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To Mom and Dad

The first to present his case seems right,
till another comes forward and questions him

-Proverbs 18:17
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1.2 Abbreviations

AHL - acyl homoserine lactone
B. acnes - Bacillus acnes
C. acnes - Corynebacterium acnes
C. parvum - Corynebacterium parvum
CAMP - Christie, Atkins, and Munch-Petersen
cfu - colony forming units
CXCL8 - Interleukin 8 (IL-8)
DNA - deoxyribonucleic acid
DNAse - deoxyribonuclease
dsDNA - double stranded deoxyribonucleic acid
dsRNA - double stranded ribonucleic acid
E. coli - Escherichia coli
GFP - green fluorescent protein
ICTV - International committee on taxonomy of viruses
IgA - immunoglobulin A
IL-8 - interleukin 8
kb - kilo bases
kDa - kilo Dalton
LPS - lipopolysaccharide
MAC - membrane attack complex
Mb - mega bases
NCBI - National Center for Biotechnology Information
ORF - open reading frame
P. acidifaciens - Propionibacterium acidifaciens
P. acidipropionici - Propionibacterium acidipropionici
P. acnes - Propionibacterium acnes
P. australiense - Propionibacterium australiense
P. avidum - Propionibacterium avidum
P. cyclohexanicum - Propionibacterium cyclohexanicum
P. freudenreichii - Propionibacterium freudenreichii
P. granulosum - Propionibacterium granulosum
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P. humerusii - Propionibacterium humerusii
P. jensenii - Propionibacterium jensenii
P. lymphophilum - Propionibacterium lymphophilum
P. microaerophilum - Propionibacterium microaerophilum
P. propionicus - Propionibacterium propionicus
P. thoenii - Propionibacterium thoenii
PCR - polymerase chain reaction
pfu - plaque forming units
RDE - receptor destroying enzyme
ROS - reactive oxygen species
rRNA - ribosomal ribonucleic acid
RT-PCR - reverse transcriptase polymerase chain reaction
SDS-PAGE - sodium dodecyl sulfate polyacrylamide gel electrophoresis
SOD - superoxide dismutase
ssDNA - single stranded deoxyribonucleic acid
ssRNA - single stranded ribonucleic acid
TNF-α - tumor necrosis factor alpha
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1.4 Populärvetenskaplig sammanfattning

Mikroorganismer finns överallt! De klarar av
att överleva i extrema miljöer, extrema pH, ex-
trema temperaturer och kan motstå strålning och
gift i doser som vi inte skulle överleva. Fram-
förallt klarar mikroorganismer av att överleva
i en specifik extrem miljö - människan. Hun-
dratals olika mikroorganismer bor på och i oss,
i ett antal som långt överskrider vårt eget cellan-
tal.

Mikroorganismer är ett samlingsnamn för
flera olika typer av små (’mikro’) organismer,
som bakterier och virus. Många av oss as-
socierar nog dessa med infektioner och olika
sjukdomar, vilket också ett fåtal orsakar. Men
tvärtemot vad man kan tro är de flesta bakterier
ofarliga, och till och med gynnsamma, genom
att de hjälper oss att ta upp näring i tarmarna
och skyddar oss mot farligare bakterier. Dessa
bakterier tillhör vår normalflora och har en stor
del i vårt välbefinnande.

Vår hud har flera olika bakterier. Några av
de vanligare bakterierna är Propionibakterier,
Stafylokocker och Streptokocker. Många av oss
kan ha dessa på vår hud utan att de ger nå-
gra symptom, då de tillhör normalfloran. Men,
då tillfälle ges kan även dessa bakterier orsaka
opportunistiska infektioner. Detta sker fram-
förallt om vårt försvar mot dem på något sätt
är påverkat, genom exempelvis sår (skador eller
kirurgiska ingrepp) eller vid nedsatt immun-
försvar.

En av de hudbakterier som oftast är inblandad
i opportunistiska infektioner är Propionibac-
terium acnes. Bakterien kallades ursprungligen

för Bacillus acnes eftersom den var stavformad
(Bacillus-lik) och isolerades från acne. Fastän
bakterien isolerades från acne för mer än 100 år
sedan råder det fortfarande tveksamheter kring
om P. acnes verkligen är orsaken bakom utveck-
landet av sjukdomen. Anledningarna till detta är
många. Först och främst är vi alla koloniserade
av P. acnes utan att utveckla några sjukdomar.
Därför hävdar många att en isolering av P. ac-
nes från huden enbart är en kontaminering av
provet. Vidare är P. acnes svår att arbeta med av
två anledningar. Dels växer P. acnes långsamt
och behöver leva i en miljö utan syre. Dels
finns väldigt få metoder utvecklade för att stud-
era denna bakterie.

Intresset för denna bakterie har på de senaste
åren ökat drastiskt. Fortfarande är intresset stort
för den potentiella rollen av P. acnes i utveck-
lingen av acne. Men senare forskning har även
pekat på att P. acnes har en stor roll vid led-
implantatsinflammationer, där ett byte av im-
plantat ofta är nödvändigt för att bli av med in-
fektionen då dessa bakterier ofta är väldigt re-
sistenta mot antibiotika. Detta beror på att bak-
terien kan bilda ett tjockt lager av socker kring
sig (biofilm), som ett pansar som skyddar P. ac-
nes mot antibiotikan. Där kan bakterierna ligga i
flera månader till år utan att orsaka någon skada,
för att sedan skapa en inflammation. Vidare ty-
der forskning på att P. acnes kan vara delaktig i
utvecklingen av prostatacancer.

Trots ett ökat intresse för att studera denna
opportunistiska bakterie, var möjligheten till
detta begränsad, då det saknades flera nöd-
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vändiga verktyg för detta. Därför utvecklade
vi flera verktyg för att på ett enkelt sätt kunna
studera hur delar av bakterien kunde medverka
till att utveckla sjukdom (Paper I). Dessa verk-
tyg består av två plasmider, som är cirkulärt
DNA. Dessa plasmider är konstruerade till att
fungera som fabriker i P. acnes och producera
olika protein som önskas studeras. Då studier av
proteiner i bakterier är en av de grundläggande
sätten för att utvärdera hur en bakterie orsakar
sjukdom, kommer dessa verktyg att underlätta
studier av P. acnes i framtiden.

Då P. acnes var så vanligt förekommande
vid inflammationer kring ledimplantat, isoler-
ade vi flera av dessa stammar och undersökte
vad som skiljde dem från de P. acnes som vi
hade på huden. Vi fann då att de P. acnes som
hade förmåga att orsaka protesinflammationer
alla kunde bilda mer biofilm än de bakterier som
isolerades från huden (Paper II). I övrigt hittades
inga skillnader mellan de två grupperna av bak-
terier, och vi kunde fastslå att den troligtvis vik-
tigaste faktorn för att P. acnes orsakade protesin-
flammationer berodde på dess förmåga att bilda
biofilm.

Bortsett från att vara förmögen att orsaka
sjukdom bär de flesta av oss på P. acnes utan
att bli sjuka. Därför är en rimlig tanke att dessa
bakterier också kan vara nyttiga för oss, men
på vilket sätt de potentiellt skulle kunna skydda
oss har inte utretts. Vi valde att studera ett pro-
tein som P. acnes producerar i stora mängder.
Detta protein är ovanligt, för det liknar inget hit-
tills undersökt protein i andra bakterier. Därför
slogs vi av tanken att detta protein potentiellt
kunde vara av stor betydelse för bakteriens in-
teraktion med oss (Paper III). Det visade sig att

detta protein, vidare kallat RoxP, kunde skydda
våra hudceller mot reaktiva syreradikaler som
bildas bland annat av UV-ljus. Hudceller som
behandlades med RoxP mådde mycket bättre än
celler som inte hade fått RoxP. Detta indikerar
att för en frisk person är kolonisering av P. acnes
viktigt, då detta bidrar till att skydda vår hud.
Därför är det viktigt att inte behandla ospecifikt
(eg antibiotika) mot P. acnes om inte denna är
upphovet till infektionen.

Men P. acnes är inte ensam på spelplanen.
Motståndarlaget har en minst lika bred trupp
av spelare, och är svurna fiender till P. acnes.
Mötena dem sinsemellan brukar alltid resultera
i vinst åt något av hållen, men kan även ge
ett lika-resultat. Det handlar om bakteriofager.
Virus som är ofarliga för oss, men som är dedik-
erade till att eliminera bakterier. Dessa bakteri-
ofager har två principiellt olika spelarstilar. En
av dem är anfallaren, som bara vill komma åt
bakterien och förstöra för den. Lyckligtvis för
bakterien känner den till ett och annat knep för
att skydda sig mot dessa tacklingar.

Den andra spelartypen är mer utav en
försvarsspelare. Han gillar att komma nära mot-
ståndaren och interagera med dem, även tillfäl-
ligt hjälpa dem, för att få motståndaren att
känna sig ohotad. Sedan, då tillfälle ges, slår
försvarsspelaren till med full kraft. Däremot kan
bakterierna även klara sig ur dessa situationer
genom olika försvar.

Då bakteriofager är kända för att kunna hjälpa
bakterierna tillfälligt, var vi intresserade av att
undersöka ifall P. acnes som kunde orsaka led-
protesinflammationer också i större utsträckn-
ing hade hjälp av bakteriofager (Paper IV). Vi
fann att P. acnes i väldigt stor utsträckning hade
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bakteriofager (70%), men att där inte var någon
skillnad mellan sjukdomsframkallande P. acnes
och normalflora. Med andra ord, det verkade
inte som om bakteriofagerna samspelade med
P. acnes i sjukdomsprocessen. Vad vi däremot
fann var att bägge lagen hade olika kvaliteter
på sina spelare. En del bakteriofager kunde
spela anfallare mot nästan alla bakterier med
framgång, medan vissa fager enbart kunde drib-
bla bort ett fåtal motståndare. På samma sätt
var kvaliteten i bakterielaget varierande. Medan
vissa kunde försvara sig mot nästan alla fager-
nas anfallare, förutom deras stjärnspelare, borde
många av de andra snarare sitta på utbytar-
bänken då de blev bortdribblade i varje anfall.

Även om det inte verkade som om bakteri-
ofagerna kunde hjälpa P. acnes, bestämde vi oss
för att granska detta mer, genom att undersöka
två av fagerna närmare. Detta bestod i att vi
plockade fram deras DNA, och läste av det, för
att se om de hade någon förmåga att hjälpa bak-

terierna (Paper V). Genom detta fann vi att dessa
bakteriofager inte verkar kunna samspela med
bakterierna. Däremot kom vi fram till att dessa
bakteriofager hade en märklig ”spelstil”, då de
inte var strikta anfallare, men inte heller strikta
försvarare. Inte enbart var deras spelstil annor-
lunda, dessutom var deras DNA olikt DNA från
andra bakteriofager.

Sammanfattningsvis har jag i denna avhan-
dling utvecklat verktyg för att bättre och lättare
kunna studera P. acnes. Denna bakterie har
både positiva och negativa egenskaper. Positiva
genom att den hjälper vår hud att må bra, men
negativa då den genom att bilda biofilmer med-
verkar till inflammation av proteser. Men P. ac-
nes är inte ensam på spelplanen, utan har mot-
ståndare i form av bakteriella virus, så kallade
bakteriofager. Dessa bakteriofager är vanliga
hos P. acnes, men verkar inte bidra till att göra
bakterien farligare.
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Propionibacterium acnes and its phages

Is there anything of which we can say:
’Look! This is something new’?
It was there already, long ago;

it was there before our time.
-Ecclesiastes 1:10
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2 Summary

Microorganisms are everywhere! They can
grow in acidic [715] and alkali [516] environ-
ments, in high salt concentrations [542], at tem-
peratures exceeding 100◦C [200] and below 0◦C
[577], as well as being highly resistant to radi-
ation [318], and poisons such as arsenic [311].
More importantly, microorganisms can grow on
us and in us. Several hundreds of different bac-
teria colonize us, outnumbering our own cells
more than ten times [55, 647].

Even though many of us associate the word
bacteria with infections and disease, not all bac-
teria are bad for us. On the contrary, many
bacteria are crucial for us [746], helping us to
take up nutrients in the intestine [743], fight off
pathogenic bacteria either by themselves [277],
or by stimulating host cells to produce antimi-
crobial agents [302]. Furthermore, commensals
(eg. the normal flora) can regulate the immune
response to certain pathogenic bacteria [544].
Thus, it is important for us to be colonized by
bacteria.

