{u,v}

|yv − yu|2

so indeed

λk = min
k−dimensional S

max
y∈S

RG(y)

For two vectors y, z, define the inner product

〈y, z〉G :=
∑
v

dvyvzv

Then we can prove that

λ2 = min
y:〈y,(1,...,1)〉G=0

RG(y)

With these definitions and observations in place, it is now possible to repeat the proof of
Cheeger’s inequality step by step (replacing the condition

∑
v xv = 0 with

∑
i dvxv = 0,

adjusting the definition of Rayleigh quotient, etc.) and prove that if λ2 is the second smallest
eigenvalue of the Laplacian of an irregular graph G, and φ(G) is the conductance of G, then

λ2

2
≤ φ(G) ≤

√
2λ2

3.2 Higher-order Cheeger inequality

The Cheeger inequality gives a “robust” version of the fact that λ2 = 0 if and only if G is
disconnected. It is possible to also give a robust version of the fact that λk = 0 if and only
if G has at least k connected components. We will restrict the discussion to regular graphs.

For a size parameter s ≤ |V |/2, denote the size-s small-set expansion of a graph

SSEs(G) := min
S⊆V : |S|≤s

φ(S)

So that SSEn
2
(G) = φ(G). This is an interesting optimization problem, because in many

settings in which non-expanding sets correspond to clusters, it is more interesting to find
small non-expanding sets (and, possibly, remove them and iterate to find more) than to find
large ones. It has been studied very intensely in the past five years because of its connection
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with the Unique Games Conjecture, which is in turn one of the key open problems in
complexity theory.

If λk = 0, then we know that are at least k connected components, and, in particular, there
is a set S ⊆ V such that φ(S) = 0 and |S| ≤ n

k , meaning that SSEn
k

= 0. By analogy
with the Cheeger inequality, we may look for a robust version of this fact, of the form
SSEn

k
≤ O(

√
λk). Unfortunately there are counterexamples, but Arora, Barak and Steurer

have proved that, for every δ,

SSEn1+δ

k

≤ O

(√
λk
δ

)

To formulate a “higher-order” version of the Cheeger inequality, we need to define a quantity
that generalize expansion in a different way. For an integer parameter k ≥ 2, define “order
k expansion” as

φk(G) = min
S1,...Sk⊆V disjoint

max
i=1,...,k

φ(Si)

Note that φ2(G) = φ(G). Then Lee, Oveis-Gharan and Trevisan prove that

λk
2
≤ φk(G) ≤ O(k2) ·

√
λk

and

φ.9·k(G) ≤ O(
√
λk · log k)

(which was also proved by Louis, Raghavendra, Tetali and Vempala). The upper bounds
are algorithmic, and given k orthogonal vectors all of Rayleigh quotient at most λ, there
are efficient algorithms that find at least k disjoint sets each of expansion at most O(k2

√
λ)

and at least .9 · k disjoint sets each of expansion at most O(
√
λ log k).

3.3 A Cheeger-type inequality for λn

We proved that λn = 2 if and only if G has a bipartite connected component. What happens
when λn is, say, 1.999?

We can define a “bipartite” version of expansion as follows:

β(G) := min
x∈{−1,0,1}V

∑
{u,v}∈E |xu + xv|∑

v dv|xv|

The above quantity has the following combinatorial interpretation: take a set S of vertices,
and a partition of S into two disjoint sets A,B. Then define
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β(S,A,B) :=
2E(A) + 2E(B) + 2E(S, V − S)

vol(S)

where E(A) is the number of edges entirely contained in A, and E(S, V −S) is the number
of edges with one endpoint in S and one endpoint in V − S. We can think of β(S,A,B) as
measuring what fraction of the edges incident on S we need to delete in order to make S
disconnected from the rest of the graph and A,B be a bipartition of the subgraph induced
by S. In other words, it measure how close S is to being a bipartite connected component.
Then we see that

β(G) = min
S⊆V, A,B partition of S

β(S,A,B)

Trevisan proves that

1

2
· (2− λn) ≤ β(G) ≤

√
2 · (2− λn)
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Chapter 4

The Power Method

In the previous section, we showed that, if G = (V,E) is a d-regular graph, and L is its
normalized Laplacian matrix with eigenvalues 0 = λ1 ≤ λ2 . . . ≤ λn, given an eigenvector
of λ2, the algorithm SpectralPartition finds, in nearly-linear time O(|E|+ |V | log |V |), a cut
(S, V − S) such that φ(S) ≤ 2

√
φ(G).

More generally, if, instead of being given an eigenvector x such that Lx = λ2x, we are given
a vector x ⊥ 1 such that xTLx ≤ (λ2 + ε)xTx, then the algorithm finds a cut such that
φ(S) ≤

√
4φ(G) + 2ε. In this lecture we describe and analyze an algorithm that computes

such a vector using O((|V |+ |E|) · 1
ε · log |V |ε ) arithmetic operations.

A symmetric matrix is positive semi-definite (abbreviated PSD) if all its eigenvalues are
nonnegative. We begin by describing an algorithm that approximates the largest eigenvalue
of a given symmetric PSD matrix. This might not seem to help very much because because
we want to compute the second smallest, not the largest, eigenvalue. We will see, however,
that the algorithm is easily modified to accomplish what we want.

4.1 The Power Method to Approximate the Largest Eigen-
value

The algorithm works as follows

Algorithm Power

Input: PSD matrix M , parameter k

• Pick uniformly at random x0 ∼ {−1, 1}n

• for i := 1 to k
xi := M · xi−1

• return xk
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That is, the algorithm simply picks uniformly at random a vector x with ±1 coordinates,
and outputs Mkx.

Note that the algorithm performs O(k · (n + m)) arithmetic operations, where m is the
number of non-zero entries of the matrix M .

Theorem 4.1 For every PSD matrix M , positive integer k and parameter ε > 0, with
probability ≥ 3/16 over the choice of x0, the algorithm Power outputs a vector xk such that

xTkMxk

xTk xk
≥ λ1 · (1− ε) ·

1

1 + 4n(1− ε)2k

where λ1 is the largest eigenvalue of M .

Note that, in particular, we can have k = O(log n/ε) and
xTkMxk
xTk xk

≥ (1−O(ε)) · λ1.

Let λ1 ≥ · · ·λn be the eigenvalues of M , with multiplicities, and v1, . . . ,vn be a system of
orthonormal eigenvectors such that Mvi = λivi. Theorem 4.1 is implied by the following
two lemmas

Lemma 4.2 Let v ∈ Rn be a vector such that ||v|| = 1. Sample uniformly x ∼ {−1, 1}n.
Then

P
[
|〈x,v〉| ≥ 1

2

]
≥ 3

16

Lemma 4.3 Let x ∈ Rn be a vector such that |〈x,v1〉| ≥ 1
2 . Then, for every positive integer

t and positive ε > 0, if we define y := Mkx, we have

yTMy

yTy
≥ λ1 · (1− ε) ·

1

1 + 4||x||2(1− ε)2k

It remains to prove the two lemmas.

Proof: (Of Lemma 4.2) Let v = (v1, . . . , vn). The inner product 〈x,v〉 is the random
variable

S :=
∑
i

xivi

Let us compute the first, second, and fourth moment of S.

ES = 0

ES2 =
∑
i

v2
i = 1
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ES4 = 3

(∑
i

v2
i

)
− 2

∑
i

v4
i ≤ 3

Recall that the Paley-Zygmund inequality states that if Z is a non-negative random variable
with finite variance, then, for every 0 ≤ δ ≤ 1, we have

P[Z ≥ δ EZ] ≥ (1− δ)2 · (EZ)2

EZ2
(4.1)

which follows by noting that

EZ = E[Z · 1Z<δ EZ ] + E[Z · 1Z≥δ EZ ] ,

that

E[Z · 1Z<δ EZ ] ≤ δ EZ ,

and that

E[Z · 1Z≥δ EZ ] ≤
√
EZ2 ·

√
E 1Z≥δ EZ

=
√

EZ2
√

P[Z ≥ δ EZ]

We apply the Paley-Zygmund inequality to the case Z = S2 and δ = 1/4, and we derive

P
[
S2 ≥ 1

4

]
≥
(

3

4

)2

· 1

3
=

3

16

�

Remark 4.4 The proof of Lemma 4.2 works even if x ∼ {−1, 1}n is selected according to
a 4-wise independent distribution. This means that the algorithm can be derandomized in
polynomial time.

Proof: (Of Lemma 4.3) Let us write x as a linear combination of the eigenvectors

x = a1v1 + · · ·+ anvn

where the coefficients can be computed as ai = 〈x,vi〉. Note that, by assumption, |a1| ≥ .5,
and that, by orthonormality of the eigenvectors, ||x||2 =

∑
i a

2
i .

We have
y = a1λ

k
1v1 + · · ·+ anλ

k
nvn

and so
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yTMy =
∑
i

a2
iλ

2k+1
i

and
yTy =

∑
i

a2
iλ

2k
i

We need to prove a lower bound to the ratio of the above two quantities. We will compute
a lower bound to the numerator and an upper bound to the denominator in terms of the
same parameter.

Let ` be the number of eigenvalues larger than λ1·(1−ε). Then, recalling that the eigenvalues
are sorted in non-increasing order, we have

yTMy ≥
∑̀
i=1

a2
iλ

2k+1
i ≥ λ1(1− ε)

∑̀
i=1

a2
iλ

2k
i

We also see that

n∑
i=`+1

a2
iλ

2k
i

≤ λ2k
1 · (1− ε)2k

n∑
i=`+1

a2
i

≤ λ2k
1 · (1− ε)2k · ||x||2

≤ 4a2
1λ

2k
1 (1− ε)2t||x||2

≤ 4||x||2(1− ε)2k
∑̀
i=1

a2
iλ

2k
i

So we have

yTy ≤ (1 + 4||x||2(1− ε)2k) ·
∑̀
i=1

a2
i

giving

yTMy

yTy
≥ λ1 · (1− ε) ·

1

1 + 4||x||2(1− ε)2k

�

Remark 4.5 Where did we use the assumption that M is positive semidefinite? What
happens if we apply this algorithm to the adjacency matrix of a bipartite graph?
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4.2 Approximating the Second Largest Eigenvalue

Suppose now that we are interested in finding the second largest eigenvalue of a given PSD
matrix M . If M has eigenvalues λ1 ≥ λ2 ≥ · · ·λn, and we know the eigenvector v1 of λ2,
then M is a PSD linear map from the orthogonal space to v1 to itself, and λ2 is the largest
eigenvalue of this linear map. We can then run the previous algorithm on this linear map.

Algorithm Power2

Input: PSD matrix M , vector v1 parameter k

• Pick uniformly at random x ∼ {−1, 1}n

• x0 := x− v1 · 〈x,v1〉

• for i := 1 to k
xi := M · xi−1

• return xk

If v1, . . . ,vn is an orthonormal basis of eigenvectors for the eigenvalues λ1 ≥ · · · ≥ λn of
M , then, at the beginning, we pick a random vector

x = a1v1 + a2v2 + · · · anvn

that, with probability at least 3/16, satisfies |a2| ≥ 1/2. (Cf. Lemma 4.2.) Then we
compute x0, which is the projection of x on the subspace orthogonal to v1, that is

x0 = a2v2 + · · · anvn

Note that ||x||2 = n and that ||x0||2 ≤ n.

The output is the vector xk

xk = a2λ
k
2v2 + · · · anλknvn

If we apply Lemma 4.3 to subspace orthogonal to v1, we see that when |a2| ≥ 1/2 we have
that, for every 0 < ε < 1,

xTkMxk

xTk xk
≥ λ2 · (1− ε) ·

1

4n(1− ε)2k

We have thus established the following analysis.

Theorem 4.6 For every PSD matrix M , positive integer k and parameter ε > 0, if v1 is
a length-1 eigenvector of the largest eigenvalue of M , then with probability ≥ 3/16 over the
choice of x0, the algorithm Power2 outputs a vector xk ⊥ v1 such that

xTkMxk

xTk xk
≥ λ2 · (1− ε) ·

1

1 + 4n(1− ε)2k
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where λ2 is the second largest eigenvalue of M , counting multiplicities.

4.3 The Second Smallest Eigenvalue of the Laplacian

Finally, we come to the case in which we want to compute the second smallest eigenvalue
of the normalized Laplacian matrix L = I − 1

dA of a d-regular graph G = (V,E), where A
is the adjacency matrix of G.

Consider the matrix M := 2I − L = I + 1
dA. Then if 0 = λ1 ≤ . . . ≤ λn ≤ 2 are the

eigenvalues of L, we have that

2 = 2− λ1 ≥ 2− λ2 ≥ · · · ≥ 2− λn ≥ 0

are the eigenvalues of M , and that M is PSD. M and L have the same eigenvectors, and
so v1 = 1√

n
(1, . . . , 1) is a length-1 eigenvector of the largest eigenvalue of M .

