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Zusammenfassung 
Meroplanktische Polychaetenlarven aus dem Lister Tidebecken (östliche Nordsee) 

wurden bestimmt, horizontale und vertikale Verteilungsmuster untersucht sowie 

zeitliche Abundanzschwankungen analysiert. Gezeiten verursachen starke 

Schwankungen der Wassertiefe innerhalb der Bucht und Jahreszeiten und Wetter eine 

hohe physikalische und biologische Variabilität. Die taxonomische Untersuchung der 

Larven erfolgte anhand von Proben einer fast täglichen Zeitreihe von einer festen 

Probenstelle (1996-2001) sowie von Proben, die innerhalb der gesamten Bucht während 

Ebbe und Flut zwischen 2000 und 2002 genommen wurden. Larven von insgesamt 46 

Taxa, verteilt auf 18 Familien, wurden bestimmt. Artenreichste Familie waren die 

Spionidae (36% aller Taxa), gefolgt von Phyllodocidae (14%) und Polynoidae (9%). 

Die mittlere Abundanz der 1996-2001 Zeitreihe war 2.1·l-1 (±0.3). Die häufigste Art war 

Pygospio elegans, gefolgt von anderen Spioniden (Spio martinensis und Polydora 

cornuta) und Lanice conchilega. Die mittlere Abundanz aller Larven in der Bucht 

(2000-2002) betrug 3.7·l-1 (±0.2). Eine geringe Übereinstimmung zwischen der 

Artenzusammensetzung in Plankton und Benthos deutet auf einen bedeutenden Eintrag 

von Larven entfernteren Ursprungs hin. Eine unterschiedliche Artenzusammensetzung 

des Planktons an verschiedenen Stellen innerhalb der Bucht lässt vermuten, dass die 

Larven nicht durch Hydrodynamik zufällig gemischt werden. Räumliche 

Verteilungsmuster der Larven wurden zwischen 2000 und 2002 auf drei verschiedenen 

räumlichen Skalen (mehrere hundert Meter, ein Kilometer und mehrere zehn Kilometer) 

sowie während Hoch- und Niedrigwasser untersucht. Trotz des ständigen 

Wasseraustausches mit der Nordsee verbleiben Polychaetenlarven innerhalb der Bucht. 

Benthische Vorkommen und Küstenmorphologie könnten art-spezifische 

Verteilungsmuster verstärken. Explorative multivariate Methoden ergaben eine hohe 

Variabilität der Abundanz und Diversität der Larven zwischen den Jahren (1996-2001), 

jahreszeitliche Muster waren hingegen ähnlich und signifikant positiv korreliert mit 

einem Anstieg von Phytoplanktonbiomasse (Chla), pH-Wert und Wassertemperatur 

(°C) zwischen Frühling und Sommer. Nicht-synchrone Schwankungen (<1-12 Monate) 

der °C-, NO2-, PO4- und Gesamt-Silikat-Werte waren mit der Larvenabundaz 

signifikant korreliert und sind wahrscheinlich an endokrinen Prozessen und der Reifung 

der Gonaden in adulten Polychaten beteiligt. Synchrone Schwankungen der Chla-, NO2-

, pH-, PO4-, Salinität- und °C-Werte waren signifikant mit der Larvenabundanz 
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korreliert und vermutlich an der Auslösung des Laichens und der Nahrungsgewinnung 

der Larven und Adulten beteiligt. 

 
Summary 
Polychaete meroplanktonic larvae from the List tidal basin in the eastern North Sea 

were identified, their horizontal and vertical distribution patterns described, and 

temporal abundance fluctuations analyzed. Tides cause marked changes in the depth of 

this basin, while seasonality and weather dependence cause high environmental and 

biological variability. The taxonomic composition was analyzed from a quasi-daily 

time-series (1996-2001) obtained at a fixed point inside the basin, as well as samplings 

covering the basin during flood and ebb periods between 2000-2002. Larvae of 46 

polychaete taxa belonging to 18 families were identified. Spionids were the most 

diverse (36% of the total number of taxa), followed by larvae of phyllodocids (14%), 

and polynoids (9%). The averaged abundance for the 1996-2001 time series was 2.1·l-1 

(±0.3) with Pygospio elegans being the most abundant species, followed by other 

spionids (Spio martinensis and Polydora cornuta) and the terebellid Lanice conchilega. 