The human skin harbors several different bac-
terial species, mainly belonging to the Gram-
positive bacteria Propionibacterium, Staphylo-
coccus and Streptococcus [247]. The coloniza-
tion of the skin with Gram-negative bacteria
as Pseudomonas and Klebsiella is much lower
[129], compared to the Gram-positive bacteria,
due to their differences in cell wall structure, and
thereby their lower resistance to dry areas [129].

However, even though classified as commen-
sals, several bacteria can act as opportunistic

pathogens, causing diseases only when the host
immune system is compromised. One of the
most prominent skin bacteria regarded as an op-
portunistic pathogen is Propionibacterium ac-
nes.

In this thesis, I have investigated some of
the factors from P. acnes possibly associated
with the development of disease. Furthermore,
since P. acnes frequently is infected by bacterial
viruses, eg. bacteriophages, I have also charac-
terized the phages morphologically and geneti-
cally.

In the first chapter, Propionibacterium acnes,
I will discuss some of what is known about this
bacterium, before going on to a wider discussion
about factors necessary for causing disease (Vir-
ulence factors). This will be followed by three
papers, describing in detail the development of
a genetic toolbox to more feasibly study P. ac-
nes [417](Paper I), how biofilm formation con-
tributes to the invasive characteristics of P. ac-
nes [301] (Paper II), and the characterization of
a highly secreted heme oxygenase from P. acnes
that is beneficial for its host [416] (Paper III).

After having presented ”The bad guys”, the
thesis will change focus and take a closer look
on ”The good guys” - the enemies of the bac-
teria, the bacteriophages (Bacteriophages), and
how they might be used as a novel therapeutic.
This will be followed by two papers describing
the isolated phages from P. acnes in more detail
[415, 418] (Paper IV & V).
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Part I
The Bad Guys

Research should be conducted at a secluded place, free from the alarm of the unlettered mob, where
you can enjoy the philosophical serenity, to which scholars and astute people can get, while the
common people, who do not understand such things and do not attach to them their true value, can
be kept away.
-free translation of Tycho Brahe, Astronomiae Instauratae Mechanica 1598
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3 Propionibacterium acnes

3.1 Nomenclature

Propionibacterium acnes has historically been
classified as Bacillus acnes [230], Corynebac-
terium acnes [57], and Corynebacterium
parvum [452]. The bacterium was first identi-
fied 1896 in a sample from acne vulgaris [690],
but was not cultivated until the year after [595].
Gilchrist was the first to name the bacterium
as B. acnes [230] due to its rod-like shape and
the site of isolation. Later, in 1923, Bergey
et al. reclassified the bacterium as belonging
to the Corynebacterium group due to its mor-
phology [57]. However, this classification did
not last many years either, before it was ques-

tioned. In 1946, Douglas & Gunter proposed
that even though this bacterium shares mor-
phological characteristics of Corynebacterium,
several of those characteristics are present in the
Propionibacterium family as well. Thereby they
proposed that the bacterium should be classified
as P. acnes [168]. This classification was val-
idated in 1963 by Moore & Cato [484] and in
1967 when Moss et al. compared several Propi-
onibacteria with C. acnes with respect to their
fatty acid composition and their fermentation
pattern [491]. Even C. parvum was later con-
cluded to be a mixture of different Propionibac-
teria, mainly P. acnes and some P. granulosum
[152].

Table 1: Species of Propionibacteriaceae

Species Habitat Identifier

P. acidifaciens cutaneous Downes & Wades 2009 [170]
P. acidipropionici classical Orla-Jensen 1909 [528]
P. acnes cutaneous Douglas & Gunter 1946 [168]
P. australiense cutaneous Bernard et al. 2002 [59]
P. avidum cutaneous Eggerth 1935 [184]
P. cyclohexanicum classical Kusano et al. 1997 [370]
P. freudenreichii subsp. freudenreichii classical van Niel 1928 [511]
P. freudenreichii subsp. shermanii classical van Niel 1928 [511]
P. granulosum cutaneous Prevot 1938 [553]
P. humerusii cutaneous Butler-Wu et al. 2011 [106]
P. jensenii classical van Niel 1928 [511]
P. lymphophilum cutaneous Johnson & Cummins 1972 [328]
P. microaerophilum classical Koussémon et al. 2001 [367]
P. propionicum cutaneous Charfreitag et al. 1988 [125]
P. thoenii classical van Niel 1928 [511]
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3.2 Genetics of the
Propionibacteriaceae family

Propionibacteria belong to the Actinobacteria
phylum in the Actinomycetales order and the
family Propionibacteriaceae. The genus Propi-
onibacterium consists of many different species
(Table 1 and Figure 1), with the most well stud-
ied species being P. acnes, P. granulosum and
P. avidum that make up a part of the normal
flora [546], and P. freudenreichii which is a
species frequently used in the manufacturing of
different cheeses [379]. ”Classical” (also called
”dairy”) Propionibacteria are those identified in
the dairy industry, while ”cutaneous” Propioni-
bacteria are those living on the skin as com-
mensals or opportunistic pathogens. Some of
the members of the Propionibacteriaceae fam-
ily are also heat and acid resistant, exemplified
by P. cyclohexanicum that can survive at 90◦C
for 10 min and grow at pH 3.2 [370].

So far, 6 Propionibacteria have been fully se-
quenced. The first to be sequenced was the P.
acnes strain KPA171202 in 2004 by Brügge-
mann et al. [93, 95]. The genome was ap-
proximately 2.56 Mb, encoded 2333 putative
proteins, and had a GC content of 60%. The
second P. acnes genome from strain SK137
was released six years later, in 2010, with a
highly similar genome to KPA171202. This
was followed by the release of the genome for
strain 266 in 2011 [102]. Furthermore, ac-
cording to the genome projects listed at NCBI
[506] at the end of 2010, 73 more genomes
for P. acnes are currently during either assem-
bly or in progress for sequencing, indicating
that the genomic data available for P. acnes

shortly will be overwhelming. Other than P. ac-
nes, two more Propionibacterium species have
been sequenced, P. humerusii and P. freuden-
reichii subsp. shermanii CIRM-BIA1. The
genome of the latter was concluded to be ap-
proximately 2.62 Mb encoding 2439 putative
proteins, and had a GC content of 67% [190].
Even though P. freudenreichii is related to
P. acnes, and shares many characteristic fea-
tures, this particular strain showed genetically a
much less pathogenic potential, as indicated by
the absence of endoglyceramidases, sialidases,
hemolysins, CAMP-factors and toxins [190].
Since P. humerusii just recently was sequenced,
a proper annotation is still lacking [106].

3.3 Different types of P. acnes

P. acnes can be divided into different types (IA,
IB, II, and III), and several methods have been
developed to distinguish them from each other,
such as the usage of bacteriophages [720] and
PCR-based identification [620]. In 1972 John-
son & Cummins started to use antibodies to dif-
ferentiate between type I and II with agglutina-
tion tests [328], and 1975 Cummins found that
type II was unable to ferment sorbitol [151]. It
was not until 2005 that McDowell et al. showed
that the differences between type I and II was re-
flected by specific point mutations in recA [457].
They also concluded that some of the P. acnes
strains used in the study reacted atypical with
the antibodies used. However the recA sequenc-
ing revealed that they belonged to type I, and
they were later concluded to belong to a seper-
ate type, IB [692]. Recently, McDowell et al.
found a fourth P. acnes type, type III [456].
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Figure 1: Phylogenetic analysis of the species in Propionibacteriaceae

These P. acnes strains are morphologically
different from other known P. acnes types, since
they form cells with long filaments that aggre-
gates, rather than forming single coryneformed
bacteria [456]. However, even though these four
different types of P. acnes are well known, there
is still little data on the clinical relevance of the
different types [94].

3.4 Plasmids in Propionibacteria

The first to study plasmids in Propionibacteria
were Rehberger & Glatz who investigated the
presence of plasmids in dairy Propionibacteria
and found seven distinct plasmids in the strains
[568]. They found small plasmids, between 6-
10 kb in P. acidipropionici, P. jensenii, P. gran-
ulosum, and P. freudenreichii. The presence of
plasmids in Propionibacteria has however var-
ied from 0-38% in other studies [218, 520, 535,

545], indicating that different species may have
different carriage rates of plasmids, and only
five small plasmids have so far been sequenced
(Table 2) [193]. Furthermore, no plasmids have
been isolated from P. acnes, even though sev-
eral bacteriophages have been isolated from this
species and other Propionibacteria (Figure 2).
One of the first to isolate bacteriophages from P.
acnes was Zierdt in 1974 [761]. This was fol-
lowed by several more studies on phages infect-
ing P. acnes [192, 330, 415, 418, 720] (Paper IV
& V) and dairy Propionibacteria [130, 220, 221,
222, 288].

More details about different phages will be
discussed in Chapter 3 - Bacteriophages. For
those with more interest in the genetics of Pro-
pionibacteria, the reader is referred to two ex-
cellent reviews by Luijk et al. [428] and Ventura
et al. [701].
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3.5 Transformation systems in
Propionibacteria

Several attempts have been done in order to de-
velop transformation systems in Propionibacte-
ria. The first successful protocol was devel-
oped by Gautier et al. in 1995, using puri-
fied phage B22 DNA to transform P. freuden-
reichii [219], generating a maximum efficiency
of more than 105 cfu/µg DNA. However, this
DNA was isolated from a bacteriophage infect-
ing Propionibacteria. Jore et al. found, when
developing an E. coli - P. freudenreichii shuttle
vector, that DNA isolated from E. coli severely
decreased the transformation efficiency to 10-30
cfu/µg DNA, while the same plasmid DNA iso-
lated from a P. freudenreichii strain increased
the efficiency to more than 108 cfu/µg DNA
[331]. They concluded that this was due to a
restriction-modification system in Propionibac-
teria [331]. In order to increase the transforma-
tion efficiency, Cheong et al. used dam− E. coli
strains for the transformation of P. acnes and
increased the efficiency to approximately 104

cfu/µg DNA [127].
The first knock-out in P. acnes was demon-

strated in 2010 by Sörensen et al. [642], where
they used homologous recombination to gen-
erate knock-out mutants of two co-hemolysin

genes. This group, even though using a dam−

E. coli strain, had to use several µg plasmid
DNA in order to get a few colonies [642] in-
dicating that much work still is needed in op-
timizing a transformation protocol for Propi-
onibacteria. Other groups have also devel-
oped different genetic tools used to knock-out
genes in P. acidipropionici [664], to produce
5-aminolevulinic acid using expression vectors
[357] and developed shuttle vectors between P.
freudenreichii and E. coli [356]. More recently,
we developed a system for the homologous ex-
pression of recombinant proteins in P. acnes
[417] (Paper I), which will facilitate the expres-
sion and characterization of proteins from P. ac-
nes.

3.6 Morphological
characteristics

P. acnes can be identified on agar plates as small
(0.5-2.5 mm) circular white to yellow colonies
[359, 491]. Under a microscope, they will be vi-
sualized as rod-like bacillus with lengths rang-
ing between 0.8 to 2.8 µm and widths ranging
between 0.6 to 0.9 µm, even though they are
pleomorphic and can have different morpholo-
gies [456, 546], see Figure 3.

Table 2: Sequenced plasmids in species of Propionibacteriaceae

Species Plasmid Size (bp) ORF

Propionibacterium acidipropionici pRGO1 6,868 6
Propionibacterium freudenreichii p545 3,555 2
Propionibacterium freudenreichii pLME108 2,051 1
Propionibacterium granulosum pPGO1 3,539 3
Propionibacterium jensenii pLME106 6,868 10
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Figure 2: Bacteriophages isolated from P. acnes. The phages can be classified as Siphoviruses,
due to their icosahedral head (a) and their long non-contractile tail (b). The phages adhere to bacteria
with a base plate with attached spikes (c).