By running algorithm Power2, we can find a vector x such that

xTMxT ≥ (1− ε) · (2− λ2) · xTx

and
xTMxT = 2xTx− xTLx

so, rearranging, we have
xTLx

xTx
≤ λ2 + 2ε

If we want to compute a vector whose Rayleigh quotient is, say, at most 2λ2, then the
running time will be Õ((|V | + |E|)/λ2), because we need to set ε = λ2/2, which is not
nearly linear in the size of the graph if λ2 is, say O(1/|V |).
For a running time that is nearly linear in n for all values of λ2, one can, instead, apply
the power method to the pseudoinverse L+ of L. (Assuming that the graph is connected,
L+x is the unique vector y such that Ly = x, if x ⊥ (1, . . . , 1), and L+x = 0 if x is parallel
to (1, . . . , 1).) This is because L+ has eigenvalues 0, 1/λ2, . . . , 1/λn, and so L+ is PSD and
1/λ2 is its largest eigenvalue.

Although computing L+ is not known to be doable in nearly linear time, there are nearly
linear time algorithms that, given x, solve in y the linear system Ly = x, and this is
the same as computing the product L+x, which is enough to implement algorithm Power
applied to L+.

In time O((V + |E|) · (log |V |/ε)O(1)), we can find a vector y such that y = (L+)kx, where x
is a random vector in {−1, 1}n, shifted to be orthogonal to (1, . . . , 1) and k = O(log |V |/ε).
What is the Rayleigh quotient of such a vector with respect to L?

Let v1, . . . ,vn be a basis of orthonormal eigenvectors for L and L+. If 0 = λ1 ≤ λ2 ≤ · · · ≤
λn are the eigenvalues of L, then we have

Lv1 = L+v1 = 0

27



and, for i = 1, . . . , n, we have

Lvi = λi L+vi =
1

λi

Write x = a2v2 + · · · anvn, where
∑

i a
2
i ≤ n, and ssume that, as happens with probability

at least 3/16, we have a2
2 ≥ 1

4 . Then

y =
n∑
i=2

ai
1

λki

and the Rayleigh quotient of y with respect to L is

yTLy

yTy
=

∑
i a

2
i

1
λ2k−1
i∑

i a
2
i

1
λ2ki

and the analysis proceeds similarly to the analysis of the previous section. If we let ` be
the index such that λ` ≤ (1 + ε) · λ2 ≤ λ`+1 then we can upper bound the numerator as

∑
i

a2
i

1

λ2k−1
i

≤
∑
i≤`

a2
i

1

λ2k−1
i

+
1

(1 + ε)2k−1λ2k−1
2

∑
i>`

a2
i

≤
∑
i≤`

a2
i

1

λ2k−1
i

+
1

(1 + ε)2k−1λ2k−1
2

· n

≤
∑
i≤`

a2
i

1

λ2k−1
i

+
1

(1 + ε)2k−1λ2k−1
2

· 4na2
2

≤
(

1 +
4n

(1 + ε)2k−1

)
·
∑
i≤`

a2
i

1

λ2k−1
i

and we can lower bound the denominator as

∑
i

a2
i

1

λ2k
i

≥
∑
i≤`

a2
i

1

λ2k
i

≥ 1

(1 + ε)λ2
·
∑
i≤`

a2
i

1

λ2k−1
i

and the Rayleigh quotient is

yTLy

yTy
≤ λ2 · (1 + ε) ·

(
1 +

4n

(1 + ε)2k−1

)
≤ (1 + 2ε) · λ2

when k = O
(

1
ε log n

ε

)
.

An O((|V | + |E|) · (log |V |)O(1)) algorithm to solve in y the linear system Ly = x was
first developed by Spielman and Teng. Faster algorithms (with a lower exponent in the
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(log |V |)O(1) part of the running time, and smaller constants) were later developed by Koutis,
Miller and Peng, and, very recently, by Kelner, Orecchia, Sidford, and Zhu.
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Chapter 5

Eigenvalues of Cayley Graphs

So far we have proved that

λ2

2
≤ φ(G) ≤

√
2 · λ2

and that the SpectralPartitioning algorithm, when given an eigenvector of λ2, finds a cut
(S, V − S) such that φ(S) ≤ 2

√
φ(G). In this section we will show that all such results are

tight, up to constants, by proving that

• The dimension-d hypercube Hd has λ2 = 2
d and φ(Hd) = 1

d , giving an infinite family

of graphs for which λ2
2 = φ(G), showing that the first Cheeger inequality is exactly

tight.

• The n-cycle Cn has λ2 = O(n−2), and φ(Cn) = 2
n , giving an infinite family of graphs

for which φ(G) = Ω(
√
λ2), showing that the second Cheeger inequality is tight up to

a constant.

• There is an eigenvector of the 2nd eigenvalue of the hypercube Hd, such that the Spec-
tralPartitioning algorithm, given such a vector, outputs a cut (S, V −S) of expansion
φ(S) = Ω(1/

√
d), showing that the analysis of the SpectralPartitioning algorithm is

tight up to a constant.

We will develop some theoretical machinery to find the eigenvalues and eigenvectors of
Cayley graphs of finite Abelian groups, a class of graphs that includes the cycle and the
hypercube, among several other interesting examples. This theory will also be useful later,
as a starting point to talk about algebraic constructions of expanders.

For readers familiar with the Fourier analysis of Boolean functions, or the discrete Fourier
analysis of functions f : Z/NZ → C, or the standard Fourier analysis of periodic real
functions, this theory will give a more general, and hopefully interesting, way to look at
what they already know.
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5.1 Characters

We will use additive notation for groups, so, if Γ is a group, its unit will be denoted by
0, its group operation by +, and the inverse of element a by −a. Unless, noted otherwise,
however, the definitions and results apply to non-abelian groups as well.

Definition 5.1 (Character) Let Γ be a group (we will also use Γ to refer to the set of
group elements). A function f : Γ→ C is a character of Γ if

• f is a group homomorphism of Γ into the multiplicative group C− {0}.

• for every x ∈ Γ, |f(x)| = 1

Though this definition might seem to not bear the slightest connection to our goals, the
reader should hang on because we will see next time that finding the eigenvectors and
eigenvalues of the cycle Cn is immediate once we know the characters of the group Z/nZ,
and finding the eigenvectors and eigenvalues of the hypercube Hd is immediate once we
know the characters of the group (Z/2Z)d.

Remark 5.2 (About the Boundedness Condition) If Γ is a finite group, and a is any
element, then

a+ · · ·+ a︸ ︷︷ ︸
|Γ| times

= 0

and so if f : Γ→ C is a group homomorphism then

1 = f(0) = f(a+ · · ·+ a︸ ︷︷ ︸
|Γ| times

) = f(a)|Γ|

and so f(a) is a root of unity and, in particular, |f(a)| = 1. This means that, for finite
groups, the second condition in the definition of character is redundant.

In certain infinite groups, however, the second condition does not follow from the first, for
example f : Z→ C defined as f(n) = en is a group homomorphism of (Z,+) into (C−{0}, ·)
but it is not a character.

Just by looking at the definition, it might look like a finite group might have an infinite
number of characters; the above remark, however, shows that a character of a finite group
Γ must map into |Γ|-th roots of unity, of which there are only |Γ|, showing a finite |Γ||Γ|
upper bound to the number of characters. Indeed, a much stronger upper bound holds, as
we will prove next, after some preliminaries.

Lemma 5.3 If Γ is finite and χ is a character that is not identically equal to 1, then∑
a∈Γ χ(a) = 0
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Proof: Let b be such that χ(b) 6= 1. Note that

χ(b) ·
∑
a∈Γ

χ(a) =
∑
a∈Γ

χ(b+ a) =
∑
a∈Γ

χ(a)

where we used the fact that the mapping a→ b+ a is a permutation. (We emphasize that
even though we are using additive notation, the argument applies to non-abelian groups.)
So we have

(χ(b)− 1) ·
∑
a∈Γ

χ(a) = 0

and since we assumed χ(b) 6= 1, it must be
∑

a∈Γ χ(a) = 0. �

If Γ is finite, given two functions f, g : Γ→ C, define the inner product

〈f, g〉 :=
∑
a∈Γ

f(a)g∗(a)

Lemma 5.4 If χ1, χ2 : Γ→ C are two different characters of a finite group Γ, then

〈χ1, χ2〉 = 0

We will prove Lemma 5.4 shortly, but before doing so we note that, for a finite group Γ, the
set of functions f : Γ → C is a |Γ|-dimensional vector space, and that Lemma 5.4 implies
that characters are orthogonal with respect to an inner product, and so they are linearly
independent. In particular, we have established the following fact:

Corollary 5.5 If Γ is a finite group, then it has at most |Γ| characters.

It remains to prove Lemma 5.4, which follows from the next two statements, whose proof
is immediate from the definitions.

Fact 5.6 If χ1, χ2 are characters of a group Γ, then the mapping x→ χ1(x) · χ2(x) is also
a character.

Fact 5.7 If χ is a character of a group Γ, then the mapping x→ χ∗(x) is also a character,
and, for every x, we have χ(x) · χ∗(x) = 1.

To complete the proof of Lemma 5.4, observe that:

• the function χ(x) := χ1(x) · χ∗2(x) is a character;

• the assumption of the lemma is that there is an a such that χ1(a) 6= χ2(a), and so,
for the same element a, χ(a) = χ1(a) · χ∗2(a) 6= χ2(a) · χ∗2(a) = 1
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• thus χ is a character that is not identically equal to 1, and so

0 =
∑
a

χ(a) = 〈χ1, χ2〉

Notice that, along the way, we have also proved the following fact:

Fact 5.8 If Γ is a group, then the set of characters of Γ is also a group, with respect to the
group operation of pointwise multiplication. The unit of the group is the character mapping
every element to 1, and the inverse of a character is the pointwise conjugate of the character.

The group of characters is called the Pontryagin dual of Γ, and it is denoted by Γ̂.

We now come to the punchline of this discussion.

Theorem 5.9 If Γ is a finite abelian group, then it has exactly |Γ| characters.

Proof: We give a constructive proof. We know that every finite abelian group is isomorphic
to a product of cyclic groups

(Z/n1Z)× (Z/n2Z)× · · · × (Z/nkZ)

so it will be enough to prove that

1. the cyclic group Z/nZ has n characters;

2. if Γ1 and Γ2 are finite abelian groups with |Γ1| and |Γ2| characters, respectively, then
their product has |Γ1| · |Γ2| characters.

For the first claim, consider, for every r ∈ {0, . . . , n− 1}, the function

χr(x) := e2πirx/n

Each such function is clearly a character (0 maps to 1, χr(−x) is the multiplicative inverse
of χr(x), and, recalling that e2πik = 1 for every integer k, we also have χr(a+ b mod n) =
e2πira/n · e2πirb/n), and the values of χr(1) are different for different values of r, so we get
n distinct characters. This shows that Z/nZ has at least n characters, and we already
established that it can have at most n characters.

For the second claim, note that if χ1 is a character of Γ1 and χ2 is a character of Γ2,
then it is easy to verify that the mapping (x, y) → χ1(x) · χ2(y) is a character of Γ1 × Γ2.
Furthermore, if (χ1, χ2) and (χ′1, χ

′
2) are two distinct pairs of characters, then the mappings

χ(x, y) := χ1(x) · χ2(y) and χ′(x, y) := χ′1(x) · χ′2(y) are two distinct characters of Γ1 × Γ2,
because we either have an a such that χ1(a) 6= χ′1(a), in which case χ(a, 0) 6= χ′(a, 0), or we
have a b such that χ2(b) 6= χ′2(b), in which case χ(0, b) 6= χ′(0, b). This shows that Γ1 × Γ2
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has at least |Γ1| · |Γ2| characters, and we have already established that it can have at most
that many �

This means that the characters of a finite abelian group Γ form an orthogonal basis for
the set of all functions f : Γ → C, so that any such function can be written as a linear
combination

f(x) =
∑
χ

f̂(χ) · χ(x)

For every character χ, 〈χ, χ〉 = |Γ|, and so the characters are actually a scaled-up orthonor-
mal basis, and the coefficients can be computed as

f̂(χ) =
1

|Γ|
∑
x

f(x)χ∗(x)

Example 5.10 (The Boolean Cube) Consider the case Γ = (Z/2Z)n, that is the group
elements are {0, 1}n, and the operation is bitwise xor. Then there is a character for every
bit-vector (r1, . . . , rn), which is the function

χr1,...,rn(x1, . . . , xn) := (−1)r1x1+···rnxn

Every boolean function f : {0, 1}n → C can thus be written as

f(x) =
∑

r∈{0,1}n
f̂(r) · (−1)

∑
i rixi

where

f̂(r) =
1

2n

∑
x∈{0,1}n

f(x) · (−1)
∑
i rixi

which is the boolean Fourier transform.

Example 5.11 (The Cyclic Group) To work out another example, consider the case
Γ = Z/NZ. Then every function f : {0, . . . , N − 1} → C can be written as

f(x) =
∑

r∈{0,...,N−1}

f̂(r)e2πirx/n

where

f̂(x) =
1

N

∑
x

f(x)e−2πirx/n

which is the discrete Fourier transform.
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5.2 A Look Beyond

Why is the term ”Fourier transform” used in this context? We will sketch an answer to this
question, although what we say from this point on is not needed for our goal of finding the
eigenvalues and eigenvectors of the cycle and the hypercube.

The point is that it is possible to set up a definitional framework that unifies both what we
did in the previous section with finite Abelian groups, and the Fourier series and Fourier
transforms of real and complex functions.

In the discussion of the previous section, we started to restrict ourselves to finite groups Γ
when we defined an inner product among functions f : Γ→ C.

If Γ is an infinite abelian group, we can still define an inner product among functions
f : Γ→ C, but we will need to define a measure over Γ and restrict ourselves in the choice of
functions. A measure µ over (a sigma-algebra of subsets of) Γ is a Haar measure if, for every
measurable subset A and element a we have µ(a+A) = µ(A), where a+A = {a+b : b ∈ A}.
For example, if Γ is finite, µ(A) = |A| is a Haar measure. If Γ = (Z,+), then µ(A) = |A| is
also a Haar measure (it is ok for a measure to be infinite for some sets), and if Γ = (R,+)
then the Lebesgue measure is a Haar measure. When a Haar measure exists, it is more or
less unique up to multiplicative scaling. All locally compact topological abelian groups have
a Haar measure, a very large class of abelian groups, that include all finite ones, (Z,+),
(R,+), and so on.

Once we have a Haar measure µ over Γ, and we have defined an integral for functions
f : Γ→ C, we say that a function is an element of L2(Γ) if∫

Γ
|f(x)|2dµ(x) <∞

For example, if Γ is finite, then all functions f : Γ → C are in L2(Γ), and a function
f : Z→ C is in L2(Z) if the series

∑
n∈Z |f(n)|2 converges.

If f, g ∈ L2(Γ), we can define their inner product

〈f, g〉 :=

∫
Γ
f(x)g∗(x)dµ(x)

and use Cauchy-Schwarz to see that |〈f, g〉| <∞.

Now we can repeat the proof of Lemma 5.4 that 〈χ1, χ2〉 = 0 for two different characters,
and the only step of the proof that we need to verify for infinite groups is an analog of
Lemma 5.3, that is we need to prove that if χ is a character that is not always equal to 1,
then ∫

Γ
χ(x)dµ(x) = 0

and the same proof as in Lemma 5.3 works, with the key step being that, for every group
element a,

35



∫
Γ
χ(x+ a)dµ(x) =

∫
Γ
χ(x)dµ(x)

because of the property of µ being a Haar measure.

We don’t have an analogous result to Theorem 5.9 showing that Γ and Γ̂ are isomorphic,
however it is possible to show that Γ̂ itself has a Haar measure µ̂, that the dual of Γ̂ is
isomorphic to Γ, and that if f : Γ→ C is continuous, then it can be written as the “linear
combination”

f(x) =

∫
Γ̂
f̂(χ)χ(x)dµ̂(x)

where

f̂(χ) =

∫
Γ
f(x)χ∗(x)dµ(x)

In the finite case, the examples that we developed before correspond to setting µ(A) :=
|A|/|Γ| and µ̂(A) = |A|.

Example 5.12 (Fourier Series) The set of characters of the group [0, 1) with the opera-
tion of addition modulo 1 is isomorphic to Z, because for every integer n we can define the
function χn : [0, 1)→ C

χn(x) := e2πixn

and it can be shown that there are no other characters. We thus have the Fourier series for
continuous functions f : [0, 1)→ C,

f(x) =
∑
n∈Z

f̂(n)e2πixn

where

f̂(n) =

∫ 1

0
f(x)e−2πixndx

5.3 Cayley Graphs and Their Spectrum

Let Γ be a finite group. We will use additive notation, although the following definition
applies to non-commutative groups as well. A subset S ⊆ Γ is symmetric if a ∈ S ⇔ −a ∈ S.

Definition 5.13 For a group Γ and a symmetric subset S ⊆ Γ, the Cayley graph Cay(Γ, S)
is the graph whose vertex set is Γ, and such that (a, b) is an edge if and only if b − a ∈ S.
Note that the graph is undirected and |S|-regular.
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We can also define Cayley weighted graphs: if w : Γ → R is a function such that w(a) =
w(−a) for every a ∈ Γ, then we can define the weighted graph Cay(G,w) in which the edge
(a, b) has weight w(b− a). We will usually work with unweighted graphs.

Example 5.14 (Cycle) The n-vertex cycle can be constructed as the Cayley graph Cay(Z/nZ, {−1, 1}).

Example 5.15 (Hypercube) The d-dimensional hypercube can be constructed as the Cay-
ley graph

Cay((Z/2Z)d, {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)})

where the group is the set {0, 1}d with the operation of bit-wise xor, and the set S is the set
of bit-vectors with exactly one 1.

If we construct a Cayley graph from a finite abelian group, then the eigenvectors are the
characters of the groups, and the eigenvalues have a very simple description.

Lemma 5.16 Let Γ be a finite abelian group, χ : Γ → C be a character of Γ, S ⊆ Γ be a
symmetric set. Let A be the adjacency matrix of the Cayley graph G = Cay(Γ, S). Consider
the vector x ∈ CΓ such that xa = χ(a).

Then x is an eigenvector of A, with eigenvalue

∑
s∈S

χ(s)

Proof: Consider the a-th entry of Mx:

(Ax)a =
∑
b

Aa,bxb

=
∑

b:b−a∈S
χ(b)

=
∑
s∈S

χ(a+ s)

= xa · ·
∑
s∈S

χ(s)

And so

Ax =

(∑
s∈S

χ(s)

)
· x

�

The eigenvalues of the form
∑

s∈S χ(s), where χ is a character, enumerate all the eigenvalues
of the graph, as can be deduced from the following observations:
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1. Every character is an eigenvector;

2. The characters are linearly independent (as functions χ : Γ→ C and, equivalently, as
vectors in CΓ);

3. There are as many characters as group elements, and so as many characters as nodes
in the corresponding Cayley graphs.

It is remarkable that, for a Cayley graph, a system of eigenvectors can be determined based
solely on the underlying group, independently of the set S.

Once we have the eigenvalues of the adjacency matrix, we can derive the eigenvalues of the
Laplacian, because to every eigenvalue λ of the adjacency there corresponds an eigenvalue
1− 1

|S|λ of the Laplacian, with the same eigenvector.

5.3.1 The Cycle

The n-cycle is the Cayley graph Cay(Z/nZ, {−1,+1}). Recall that, for every n ∈ {0, . . . , n−
1}, the group Z/nZ has a character χr(x) = e2πirx/n.

This means that for every r ∈ {0, . . . , n−1} we have the eigenvalue of the adjacency matrix

λr = e2πir/n + e−2πir/n = 2 cos(2πr/n)

where we used the facts that eix = cos(x) + i sin(x), that cos(x) = cos(−x), and sin(x) =
− sin(−x).

For r = 0 we have the eigenvalue 2. For r = 1 we have the second largest eigenvalue
2 cos(2π/n) = 2 − Θ(1/n2), meaning the second smallest eigenvalue of the Laplacian is
Θ(1/n2).

The expansion of the cycle is φ(Cn) ≥ 2/n, and so the cycle is an example in which the
second Cheeger inequality is tight.

5.3.2 The Hypercube

The group {0, 1}d with bitwise xor has 2d characters; for every r ∈ {0, 1}d there is a character
χr : {0, 1}d → {−1, 1} defined as

χr(x) = (−1)
∑
i rixi

Let us denote the set S by {e1, . . . , ed}, where we let ej ∈ {0, 1}d denote the bit-vector
that has a 1 in the j-th position, and zeroes everywhere else. This means that, for every
bit-vector r ∈ {0, 1}d, the hypercube has the eigenvalue

∑
j

χr(e
j) =

∑
j

(−1)rj = (−|r|+ d− |r|) = d− 2
|r|
d
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where we denote by |r| the weight of r, that is, the number of ones in r.

Corresponding to r = (0, . . . , 0), we have the eigenvalue d.

For each of the d vectors r with exactly one 1, we have the second largest eigenvalued− 2,
corresponding to an eigenvalue 2/d of the Laplacian.

Let us compute the expansion of the hypercube. Consider “dimension cuts” of the form
Si := {x ∈ {0, 1}n : xi = 0}. The set Si contains half of the vertices, and the number of
edges that cross the cut (Si, V − Si) is also equal to half the number of vertices (because
the edges form a perfect matching), so we have φ(Si) = 1

d .

These calculations show that the first Cheeger inequality λ2/2 ≤ φ(G) is tight for the
hypercube.

Finally, we consider the tightness of the approximation analysis of the spectral partitioning
algorithm.

We have seen that, in the d-dimensional hypercube, the second eigenvalue has multiplicity
d, and that its eigenvectors are vectors xj ∈ R2d such that xja = (−1)aj . Consider now the
vector x :=

∑
j xj ; this is still clearly an eigenvector of the second eigenvalue. The entries

of the vector x are

xa =
∑
j

(−1)aj = d− 2|a|

Suppose now that we apply the spectral partitioning algorithm using x as our vector. This
is equivalent to considering all the cuts (St, V − St) in the hypercube in which we pick a
threshold t and define St := {a ∈ {0, 1}n : |a| ≥ t}.
Some calculations with binomial coefficients show that the best such “threshold cut” is the
“majority cut” in which we pick t = n/2, and that the expansion of Sn/2 is

φ(Sn/2) = Ω

(
1√
d

)
This gives an example of a graph and of a choice of eigenvector for the second eigenvalue
that, given as input to the spectral partitioning algorithm, result in the output of a cut
(S, V − S) such that φ(S) ≥ Ω(

√
φ(G)). Recall that we proved φ(S) ≤ 2

√
φ(G), which is

thus tight.

5.4 Expanders of Logarithmic Degree

Let p be a prime and t < p. We’ll construct a p2-regular multigraph LDp,t with pt+1 vertices.
The vertex set of the graph will be the (t+ 1)-dimensional vextor space Ft+1

p over Fp.

For each vertex x ∈ Ft+1
p , and every two scalars a, b ∈ F, we have the edges (x, x +

(b, ab, a2b, . . . , atb).
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In other words, the graph LDp,t is a Cayley graph of the additive group of Ft+1
p , constructed

using the generating multiset

S := {(b, ab, . . . , atb) : a, b ∈ Ft+1
p }

Note that the generating set is symmetric, that is, if s ∈ S then −s ∈ S (with the same
multiplicity), and so the resulting multigraph is undirected.

Let Ap,t be the adjacency matrix of LDp,t and Mp,t := p−2Ap,t be the normalized adjacency
matrix. We will prove the following bound on the eigenvalues of Mp,t.

Theorem 5.17 For every prime p and every t < p, if we let 1 = λ1 ≥ λ2 ≥ · · ·λn be the
eigenvalues of M with multiplicities, then, for every i ∈ {2, . . . , n}

0 ≤ λi ≤
t

p

For example, setting t = bp/2c gives us a family of graphs such that λ2 ≤ 1/2 for each
graph in the family, and hence h ≥ 1/8, and the number of vertices is pp/2, while the degree
is p2, meaning the degree is O((log n/ log logn)2).

Proof: We will compute the eigenvalues of the adjacency matrix of Ap,t, and prove that,
except the largest one which is p2, all the others are non-negative and at most pt.

Recall our characterization of the eigenvalues of the adjacency matrix of a Cayley multigraph
Cay(Γ, S) of an abelian group Γ with generating multiset S: we have one eigenvector for
each character χ of the group, and the corresponding eigenvalue is

∑
s∈S χ(s).

What are the characters of the additive group of Ft+1
p ? It is the product of t+1 copies of the

additive group of Fp, or, equivalently, the product of t+ 1 copies of the cyclic group Z/pZ.
Following our rules for constructing the character of the cyclic group and of products of
groups, we see that the additive group of Ft+1

p has one character for each (c0, . . . , ct) ∈ Ft+1
p ,

and the corresponding character is

χc0,...,ct(x0, . . . , xt) := ω
∑t
i=0 cixi

where
ω := e

2πi
p

Thus, for each (c0, . . . , ct) ∈ Fpt , we have an eigenvalue

λc0,...,ct :=
∑
a,b∈Fp

ω
∑t
i=0 ciba

i

When (c0, . . . , ct) = (0, . . . , 0) then the corresponding character is always equal to one, and
the corresponding eigenvalue is p2.

Now consider any (c0, . . . , ct) 6= (0, . . . , 0), and define the polynomial q(x) =
∑t

i=0 cix
i ∈

Fp[x]. Note that it is a non-zero polynomial of degree at most t, and so it has at most t
roots. The eigenvalue corresponding to (c0, . . . , ct) is
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λc0,...,ct =
∑
a,b∈Fp

ω
∑t
i=0 b·q(a)

=
∑

a:q(a)=0

∑
b

ω0 +
∑

a:q(a)6=0

∑
b

ωb·q(a)

= p · |{a ∈ Fp : q(a) = 0}|

where we use the fact that, for every q 6= 0, the sum
∑

b ω
b·q equals zero, since it is the sum

of the values of the non-trivial character x→ ωx·q, and we proved that, for every non-trivial
character, the sum is zero.

In conclusion, we have

0 ≤ λc0,...,ct ≤ pt

�

Exercises

1. Find the eigenvalues of a clique with n vertices.

2. Consider the bipartite complete graph Kn,n with 2n vertices. Express it as a Cayley
graph and find its eigenvalues.

3. Show that

φ(G) = min
x∈Rn,med(x)=0

∑
{u,v}∈E |xu − xv|
d
∑

v |xv|

Hint: use an algorithm similar to the proof of the difficult direction of the Cheeger
inequality, but pick t uniformly at random.
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Chapter 6

Expander Constructions

A family of expanders is a family of graphs Gn = (Vn, En), |Vn| = n, such that each graph
is dn-regular, and the edge-expansion of each graph is at least h, for an absolute constant
h independent of n. Ideally, we would like to have such a construction for each n, although
it is usually enough for most applications that, for some constant c and every k, there is an
n for which the construction applies in the interval {k, k + 1, . . . , ck}, or even the interval
{k, . . . , ckc}. We would also like the degree dn to be slowly growing in n and, ideally, to be
bounded above by an explicit constant. Today we will see a simple construction in which
dn = O(log2 n) and a more complicated one in which dn = O(1).