3.7 Growth characteristics

The growth of P. acnes is optimal at limited
oxygen levels (10%) [246], but P. acnes can
also grow under strict anaerobic conditions and
can tolerate 100% oxygen [146] even though
it grows slower [145]. The ability of P. ac-
nes to live in the presence of oxygen requires
the production of several proteins such as cata-
lases and superoxide dismutases [93], which
both have been shown to be expressed during
oxidative stress [584]. However, even with op-
timal growth conditions, such as with the addi-
tion of Tween 80 [359] and by using complex
growth media, P. acnes often requires several
days of cultivation before reaching the exponen-
tial growth phase, and 7-10 days of incubation is
often needed for clinical isolates to be visualized
on plates [359, 458, 561].

P. acnes can be found on most parts on the
skin as a commensal, benefiting its host [416]
(Paper III). It can mainly be found in areas rich
in sebum [458], including the scalp, forehead

and ear, where the number of P. acnes is rang-
ing from 101-104 cfu/cm2 [639] with the fore-
head being the most populated area, especially
in the pilosebaceous follicles where it outnum-
bers all other bacteria [216]. P. acnes can also
be found as a part of the normal flora in the
oral cavity and in the large intestine [87]. Even
the arms and the legs are populated by P. ac-
nes, but at a much lower concentration, ranging
from 101-102 cfu/cm2. P. granulosum is found
on the same parts as P. acnes, but often at a ten
fold lower concentration compared to P. acnes.
P. avidum can also be found in sebum rich ar-
eas, but mainly populates the axilla, groin and
rectum where it can be found in concentrations
up to 103 cfu/cm2 [458].

P. acnes is a Gram-positive bacterium, with a
thick peptidoglycan layer outside its cell mem-
brane, even though it stains only weakly Gram-
positive [187, 358]. It has several characteristics
not ordinarily associated with Gram-positive
bacteria. Among others, P. acnes has a distinct
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peptidoglycan layer and produces phosphatidyl
inositol, which normally is a component in eu-
karyotic cell membranes, and not often found in
bacteria [334].

P. acnes can be classified on the basis of fer-
mentation and other biochemical assays. Type
I and II can be differentiated due to the fact
that type II can not ferment sorbitol. However
some strains of type IB share this feature [457].
Furthermore, P. acnes is catalase positive [458],
indole positive [524] and can degrade gelatin
[458, 484, 524]. They are not able to ferment
sucrose, maltose, xylose or arabinose [484], but
will readily ferment glucose, galactose, glycerol
and mannose [561].

3.8 Antibiotic resistance

The first evidence that there existed clinical re-
sistant P. acnes strains came in 1979, when
Crawford et al. reported that clinical P. acnes
isolates were cross-resistant to clindamycin and
erythromycin [148], and Guin et al. demon-
strated that some P. acnes strains were resis-
tant to high concentrations of tetracycline [253].
More than two decades later, Ross et al. showed
that 50% of patients with acne vulgaris had P.
acnes isolates that were resistant to the most
often used antibiotics, clindamycin and ery-
thromycin, and 20% of the isolates were re-
sistant to tetracycline [589]. Furthermore, by
analyzing how this resistance was gained, they
showed that resistance to clindamycin and ery-
thromycin mainly was due to three specific
mutations in the 23S rRNA [588]. Further-
more, they found that several P. acnes strains
that were resistant to all macrolide-lincosamide-
streptogramin B antibiotics had a resistance
gene, erm(X), on the transposon Tn5432, orig-

inating from Corynebacterium striatum [586].
This transposon was shown to be difficult to
mobilize and transfer between different P. ac-
nes strains [586]. Ross et al. also identified
the genetic basis of the resistance to tetracy-
clines as a point mutation in the 16S rRNA
[587]. The resistance to tetracyclines is often as-
sociated with resistance to clindamycin and ery-
thromycin [513], but has been shown not to be
dependent on any efflux system [526].

Since it might be speculated that high us-
age of antibiotics may promote the development
of resistant P. acnes strains, Ross et al. con-
ducted a screen for antibiotic resistant P. ac-
nes from UK, Spain, Italy, Greece, Sweden and
Hungary [589]. They showed that, in Spain,
where the usage of antibiotics was high, more
than 94% of the P. acnes strains exhibited resis-
tance to at least one antibiotic, while it only was
51% in Hungary. However, the higher usage
of tetracyclines in UK and Sweden also meant
that the highest prevalence of tetracycline re-
sistant P. acnes could be found in these coun-
tries, with approximately 25% and 15% of the
strains being resistant, respectively [589]. Even
the mechanism of how the bacteria gained re-
sistance was different between different coun-
tries. In 2005 Oprica et al. demonstrated that
specific mutations in the 23S rRNA were much
more common in isolates from Sweden, than
in isolates from other countries [526]. Further-
more, no correlation could be seen between dif-
ferent genotypes of P. acnes, based on pulse-
field electrophoresis, and resistance to antibi-
otics [525, 526]. Oprica et al. also concluded
that single persons could have several different
P. acnes strains colonizing the skin, thereby hav-
ing strains resistant to several antibiotics [525].
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Figure 3: Morphology of P. acnes visualized using scanning electron microscopy. P. acnes has a
thick peptidoglycan layer, building up the cell wall, and thus keeping the cytoplasmic material inside
the cell.

3.9 Virulence of P. acnes

P. acnes was first examined due to its proposed
anti-tumor effects when injected intravenously
[267, 740]. However, several side effects were
obvious, as reported by Mitcheson et al. 1980
[474]. When injecting 350 µg heat-killed P. ac-
nes intravenously in a mice, they rapidly de-
veloped thrombocytopenia and lost plasma fib-
rinogen and thereby developed hypocoagulation
[270, 474]. This was followed by an increased
liver- and spleen weight, more than doubling in
weight in one week [378, 474], and a tempera-
ture increase to 38-39◦C after 2-4 h [122, 270],
displaying similar effects as LPS from E. coli
[472], leading to the expression of several proin-
flammatory cytokines and chemokines such as
CXCL8 and TNF-α from sebocytes [498].

The ability of P. acnes to develop hypoco-
agulation in its host might partly be explained
by its ability to bind to and degrade fibronectin
[731, 757], fibrinogen, and fibrin [732]. Further-
more, P. acnes induces the expression of IL-12
and IL-8 from monocytes [358], influences the
differentiation of keratinocytes [11] and stimu-
lates the production of superoxide anions by ker-
atinocytes [242], thereby potentially causing an
inflammatory response.

3.10 Acne

P. acnes was first isolated from acne vulgaris,
hence the name [690], but still there is a lack of
formal evidence supporting that this bacterium
causes acne. This is mainly due to that P. ac-
nes is present on all persons as a part of the
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normal flora, and due to the lack of good mod-
els of acne. However some efforts to mimic the
pathogenesis of acne have been done and differ-
ent models have been evaluated [157, 300, 501,
502]. The difficulty of addressing if P. acnes is
involved in the progress of acne vulgaris might
also be attributed to the complex nature of the
disease. For further reading in this topic, the
reader is recommended three reviews by Toyoda
& Morohashi [680], Bojar & Holland [75], and
Dessinioti & Katsambas [161].

Even though the contribution of P. acnes to
acne vulgaris is questioned, the association be-
tween acne vulgaris and P. acnes is not. Höffler
et al. showed in 1977 that P. acnes was the most
frequently isolated Propionibacteria from acne
vulgaris, and also the most enzymatically ac-
tive [294], but also that P. granulosum only was
isolated from patients with acne [223]. How-
ever, Propionibacteria are not the only bacte-
ria found in acne lesions, since Staphylococ-
cus and Malassezia are also frequently isolated
[388]. Furthermore, Bek-Thomsen et al. found
that all follicles from normal skin were colo-
nized only by P. acnes, while follicles from pa-
tients with acne also included S. epidermidis and
a few other bacteria [52]. Furthermore, Höf-
fler et al. showed that the secretion of differ-
ent enzymes differed between isolates from pa-
tients with acne and from normal skin, with the
first producing more sialidases [296], and more
DNAse and lecithinase, even though these iso-
lates produced less proteolytic enzymes [295].
Even though not yet formally proved, many pa-
pers describe the contribution of P. acnes in the
development of acne vulgaris [719] and puta-
tive virulence factors [194] that are supposed to

mediate the inflammatory response. It has how-
ever recently been shown that some clones of
P. acnes are associated with severe acne, while
other clones are associated with the normal flora
[414].

3.11 Prostate cancer

P. acnes has been associated with prostate can-
cer, with several groups constructing oligonu-
cleotides (primers) for the detection of P. acnes
in prostate tissue [618, 620]. In 2005 Cohen
et al. found that 35% of the prostate samples
from patients with prostate cancer had infiltra-
tion of P. acnes [136], which was significantly
associated with inflammation. A similar study
was performed by Alexeyev et al. 2007 using
fluorescent in situ hybridization to detect P. ac-
nes in prostate tissue [15], showing that P. ac-
nes can persist for several years in the prostate
gland and possibly establish a persistent infec-
tion [14, 15]. Recently, Fassi Fehri et al. showed
that P. acnes could be found in more than 80% of
cancer prostate tissues, while being absent from
healthy prostate and from other cancer tissues
[195]. Furthermore, P. acnes isolated from can-
cer prostate tissue were able to alter cell prolifer-
ation and cellular transformation, indicating that
P. acnes might contribute to the development of
prostate cancer [195].

3.12 Prosthesis removal - biofilm
formation

P. acnes is suggested to have a role in the re-
moval of prostheses due to infection, based on
its ability to form biofilms [301] (Paper II). P.
acnes readily forms biofilms on foreign material
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(Figure 4) and when in a biofilm state, the resis-
tance to several antibiotics increases more than
10 folds [562] and also the production of extra-
cellular lipases and quorum-sensing molecules
increases [134]. It is estimated that between
2-15% of all revision hip operations are due
to infections [40, 375]. However, this number
might be vastly underestimated, since Tunney

et al. 1998 found that by improving the detec-
tion method by using ultrasonication and trans-
fer to an anaerobic milieu the detection of bac-
teria from removed hip prostheses was almost
22% [684]. Besides, 87% of tissue from pa-
tients without any culturable bacteria had in-
flammatory cells, suggesting that also these pa-
tients might have had bacterial infection [684].

Figure 4: Biofilm formation by P. acnes. The bacteria are visible as coryneformed rods (a) inside
a biofilm matrix (b).
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In a following study in 1999, Tunney et
al. showed, using immuno-fluorescence mi-
croscopy that 63% of the prostheses had ei-
ther P. acnes or Staphylococcus [683]. Fur-
thermore, 72% of all prostheses were posi-
tive for 16S rRNA amplification using univer-
sal primers, and 73% of all patients had infil-
tration of inflammatory cells in the associated
tissue [683]. Further studies confirmed that P.
acnes could cause several different types of in-
fections, differing between common late chronic
infections and much more seldom acute post-
operative infections [759]. The median infec-
tion occurred 7 months after surgery resulting in
joint pain and local inflammation [335]. Males
and those that had a history of surgical proce-
dures in the specific joint were concluded hav-
ing a higher risk of infections [335]. In 2009,
Sampedro et al. showed that P. acnes type I
was more often found in biofilms from prosthe-
ses than type II or type III [599]. However, there
was no significant difference between types and
normal skin or infection, suggesting that the dif-
ferent types can form biofilm equally well [599].

P. acnes has also been suggested to have a
role in the development of infective endocardi-
tis [637] and inflammations in the cornea [150].

3.13 Characterized proteins from
P. acnes

Two of the more characterized proteins from
P. acnes are also two of the most abundant se-
creted proteins in P. acnes [299], lipases and
sialidases, two enzymes involved in degrading
lipids and carbohydrates, respectively. Since P.
acnes is thought to be involved in the patho-
genesis of acne vulgaris it is not surprising that

one of the first proteins to be studied from P.
acnes was the lipase encoded by gehA [473].
This 33 kDa protein was shown to be the major
secreted lipase from P. acnes, even though the
complete genome of P. acnes has several pro-
teins annotated as putative lipases [95]. Further-
more, 2009 Iinuma et al. showed that P. acnes
induces the formation of lipids in sebocytes due
to increased synthesis of triacylglycerols [315],
but as Zouboulis summarizes the finding: ”The
role of P. acnes in sebaceous gland function re-
mains uncertain” [766].