An explicit construction of a family of expanders is a construction in which Gn is “efficiently
computable” given n. The weakest sense in which a construction is said to be explicit
is when, given n, the (adjacency matrix of the) graph Gn can be constructed in time
polynomial in n. A stronger requirement, which is necessary for several applications, is
that given n and i ∈ {1, . . . , n}, the list of neighbors of the i-th vertex of Gn can be
computed in time polynomial in log n.

In many explicit constructions of constant-degree expanders, the construction is extremely
simple, and besides satisfying the stricter definition of “explicit” above, it is also such that
the adjacency list of a vertex is given by a “closed-form formula.” The analysis of such
constructions, however, usually requires very sophisticated mathematical tools.

Example 6.1 Let p be a prime, and define the graph Gp = (Vp, Ep) in which Vp =
{0, . . . , p−1}, and, for a ∈ Vp−{0}, the vertex a is connected to a+1 mod p, to a−1 mod p
and to its multiplicative inverse a−1 mod p. The vertex 0 is connected to 1, to p − 1, and
has a self-loop. Counting self-loops, the graph is 3-regular: it is the union of a cycle over
Vp and of a matching over the p− 3 vertices Vp − {0, 1, p− 1}; the vertices 0, 1, p− 1 have
a self-loop each. There is a constant h > 0 such that, for each p, the graph Gp has edge
expansion at least h. Unfortunately, no elementary proof of this fact is known. The graph
G59 is shown in the picture below.
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Constructions based on the zig-zag graph product, which we shall see next, are more com-
plicated to describe, but much simpler to analyze.

6.1 The Zig-Zag Graph Product

Given a regular graph G with normalized adjacency matrix M , if λ1 ≥ λ2 ≥ . . . ≥ λn are
the eigenvalues of M with multiplicities we define

λ(G) := max
i=2,...,n

{|λi|}

In particular, λ(G) ≥ λ2, and if we are able to construct a family of graphs such that λ(G)
is at most a fixed constant bounded away from one, then we have a family of expanders.
(Our construction will be inductive and, as often happens with inductive proofs, it will be
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easier to maintain this stronger property than the property that λ2 is bounded away from
one.)

Given graphs G and H of compatible sizes, with small degree and large edge expansion, the
zig zag product G z©H is a method of constructing a larger graph also with small degree
and large edge expansion.

If:

• G a D-regular graph on n vertices, with λ(G) ≤ α

• H a d-regular graph on D vertices, with λ(H) ≤ β

Then:

• G z©H a d2-regular graph on nD vertices, with λ(G z©H) ≤ α+ β + β2.

We will see the construction and analysis of the zig zag product in the next lecture.

For the remainder of today, we’ll see how to use the zig zag product to construct arbitrarily
large graphs of fixed degree with large edge expansion.

Fix a large enough constant d. (1369 = 372 will do.) Construct a d-regular graph H on d4

vertices with λ2(H) ≤ d/5. (For example LD37,7 is a degree 372 graph on 37(7+1) = (372)4

vertices with λ2 ≤ 37× 7 < 372/5.)

For any graph G, let G2 represent the graph on the same vertex set whose edges are the
paths of length two in G. Thus G2 is the graph whose adjacency matrix is the square of
the adjacency matrix of G. Note that if G is r-regular then G2 is r2-regular

Using the H from above we’ll construct inductively, a family of progressively larger graphs,
all of which are d2-regular and have λ ≤ d2/2.

Let G1 = H2. For k ≥ 1 let Gk+1 = (G2
k) z©H.

Theorem 6.2 For each k ≥ 1, Gk has degree d2 and λ(Gk) ≤ 1/2.

Proof: We’ll prove this by induction.
Base case: G1 = H2 is d2-regular. Also, λ(H2) = (λ(H))2 ≤ d2/25.

Inductive step: Assume the statement for k, that is, Gk has degree d2 and λ(Gk) ≤ d2/2.
Then G2

k has degree d4 = |V (H)|, so that the product (G2
k) z©H is defined. Moreover,

λ(G2
k) ≤ d4/4. Applying the construction, we get that Gk+1 has degree d2 and λ(Gk+1) ≤

(1
4 + 1

5 + 1
25)d2 = 46

100d
2 This completes the proof. �

Finally note that Gk has d4k vertices.

6.1.1 Replacement product of two graphs

We first describe a simpler product for a “small” d-regular graph on D vertices (denoted
by H) and a “large” D-regular graph on N vertices (denoted by G). Assume that for each
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vertex of G, there is some ordering on its D neighbors. Then we construct the replacement
product (see figure) G r©H as follows:

• Replace each vertex of G with a copy of H (henceforth called a cloud). For v ∈
V (G), i ∈ V (H), let (v, i) denote the ith vertex in the vth cloud.

• Let (u, v) ∈ E(G) be such that v is the i-th neighbor of u and u is the j-th neigh-
bor of v. Then ((u, i), (v, j)) ∈ E(G r©H). Also, if (i, j) ∈ E(H), then ∀u ∈
V (G) ((u, i), (u, j)) ∈ E(G r©H).

Note that the replacement product constructed as above has ND vertices and is (d + 1)-
regular.
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6.1.2 Zig-zag product of two graphs

Given two graphs G and H as above, the zig-zag product G z©H is constructed as follows
(see figure):

• The vertex set V (G z©H) is the same as in the case of the replacement product.

• ((u, i), (v, j)) ∈ E(G z©H) if there exist ` and k such that ((u, i)(u, `), ((u, `), (v, k))
and ((v, k), (v, j)) are in E(G r©H) i.e. (v, j) can be reached from (u, i) by taking a
step in the first cloud, then a step between the clouds and then a step in the second
cloud (hence the name!).
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It is easy to see that the zig-zag product is a d2-regular graph on ND vertices.

Let M ∈ R([N ]×[D])×([N ]×[D]) be the normalized adjacency matrix of G z©H. Using the fact
that each edge in G r©H is made up of three steps in G r©H, we can write M as BAB, where

B[(u, i), (v, j)] =

{
0 if u 6= v
MH [i, j] if u = v

And A[(u, i), (v, j)] = 1 if u is the j-th neighbor of v and v is the i-th neighbor of u, and
A[(u, i), (v, j)] = 0 otherwise.

Note that A is the adjacency matrix for a matching and is hence a permutation matrix.

6.1.3 Preliminaries on Matrix Norms

Recall that, instead of bounding λ2, we will bound the following parameter (thus proving a
stronger result).

Definition 6.3 Let M be the normalized adjacency matrix of a graph G = (V,E), and
λ1 ≥ . . . ≥ λn be its eigenvalues with multiplicities. Then we use the notation

λ(M) := max
i=2,...,n

{|λi|} = max{λ2,−λn}

The parameter λ has the following equivalent characterizations.
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Fact 6.4

λ(M) = max
x∈RV −{0},x⊥1

||Mx||
||x||

= max
x∈Rv ,x⊥1,||x||=1

||Mx||

Another equivalent characterization, which will be useful in several contexts, can be given
using the following matrix norm.

Definition 6.5 (Spectral Norm) The spectral norm of a matrix M ∈ Rn×n is defined as

||M || = max
x∈RV ,||x||=1

||Mx||

If M is symmetric with eigenvalues λ1, . . . , λn, then the spectral norm is maxi |λi|. Note
that M is indeed a norm, that is, for every two square real matrices A,B we have ||A+B|| ≤
||A|| + ||B|| and for every matrix A and scalar α we have ||αA|| = α||A||. In addition, it
has the following useful property:

Fact 6.6 For every two matrices A,B ∈ Rn×n we have

||AB|| ≤ ||A|| · ||B||

Proof: For every vector x we have

||ABx|| ≤ ||A|| · ||Bx|| ≤ ||A|| · ||B|| · ||x||

where the first inequality is due to the fact that ||Az|| ≤ ||A|| · ||z|| for every vector z, and
the second inequality is due to the fact that ||Bx|| ≤ ||B|| · ||x||. So we have

min
x∈Rn,x 6=0

�

We can use the spectral norm to provide another characterization of the parameter λ(M)
of the normalized adjacency matrix of a graph.

Lemma 6.7 Let G be a regular graph and M ∈ Rn×n be its normalized adjacency matrix.
Then

λ(M) = ||M − 1

n
J ||

where J is the matrix with a 1 in each entry.

Proof: Let λ1 = 1 ≥ λ2 ≥ · · ·λn be the eigenvalues of M and v1 = 1√
n
1, v2, . . ., vn a

corresponding system of orthonormal eigenvector. Then we can write
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M = λ1v1v
T
1 + · · ·+ λnvnv

T
n

Noting that v1v
T
1 = 1

nJ , we have

M − 1

n
J = 0 · v1v

T
2 +

n∑
i=2

λiviv
T
i

and so v1, . . . ,vn is also a system of eigenvectors for M− 1
nJ , with corresponding eigenvalues

0, λ2, . . . , λn, meaning that

||M − 1

n
J || = max{0, λ2, . . . , λn} = λ(M)

�

The above lemma has several applications. It states that, according to a certain definition
of distance, when a graph is a good expander then it is close to a clique. (The matrix
1
nJ is the normalized adjacency matrix of a clique with self-loops.) The proof of several
results about expanders is based on noticing that the result is trivial for cliques, and then
on “approximating” the given expander by a clique using the above lemma.

We need one more definition before we can continue with the analysis of the zig-zag graph
product.

Definition 6.8 (Tensor Product) Let A ∈ RN×N and B ∈ RD×D be two matrices. Then
A⊗B ∈ RND×ND is a matrix whose rows and columns are indexed by pairs (u, i) ∈ [N ]×[D]
such that

(A⊗B)(u,i),(v,j) = Au,v ·Bi,j

For example I ⊗M is a block-diagonal matrix in which every block is a copy of M .

6.1.4 Analysis of the Zig-Zag Product

Suppose that G and H are identical cliques with self-loops, that is, are both n-regular graphs
with self-loops. Then the zig-zag product of G and H is well-defined, because the degree of
G is equal to the number of vertices of H. The resulting graph G z©H is a n2-regular graph
with n2 vertices, and an inspection of the definitions reveals that G z©H is indeed a clique
(with self-loops) with n2 vertices.

The intuition for our analysis is that we want to show that the zig-zag graph product
“preserves” distances measured in the matrix norm, and so if G is close (in matrix norm) to
a clique and H is close to a clique, then G z©H is close to the zig-zag product of two cliques,
that is, to a clique. (Strictly speaking, what we just said does not make sense, because we
cannot take the zig-zag product of the clique that G is close to and of the clique that H
is close to, because they do not have the right degree and number of vertices. The proof,
however, follows quite closely this intuition.)
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Theorem 6.9 If λ(MG) = a and λ(MH) = b, then

λ(G z©H) ≤ a+ 2b+ b2

Proof: Let M be the normalized adjacency matrix of G z©H, and let x be a unit vector
such that x ⊥ 1 and

λ(M) = ||Mx||

Recall that we defined a decomposition

M = BAB

where A is a permutation matrix, and B = I ⊗MH . Let us write E := MH − 1
DJ , then

B = I ⊗ 1
DJ + I ⊗ E. Let us call J̄ := I ⊗ 1

DJ and Ē := I ⊗ E.

First, we argue that the matrix norm of Ē is small. Take any vector z ∈ RND and write is
as z = (z1, . . . , zN ), where, for each u ∈ [N ], zu is the D-dimensional restriction of z to the
coordinates in the cloud of u. Then

||(I ⊗ E)z||2 =
∑
u

||Ezu||2 ≤
∑
u

||E||2 · ||zu||2 = ||E||2 · ||z||2

and so we have
||I ⊗ E|| ≤ ||E|| ≤ b

Then we have

BAB = (J̄ + Ē)A(J̄ + Ē)

= J̄AJ̄ + J̄AĒ + ĒAJ̄ + ĒAĀ

and so, using the triangle inequality and the property of the matrix norm, we have

||BABx|| ≤ ||J̄AJ̄x||+ ||ĒAJ̄ ||+ ||J̄AĒ||+ ||ĒAĒ||

where
||ĒAJ̄ || ≤ ||Ē|| · ||A|| · ||J̄ || ≤ ||Ē|| ≤ b

||J̄AĒ|| ≤ ||J̄ || · ||A|| · ||Ē|| ≤ ||Ē|| ≤ b

||ĒAĒ|| ≤ ||Ē|| · ||A|| · ||Ē|| ≤ ||Ē||2 ≤ b2

It remains to prove that ||J̄AJ̄x|| ≤ a. If we let AG = DMG be the adjacency matrix of G,
then we can see that

(J̄AJ̄)(u,i),(v,j) =
1

D2
(AG)u,v =

1

D
(MG)u,v = (MG ⊗

1

D
J)(u,i),(v,j)

That is,
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J̄AJ̄ = MG ⊗
1

D
J

Finally, we write x = (x1, . . . ,xN ), where xu is the D-dimensional vector of entries corre-
sponding to the cloud of u, we call yu :=

∑
i xu(i)/D, and we note that, by Cauchy-Schwarz:

||y||2 =
∑
u

(∑
i

1

D
xu,i

)2

≤
∑
u

(∑
i

1

D

2
)
·

(∑
i

x2
u,i

)
=

1

D
||x||2

The final calculation is:

||J̄AJ̄x||2 =

∣∣∣∣|(MG ⊗
1

D
J

)
x

∣∣∣∣ |2
=
∑
u,i

∑
v,j

1

D
(MG)u,vxu,i

2

=
∑
u,i

(∑
v

(MG)u,vyu

)2

= D ·
∑
u

(∑
v

(MG)u,vyu

)2

= D · ||MGy||2

≤ D · a2 · ||y||2

≤ a2 · ||x2||2

�

6.2 The Margulis-Gabber-Galil Expanders

We present a construction of expander graphs due to Margulis, which was the first explicit
construction of expanders, and its analysis due to Gabber and Galil. The analysis presented
here includes later simplifications, and it follows an exposition of James Lee.

For every n, we construct graphs with n2 vertices, and we think of the vertex set as Zn×Zn,
the group of pairs from {0, . . . , n−1}×{0, . . . , n−1} where the group operation is coordinate-
wise addition modulo n.

Define the functions S(a, b) := (a, a + b) and T (a, b) := (a + b, b), where all operations are
modulo n. Then the graph Gn(Vn, En) has vertex set Vn := Zn × Zn and the vertex (a, b)
is connected to the vertices
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(a+ 1, b), (a− 1, b), (a, b+ 1), (a, b− 1), S(a, b), S−1(a, b), T (a, b), T−1(a, b)

so that Gn is an 8-regular graph. (The graph has parallel edges and self-loops.)

We will prove that there is a constant c > 0 such that λ2(Gn) ≥ c for every n.

The analysis will be in three steps.

First, we show that λ2(Gn) is bounded from below, up to a constant, by the “spectral gap”
of an infinite graph Rn, whose vertex set is [0, n]2. We write “spectral gap” in quote because
we will not define a Laplacian and argue about the existence of a spectrum, but just study
the infimum of an expression that looks like a Rayleigh quotient, and prove that λ2(Gn)
is at least a constant times this infimum. This is proved by showing that for every test
function f that sums to zero defined over Z2

n we can define a function g over [0, n] whose
integral is zero and whose Rayleigh quotient for Rn is the same, up to a constant factor, as
the Rayleigh quotient of f for Gn

Then we consider another infinite graph G∞, with vertex set Z × Z, and again define a
formal “spectral gap” by considering the infimum of a Rayleigh quotient and we prove that,
for every n, the spectral gap of Rn is bounded from below, up to a constant, by the spectral
gap of G∞. This is proved by showing that if f is a test function whose integral is zero
and whose Rayleigh quotient for Rn is small, the Fourier transform of f is a test function
of small Rayleigh quotient for G∞.

Finally, we define a notion of expansion for graphs with a countable number of vertices, such
as G∞. We prove that for infinite graphs with a countable set of vertices there is a Cheeger
inequality relating expansion and spectral gap, we prove that G∞ has constant expansion,
and we use the Cheeger inequality to conclude that G∞ has constant spectral gap. (From
the previous steps, it follows that Rn, and hence Gn also have spectral gap bounded from
below by an absolute constant.)

6.2.1 First Step: The Continuous Graph

For every n, we consider a graph Rn with vertex set [0, n)2 and such that every vertex (x, y)
is connected to

S(x, y), S−1(x, y), T (x, y), T−1(x, y)

where, as before, S(x, y) = (x, x+ y) and T (x, y) = T (x+ y, y) and the operations are done
modulo n.

(We are thinking of [0, n) as a group with the operation of addition modulo n, that is,
the group quotient R/nZ, where nZ is the group of multiples of n with the operation of
addition, just like Zn is the quotient Z/nZ.)

Let `2([0, n)2) be set of functions f : [0, n)2 → R such that
∫

[0,n)2(f(x, y))2dxdy is well
defined and finite. Then we define the following quantity, that we think of as the spectral
gap of Rn:
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λ2(Rn) := inf
f∈`2([0,n)2) :

∫
[0,n)2 f=0

∫
[0,n)2 |f(x, y)− f(S(x, y))|2 + |f(x, y)− f(T (x, y))|2dxdy∫

[0,n)2(f(x, y))2dxdy

We could define a Laplacian operator and show that the above quantity is indeed the second
smallest eigenvalue, but it will not be necessary for our proof.

We have the following bound.

Theorem 6.10 λ2(Gn) ≥ 1
12 · λ2(Rn).

Proof: Let f be the function such that

λ2(G) =

∑
c∈Z2

n
|f(c)− f(S(c))|2 + |f(c)− f(T (c))|2 + |f(c)− f(c+ (0, 1))|2 + |f(c)− f(c+ (1, 0))|2

8
∑

c∈Z2
n
f2(c)

For a point (x, y) ∈ [0, n)2, define floor(x, y) := (bxc, byc). We extend f to a function
f̃ : [0, n)2 → R by defining

f̃(z) := f(floor(z))

This means that we tile the square [0, n)2 into unit squares whose corners are integer-
coordinate, and that f̃ is constant on each unit square, and it equals the value of f at the
left-bottom corner of the square.

It is immediate to see that ∫
[0,n)2

f̃2(z)dz =
∑
c∈Z2

n

f2(c)

and so, up to a factor of 8, the denominator of the Rayleigh quotient of f is the same as
the denominator of the Rayleigh quotient of f̃ .

It remains to bound the numerators.

Observe that for every z ∈ [0, 1)2, we have that floor(S(z)) equals either S(floor(z)) or
S(floor(z)) + (0, 1), and that floor(T (z)) equals either T (floor(z) or T (floor(z). Also,
floor(z + (0, 1)) = floor(z) + (0, 1), and the same is true for (1, 0). The numerator of the
Rayleigh quotient of f̃ is

∑
c=(a,b)∈Z2

n

∫
[a,a+1)×[b,b+1)

|f̃(z)− f̃(S(z))|2 + |f̃(z)− f̃(T (z))|2dz

=
1

2

∑
c∈Z2

n

|f(c)−f(S(c))|2+|f(c)−f(S(c)+(0, 1))|2+|f(c)−f(T (c))|2+|f(c)−f(T (c)+(1, 0))|2
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because for a (x, y) randomly chosen in the square [a, a+ 1)× [b, b+ 1), there is probability
1/2 that bx+ yc = bxc+ byc and probability 1/2 that bx+ yc = bxc+ byc+ 1.

Now we can use the “triangle inequality”

|α− β|2 ≤ 2|α− γ|2 + 2|γ − β|2

to bound the above quantity

≤ 1

2

∑
c∈Z2

n

|f(c)− f(S(c))|2+

2|f(c)− f(c+ (0, 1))|2 + 2|f(c+ (0, 1))− f(S(c) + (0, 1))|2+

|f(c)− f(T (c))|2+

2|f(c)− f(c+ (1, 0))|2 + 2|f(c+ (1, 0))− f(T (c) + (1, 0))|2

which simplifies to

=
1

2

∑
c∈Z2

n

3|f(c)−f(S(c))|2+3|f(c)−f(T (c))|2+2|f(c)−f(c+(0, 1))|2+2|f(c)−f(c+(1, 0))|2

which is at most 3/2 times the numerator of the Rayleigh quotient of f . �

6.2.2 Second Step: The Countable Graph

We now define the graph Z of vertex set Z×Z−{(0, 0)}, where each vertex (a, b) is connected
to

(a, a+ b), (a, a− b), (a+ b, a), (a− b, a)

Note

For a graph G = (V,E) with an countably infinite set of vectors, define `2(V ) to be the set
of functions f : V → R such that

∑
v∈V f

2(v) is finite, and define the spectral gap of G as

λ2(G) := inf
f∈`2(V )

∑
(u,v)∈V |f(u)− f(v)|2∑

v f
2(v)

So that

λ2(Z) := inf
f∈`2(Z×Z−{(0,0)})

∑
a,b |f(a, b)− f(a, a+ b)|2 + |f(a, b)− f(a+ b, a)|2∑

a,b f
2(a, b)

We want to show the following result.

Theorem 6.11 For every n, λ2(Rn) ≥ λ2(Z).
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Proof: This will be the most interesting part of the argument. Let f ∈ `2([0, n)2) be any
function such that

∫
f = 0, we will show that the Fourier transform f̂ of f has a Rayleigh

quotient for Z that is at most the Rayleigh quotient of f for Rn.

First, we briefly recall the definitions of Fourier transforms. If f : [0, n)2 → R is such that∫
z∈[0,n)2

f2(z)dz <∞

then we can write the linear combination

f(z) =
∑
c∈Z×Z

f̂(c) · χc(z)

where the basis functions are

χa,b(x, y) =
1

n
e2πi·(ax+by)

and the coefficients are

f̂(c) = 〈f, χa,b〉 :=

∫
[0,n)2

f(z)χc(z)dz

The condition
∫
f = 0 gives

f̂(0, 0) = 0

and the Parseval identity gives∑
c 6=(0,0)

f̂2(c) =
∑
c

f̂2(c) =

∫
f2(z)dz

and so we have that the denominator of the Rayleigh quotient of f for Rn and of f̂ for Z
As usual, the numerator is more complicated.

We can break up the numerator of the Rayleigh quotient of f as∫
s2(z)dz +

∫
t2(z)dz

where s(z) := f(z)−f(S(z)) and t(z) := f(z)−f(T (z)), and we can use Parseval’s identity
to rewrite it as ∑

c

ŝ2(c) + t̂2(c)

=
∑
c

|f̂(c)− (̂f ◦ S)(c)|2 + |f̂(c)− ̂(f ◦ T )(c)|2

The Fourier coefficients of the function (f ◦ S)(z) = f(S(z)) can be computed as

(̂f ◦ S)(a, b) =
1

n

∫
f(S(x, y))e2πi(ax+by)
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=
1

n

∫
f(x, x+ y)e2πi(ax+by)

=
1

n

∫
f(x, y′)e2πi(ax+by′−bx)

= f̂(a− b, b)

where we used the change of variable y′ ← x+ y.

Similarly, ̂(f ◦ T )(a, b) = f̂(a, b−a). This means that the numerator of the Rayleigh quotient
of f for Rn is equal to the numerator of the Rayleigh quotient of f̂ for Z. �

6.2.3 Third Step: Proving a Spectral Gap for Z

Now we need to prove that λ2(Z) ≥ Ω(1). We will prove that Z has constant edge expansion,
and then we will use a Cheeger inequality for countable graphs to deduce a spectral gap.

Define the edge expansion of a graph G = (V,E) with a countably infinite set of vertices as

φ(G) = inf
A⊆V,A finite

E(A, Ā)

|A|

Note that the edge expansion can be zero even if the graph is connected.

We will prove the following theorems

Theorem 6.12 (Cheeger inequality for countable graphs) For every d-regular graph
G = (V,E) with a countably infinite set of vertices we have

φ(G) ≤
√

2 · d · λ2(G)

Theorem 6.13 (Expansion of Z) φ(Z) ≥ 1.25.

Putting it all together we have that λ2(Z) ≥ φ(Z)2

2d > .195, λ2(Rn) > .195, and λ2(Gn) >
.0162.

Cheeger inequality for countable graphs

Proof:[Of Theorem 6.12] This is similar to the proof for finite graphs, with the simplifica-
tion that we do not need to worry about constructing a set containing at most half of the
vertices.

Let f ∈ `2(Z2) be any function. We will show that φ is at most
√

2r where

r :=

∑
(u,v)∈E |f(u)− f(v)|2∑

v∈V f
2(v)
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is the Rayleigh quotient of f .

For every threshold t ≥ tmin := infv∈V f
2(v), define the set St ⊆ V as

St := {v : f2(v) > t}

and note that each set is finite because
∑

v f
2(v) is finite. We have, for t > tmin,

φ(G) ≤ E(St, S̄t)

|St|

and, for all t ≥ 0
|St| · φ(G) ≤ E(St, S̄t)

Now we compute the integral of the numerator and denominator of the above expression,
and we will find the numerator and denominator of the Rayleigh quotient r.∫ ∞

0
|St|dt =

∑
v∈V

∫ ∞
0

If2(v)>tdt =
∑
v∈V

f2(v)

and ∫ ∞
0
|E(St, S̄t)dt =

∑
(u,v)∈E

∫ ∞
0

It between f2(u),f2(v)dt =
∑
(u,v)

|f2(u)− f2(v)|

Which means

φ ≤
∑

u,v |f(u)− f(v)|2∑
v f

2(v)

Now we proceed with Cauchy Schwarz:

∑
(u,v)∈E

|f2(u)− f2(v)|

=
∑

(u,v)∈E

|f(u)− f(v)| · |f(u) + f(v)|

≤
√ ∑

(u,v)∈E

|f(u)− f(v)|2 ·
√ ∑

(u,v)∈E

|f(u) + f(v)|2

≤
√ ∑

(u,v)∈E

|f(u)− f(v)|2 ·
√ ∑

(u,v)∈E

2f2(u) + 2f2(v)

=

√ ∑
(u,v)∈E

|f(u)− f(v)|2 ·
√∑
v∈V

2df(v)2

And we have
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φ ≤

√∑
(u,v)∈E |f(u)− f(v)|2 ·

√
2d√∑

v∈V f(v)2
=
√

2d · r

�

Expansion of Z

After all these reductions, we finally come to the point where we need to prove that some-
thing is an expander.