Sialidases from P. acnes have also been stud-
ied for more than 40 years. Müller described
in 1971 that P. acnes had enzymes with sial-
idase activity that could cleave the sialic acid
from several plasma proteins, including hap-
toglobin, α2-macroglobulin, transferrin and IgA
[492]. The abundance of sialidases in P. acnes
was shown a couple of years later when Höffler
et al. compared the activity of sialidases from
different Propionibacteria and found that 83%
of P. acnes had sialidase activity, to be compared
with 20% of P. avidum and 6% of P. granulosum
[297]. This conclusion was supported by a fur-
ther analysis by von Nicolai et al. in 1980 that
also concluded that 84% of P. acnes has siali-
dase activity, and found this activity in both the
cell wall and as a secreted enzyme [510], which
nowadays is supported by the genomic informa-
tion from KPA171202, that suggests that there
are both cell wall bound and secreted sialidases
[95]. Furthermore, von Nicolai et al. purified
an enzyme with a molecular weight of 33 kDa
from the culture medium, and they concluded
that the enzyme had the highest activity against
oligosaccharides, rather than to glycoproteins,
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indicating that this enzyme is not a virulence
factor [510]. However, in contrast to that, Höf-
fler et al. found in 1981 that P. acnes isolates
from patients with acne had sialidase activity in
90% of the cases, compared to strains from the
normal skin which only had activity in 73% of
the cases [296]. Furthermore, the strains from
patients with acne had almost twice as much
sialidase activity as compared to the strains from
normal skin, indicating that this enzyme might
contribute to the development of acne [296].
Nakatsuji et al. evaluated this hypothesis on a
more molecular level in 2008 when they puri-
fied a cell wall anchored sialidase from P. ac-
nes [503]. This sialidase was shown to increase
the adhesion of P. acnes to sebocytes and also

increase the cytotoxicity. Mice pre-immunized
with the sialidase did not develop any inflamma-
tory response when they were subcutaneously
injected with P. acnes suggesting that a P. ac-
nes vaccine based on sialidases might decrease
the inflammatory response caused by P. acnes
[503].

Other factors from P. acnes have so far not
gained that much attention. However, lately, se-
creted CAMP-factors from P. acnes have been
shown to be expressed at high levels [299], with
different levels depending on type of P. acnes
[692]. Two of the five CAMP-factors were re-
cently knocked-out, but did not seem to affect
the virulence of P. acnes [642].
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4 Virulence factors

4.1 Introduction

The prefix of different bacteria can sometimes
be very hard to interpret. Some are called
pathogenic bacteria and others normal flora,
and even further more are called opportunistic
pathogens or facultative pathogens. But what
defines the pathogenicity of a microbe? It seems
clear that those microbes capable of inducing a
pathogenic state have the ability to produce cer-
tain proteins or substances that mediates this ef-
fect. But what, in this context, distinguish an
opportunistic pathogen from a pathogen? And
what factors are involved in this pathogenicity?

4.2 Virulence factors

The ability of a microorganism to induce a dis-
ease (to be pathogenic) is based on its virulence.
The higher virulence, the higher capacity to in-
duce disease. Though this concept is widely ac-
cepted, the actual meaning of virulence has been
debated for many decades [118], and its mean-
ing has changed from being solely focused on
the bacteria to rather focus on the bacteria-host
interaction [119]. In the beginning pathogenic
bacteria were believed to have different attack
and defense mechanisms, which were the only
causes to the disease [635]. Thus, one factor of
the bacteria was used to protect itself from the
hostile host environment, thereby increasing the
persistence, and one factor of the bacteria was
used to cause damage in the host [762].

The fact that many bacterial virulence factors
can be found in mobile genetic elements such

as bacteriophages, plasmids and pathogenicity
islands [514, 533] and can be differently regu-
lated during the growth by bacterial sigma fac-
tors [345] might have contributed to the theory
that only the bacteria was important for the vir-
ulence. Later, scientists began to understand
that bacterial virulence was also dependent on
the host [635], and soon it was widely recog-
nized that even though the bacterial proteins
and structures were involved in the pathogene-
sis, they alone were not responsible for the viru-
lence (Figure 1) [716].

Modern scientist have further extended this
discussion and proposed the use of a damage-
response context to describe virulence [116]
and define virulence as a relative capacity of
a microbe to cause damage in the host [117].
The focus is no longer only on the microbe,
but also the host, and the damage caused to
the host might be mediated by the microbe,
but also by the host [116]. Furthermore, viru-
lence should not necessary be defined as a fac-
tor that affects virulence but not viability [739],
since this would exclude several important cell
wall structures such as LPS, which also is re-
garded as a virulence factor [64, 289, 702]. Sev-
eral other well-known virulence factors include
the pneumolysin [406, 444, 590] from Strep-
tococcus pneumonia, polysaccharide capsules
[551, 655, 672], neuraminidases from Influenza
viruses [67, 658], cholera toxin from Vibrio
cholerae [695], and immunoglobulin modulat-
ing enzymes from Streptococcus pyogenes [18,
517, 543].
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Figure 1: The damage-response curve. The virulence of the bacteria affects the position of the
’damage’ line on the y-axis. A weak host response will cause disease, as will a too strong host
response. Adapted from Casadevall & Pirofski [119].

Since the focus of this thesis is Propionibac-
terium acnes and its phages, the focus of this
chapter will be on a general description of three
potential virulence factors characterized in P.
acnes.

4.3 Triplets in virulence factors

4.3.1 Biofilms

Bacteria cultured in liquid medium in labora-
tory settings do, in many ways, not represent
the normal growth of a bacteria. In nature,
nutrients are more scarce, and thus bacteria
mostly exist in a stationary phase. This sta-
tionary phase is represented by biofilms (Fig-
ure 2) [421]. Biofilms were first recognized
in 1943 by Zobell [764], but has since then

been found on many different locations in nature
[488, 602, 738]. Furthermore, biofilms can be
found in man [259] and associated with ortho-
pedic implants and teeth, causing severe medi-
cal problems [167, 261, 273]. However, many
biofilms can be asymptomatic for long periods
[259].

A biofilm can be defined as a microbial com-
munity with a self-made matrix [82, 262, 421],
but even monolayers of bacteria can be called a
biofilm [572]. Most often, these biofilms con-
sist of specific different polysaccharides, such
as the Pseudomonas aeruginosa alginate, PEL
and PSL [592, 671], the Bacillus subtilis EPS
and PGA [81, 646] and the Staphylococcus epi-
dermidis N-acetyl glucosamine [519]. Further-
more, biofilms often consist of DNA and pro-
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tein [82], thereby stabilizing the matrix further
[728]. Also, several protein structures, such as
pili and fimbriae, are important for the initial ad-
herence to form biofilms [550, 741].

The biofilm is however not a mishmash of
cells and secreted components, but has a highly
defined structure [652] with water channels
[143] and compartments with bacteria [144].
Those compartments of bacteria can come from
the same bacterial clone, but still, due to en-
vironmental factors such as oxygen and nutri-
ent gradients, might have different gene expres-
sions, thereby specializing the cells [21, 217,
645, 651]. Those gradients will also enable the
co-existence of anaerobes and aerobes within
the same biofilm [51].

Except for mixtures of anaerobes and aer-
obes in biofilms, biofilms often consist of sev-
eral different microorganisms all influencing the
growth of each others [483]. Furthermore, the
interaction in biofilms between two or more dif-
ferent microorganisms might be different from
that observed in liquid cultures [351, 665], much
dependent on the conditions when the biofilms
form [368]. Many bacteria form biofilms in or-
der to benefit from the others metabolites [360,
612, 676]. Also, many bacteria can only form
biofilms on already existing biofilms. This is the
case with dental biofilms, initiated by Porphy-
romonas gingivalis, after which other species
can adhere and strengthen the biofilm [744].
This is also the case with Streptococcus gordonii
that can form biofilms on saliva, while other
mouth bacteria, as Streptococcus oralis, can not,
but instead need a preformed biofilm of S. gor-
donii to adhere [534].

The initial step in biofilm formation is the

binding of the microorganism to a foreign ma-
terial, for example orthopedic implants. Several
attempts have been done to change the materials
used, in order to decrease the adherence of bac-
teria, but those attempts have so far not resulted
in any biofilm-free implants [142, 569, 570].
This might be due to that bacteria most often,
with Staphylococcus epidermidis being the ex-
ception [698], do not bind directly to the for-
eign material, but rather bind to a film of plasma
protein that forms on the implants [259]. This
initial binding is often mediated by different
polysaccharides [19, 50], but exactly how this
binding is mediated is unknown. Different the-
ories are based on differences in hydrophobicity
and charges on the surface [2, 105, 419, 420],
but no theory can by itself explain how the
biofilm forms, since the actual observations dif-
fer from the theoretical [2, 46]. Furthermore,
observations suggest that bacteria change their
cell walls, and thereby their hydrophobicity,
during growth, further complicating any theo-
retical models [229]. Adhered cells can then
spread on the surface, using different suggested
models, such as ”rolling” over the surface [385],
or by releasing daughter cells [361].

To be able to form such complex structures as
biofilms, the bacteria need to collaborate. This
is done by communication, by secreting sig-
nals. Most bacteria have an autocrine system,
where they can both produce a substance and
respond to it [109], but Bacillus subtilis was re-
cently shown to have a paracrine system regu-
lating biofilm formation [422]. This signaling
is mainly mediated by acyl homoserine lactone
(AHL) like substances in Gram-negative bacte-
ria, and by peptides in Gram-positive bacteria
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[421]. But, even low concentrations of other
small molecules, as antibiotics, can trigger the
formation of biofilms [298, 750]. Furthermore,
signaling is not restricted to signaling between
one species, but also exists in mixed biofilms
[459, 597]. A similar phenomenon was ob-
served with an E. coli strain that even though
not producing any AHL, still had a homologous
receptor for AHL [694].

One of the largest problems with biofilms is
that they are very difficult to eradicate. Even
though phages and phage derived proteins have
been suggested as a treatment [308, 309], this
is not standard procedure today. The prob-
lem is mainly due to the higher resistance to
different antibiotics and antimicrobial peptides
[56, 143, 188, 259, 355, 435, 574]. The in-
creased resistance to antibiotics could partly

be explained by the thick polysaccharide layer
[650], but also by the existence of non-dividing
persister cells in the biofilm [396]. The resis-
tance to different substances is further compli-
cated in mixed biofilms, where one species can
secrete enzymes protecting the other [342], or
by its mere existence physically hinder the sub-
stance from reaching sensitive bacteria [401].
Even though bacteria generally are resistant to
antibiotics when the biofilms are formed, pre-
treatment of implants with antibiotics seems to
decrease the adherence of bacteria, thereby also
reducing the formation of biofilms [571, 747].
However, the resistance to antibiotics is not only
dependent on what species form the biofilm, but
also on what material the biofilm is formed on
[27, 540].

Figure 2: Biofilms. A biofilm formed by P. acnes on cement beads (b). Free bacteria (a), as well as
biofilm structures (c) can be detected.
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4.3.2 Sialidases

Sialidases were first called Receptor-Destroying
Enzyme (RDE), since the first observation sug-
gested that this enzyme from Vibrio cholera de-
stroyed the receptor site for Influenza viruses
[104], which later was concluded to be due
to sialidase activity [6, 7]. However, already
in 1941 Hirst demonstrated sialidase activity
in Influenza virus [292]. A few years later,
Gottshcalk named the enzyme ”neuraminidase”
since it released N-acetylneuraminic acids
[239]. Since then, both the word ”neu-
raminidase” and ”sialidase” has been used for
describing this activity [189].

Sialidases work by cleaving terminal sialic
acids from glycoproteins and glycolipids [730].
They usually display some substrate specificity
[141], with the V. cholerae sialidase being able
to cleave 2,3; 2,4; 2,6; and 2,8 α-glycosidic
bonds [171], while other sialidases only can
cleave certain bonds [240]. Furthermore, sialic
acids are not a single substrate, but consist of a
family of more than 30 different [581] nine car-
bon sugars with 2-keto-3-deoxy-5-acetamido-
D-glycero-D-galacto-nonulosonic acid structure
[705], with the most common sialic acid being
N-acetylneuraminic acid (Figure 3) [730]. Sialic
acids got their name from the first site of isola-
tion, which was in the saliva (from Greek sialon)
[71]. Due to this complexity of sialic acids,
some researchers have claimed that: ”Sialic
acids are not only the most interesting molecules
in the world, but also the most important” [704].

Not all organisms have the ability to pro-
duce sialidases. Most plants do not, neither do

most metazoans, but some animals and microor-
ganisms can [494, 581]. However, this ability
can differ between species, and also between
bacterial isolates [305, 476, 548, 580]. The
ability of several different species to produce
sialidases has made several researchers to con-
clude that sialidases have a common ancestor
gene [581], since they usually share between 20-
30% amino acid identity [305, 581], and have a
similar architecture between bacteria and mam-
mals [305, 704, 706]. The sialidases are not
biochemically similar, but do share a similar
tertiary structure [581], and thereby phyloge-
netic trees based on primary sequences do not
give the full picture [24]. Thus, this implicates
that specific bacterial sialidases can be more
similar to prokaryotic sialidases on a structural
level than to other bacterial sialidases [305].
Sialidases with a lower molecular weight have
a rather similar primary and tertiary structure
[305, 704], while larger sialidases (>60 kDa) of-
ten have both an enzymatic domain and a do-
main conferring the specificity of the enzyme
[305, 673, 704], and are thus not as similar to
each other. However, all sialidases have some
parts in common. They all have the same cat-
alytic site with seven conserved amino acids,
among others an arginine triad [704]. Further-
more, almost all sialidases have Asp-box mo-
tifs, even though the exact mechanism of these
boxes still is unknown [704]. Many sialidases
also need calcium in order to have enzymatic
activity [305]. But even though the biochemical
part of sialidases is rather well characterized, the
biological function of the enzyme is not [704].
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Figure 3: Sialic acids. A representative figure of the most common sialic acid - N-acetylneuraminic
acid.

Many microorganisms use sialidases in order
to get nutrition [141, 547], and sialic acids can
in E. coli function as the sole carbon and nitro-
gen source [445, 547]. The importance of such
system is understandable since sialic acids are
abundant in the human body. In human serum,
there exists 2 mM sialic acids, even though al-
most all are in a bound format [625], and even
a single red blood cell has more than 10 million
sialic acid molecules bound to its surface [697].
Due to this abundance, many commensal bac-
teria use sialic acids as a mean of fast energy,
without disturbing the host [304].

However, not only commensal bacteria use
sialic acids, but also pathogenic microorganisms
[140, 141, 172, 566, 687], where they are sug-
gested to have a role in the pathogenesis [566],
by activating and stimulating cells [429, 566].
Even though the sialidases can be both cell wall
bound and secreted, it is the latter that is re-

garded to be the most potent to cause different
physiological effects [141], and help to spread
the bacteria [140, 493, 495]. So even though
both commensals and pathogenic bacteria can
secrete sialidases, only some use it as a viru-
lence factor [141]. One of the differences is that
commensals often produce sialidases constitu-
tively, while pathogenic bacteria need a stimu-
lus, as free sialic acids or oligosaccharides, to
induce their gene expression [141, 303].

Even though commonly regarded as a viru-
lence factor, the main function of sialidases for
most bacteria probably is nutritional [305, 496,
673]. However, there is a connection between
high levels of sialidase activity and pathogenic-
ity for certain species [141]. Group B strepto-
cocci start to produce sialidases late in their ex-
ponential phase [471], together with many other
different virulence factors, but they do not seem
to be necessary to cause disease [497]. How-
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ever, this sialidase activity can partly desialylate
IgA1 in the saliva, and thereby increase the pro-
teolytic effect [573]. Furthermore, it has lately
been shown that S. pneumonia sialidase NanA
is essential for the adherence to human brain
endothelial cells [688], and decreases phago-
cytosis by neutrophils [153]. However, the
most characterized sialidase is from Influenza
A viruses, where it is essential for pathogene-
sis [327]. This Influenza sialidase is also able
to increase the adhesion of Neisseria meningi-
tides to human cells [563]. In general, sialic
acids are removed in order to reveal new re-
ceptors [348, 585, 610], but also to increase
adhesion due to the decreased negative surface
charge [140, 286, 765]. Furthermore, desialy-
lation reveals sites for sialic acid-binding Ig su-
perfamily lectin (Siglec) recognition sites [567],
which, when activated, often modulates the im-
mune system [149]. A similar effect can be seen
with desialylated IgG that changes its affinity to
the Fcγ receptors [337].

Not all microorganisms use sialic acids only
for nutrition or revealing adhesion sites, but also
for building capsules protecting them from the
host immune system [323, 703]. The first bacte-
rial sialic acids were actually identified from an
E. coli capsule [44], which decreases the phago-
cytosis [674]. This molecular mimicry bene-
fits the bacteria due to an increased immune
tolerance [703]. In S. pneumoniae, the sialic
acid capsule also lead to an inhibition of the in-
sertion of the MAC-complex in the membrane
[708]. At least three different methods to get
hold on sialic acids for bacteria exist. Either
they can synthetize the molecules themselves,
as E. coli and N. meningitidis, use exogenous

sialic acids, as N. gonorrhoea [539], or by using
trans-sialidases, as Trypanosoma cruzi [552].

4.3.3 Protection from reactive
oxygen species

Reactive oxygen species (ROS) is a collective
name for radicals and non-radicals derived from
O2 [264], and is a substance that all living or-
ganisms will encounter. The production of ROS
in different tissues in human was first suggested
by Gerschman and colleagues [227, 228], and
has since then been concluded to be both ben-
eficial and dangerous for the host [131]. A
few years after the discovery of ROS, the first
superoxide dismutase (SOD) was characterized
and suggested to have a protective role against
oxidative stress [454]. Furthermore, it was
shown that ROS was able to protect human cells
from bacteria [31]. When phagocytes become
activated by microbes, they will assembly an
NADPH oxidase and produce and secrete large
amounts of the superoxide anion radical O2

−

[31, 32, 362]. This product is not very reactive
in itself, but will produce hydrogen peroxide
which is a known mutagenesis factor [249]. Fur-
thermore, hydrogen peroxide can react and pro-
duce the highly reactive radical OH∗ [49], even
though the exact mechanism of this in vivo is un-
known [469, 724]. This radical is able to react
with carbohydrates, lipids, proteins and DNA
[249], but will only react where it is formed
[137] due to its short diffusion life time of ap-
proximately 0.5 µm [468].

All production of ROS from the phagocytes
will eventually cause pathogenic conditions in
the host if not taken care of correctly [137].
This damage can be direct or indirect, by de-

40



grading substrates or by activating proteases
[137]. Phagocytes will also secrete myeloper-
oxidases that can convert hydrogen peroxide to
hypochlorous acid which is a much more po-
tent radical [362], which will inhibit the ef-
fect of several anti-proteases [726] and also ac-
tivate secreted proteases from the phagocytes
[726]. Furthermore, it has been shown that
ROS can signal via the immune regulator NF-
κB [613], altering the inflammatory response
[137], by increasing the expression of the pro-
inflammatory cytokines IL-2, IL-6 and TNF-α
[306, 398, 619]. However, the addition of SOD
and catalase has been shown experimentally to
reduce tissue damage due to the activity of free
radicals [132, 243, 329, 628]. Furthermore, an
E. coli deficient in SOD will have a much higher
mutagenesis rate on the DNA when exposed to
ROS [679]. Those enzymes, together with glu-
tathione peroxidase are well established intra-
cellular proteins that protect the cells from ROS
(Figure 4) [66, 137, 213, 266, 624, 679]. How-
ever, there are several other known mechanisms
of how to protect the cells from free radicals, us-
ing antioxidants.

Antioxidants are defined as a substrate that
can protect or delay an oxidation of a substrate,
even at low concentrations [266]. This effect
can be due to a lowered O2-concentration, a
binding of O2 to stable proteins and binding
of otherwise reactive metal ions [263]. Even
though mainly thought as being an intracellular
protein, several reports have described an extra-
cellular SOD [340, 341, 442], even though these
mainly seem to be bound to cells. However,

there is a great abundance of antioxidants in the
human serum [463]. Inside the cell, reduced
glutathione is an important antioxidant [609],
however the low extracellular concentration is
not enough to generate a good response against
free radicals. Furthermore, transferrin is not
loaded to more than 20-30% of its capacity with
iron, which enables it to bind iron fast before
the iron can react and form free radicals [257],
since when bound the iron is unable to gener-
ate OH∗ [28, 256, 257]. Other proteins in the
plasma with antioxidant properties are bilirubin
[653], ascorbic acid [212, 654], and alpha-1 mi-
croglobulin [12, 16, 17]. Furthermore, vitamin
C and E are important antioxidants inhibiting
oxidation of several substrates [124, 265, 532].
A function similar to transferrin is shared with
haptoglobin and hemopexin that will bind free
hemoglobin and heme, respectively, before they
can react and release free radicals and stimulate
oxidation [255, 258, 265, 596].

A free form of heme from damaged
hemoglobin or from heme-proteins is a stimu-
lator of oxidation [103, 231, 670], and can gen-
erate oxidative stress [258, 669, 670] which has
been shown in vitro on several molecules [8, 9].
Furthermore, the synthesis of heme can also
generate ROS [481]. This is due to the many
reactive properties of some of the building sub-
stances [169, 291, 523]. Thus it is of importance
to degrade free heme before it reacts, which
is the function of heme oxygenases [594], that
protect cells from oxidative stress by degrading
heme to biliverdin (which will generate biliru-
bin), CO and iron [489].
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Figure 4: Protective systems against free radicals. Superoxide is dismutated to hydrogen perox-
ide, and can then by converted to water by either catalases or peroxidases.

The enzyme was discovered in 1968 [675],
is inducible by UVA and hydrogen peroxide
[353], and will increase the tolerance of oxida-
tive stress to the cells [667]. Heme oxygenases
protect from oxidative stress both by decreas-
ing the amount of free heme, but also by the
byproducts they form when heme is degraded
[25, 352, 353, 354]. Low concentration of
CO is anti-inflammatory by downregulating pro-
inflammatory cytokines and upregulating IL-10
[490, 529] and protects against oxidative stress
[530]. Bilirubin protects cells from hydrogen-
peroxide [36] and is one of the most important
antioxidant factors in serum [235]. An excess
of free iron from the reaction would harm the
host. However, a mouse with a heme oxyge-
nase knock-out showed increased levels of iron,
compared to the wildtype, indicating that the
heme oxygenase has a beneficial role [160]. It
has been argued that heme oxygenases can in-
crease oxidation [372]. This is due to the release
of small quantities of hydrogen peroxide during
the reaction, and due to the abundance of free

iron which could benefit a production of OH∗

[178, 512, 626].
ROS have lately been gaining interest as sig-

naling molecules [207]. The NADPH oxidase
Nox2 is expressed in most cells, even though
at much lower level than in phagocytes, and are
likely to have a signaling function in those cells
[376, 707]. This signaling regulates apoptosis
via the JNK-pathway [159, 162, 407], and will
furthermore due to the ability to modify proteins
[209] affect the faith of the cell [260, 448, 449,
486]. The most probable signaling molecule is
regarded to be hydrogen peroxide [656] that can
be transported out of the cell using aquaporines
[68]. However, data also indicate that O2

− can
function as a signal molecule, even though the
mechanism still is unknown [434].

4.4 How to study virulence
factors in P. acnes

Several putative virulence factors in P. acnes
have already been studied to some extent, such
as the lipase GehA [473], sialidases [503],
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and CAMP-factors [299, 642]. However, even
though these studies proved successful, the ex-
pression of recombinant proteins from P. ac-
nes has proven difficult. Miskin et al. [473]
optimized the expression by lowering the tem-
perature to 27◦C and adding 0.45 M sucrose.
Nakatsuji et al. [503], instead of optimizing
the expression, denatured and renatured inclu-
sion bodies, so that the sialidase was soluble and
active. Sörensen et al. [642] purified recom-
binant CAMP-factors from P. acnes. However,
since these proteins only were used for develop-
ing antibodies, and their activity was not tested,
it is impossible to know if these proteins were
active or not.

However, this author has also had problems
with recombinant expression of proteins from P.
acnes and its phages in E. coli, where most pro-
teins investigated have formed inclusion bod-
ies. Even though some of these inclusion bodies
were able to be dissolved using 6 M guanidine
hydrochloride, and refolded to a soluble state,
this method is quite unsatisfactory since much
of the protein activity might be lost during this
harsh purification. Therefore we decided to de-
velop tools to both be able to express recombi-
nant proteins from P. acnes in P. acnes, and to be
able to complement knock-outs (Figure 5) [417]
(Paper I).