Proof:[Of Theorem 6.13] Let A be a finite subset of Z× Z− {(0, 0}.
Let A0 be the set of elements of A that have one 0 coordinate. Let A1, A2, A3, A4 be the set
of elements of A with nonzero coordinate that belong to the 1st, 2nd, 3rd and 4th quadrant.
(Starting from the quadrant of points having both coordinates positive, and numbering the
remaining ones clockwise.)

Claim 6.14 E(A−A0, Ā) ≥ |A−A0| = |A| − |A0|.

Proof: Consider the sets S(A1) and T (A1); both S() and T () are permutations, and
so |S(A1)| = |T (A1)| = |A1|. Also, S(A1) and T (A1) are disjoint, because if we had
(a, a + b) = (a′ + b′, b′) then we would have b = −a′ while all the coordinates are strictly
positive. Finally, S(A1) and T (A1) are also contained in the first quadrant, and so at
least |A1| of the edges leaving A1 lands outside A. We can make a similar argument in
each quadrant, considering the sets S−1(A2) and T−1(A2) in the second quadrant, the sets
S(A3) and T (A3) in the third, and S−1(A4) and T−1(A4) in the fourth. �

Claim 6.15 E(A0, Ā) ≥ 4|A0| − 3|A−A0| = 7|A0| − 3|A|

Proof: All the edges that have one endpoint in A0 have the other endpoint outside of A0.
Some of those edges, however, may land in A−A0. Overall, A−A0 can account for at most
4|A−A0| edges, and we have already computed that at least |A−A0| of them land into Ā,
so A−A0 can absorb at most 3|A−A0| of the outgoing edges of A0. �

Balancing the two equalities (adding 7/8 times the first plus 1/8 times the second) gives us
the theorem. �
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Chapter 7

Properties of Expanders

7.1 Quasirandomness of Expander Graphs

Recall that ifG is a d-regular graph, A is its adjacency matrix, andM = 1
dA is its normalized

adjacency matrix, then, if we call λ1 ≥ λ2 ≥ . . . ≥ λn the eigenvalues of M with repetitions,
we call λ(G) := maxi=2,...,n{|λi|}, and we have

λ(G) = ||M − 1

n
J ||

where J is the matrix with a one in each entry, and || · || is the matrix norm ||M || :=
maxx,||x||=1 ||Mx||.
Our fist result today is to show that, when λ(G) is small, the graph G has the following
quasirandomness property: for every two disjoint sets S, T , the number of edges between
S and T is close to what we would expect in a random graph of average degree d, that is,
approximately d

|V | |S||T |.

Lemma 7.1 (Expander Mixing Lemma) Let G = (V,E) be a d-regular graph, and let
S and T be two disjoint subsets of vertices. Then∣∣∣∣edgesG(S, T )− d

|V |
· |S| · |T |

∣∣∣∣ ≤ λ(G) · d ·
√
|S| · |T |

Proof: We have

edgesG(S, T ) = d1>SM1T

and
|S||T | = 1>S J1T
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so ∣∣∣∣edgesG(S, T )− d

|V |
· |S| · |T |

∣∣∣∣
= d ·

∣∣∣∣1>SM1T −
1

|V |
1>S J1T

∣∣∣∣
= d ·

∣∣∣∣1>S (M − 1

|V |
J

)
1T

∣∣∣∣
≤ d · ||1S || ·

∥∥∥∥M − 1

|V |
J

∥∥∥∥ · ‖1T ‖
= d ·

√
|S| · λ(G) ·

√
|T |

�

Note that, for every disjoint S, T , we have
√
|A| · |B| ≤ |V |/2, and so the right-hand side

in the expander mixing lemma is at most λ(G) · |E|, which is a small fraction of the total
number of edges if λ is small.

7.2 Random Walks in Expanders

A t-step random walk is the probabilistic process in which we start at a vertex, then we pick
uniformly at random one of the edges incident on the vertices and we move to the other
endpoint of the edge, and then repeat this process t times.

If M is the normalized adjacency matrix of an undirected regular graph G, then M(u, v)
is the probability that, in one step, a random walk started at u reaches v. This is why the
normalized adjacency matrix of a regular graph is also called its transition matrix.

Suppose that we start a random walk at a vertex chosen according to a probability dis-
tribution p, which we think of as a vector p ∈ RV such that p(u) ≥ 0 for every u and∑

u p(u) = 1. After taking one step, the probability of being at vertex v is
∑

u p(u)M(u, v),
which means that the probability distribution after one step is described by the vector
p> ·M , and because of the symmetric of M , this is the same as Mp.

Iterating the above reasoning, we see that, after a t-step random walk whose initial vertex
is chosen according to distribution p, the last vertex reached by the walk is distributed
according to M tp.

The parameter λ of M t is equal to (λ(G))t, and so if G has a parameter λ bounded away
from one, and if t is large enough, we have that the parameter λ of M t is very small, and
so M t is close to 1

nJ in matrix norm. If M t was actually equal to 1
nJ , then M t ·p would be

equal to the uniform distribution, for every distribution p. We would thus expect M t ·p to
be close to the uniform distribution for large enough t.

Before formalizing the above intuition, we need to fix a good measure of distance for distri-
butions. If we think of distributions as vectors, then a possible notion of distance between
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two distributions is the Euclidean distance between the corresponding vectors. This def-
inition, however, has various shortcoming and, in particular, can assign small distance to
distributions that are intuitively very different. For example, suppose that p and q are dis-
tributions that are uniform over a set S, and over the complement of S, respectively, where
S is a set of size |V |/2. Then all the entries of p−q are ±2/n and so ||p−q|| = 2/

√
n, which

is vanishingly small even though distributions over disjoint supports should be considered
as maximally different distributions.

A very good measure is the total variation distance, defined as

max
S⊆V

∣∣∣∣∣∑
v∈S

p(v)−
∑
v∈S

q(v)

∣∣∣∣∣
that is, as the maximum over all events of the difference between the probability of the event
happening with respect to one distribution and the probability of it happening with respect
to the other distribution. This measure is usually called statistical distance in computer
science. It is easy to check that the total variation distance between p and q is precisely
1
2 · ||p − q||1. Distributions with disjoint support have total variation distance 1, which is
largest possible.

Lemma 7.2 (Mixing Time of Random Walks in Expanders) Let G be a regular graph,
and M be its normalized adjacency matrix. Then for every distribution p over the vertices
and every t, we have

||u−M tp||1 ≤
√
|V | · (λ(G))t

where u is the uniform distribution.

In particular, if t > c
1−λ(G) · ln

|V |
ε , then ||u−M tp||1 ≤ ε, where c is an absolute constant.

Proof: Let J̄ = J/|V | be the normalized adjacency matrix of a clique with self-loops.
Then, for every distribution p, we have J̄p = u. Recall also that λ(G) = ||M − J̄ ||.
We have

||u−M tp||1
≤
√
|V | · ||u−M tp||

≤
√
|V | · ||J̄p−M tp||

≤
√
|V | · ||J̄ −M t|| · ||p||
≤
√
|V | · (λ(G))t

�

The last result that we discussed today is one more instantiation of the general phenomenon
that “if λ(G) is small then a result that is true for the clique is true, within some approxi-
mation, for G.”
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Suppose that we take a (t − 1)-step random walk in a regular graph G starting from a
uniformly distributed initial vertex. If G is a clique with self-loops, then the sequence
of t vertices encountered in the random walk is a sequence of t independent, uniformly
distributed, vertices. In particular, if f : V → [0.1] is a bounded function, the Chernoff-
Hoeffding bounds tell us that the empirical average of f() over the t points of the random
walk is very close to the true average of f(), except with very small probability, that is, if
we denote by v1, . . . , vt the set of vertices encountered in the random walk, we have

P

[
1

t

∑
i

f(vi) ≥ E f + ε

]
≤ e−2ε2t

where n := |V |. A corresponding Chernoff-Hoeffding bound can be proved for the case in
which the random walk is taken over a regular graph such that λ(G) is small.

Lemma 7.3 (Chernoff-Hoeffding Bound for Random Walks in Expanders) Let G =
(V,E) be a regular graph, and (v1, . . . , vt) the distribution of t-tuples constructed by sam-
pling v1 independently, and then performing a (t− 1)-step random walk starting at v1. Let
f : V → [0, 1] be any bounded function. Then

P

[
1

t

∑
i

f(vi) ≥ E f + ε+ λ(G)

]
≤ e−Ω(ε2t)

We will not prove the above result, but we briefly discuss one of its many applications.

Suppose that we have a polynomial-time probabilistic algorithm A that, on inputs of length
n, uses r(n) random bits and then outputs the correct answer with probability, say, at least
2/3. One standard way to reduce the error probability is to run the algorithm t times, using
independent randomness each time, and then take the answer that comes out a majority
of the times. (This is for problems in which we want to compute a function exactly; in
combinatorial optimization we would run the algorithm t times and take the best solutions,
and in an application in which the algorithm performs an approximate function evaluation
we would run the algorithm t times and take the median. The reasoning that follows for
the case of exact function computation can be applied to the other settings as well.)

On average, the number of iterations of the algorithms that give a correct answer is ≥ 2t/3,
and the cases in which the majority is erroneous correspond to cases in which the number of
iterations giving a correct answer is ≤ t/2. This means that the case in which the modified
algorithm makes a mistake correspond to the case in which the empirical average of t
independent 0/1 random variables deviates from its expectation by more than 2/3− 1/2 =
1/6, which can happen with probability at most e−t/18, which becomes vanishingly small
for large t.

This approach uses t · r(n) random bits. Suppose, instead, that we consider the following
algorithm: pick t random strings for the algorithm by performing a t-step random walk
in an expander graph of degree O(1) with 2r(n) vertices and such that λ(G) ≤ 1/12, and
then take the majority answer. A calculation using the Chernoff bound for expander graphs
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show that the error probability is e−Ω(t), and it is achieved using only r(n) +O(t) random
bits instead of t · r(n).

62



Chapter 8

The Non-Uniform Sparsest Cut Problem

Let G = (V,E) be an undirected graph. Unlike past lectures, we will not need to assume
that G is regular. Recall that, for a subset S ⊆ V , we defined the sparsity of the partition
(S, V − S) as

σG(S) :=

E
(u,v)∼E

|1S(u)− 1S(v)|

E
(u,v)∼V 2

|1S(u)− 1S(v)|

which is the ratio between the fraction of edges that are cut by (S, V − S) and the fraction
of pairs of vertices that are disconnected by the removal of those edges.

More generally, give two (possibly weighted) undirected graphs G = (V,EG) and H =
(V,EH) over the same set of vertices, we define the non-uniform sparsity of S ⊆ V as

σG,H(S) :=

E
(u,v)∼EG

|1S(u)− 1S(v)|

E
(u,v)∼EH

|1S(u)− 1S(v)|

For graphs G,H with the same vertex set V , the non-uniform sparsest cut problem is to
find

σ(G,H) := min
S⊆V

σG,H(S)

Notice that σG(S) is the same as σG,H where H is a clique in which every vertex has a
self-loop of weight 1/2.

If dv is the degree of v in G, then define H to be the graph in which the edge {u, v} has weight
du · dv. Then, |EG| = volG(V )/2, |EH | = 1

2

∑
u ·(
∑

v dudv) = 1
2(
∑

v dv)
2, EH(S, V − S) =

volG(S) · volG(V − S), and the sparsity of S is
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σG,H(S) =

(∑
v

dv

)
· E(S, S̄)

volG(S) · volG(V − S)

and if S is such that vol(S) ≤ vol(V − S), then φ(G) ≤ σG,H(S) ≤ 2φ(G).

Thus the non-uniform sparsest cut problem generalizes the (uniform) sparsest cut prob-
lem that we described before, and, for a proper choice of H, is a 2-approximation of the
conductance of G.

Notice also that if H is a graph that has only the one edge {s, t}, then σ(G,H) is the
(s, t)-min-cut problem for the graph G.

8.1 A Linear Programming relaxation

Another way to formulate the sparsest cut problem is

σ(G,H) :=
|EH |
|EG|

· min
x∈{0,1}n

∑
{u,v}Gu,v|xu − xv|∑
{u,v}Hu,v|xu − xv|

where Gu,v is the weight of the edge {u, v} in G and Hu,v is the weight of the edge {u, v}
in H.

The observation that led us to see λ2 as the optimum of a continuous relaxation of σ(G) was
to observe that, for a boolean vector x, |xu − xv| = |xu − xv|2, and then relax the problem
by allowing arbitrary vectors x instead of just boolean vectors.