Figure 5: Vector p1340 developed for the recombinant expression of homologous proteins in
P. acnes. The vector has resistance cassettes for selection in E. coli (Amp) and in P. acnes (Ery and
Cm).
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Part II
The Good Guys

You still do not know what you are dealing with, do you?
Perfect organism. Its structural perfection is matched only by its hostility...

I admire its purity; unclouded by conscience, remorse, or delusions of morality
-Ash to Ripley in Alien 1979
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5 Bacteriophages

5.1 Introduction

Not living, nor dead. Not friends, nor foes. They
can be infectious for decades [382] and found
wherever their hosts are [722] - in deserts [554],
in food [349], in our blood [536], in urine and
saliva [33, 749], and in ocean water where they
can reach numbers of 106 specimens/ml [58]. In
fact they are so common in our bodies that more
than 1200 different genotypes can be identified
from feces only [85]. They are the most com-
mon entity found in the world, outnumbering
bacteria 10:1 [281, 729], reaching an impressive
theoretical number of 1031 [281, 662]. Using
mathematical models, it has been estimated that
10-20% of all their hosts in the water die every
single day due to infections [733]. Furthermore,
if placed after each other, they would form a
bridge to our second closest star Alpha Centauri,
4.35 light years away - 46 million times [282]!
Bacteriophages truly are impressive!

5.2 Classification

5.2.1 Introduction

Bacteriophages, or phages, are viruses that in-
fect bacteria, and are estimated to have been
evolved when bacteria diverged from Eukary-
oteae and Archeae [280]. They were first iden-
tified by Fredrick Twort 1915 [685] and Felix
d’Hérelle 1917 [163]. Even though they both
soon realized that phages could be used to treat
infectious diseases [659], they did not know that

they were working with viruses. It was not until
1942 that phages were recognized as viruses us-
ing electron microscopy [430], and phages con-
tinued for a long period of time to be the main
focus of electron microscopy [23]. Further ma-
jor scientific discoveries using the phages in-
clude the finding in 1952 that DNA is the ge-
netic material [287]. This knowledge was im-
plemented when the first genome ever was se-
quenced from phage φX174 1978 [600], fol-
lowed a few years later by the sequence of phage
λ in 1982 [601]. However, already from the start
of phage biology the structural appearance of
the phage has been one of the most important
features to classify the phages together with the
nature of the genomic material [191].

5.2.2 Classification

Phages can be classified into 12 different classes
of phages (Table 1). The most common group
identified is Caudovirales, constituting more
than 95% of all known phages [453]. Caudovi-
rales are phages with tails, and could be di-
vided into Myoviruses (long contractile tails),
Siphoviruses (long non-contractile tails) (Figure
1) and Podoviruses (short non-contractile tails)
[438]. In the genomic era, several suggestions
have been proposed in order to facilitate the
classification of phages without the necessity of
electron microscopy. However, so far no golden
standard exists and thus the International Com-
mittee on Taxonomy of Viruses (ICTV) system
is the most widely used [120, 191].
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Table 1: Phage families (adapted from Veiga-Crespo & Villa [699] and ICTV [191])

Family Genetic material Morphology Host

Myoviridae dsDNA contractile long tail bacteria
Siphoviridae dsDNA non-contractile long tail bacteria
Podoviridae dsDNA non-contractile short tail bacteria
Tectiviridae dsDNA double capsid bacteria
Plasmaviridae dsDNA pleomorphic bacteria
Corticoviridae dsDNA internal lipids bacteria
Guttaviridae dsDNA droplet shaped archea
Rudiviridae dsDNA filamentous; non-enveloped archea
Lipothrixviridae dsDNA filamentous; enveloped archea
Fuselloviridae dsDNA lemon shaped archea
Microviridae ssDNA capsid with spike bacteria
Inoviridae ssDNA filamentous phages bacteria
Cystoviridae ssRNA segmented genome bacteria
Leviviridae ssRNA spherical bacteria

Some of the proposed methods to classify the
phages are similar to the ICTV standard [383],
while other methods use a proteomic approach
[583]. Even though there is no counterpart to
the bacterial recA in phages [583], attempts have
been made to classify phages based on their cap-
sule genes, since they to some extent are con-
served in all known phages [557].

The difficulty by using a genetic approach to
classify phages is their modular nature. Phages
in the Caudovirales family generally consist of
several different genetic modules that can be
changed between different phages [283], even
though phages isolated from the dairy industry
are more conserved, potentially due to the selec-
tion of the material [98]. However, it is unlikely
that modular recombination will take place in
modules encoding structural head genes, since
such modulations in most cases will lead to de-

fect phages due to the complexity and interac-
tions between those proteins [332]. The trans-
fer of modules is mainly regulated by horizon-
tal gene transfer [114], but there has been the-
oretical calculations estimating phage mediated
transduction to happen in a frequency of 1013

times/year [325, 722]. Furthermore, phages
have the capacity to load their capsules with
up to 4 kb more DNA, enabling the phages to
take with them new integrated genes [121]. The
module theory was founded more than 30 years
ago by Botstein and is still considered valid
[78].

5.2.3 Identification of phages

Phages are usually identified using an overlay-
plate approach (Figure 2), where the phages are
propagated against a selected host bacterium,
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and where the number of phages in the sam-
ple can be measured [399]. However, the inter-
action is affected by several parameters as the
abundance of specific ions (Ca2+ and Mg2+)
[399]. Furthermore, all phages are not able
to form plaques using ordinary methods [617].
This matter is further complicated by the fact
that most bacteria can not be cultured in labo-
ratory environments, and thus phages infecting
those species can not be propagated [541]. To
circumvent this problem several different meth-
ods have been assessed. Transmission electron
microscopy and fluorescence microscopy can be
used to both detect and determine the amount of
phages in an environment [58, 556, 663]. Flow
cytometry has also, with success, been used to
count phages [441], but for the detection of
specific phages antibodies [128], DNA probes
[560], PCR and RT-PCR [426, 681] have been
the most useful methods.

In order to study phages, common ap-
proaches are Denaturing Gradient Gel Elec-

trophoresis [622], to generate genetic finger-
prints from a specific environment, or using
Shotgun Sequencing [85]. However, a more and
more used technique to detect viruses that can
not be propagated is by metagenomics of en-
vironmental samples [85]. Using this method,
it has been shown that the most common de-
tected phage in a sample, only accounts for less
than 0.1% of the community, showing an incred-
ible variance amongst the viruses [84]. Further-
more, using this approach, Edwards & Rohwer
found that approximately 70% of the sequences
found in viral metagenomics are unique, to be
compared with 10% for bacterial metagenomics
[183], stressing the great variety seen amongst
viruses. Further emphasizing this conclusion,
Breitbart et al. could detect several thousands
of different viruses from an environmental sam-
ple [86]. Based on a theoretical model, Rohwer
et al. estimated that there existed 100 million
different viruses, and that we so far only have
isolated 0.0002% [582].

Figure 1: Morphology of Siphoviruses. The phages have an icosahedral head (1) containing all the
genetic material. The head is attached to a long tail (2), which ends in a baseplate (3) with attached
spikes (4) that can interact and bind to bacterial cells and residues.
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5.3 Life cycle

5.3.1 Introduction

Phages can have two in principal different life
cycles: the lytic cycle, characterized by Max
Delbrück almost 80 years ago [107], and the
lysogenic cycle, with phage λ serving as a pro-
totype [386]. The most versatile phages are the
temperate phages that are able to either kill the
host or to enter a lysogenic cycle, where they
may coexist in different forms [433]. This can
be either due to the integration of the phage
DNA into the host chromosome, or by the exis-
tence as a stable replicating plasmid [389, 403,
565]. The other possible life cycle is the lytic
cycle, which all phages are capable of. How-
ever, the main difference between a temperate
phage and a virulent phage is the lack of an in-
tegrase and a lack of ability to coexist with its
host in the latter [339]. A schematic figure that
explains the differences in the life cycles can be
found in Figure 3. There also exist a third, much
less understood life cycle, termed a pseudolyso-

genic life cycle, even though it also from time to
time is called a persistent infection, chronic in-
fection or carrier-state [549, 722]. This state is
characterized by the carriage of phage DNA by
the host bacteria, usually during nutritional star-
vation [722]. Furthermore, it seems like every
single phage-bacteria system is, to some part,
unique in its life cycle, even though some gen-
eral aspects still are valid [611].

5.3.2 Attachment

Whether lysogenic or lytic, the phage life cycle
always starts with the binding to the host (Figure
4), and the faster the phage binds, the faster they
can increase their population [1]. However the
interaction of the phage and the bacteria is also
influenced by the status of the bacteria [156].
This binding is very specific, and thereby most
phages are species or strain specific [5], even
though certain phages, as PRD1, can infect sev-
eral different Gram negative species as long as
they express its receptor [241, 522].

Figure 2: Plaques. Single plaques can be detected as clearings on a lawn of a susceptible host
bacterium. All plaques are derived from a single phage. The plaques can be clear (A, B), or have a
turbid center with regrowth of resistant bacteria (C).
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Figure 3: Principal life cycles for bacteriophages. The phages adhere to the bacterial cell wall,
and inject their genetic material. The phage can then decide if it should enter a lysogenic cycle or
a lytic cycle. In the lysogenic cycle, the phage either integrates its genetic material into its host
chromosome, or exist as a stable plasmid. In the lytic cycle, the phage will replicate, degrade the
peptidoglycan layer of the host using endolysins, and escape from the host.

The knowledge that phages generally were
specific was rapidly used to develop several so
called phage typing sets, where the ability of
phages to infect certain bacterial strains were
used to classify the bacteria [293], with one
of the first type-system developed in 1938 for
Salmonella [147]. Even though this system to
some extent still is used today, the importance
of phage typing has decreased [638]. Further-
more, the host-range of phages has been shown
to depend on which bacterial strain is used for

propagation, due to different DNA modifica-
tion systems in the bacteria. This phenomenon
is known as host-induced modifications of the
phages [63, 432].

Phages initially bind reversible and then ir-
reversible to a second structure [279, 390, 436,
480, 564, 714]. Bacteriophages infecting Gram
positive bacteria usually first bind to sugar moi-
eties in the peptidoglycan layer, followed by an
irreversible binding to proteins [26, 482], while
phages infecting Gram negative bacteria usually
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interacts with LPS [278]. But several differ-
ent receptors have been identified for different
phages, including both proteins [83, 564, 693,
756] and carbohydrates [175, 225]. Since this
is the first contact between the phage and the
bacterium, inhibition of attachment is one of
the most commonly used strategies for bacte-
ria to gain resistance to phages [20, 165], and
more than 50 different mechanisms to gain resis-
tance to phages have been characterized [135].
One of the resistance mechanisms is to form
capsules, which is known to inhibit the attach-
ment of certain phages [62]. However, phages
have counter-measurements to degrade capsules
[48], and this polysaccharide hydrolyzing ac-
tivity has been found in lots of phages infect-
ing a wide diversity of Gram negative bacteria
[13, 38, 45, 254, 309, 373, 575, 696, 758]. Even
though the phage adhesins bind to very different
structures, most of the adhesins have similarities
in secondary structure with a homo tetramer and
a high percentage of beta structures, leading to a
highly stable heat and protease tolerant protein
[475, 721].

5.3.3 DNA injection

Once bound to the receptor, the next step of
the phage infection is to inject the DNA, but
in contrast to many human viruses, the phages
leave their structural proteins outside their hosts
[392]. This presents another problem, how
to get the DNA over the membrane, and also
through the thick peptidoglycan layer of Gram
positive bacteria, which can be between 20-50
nm thick [65, 374]. This is often solved by
phage structural peptidoglycan hydrolyzing en-
zymes [336, 477, 593], as has been shown for

Lactococcus phage Tuc2009 that has a cell-wall
degrading tail fiber [350].

Even though phage genomes can be very
small and constitute less than 12 genes [108],
the length of DNA can vary between 4-640 kb
[99]. However, the concentration of DNA in
the capsule is always approximately the same in
different phages, eg 450 mg/ml [72]. This high
pressure introduced when packaging the DNA is
thought to help during the injection [179, 576],
since it is known for certain phages (T5) that it
is only necessary with a binding to the recep-
tor in order to release the phage DNA [515]. It
has also been hypothesized that phage DNA is
injected into the bacterium due to proton gra-
dients at the cytosolic membrane [248]. Even
though this mechanism in general increases the
influx of DNA [79], it seems like there exist sev-
eral methods for phages. For example phage T5
starts by injecting a small portion of its DNA,
then pauses for 4 min until it injects the rest of
the DNA [380].

The injection of the DNA is facilitated by
phage helper proteins that form a channel for the
DNA to pass through the peptidoglycan layer
[158, 252]. Those DNA transportation proteins
can even cross lipid membranes [74, 199]. It has
even been shown that the tape measure protein
of the phage, that usually determines the length
of the tail, is used as a DNA transporter protein
[579, 608]. The DNA is finally injected in the
opposite direction as it was loaded [232, 479].

5.3.4 Life cycle decision

It is not entirely known how the decision to enter
a lysogenic or a lytic cycle is made, but factors
affecting the choice have been identified. What
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is known is that the decision is not immediately
made after injection, since the fast propagating
phage lambda needs 10-15 min before it deter-
mines what cycle it should enter [181]. Dur-
ing this time, the phage can ”sense” the status
of the bacteria and adopt its cycle to that, us-
ing a genetic switch [559]. For example if the
bacteria are growing very slowly, due to nutri-
tional limitations, the phage can adapt and pro-
long the eclipse period (time when the phage
produces structural proteins), and enter a pseu-
dolysogenic cycle, since this is the most benefi-

cial state during these circumstances [37, 427].
Furthermore, the decision is influenced by fac-
tors such as nutrients, ions, stress and the ratio
between the bacteria and the phage [723], where
a low number of bacteria with many phages pro-
mote a lysogenic decision [180, 649]. There
also exist theories that the morphology of the
phages influences the choice of life cycle, since
Myoviruses mainly are lytic and Siphoviruses
mainly are lysogenic [662], but this is so far not
supported by any experimental data.

Figure 4: The attachment of bacteriophages to the surface of P. acnes. The two phages to the left
have still not injected their DNA, which can be detected as white lines in the head. The third phage
to the left has already injected the DNA and thus the head is deformed due to the pressure applied
using negative staining.
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5.3.5 Integration

The ability amongst phages to potentially inte-
grate their DNA was proposed first by Camp-
bell in 1963 [111]. For the temperate phage to
integrate it is necessary with an integrase [763]
and co-factor proteins assisting in the integra-
tion of the DNA [470]. This integration is of-
ten in tRNA or mRNA genes [735], even though
several other genes also have been identified as
sites for the integration [110, 499, 621]. Fur-
thermore, the integration is often very specific
for a certain site, with 100-1000 times higher
affinity [725], even though less specific phage
integrases are known from phage Mu and P2
[41]. When integrated, lysogeny is very sta-
ble and the phage can persist in this state in
several generations [405], and usually only one
gene is active during this state, eg the repres-
sor [559]. The function of the repressor is to
bind as a dimer [53] to several operator sites on
the prophage and regulate the gene expression
[559], even to its own promoter [397]. Even
though the lysogeny is a stable state, the phage
can be activated. This phenomenon is called
prophage induction [402, 578]. The induction
can be due to different stimuli, but the stim-
uli need to overcome a threshold value in or-
der to activate the phage. Prophages have been
induced with both UV [377] and mitomycin C
[711], but both stimuli share the common fea-
ture that they activate the SOS-system by dam-
aging DNA, which generates a signal to the
phage [404]. However, prophages can also be
induced by the SOS-system without any appar-
ent DNA damage. This happens in general less
than 10−5 per generation and is called sponta-
neous induction [88]. Furthermore, some bacte-

ria as Bacillus can form spores and trap virulent
phages for long times. However, since sporu-
lation is triggered by among others nutritional
starvation, this state is hypothesized to benefit
the phages [319, 344, 462, 485].

5.3.6 Phage release

When temperate phages are induced from their
lysogenic cycle, their life cycles are once again
similar with the virulent phages, and they start
to propagate in their host. This propagation can
take place in starving cells [366, 611] and even
in newly killed bacteria [22]. The phages start
to replicate, which for some phages take place
at the cell membrane [320]. At this stage the
phages also start producing all their structural
proteins and assemble the virions. However,
there exist phages infecting Archea that assem-
ble their tail after their host is lysed [271, 272].
Furthermore, the length of the tail is in direct
correlation to the length of the tape measure pro-
tein of the phage [343].

When the bacteriophage capsule is loaded
with phage DNA and all structural proteins are
assembled, the next object is to destroy the pep-
tidoglycan layer of the bacteria in order to lyse
the bacterium and evade [61] (Figure 5). This
must be strictly regulated in order to not lyse
the bacterium too early, when the phage is not
assembled [712]. This is in part regulated by
holins. Holins are often expressed in around
1000 molecules/cell [713] and are integrated in
the plasma membrane [251]. Holins are not
particularly conserved and are thereby difficult
to identify by their primary sequences [713],
but they can nevertheless all be divided into
three different classes dependent on how many
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transmembrane domains they have [713]. The
holins are in their turn regulated by anti-holins
[755], which are expressed before the holins
[70]. Anti-holins and holins often only differ
in 2-3 amino acids in the N-terminal part of the
protein since the anti-holins starts at an alter-
native start codon a few bases upstream of the
holin [713]. However, this small difference en-
ables the anti-holin to interact with the mem-
brane in a different way than the holin, and
thereby inhibit its effect, until enough holins
have been expressed [244, 250].

When the holin is assembled the preformed
lysins can gain access to the peptidoglycan layer
and hydrolyze their substrates [752]. Lysins
can have four different activities: N-acetyl-β-
D-glucosaminidase, N-acetyl-β-D-muramidase,
N-acetylmuramoyl-L-alanine amidase and en-
dopeptidase (Figure 6) [604]. Lysins usually
only have one enzymatic domain even though
lysins with several different active sites have
been characterized [505]. Except for their ac-
tive domain, which usually is N-terminal, most
lysins have a C-terminal that generates the spe-
cific binding [203, 285, 412, 423]. Further-
more, lysins from phages infecting Gram neg-
ative bacteria are usually considerably smaller
than lysins from phages infecting Gram positive
bacteria [754]. It has also recently been found
that lysins might have signal peptides for secre-
tion and are thereby secreted out of the bacteria
[604]. This has experimentally been verified for
a phage infecting Oenococcus oeni, where the
lysin needs to be secreted in order to get acti-
vated [605, 606], but several more phage lysins
share the same signal peptides and are thereby
thought to be secreted [333, 603, 606].

Even though the above described lysis of bac-
teria is the most common mechanism for the
more complex dsDNA phages, other phages em-
ploy other as refined methods to evade from
their hosts. Smaller phages often only use a sin-
gle protein [753], interfering with the formation
of the peptidoglycan layer [60, 61]. Those pepti-
doglycan inhibitory proteins of non-lysin origin
are commonly called amurins [61]. Filamen-
tous phages employ yet another strategy, since
they are being released from the host bacterium
without causing lysis [439, 446], by expressing
proteins that allows them to be secreted [636]
through small channels [196, 591].

5.4 Phage mediated virulence

Since temperate phages have the ability to inte-
grate their DNA into the host chromosome, it is
not surprising that bacterial genomes are full of
prophages. Studies have found that between 3-
10% of the bacterial genome is constituted by
phage-like modules [114, 120], but it can be a
lot more. For example S. pyogenes strain SF370
has more than 16% of its genome covered by
prophages [197]. Some of those modules are
defective prophages that can not replicate [112],
others might be satellite phages that can repli-
cate but do not encode all their structural pro-
teins by themselves, but rather steal them from
other phages [120]. Further domains might con-
stitute gene transfer agents that are phage-like
particles that assemble bacterial DNA [310].

Even though the prophages are so common,
the annotation of them is still mainly performed
manually [384]. There have been several at-
tempts to develop software that could detect
prophage regions in bacterial genomes, but so
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far with limited success [174, 682]. A usual
characteristic of prophages is the integrase, re-
pressors and lysins [113, 120], but even the rep-
etition of Gly-X-Y is a characteristic motif often
found in phage tail fibers [634], and can be used
for the detection of prophages. Furthermore, the
functionality of the phage proteins are most of-
ten assigned based on similarities to other char-
acterized proteins [531], and secondary struc-
ture homologues using Pfam [640].

In order to be accepted by the bacterium,
prophages often confer some advantages to their
host [99, 182]. This advantage could either be
an increased pathogenicity [80] or an increased

fitness in a specific environment [700] (Table
2). However, some prophages have been re-
ported to be beneficial for the outcome of patho-
genesis, since E. coli without a specific phage
more often causes disturbances in the gastroin-
testinal tract [275]. But, it has also been shown
that the pathogenic E. coli strain O157:H7 has
18 prophages that together constitute more than
50% of the genetic difference between O157:H7
and a non-pathogenic E. coli strain [521]. The
same phenomenon could be seen in S. pyogenes
where more than 75% of the genetic variations
between pathogenic and non-pathogenic strains
can be due to prophages [34].

Figure 5: The lysis of bacteria and the subsequent release of phages. P. acnes infected with
bacteriophages are lysed from within and release a huge amount of cytoplasmic material and phages
as it dies.
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The ability of phages to mediate virulence
factors was shown already in 1926 for S.
pyogenes, even though it at this time was
not concluded that phages were the mediators
[115, 214]. The first confirmed phage-toxin-
conversion took place in 1951 using the diphthe-
ria toxin [210, 211]. In 1971 it was also formally
shown that a pathogenic E. coli strain could
convert a non-pathogenic strain to a pathogenic
strain using phages [633].

The genes encoded by phages that confer ad-
vantages to the host bacterium are called morons
[332], and are often expressed in the prophage
state [460]. Even though the GC-content in
those genes usually is different from the rest
of the phages, it is not generally believed that
the origin of morons is bacterial [154]. Typ-
ical phage-encoded genes confer increased ad-
herence [54], increased resistance to antibiotics
[686] and can encode superantigens and tox-
ins [97]. Even the prototype temperate phage,
phage λ, encodes virulence factors increasing
the resistance of the bacterium to serum [39].
However, several E. coli prophages also carry
the Shiga toxin [709, 710] enabling the E. coli
strains to be severe food pathogens [338]. An-

other widely recognized virulence factor en-
coded by prophages is the cholera toxin [711].
S. aureus prophages can carry genes encod-
ing Panton-Valentine leukocidins that can be se-
creted and kill neutrophils [226]. Prophages in
S. pyogenes are well known for the abundance of
hyaluronidases [313], even though the impact of
those is not clarified yet. Furthermore, S. pyo-
genes prophages can carry genes for DNases,
SpeA, SpeC, and phospholipases [461], and
influence the expression of M-proteins [643].
Prophages have also been found to be able to
decrease the phagocytosis [691] and increase
intracellular survival in macrophages [201], as
well as conferring resistance to macrolides [312,
437], even though the latter mechanism more
likely is mediated by a transposon that is packed
in the phage during lysis [35]. Furthermore,
structural proteins from phages infecting S. mitis
have been suggested to increase the interaction
between the bacteria and platelets, and thereby
increase the pathogenic potential of the bacteria
[54, 623]. However, the products need not to be
harmful for us. For example cyanophages are
carrying photosynthesis genes that can be used
by the bacteria to grow faster [400, 440].

Table 2: Examples of phage mediated virulence factors

Species Protein Effect Reference

Staphylococcus aureus leukocidin kills neutrophils [226]
Streptococcus pyogenes hyaluronidase degrades extracellular matrix [313]
Streptococcus pyogenes DNase escape from NETs [461]
Streptococcus pyogenes SpeA superantigen [461]
Streptococcus pyogenes SpeC superantigen [461]
Streptococcus mitis phage protein binds to platelets [54]
Vibrio cholerae AB-toxin massive diarrhea [711]
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Even when phages are induced, they might
still contribute to the virulence for the bacte-
ria, since this induction also triggers the produc-
tion of the potential virulence factors encoded
by the phage [3, 276, 748]. Activators of this
process might be environmental, such as cell ex-
tracts [90, 91] or hydrogen peroxide from neu-
trophils [709]. The activating signal can even
be antibiotics, thereby enhancing the pathogen-
esis rather than decreasing it [365, 450]. Activa-
tion of prophages can also lead to spread of vir-
ulence, mediated by phages, to non-pathogenic
strains of the normal flora [89].