The Leighton-Rao relaxation of sparsest cut is obtained using, instead, the following ob-
servation: if, for a set S, x is the boolean indicator vector of S and we define dS(u, v) :=
|xu − xv|, then dS(·, ·) defines a semi-metric over the set V , because dS is symmetric,
dS(v, v) = 0, and the triangle inequality holds. So we could think about allowing arbitrary
semi-metrics in the expression for σ, and define

LR(G,H) := min
d : V × V → R
d semi-metric

|EH |
|EG|

·
∑
{u,v}Gu,vd(u, v)∑
{u,v}Hu,vd(u, v)

(8.1)

This might seem like such a broad relaxation that there could be graphs on which LR(G,H)
bears no connection to σ(G,H). Instead, we will prove the fairly good estimate

LR(G,H) ≤ φ(G,H) ≤ O(log |V |) · LR(G,H) (8.2)

Furthermore, we will show that LR(G,H), and an optimal solution d(·, ·) can be computed
in polynomial time, and the second inequality above has a constructive proof, from which
we derive a polynomial time O(log |V |)-approximate algorithm for sparsest cut.
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The value LR(G,H) and an optimal d(·, ·) can be computed in polynomial time by solving
the following linear program

minimize
∑
{u,v}Gu,vdu,v

subject to ∑
{u,v}Hu,vdu,v = |EH |

|EG|
du,w ≤ du,w + dw,v ∀u, v, w ∈ V
du,v ≥ 0 ∀u, v ∈ V

(8.3)

that has a variable du,v for every unordered pair of distinct vertices {u, v}. Clearly, every
solution to the linear program (8.3) is also a solution to the right-hand side of the definition
(8.1) of the Leighton-Rao parameter, with the same cost. Also every semi-metric can be

normalized so that
∑
{u,v}Hu,vd(u, v) = |EH |

|EG| by multiplying every distance by a fixed

constant, and the normalization does not change the value of the right-hand side of (8.1);
after the normalization, the semimetric is a feasible solution to the linear program (8.3),
with the same cost.

In the rest of this lecture, we will show how to round a solution to (8.3) into a cut, achieving
the logarithmic approximation promised in (8.2).

8.2 An L1 Relaxation of Sparsest Cut

In the Leighton-Rao relaxation, we relax distance functions of the form d(u, v) = |xu− xv|,
where x is a boolean vector, to completely arbitrary distance functions. Let us consider an
intermediate relaxation, in which we allow distance functions that can be realized by an
embedding of the vertices in an `1 space.

Recall that, for a vector x ∈ Rn, its `1 norm is defined as ||x||1 :=
∑

i |xi|, and that this
norm makes Rn into a metric space with the `1 distance function

||x− y||1 =
∑
i

|xi − yi|

The distance function d(u, v) = |xu − xv| is an example of a distance function that can be
realized by mapping each vertex to a real vector, and then defining the distance between
two vertices as the `1 norm of the respective vectors. Of course it is an extremely restrictive
special case, in which the dimension of the vectors is one, and in which every vertex is
actually mapping to either zero or one. Let us consider the relaxation of sparsest cut to
arbitrary `1 mappings, and define

σ′(G,H) := inf
m,f :V→Rm

|EH |
|EG|

·
∑
{u,v}Gu,v · ||f(u)− f(v)||1∑
{u,v}Hu,v · ||f(u)− f(v)||1

This may seem like another very broad relaxation of sparsest cut, whose optimum might
bear no correlation with the sparsest cut optimum. The following theorem shows that this

65



is not the case.

Theorem 8.1 For every graphs G,H, σ(G,H) = σ′(G,H).

Furthermore, there is a polynomial time algorithm that, given a mapping f : V → Rm, finds
a cut S such that

σG,H(S) ≤ |EH |
|EG|

·
∑
{u,v}Gu,v||f(u)− f(v)||1∑
u,vHu,v||f(u)− f(v)||1

(8.4)

Proof: We use ideas that have already come up in the proof the difficult direction of
Cheeger’s inequality. First, we note that for every nonnegative reals a1, . . . , am and positive
reals b1, . . . , bm we have

a1 + · · · am
b1 + · · · bm

≥ min
i

ai
bi

(8.5)

as can be seen by noting that

∑
j

aj =
∑
j

bj ·
aj
bj
≥
(

min
i

ai
bi

)
·
∑
j

bj

Let fi(v) be the i-th coordinate of the vector f(v), thus f(v) = (f1(v), . . . , fm(v)). Then
we can decompose the right-hand side of (8.4) by coordinates, and write∑

{u,v}Gu,v||f(u)− f(v)||1∑
{u,v}Hu,v||f(u)− f(v)||1

=

∑
i

∑
{u,v}Gu,v|fi(u)− fi(v)|∑

i

∑
{u,v}Hu,v|fi(u)− fi(v)|

≥ min
i

∑
{u,v}Gu,v|fi(u)− fi(v)|∑
{u,v}Hu,v|fi(u)− fi(v)|

This already shows that, in the definition of φ′, we can map, with no loss of generality, to
1-dimensional `1 spaces.

Let i∗ be the coordinate that achieves the minimum above. Because the cost function is
invariant under the shifts and scalings (that is, the cost of a function x→ f(x) is the same
as the cost of x → af(x) + b for every two constants a 6= 0 and b) there is a function
g : V → R such that g has the same cost function as fi∗ and its range is such that

max
v
g(v)−min

v
g(v) = 1

Let us now pick a threshold t uniformly at random from the interval [minv g(v),maxv g(v)],
and define the random variables
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St := {v : g(v) ≤ t}

We observe that for every pairs of vertices u, v we have

E |1St(u)− 1St(v)| = |g(u)− g(v)|

and so we get ∑
{u,v}Gu,v||f(u)− f(v)||1∑
{u,v}Hu,v||f(u)− f(v)||1

≥
∑
{u,v}Gu,v|g(u)− g(v)|∑
{u,v}Hu,v|g(u)− g(v)|

=
E
∑
{u,v}Gu,v|1St(u)− 1St(v)|

E
∑
{u,v}Hu,v|1St(u)− 1St(v)|

Finally, by an application of (8.5), we see that there must be a set S among the possible
values of St such that (8.4) holds.

Notice that the proof was completely constructive: we simply took the coordinate fi∗ of f
with the lowest cost function, and then the “threshold cut” given by fi∗ with the smallest
sparsity. �

8.3 A Theorem of Bourgain

We will derive our main result (8.2) from the L1 “rounding” process of the previous section,
and from the following theorem of Bourgain (the efficiency considerations are due to Linial,
London and Rabinovich).

Theorem 8.2 (Bourgain) Let d : V × V → R be a semimetric defined over a finite set
V . Then there exists a mapping f : V → Rm such that, for every two elements u, v ∈ R,

||f(u)− f(v)||1 ≤ d(u, v) ≤ ||f(u)− f(v)||1 · c · log |V |

where c is an absolute constant. Given d, the mapping f can be found with high probability
in randomized polynomial time in |V |.

To see that the above theorem of Bourgain implies (8.2), consider graphs G,H, and let d be
the optimal solution of the Leighton-Rao relaxation of the sparsest cut problem on G,H,
and let f : V → R be a mapping as in Bourgain’s theorem applied to d. Then

LR(G,H) =
|EH |
|EG|

·
∑
{u,v}Gu,vd(u, v)∑
{u,v}Hu,vd(u, v)
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≥ |EH |
|EG|

·
∑
{u,v}Gu,v||f(u)− f(v)||1

c · log |V | ·
∑
{u,v}Hu,v||f(u)− f(v)||1

≥ 1

c · log |V |
· σ(G,H)

The theorem has a rather short proof, but there is an element of “magic” to it. We will
discuss several examples and we will see what approaches are suggested by the examples.
At the end of the discussion, we will see the final proof as, hopefully, the “natural” outcome
of the study of such examples and failed attempts.

8.3.1 Preliminaries and Motivating Examples

A first observation is that embeddings of finite sets of points into L1 can be equivalently
characterized as probabilistic embeddings into the real line.

Fact 8.3 For every finite set V , dimension m, and mapping F : V → Rm, there is a
finitely-supported probability distribution D over functions f : V → R such that for every
two points u, v ∈ V :

E
f∼D
|f(u)− f(v)| = ||F (u)− F (v)||1

Conversely, for every finite set V and finitely supported distribution D over functions f :
V → R, there is a dimension m and a mapping F : V → Rm such that

E
f∼D
|f(u)− f(v)| = ||F (u)− F (v)||1

Proof: For the first claim, we write Fi(v) for the i-th coordinate of F (v), that is F (v) =
(F1(v), . . . , Fm(v)), and we define D to be the uniform distribution over the m functions of
the form x→ m · Fi(x).

For the second claim, if the support of D is the set of functions {f1, . . . , fm}, where function
fi has probability pi, then we define F (v) := (p1f1(v), . . . , pmfm(v)). �

It will be easier to reason about probabilistic mappings into the line, so we will switch to
the latter setting from now on.

Our task is to associate a number to every point v, and the information that we have about
v is the list of distances {d(u, v)}. Probably the first idea that comes to mind is to pick
a random reference vertex r ∈ V , and work with the mapping v → d(r, v), possibly scaled
by a multiplicative constant. (Equivalently, we can think about the deterministic mapping
V → R|V |, in which the vertex v is mapped to the sequence (d(u1, v), . . . , d(un, v), for some
enumeration u1, . . . , un of the elements of V .)

This works in certain simple cases.
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Example 8.4 (Cycle) Suppose that d(·, ·) is the shortest-path metric on a cycle, we can
see that, for every two points on the cycle, Er∈V |d(r, u)−d(r, v)| is within a constant factor
of their distance d(u, v). (Try proving it rigorously!)

Example 8.5 (Simplex) Suppose that d(u, v) = 1 for every u 6= v, and d(u, u) = 0. Then,
for every u 6= v, we have Er∈V |d(r, u)− d(r, v)| = P[r = u∨ r = v] = 2/n, so, up to scaling,
the mapping incurs no error at all.

But there are also simple examples in which this works very badly.

Example 8.6 (1-2 Metric) Suppose that for every u 6= v we have d(u, v) ∈ {1, 2} (any
distance function satisfying this property is always a metric) and that, in particular, there
is a special vertex z at distance 2 from all other vertices, while all other vertices are at
distance 1 from each other. Then, for vertices u, v both different from z we have, as before

E[|d(r, u)− d(r, v)|] =
2

n

but for every v different from z we have

E[|d(r, z)− d(r, v)|] =
n− 2

n
· |2− 1|+ 1

n
· |2− 0|+ 1

n
· |0− 2| = 1 +

2

n

and so our error is going to be Ω(n) instead of the O(log n) that we are trying to establish.

Maybe the next simplest idea is that we should pick at random several reference points
r1, . . . , rk. But how do we combine the information d(r1, u), . . . , d(rk, u) into a single number
to associate to u? If we just take the sum of the distances, we are back to the case of sampling
a single reference point. (We are just scaling up the expectation by a factor of k.)

The next simplest way to combine the information is to take either the maximum or the
minimum. If we take the minimum, we see that we have the very nice property that
we immediately guarantee that our distances in the L1 embedding are no bigger than the
original distances, so that it “only” remains to prove that the distances don’t get compressed
too much.

Fact 8.7 Let d : V × V → R be a semimetric and A ⊆ V be a non-empty subset of points.
Define fA : V → R as

fA(v) := min
r∈A

d(r, v)

Then, for every two points u, v we have

|fA(u)− fA(v)| ≤ d(u, v)
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Proof: Let a be the point such that d(a, u) = fA(u) and b be the point such that d(b, v) =
fA(v). (It’s possible that a = b.) Then

fA(u) = d(a, u) ≥ d(v, a)− d(u, v) ≥ d(v, b)− d(u, v) = fA(v)− d(u, v)

and, similarly,

fA(v) = d(b, v) ≥ d(u, b)− d(u, v) ≥ d(u, a)− d(u, v) = fA(u)− d(u, v)

�

Is there a way to sample a set A = {r1, . . . , rk} such that, for every two points u, v, the
expectation E |fA(u) − fA(v)| is not too much smaller than d(u, v)? How large should the
set A be?

Example 8.8 (1-2 Metric Again) Suppose that for every u 6= v we have d(u, v) ∈ {1, 2},
and that we pick a subset A ⊆ V uniformly at random, that is, each event r ∈ A has
probability 1/2 and the events are mutually independent.

Then for every u 6= v:

1

4
· d(u, v) ≤ |E |fA(u)− fA(v)| ≤ d(u, v)

because with probability 1/2 the set A contains exactly one of the elements u, v, and condi-
tioned on that event we have |fA(u) − fA(v)| ≥ 1 (because one of fA(u), fA(v) is zero and
the other is at least one), which is at least d(u, v)/2.

If we pick A uniformly at random, however, we incur an Ω(n) distortion in the case of the
shortest path metric on the cycle. In all the examples seen so far, we can achieve constant
distortion if we “mix” the distribution in which A is a random set of size 1 and the one in
which A is a chosen uniformly at random among all sets, say by sampling from the former
probability with probability 1/2 and from the latter with probability 1/2.

Example 8.9 (Far-Away Clusters) Suppose now that d(·, ·) has the following structure:
V is partitioned into clusters B1, . . . , Bk, where |Bi| = i (so k ≈

√
2n), and we have

d(u, v) = 1 for vertices in the same cluster, and d(u, v) = n for vertices in different clusters.