5.5 Phages in the industry

5.5.1 Industrial problems with
phages

Fermentation, a process to change carbohy-
drates into alcohols, is often used in several in-
dustries to generate among others yogurt and
vinegar. This fermentation is processed by bac-
teria, and is hence sensitive for the activity of
phages [73]. It has been estimated that between
0.1-10% of all fermentations are destroyed, de-
pending on the industry [73, 478]. This prob-
lem is mainly due to that phages are difficult
to eradicate, and investigations have shown the
presence of phages in the air of fermentation in-
dustries, reaching concentrations of 105 pfu/m3

[509]. Due to this problem, a huge effort has
been made to characterize phages infecting lac-
tic acid bacteria, and more than 100 phages have
been sequenced [4, 98], mainly being classified
as Siphoviruses [69]. Several strategies have
been assessed in order to solve this problem,
among others by using different bacterial rota-

tion schemes [177, 627] and the usage of bacte-
rial strains resistant to most phages [208].

5.5.2 Phage display

The technique for phage display was invented
almost 25 years ago [630]. This is a technique
where peptides can be displayed on the surface
on phages, usually using their capsule proteins
[630]. It has so far only been used in phages
from E. coli [648, 734, 745], but has shown to
be a valuable tool in the development of mono-
clonal antibodies [736] and for vaccination stud-
ies [47, 465].

5.6 Phage therapy

5.6.1 Phage therapy using whole
phages

When Twort in 1915 first discovered viruses
that could infect bacteria he soon realized that
phages could be used as antibacterial agents
[659]. He was, nevertheless, not the first to iden-
tify the antibacterial effect of phages. Already
in 1896, Hankin could demonstrate that water
from rivers could kill Vibrio cholerae [268], but
did not conclude that this was due to bacterial
viruses. Furthermore, in 1918 d’Hérelle also
understood the therapeutic potential amongst
phages and used them to treat dysentery [661],
and cholera in India [164], where the mortality
decreased from 25% to 0% [96]. Soon, many
more scientists followed their lead and used
phage therapy to treat different bacterial infec-
tions [101, 155, 644]. Phage therapy was mainly
used to treat dysentery [30], but also against dif-
ferent lung diseases [317] and wounds [760].
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Most phage therapies have so far been con-
ducted in former Soviet [464, 629, 657], where
they used phages against S. aureus and E. coli,
even during World War II [660], which also was
true for Germany [274]. Phage therapy is still
being used in some former Soviet states with
proposed beneficial effects [364, 598]. How-
ever, since most trials were conducted in the for-
mer East block, the Western countries had prob-
lems to interpret the results [659]. Simultane-
ously, penicillin was introduced, and phage ther-
apy was in West only suggested to be better than
no treatment at all. Due to those coincidences,
research in phage therapy was forgotten in West,
but still continued in East.

Even though phage therapy was a forgotten
subject in parts of the world, it recently started
to gain increased attention from the scientific
community. The reason for this was mainly the
lack of development of new antibacterial drugs
from the pharmaceutical industry [508, 666].
Furthermore, some scientists have raised con-
cerns that we might come back to the time
before antibiotics were invented [381] due to
the increasing resistance seen amongst bacte-
ria. This need for a novel class of antibacterial
substances restarted the research in phage biol-
ogy and the potential of phage therapy. The re-
search was partly done in order to develop vet-
erinary applications [29, 42, 307, 632]. One
of the more ambitious phage therapy experi-
ments was performed by Smith & Huggins in
1982 by using an E. coli infection model [631].
They could conclude that the presence of phages
severely diminished the effect of a bacterial in-
fection [631]. Further studies by other groups
could show that phage therapy was effective

even against antibiotic resistant bacteria [629],
and even had better effect than several antibi-
otics [464]. Several other groups could conclude
that phage therapy could rescue animals from
severe infections [42, 451, 641], and again con-
clude its superiority versus antibiotics, since the
animals in the study did not lose as much weight
when treated with phages, as did animals treated
with antibiotics [742]. However, it is still not
concluded if the combination of phages and an-
tibiotics is beneficial, since evidence points at
both directions [466, 660].

Still, even though some results were promis-
ing, there were also issues that remained to be
solved. One of the major reasons that phage
therapy was not used even more extensively
with success during the first years was due to
the lack of basic knowledge of phage biology
[371] and due to the fast development of phage
resistant bacterial strains [186, 431]. However,
this resistance is often expensive for bacteria in
the sense that they will have a loss of fitness
[186, 631]. This was experimentally shown by
Harcombe et al. in 2005 when phage resis-
tant E. coli was outcompeted by a Salmonella
strain, not able to outcompete the wildtype E.
coli [269]. Therefore, a potential development
of resistance to phages might be beneficial for
a therapeutic purpose [395], and might only be
a laboratory problem since the same problem
does not seem to exist in in vivo assays [431].
Furthermore, this resistance is not gained when
the therapy is applied, but already exist in a
small fraction of the bacterial community [269].
The potential problem with the development of
phage resistant bacterial strains could partly be
solved by using phage cocktails [173]. This has

57



with success been used both for Salmonella on
chickens [678] and for E. coli [668]. Further-
more several products using phage cocktails are
becoming commercially available, as PhageBio-
Derm bandages using phages against E. coli, S.
aureus and S. pyogenes [443].

As modern trials with good controls have not
indicated any severe side effects of phage ther-
apy [100, 391] it is important to consider the
route of administration. Phages are suggested
to have a good delivery route in the body [451]
and can even cross the brain-blood barrier [668].

Furthermore, they can penetrate the skin and
reach the blood stream [346]. This high abun-
dance of phages will start the production of an-
tibodies [133, 387, 451], and we all have sev-
eral circulating B-cell clones specific for phages
[324, 369]. Phages can also rapidly be inacti-
vated by neutrophils secreting hypoclorid acid
[198]. However, phages will anyway rapidly be
cleared from circulation in a non B-cell medi-
ated way [224] and will be concentrated in the
spleen [347].

Figure 6: A schematic figure of the petidoglycan layer in P. acnes. The glycan chain consist of
N-acetylmuramic acid (1) and N-acetylglucosamine (2), and the peptide chain consist of L-alanine
(3), D-glutamate (4), L,L-α,e-diaminopimelic acid (5), D-alanine (6), and glycine (7). Activities of
phage endolysins are visualized as gray arrows. 1 - endopeptidase, 2 - amidase, 3 - N-acetyl-β-D-
glucosaminidase, 4 - N-acetyl-β-D-muramidase
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In the human body, phages have several pro-
posed functions, unrelated to their antibacterial
effect. Phages have been suggested to bind to
integrins on human cells [236], thereby inhibit-
ing signaling through NF-κB and thus be im-
munosuppressive [237, 238]. They also seem to
decrease the production of ROS [558, 718] and
could protect against other viruses [238, 467]
such as herpes simplex [43, 123]. The antiviral
activity is suggested to be due to an increase of
interferon when stimulated with phages [363],
which also is seen when free phage DNA is in-
jected [316, 487]. Furthermore, phages, and in
particular holins, have been proposed to have
anti-tumor effects [10, 238].

The usage of phages as a therapy has several
benefits. Not only are they specific, thereby not
affecting the commensals [245]. The commen-
sal flora is not even affected if the therapy is di-
rected to that particular species, potentially due
to different susceptibilities [100]. Furthermore,
phages can replicate at the site where they are
needed the most [699] and are not hindered by
biofilms [139]. It has also been reported that
phages have effect on intracellular pathogens,
by hijacking a bacterium outside the cell. Once
the phages are inside the cell, they can kill all
resting bacteria [92]. However, what makes
phages advantageous is also their weakness as a
therapeutic agent. Their high specificity gives a
need to identify the infectious agent before treat-
ment [284]. Furthermore, there is a fear that the
phages might be able to transport genetic ma-
terial [326] and even integrate in human cells
[614, 615]. The fast destruction of bacteria will
also generate a huge amount of free endotox-
ins from the cell walls that might influence the

pathogenesis in an unwanted direction [504].
Even though several issues still remain to be

solved considering phage therapy, they are used
in several countries [717, 718], and are proposed
to be used mainly as veterinary applications to
reduce the Salmonella and Campylobacter bur-
den on chickens [138, 233, 290, 408], against
E. coli in cattle, in fish farms [500, 538] and
to protect fresh fruit from bacteria [393, 394].
However, several more applications are being
developed based on the phages, for usage in both
medicine and biotechnology.

Except being capable of killing bacterial
pathogens, the phages can also be used as spe-
cific delivery transportation molecules [133],
and deliver DNA or antimicrobial substances
[234, 591, 727]. Furthermore, many phages
have the ability to degrade biofilms [48] that cur-
rently is a huge medical problem. On a more
biotechnological level, both luciferase genes
[689] and GFP (green fluorescent protein) [215]
have been coupled to phages both in order to
study phage infection cycles, but also to be able
to identify contaminating bacteria [413].

5.6.2 Phage therapy using phage
endolysins

Due to the potential drawbacks using whole
phages, researchers have started to investigate
the potential of using purified phage lytic en-
zymes. Those enzymes, commonly called
lysins, are more correctly called endolysins due
to their effect from the inside (Figure 6) [321],
but have also been called virolysin [537] even
though this word seldom is used. The first lysin
ever identified came from Streptococcus phage
C1, almost 40 years ago, and was identified by
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Fischetti [206]. Many years later, the potent ef-
fect of this lysin was demonstrated when Loef-
fler in 2003 lysed more than 107 group A Strep-
tococci in less than 5 seconds using no more
than 10 ng lysin [409]. The effects seen using
those enzymes lead scientists to think of phage
lysins as ”enzybiotics” [507]. However, so far
the only available phage lysin, plyG, is active
against B. anthracis and is used by the US Cen-
ter for Disease Control and Prevention in At-
lanta [76].

Just as the phages are specific, so are the
lysins, even though the specificity is to species
rather than to single isolates [205], and even
though exceptions exist that have activity to
several species [751]. Lysins are quite potent
against Gram-positive bacteria even from the
outside [203]. Gram-negative bacteria should in
theory be resistant to this treatment due to their
cell wall structure. However, some data suggest
that even Gram-negative bacteria might be af-
fected by lysin treatment [176, 447, 527], and
there is ongoing research to increase the effi-
ciency versus Gram-negative bacteria by pen-
etrating the lipid layer [314]. Furthermore, a
group has successfully anchored lysins to the
cell surface of E. coli using a fusion protein
with OmpC in order to more easily distribute the
lysin and have the ability to express more lysin
at the site where it is needed [677]. Another
example of increasing the efficiency of phage
lysins was demonstrated by Lopez by creating
chimeric lysins, with N- and C-terminal parts of
the lysin from different phages [424, 425].

Another major concern regarding the usage
of phage lysins is the potential development of
resistance towards the proteins. Even though re-
sistance to lysins seemed unlikely due to their
conserved and essential binding sites [77, 205],

this was nevertheless investigated. So far no
lysin resistant strains have been identified [203],
not even after repeated exposure to low levels of
purified enzymes [411, 616]. However it should
be mentioned that lysins have a decreased ef-
fect against bacteria in stationary phase due to
an altered peptidoglycan layer [411, 555]. Fur-
thermore, not even antibodies directed towards
the lysins will inhibit their effect [409]. So far,
the only bacterial ”resistance” known to lysins is
sporulation. However, even the spores are sen-
sitive to lysins as soon as they start to germinate
[616].

Lysins have been used in several animal mod-
els, without displaying any severe side effects,
even though the treatment results in a rapid re-
lease of endotoxins [185]. This will lead to
a release of proinflammatory cytokines, which
is higher than compared to treatment with van-
comycin [185]. However, some studies also
indicate that the levels of proinflammatory cy-
tokines are lower using lysins compared to regu-
lar antibiotics [737]. The combination of lysins
and antibiotics has been a successful combina-
tion in the experimental eradication of S. pneu-
moniae [166]. Furthermore, lysins are able
to eradicate antibiotic resistant bacterial strains
[409, 410, 411] in biofilms [607], and have been
shown to be able to cure several animal mod-
els from bacterial infections [126, 322, 507, 518,
616].

These data have made scientists to suggest
that lysins could be used as prophylaxis [204]
in order to decrease the number of potential
pathogens before they can cause disease and
thus prevent pathogenic conditions [202]. This
therapy would furthermore decrease the risk of
secondary viral infections [455].
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