If u, v are in the same cluster, then d(u, v) = 1 and

E |fA(u)− fA(v)| = P[A contains exactly one of u, v]

If u, v are in different clusters Bi, Bj, then d(u, v) = n and

E |fA(u)− fA(v)| ≈ nP[A intersects exactly one of Bi, Bj ]
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If we want to stick to this approach of picking a set A of reference elements according to
a certain distribution, and then defining the map fA(v) := minr∈A d(r, v), then the set A
must have the property that for every two sets S, T , there is at least a probability p that
A intersects exactly one of S, T , and we would like p to be as large as possible, because the
distortion caused by the mapping will be at least 1/p.

This suggest the following distribution D:

1. Sample a power of two t uniformly at random in {1, 2, 4, . . . , 2blog2 nc}

2. Sample A ⊆ V by selecting each v ∈ V , independently, to be in A with probability
1/t and to be in V −A with probability 1− 1/t.

This distribution guarantees the above property with p = 1/O(log n).

Indeed, the above distribution guarantees a distortion at most O(log n) in all the examples
encountered so far, including the tricky example of the clusters of different size. In each
example, in fact, we can prove the following claim: for every two vertices u, v, there is a
scale t, such that conditioned on that scale being chosen, the expectation of |fA(u), fA(v)|
is at least a constant times d(u, v). We could try to prove Bourgain’s theorem by showing
that this is true in every semimetric.

Let us call Dt the conditional distribution of D conditioned on the choice of a scale t. We
would like to prove that for every semimetric d(·, ·) and every two points u, v there is a scale
t such that

E
A∼Dt

|fA(u)− fA(v)| ≥ Ω(d(u, v))

which, recalling that |fA(u)− fA(v)| ≤ d(u, v) for every set A, is equivalent to arguing that

P
A∼Dt

[|fA(u)− fA(v)| ≥ Ω(d(u, v))] ≥ Ω(1)

For this to be true, there must be distances d1, d2 such that d1 − d2 ≥ Ω(d(u, v)) and such
that, with constant probability according to Dt, we have fA(u) ≥ d1 and fA(v) ≤ d2 (or
vice-versa). For this to happen, there must be a constant probability that A avoids the set
{r : d(u, r) < d1} and intersects the set {r : d(v, r) ≤ d2}. For this to happen, both sets
must have size ≈ t.
This means that if we want to make this “at least one good scale for every pair of points”
argument work, we need to show that for every two vertices u, v there is a “large” distance
d1 and a “small” distance d2 (whose difference is a constant times d(u, v)) such that a
large-radius ball around one of the vertices and a small-radius ball around the other vertex
contain roughly the same number of elements of V .

Consider, however, the following example.

Example 8.10 (Joined Trees) Consider the graph obtained by taking two complete bi-
nary trees of the same size and identifying their leaves, as in the picture below.
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Consider the shortest-path metric d(·, ·) in the above graph. Consider the “root” vertices u
and v. Their distance d(u, v) is ≈ log n, but, at every scale t, both fA(u) and fA(v) are
highly concentrated around t and, it can be calculated that, at every scale t, we have

E
A∼Dt

[|fA(u)− fA(v)|] = Θ(1)

This is still good, because averaging over all scales we still get

E
A∼D

[|fA(u)− fA(v)|] ≥ Ω(1) =
1

O(log n)
· d(u, v)

but this example shows that the analysis cannot be restricted to one good scale but has, in
some cases, to take into account the contribution to the expectation coming from all the
scales.

In the above example, the only way to get a ball around u and a ball around v with
approximately the same number of points is to get balls of roughly the same radius. No
scale could then give a large contribution to the expectation EA∼D[|fA(u)− fA(v)|]; every
scale, however, gave a noticeable contribution, and adding them up we had a bounded
distortion. The above example will be the template for the full proof, which will do an
“amortized analysis” of the contribution to the expectation coming from each scale t, by
looking at the radii that define a ball around u and a ball around v with approximately t
elements.
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8.3.2 The Proof of Bourgain’s Theorem

Given Fact 8.3 and Fact 8.7, proving Bourgain’s theorem reduces to proving the following
theorem.

Theorem 8.11 For a finite set of points V , consider the distribution D over subsets of V
sampled by uniformly picking a scale t ∈ {1, . . . , 2blog2 |V |c} and then picking independently
each v ∈ V to be in A with probability 1/t. Let d : V × V → R be a semimetric. Then for
every u, v ∈ V ,

E
A∼D

[|fA(u)− fA(v)|] ≥ 1

c log2 |V |
· d(u, v)

where c is an absolute constant.

Proof: Fix two vertices u and v

For each t, let rut be the distance from u to the t-th closest point to u (counting u), or
d(u, v)/3, whichever is smaller, and define rvt similarly. By definition, we have

|{w : d(u,w) < rut}| < t

Call t∗ the minimum of |{w : d(u,w) < d(u, v)/3}| and |{w : d(v, w) < d(u, v)/3}|. Then,
for t ≤ t∗ we have that both rut and rvt are < d(u, v)/3, but for t ≥ t∗ + 1 we have that at
least one of rut or rvt (possibly, both) equals d(u, v)/3. Note also that for t ≤ t∗ we have

|{w : d(u,w) ≤ rut}| ≥ t

and similarly for v.

We claim that there is an absolute constant c such that for every scale t ≤ t∗, we have

E
A∼Dt

|fA(u)− fA(v)| ≥ c · (ru2t + rv2t − rut − rvt) (8.6)

We prove the claim by showing that there are two disjoint events, each happening with
probability ≥ c, such that in one event |fA(u)− fA(v)| ≥ ru2t − rvt, and in the other event
|fA(u)− fA(v)| ≥ rvt2t − rut.

1. The first event is that A avoids the set {z : d(u, z) < ru2t} and intersects the set
{z : d(v, z) ≤ rvt}. The former set has size < 2t, and the latter set has size ≤ t; the
sets are disjoint because we are looking at balls or radius ≤ d(u, v)/3 around u and v;
so the event happens with a probability that is at least an absolute constant. When
the event happens,

|fA(u)− fA(v)| ≥ fA(u)− fA(v) ≥ ru2t − rvt
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2. The second event is that A avoids the set {z : d(v, z) < rv2t} and intersects the set
{z : d(u, z) ≤ rut}. The former set has size < 2t, and the latter set has size ≤ t; the
sets are disjoint because we are looking at balls or radius ≤ d(u, v)/3 around u and v;
so the event happens with a probability that is at least an absolute constant. When
the event happens,

|fA(u)− fA(v)| ≥ fA(v)− fA(u) ≥ rv2t − rut

So we have established (8.6). Summing over all scales up to the largest power of two t′ ≤ t∗,
we have

E
A∼D

|fA(u)− fA(v)|

≥ c

1 + log2 n
· (ru2t′ + rv2t′ − ru1 − rv1)

≥ c

1 + log2 n
· d(u, v)

3

�

There is one remaining point to address. In Fact 8.3, we proved that a distribution over
embeddings on the line can be turned into an L1 embeddings, in which the number of
dimensions is equal to the size of the support of the distribution. In our proof, we have
used a distribution that ranges over 2|V | possible functions, so this would give rise to an
embedding that uses a superpolynomial number of dimensions.

To fix this remaining problem, we sample m = O(log3 |V |) sets A1, . . . , Am and we define
the embedding f(u) := (m−1 · fA1(u), . . . ,m−1 · fAm(u)). It remains to prove that this
randomized mapping has low distortion with high probability, which is an immediate con-
sequence of the Chernoff bounds. Specifically, we use the following form of the Chernoff
bound:

Lemma 8.12 Let Z1, . . . , Zm be independent nonnegative random variables such that, with
probability 1, 0 ≤ Zi ≤M . Let Z := 1

m(Z1 + · · ·+ Zm). Then

P[EZ − Z ≥ t] ≤ e−2mt2/M2

Let us look at any two vertices u, v. Clearly, for every choice of A1, . . . , Am, we have
||f(u)− f(v)||1 ≤ d(u, v) so it remains to prove a lower bound to their L1 distance. Let us
call Z the random variable denoting their L1 distance, that is

Z := ||f(u)− f(v)|| =
m∑
i=1

1

m
|fAi(u)− fAi(v)|
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We can write Z = 1
m · (Z1 + · · ·+ Zm) where Zi := |fAi(u)− fAi(v)|, so that Z is the sum

of identically distributed nonnegative random variables, such that

Zi ≤ d(u, v)

EZi ≥
c

log |V |
d(u, v)

Applying the Chernoff bound with M = d(u, v) and t = c
2 log |V |d(u, v), we have

P
[
Z ≤ c

2 log |V |
d(u, v)

]
≤ P

[
Z ≤ EZ −

c

2 log |V |
d(u, v)

]
≤ 2−2mc2/(2 log |V |)2

which is, say, ≤ 1/|V |3 if we choose m = c′ log3 |V | for an absolute constant c′.

By taking a union bound over all pairs of vertices,

P
[
∀u, v. ||f(u)− f(v)||1 ≥

c

2 log |V |
· d(u, v)

]
≥ 1− 1

|V |

8.4 Tightness of the Analysis of the Leighton-Rao Relaxation

If (X, d) and (X ′, d′) are metric spaces, we say that a mapping f : X → X ′ is an embedding
of (X, d) into (X ′, d) with distortion at most c if there are parameters c1, c2, with c = c1c2

such that, for every u, v ∈ X, we have

1

c1
· d′(u, v) ≤ d(u, v) ≤ c2 · d′(u, v)

The metric space Rm with distance ||u − v|| =
√∑

i(ui − vi)2 is denoted by `2m, and the
metric space Rm with distance ||u − v||1 =

∑
i |ui − vi| is denoted by `1m. We just proved

the following result.

Theorem 8.13 (Bourgain) There is an absolute constant c such that every finite metric
space (V, d) embeds into `1m with distortion at most c log |V |, where m = O(log3 |V |).

If we solve the Leighton-Rao linear programming relaxation to approximate the sparsest cut
of a graph G = (V,E), and we let d(·, ·) be an optimal solution, we note that, if we weigh
each edge (u, v) ∈ E by d(u, v), and then compute shortest paths in this weighted graph,
then, for every two vertices x, y, the distance d(x, y) is precisely the length of the shortest
path from x to y. In particular, if we are using the Leighton-Rao relaxation in order to
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approximate the sparsest cut in a given planar graph, for example, then the solution d(·, ·)
that we need to round is not an arbitrary metric space, but it is the shortest path metric of
a weighted planar graph. It is conjectured that, in this case, the Leighton-Rao relaxation
could deliver a constant-factor approximation.

Question 8.1 Is there an absolute constant c such that every metric space (X, d) con-
structed as the shortest-path metric over the vertices of a planar graph can be embedded into
`1m with distortion at most c, where m = |V |O(1)?

So far, it is known that k-outerplanar graphs, for constant k, embed in `1 with constant
distortion.

This is just an example of a large family of questions that can be asked about the embed-
dability of various types of metric spaces into each other.

For general finite metric spaces, the logarithmic distortion of Bougain’s theorem is best
possible.

In order to prove the optimality of Bourgain’s theorem, we recall a theorem that we proved
earlier.

Theorem 8.14 (Existence of Expanders) There are absolute constants d and c such
that, for infinitely many n, there is an n-vertex d-regular graph Gn such that φ(Gn) ≥ c.

On such graphs, the Leighton-Rao relaxation is LR(Gn) ≤ O(1/ log n), showing that our
proof that LR(G) ≥ φ(G)O(log n) is tight.

For every two vertices u, v, define d(u, v) as the length of (that is, the number of edges in)
a shortest path from u to v in Gn.

Then

∑
u,v

Au,vd(u, v) = 2|E|

Because each graph Gn is d-regular, it follows that for every vertex v there are ≤ 1 + d +
· · · + dk < dk+1 vertices at distance ≤ k from v. In particular, at least half of the vertices
have distance ≥ t from v, where t = blogd n/2c − 1, which implies that

∑
u,v

d(u, v) ≥ n · n
2
· t = Ω(n2 log n)

Recall that

LR(G) = min
d semimetric

|V |2

2|E|

∑
u,v Au,vd(u, v)∑
u,v d(u, v)

and so
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LR(Gn) ≤ O
(

1

log n

)
even though

φ(Gn) ≥ Ω(1)

Note that we have also shown that every embedding of the shortest-path metric d(·, ·) on
Gn into `1 requires distortion Ω(log n), and so we have proved the tightness of Bourgain’s
theorem.

Exercises

1. Let G = (V,EG), H = (V,EH) be an instance of the non-uniform sparsest cut problem.
Let d(u, v) a feasible solution to the Leighton-Rao relaxation

LR(G,H) := min
d : V × V → R
d semi-metric

|EH |
|EG|

·
∑
{u,v}Gu,vd(u, v)∑
{u,v}Hu,vd(u, v)

Let d′(u, v) be the length of the shortest path from u to v in the graph that has the
edges of G, and each edge (u, v) ∈ EG is weighted by d(u, v). Show that d′(u, v) is a
feasible solution whose cost is smaller than or equal to the cost d(u, v).

2. Using the above fact, show that if G is a cycle and H is a clique, then the solution in
which d(u, v) is the length of the shortest path from u to v in G is an optimal solution.

[Hint: start from an optimal solution, derive from it another solution of the same cost
in which d(u, v) is the same for every u, v that are adjacent in G, then apply the fact
proved in the previous exercise.]
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