Between 2000-2002, the average abundance througout the basin was 3.7·l-1 (±0.2). A 

low correspondence between benthic and planktonic assemblages suggested a 

qualitatively important input of long-distance larval vagrants. Sites within the basin 

differed in species composition, suggesting that larvae are not randomly mixed by the 

tidal hydrodynamics. Spatial distribution patterns were described by sampling at three 

spatial scales (hundreds of m, 1 km, and tens of km) during flood and ebb periods 

between 2000-2002. In spite of tides continuously exchanging water with the North Sea, 

polychaete larvae are retained inside the basin. Benthic occurrence and coastal 

morphology may enhance species-specific distribution patterns. Explorative 

multivariate methods revealed high inter-annual variability (1996-2001) in larval 

abundance and diversity, but seasonality remained regular, being positively and 

significantly correlated with spring-summer increments in phytoplankton biomass 

(Chla), pH-values, and water temperatures (°C). Lagged fluctuations (<1-12 months) of 

°C, NO2, pH-values, PO4, and total silicate were significantly related with larval 

abundances and are probably involved in endocrinal processes and gonadal maturation 

of adults. Instantaneous fluctuations of Chla, NO2, pH-values, PO4, salinity, and °C 
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were significantly related with larval abundances, being probably involved with 

triggering of spawning and feeding of larvae and adults.  
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Chapter 1. General introduction 
The North Sea coastal zone shared between Germany and Denmark has a long 

history of research on marine biology and ecology. Zooplankton research started in this 

area during the 70’s, focused on short-term descriptions of temporal dynamics of 

holoplanktonic copepods. Also meroplankton is a common and important component of 

marine zooplankton from neritic waters (Omori and Ikeda 1984). In this region, it is 

primarily represented by larval stages (transition stages between embryos and adults) of 

polychaetes, mollusks, and crustaceans (Hickel 1975; Martens 1980; Strasser and 

Guenther 2001). These must ensure the temporal and spatial persistence of populations, 

are important phytoplankton consumers, and represent a food source for other 

invertebrates and fish. 

Due to the common occurrence and frequently high abundance of marine 

invertebrate larvae, ecologists became interested in them, consolidating the “larval 

ecology” as a discipline about a half-century ago (Young 1990). Young (1990) and 

McEdward (1995) have comprehensively revised the history, achievements, questions, 

and limitations of marine invertebrate larval ecology. From these contributions, it is 

concluded that larval studies have an enormous potential. They have become highly 

diverse, because different kinds of biologists seek for different kinds of information 

(morphology, behavior, physiology, life-history ecology, dispersal, recruitment, 

evolution, genetics, etc.) in descriptive, comparative, experimental, and theoretical 

studies, opening a wide variety of perspectives. Nevertheless, many intrinsic limitations 

still hamper the obtainment of clear results in this discipline. 

The present study was undertaken inside one of the best-studied tidal basins of 

the German Wadden Sea, named the List tidal basin (see Gätje and Reise 1998). This is 

an enclosed bay, formed by the islands of Sylt and Rømø and causeways connecting 

these islands to the mainland; therefore, the water exchange is limited to a narrow tidal 

inlet between the islands. The depth of the basin varies with the tides, with a mean tidal 

range of 2 m. The water volume inside the basin at mean high tide is twice the mean 

low tide volume. One third of the basin area remains uncovered during low tides, and 

deep areas (depths >5 m) represent only 10% of its area. Particles are likely to settle 

only during slack water. Riverine discharges are negligible. Much of the local 

environmental and biological variability is produced by a pronounced seasonality and 

weather dependence.     
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Since polychaetes are one of the dominant groups of the macrozoobenthos inside 

the basin (Lackschewitz and Reise 1998), this study is focused on this group, attempting 

to assess three questions: Which polychaete species occur as meroplanktonic larvae 

inside the basin? How do these distribute? and How large are their temporal 

abundance fluctuations? 

 Larval identification is necessary in studies on recruitment and dispersal. The 

composition of polychaete larvae from the List tidal basin has remained unclear until 

now. Previous studies covered point locations, comprised short time periods, and did 

not perform detailed taxonomic analyses. In the present study, the local taxonomic 

composition was analyzed combining a time-series comprising 6 years (1996-2001) 

obtained at a fixed point inside the basin, as well as samplings covering almost the 

whole basin during flood and ebb periods between 2000-2002. The eastward and 

northward residual transport of water masses from The Netherlands, passing the Elbe 

estuary, may allow long-distance vagrants to join the species spectrum of the basin. This 

was analyzed in Chapter 2 (Species identity and taxonomic remarks on polychaete 

larvae in the plankton of a tidal basin in the North Sea). Low correspondence between 

local benthic and planktonic assemblages was found, suggesting that long-distance 

larval vagrants are qualitatively important. Since some taxa were captured at specific 

areas inside the basin, it seems that location is important for the taxonomic composition. 

The study area is characterized by semi-diurnal tides and high wind stress, which 

together with the bottom topography produce strong currents (Backhaus et al. 1998). 

The water is in continuous movement and there is a strong exchange of energy and 

matter between the coast and the North Sea. Ecologists interested in marine invertebrate 

larval dispersal often perceived larvae as drifting bodies in a well-mixed water body, 

being at the mercy of currents, and subjected to wide dispersal. Nevertheless, 

macrozoobenthos do not distribute homogenously inside the basin. From the ecology of 

rocky shores it is known that larval supply determines to a large extent the distribution 

of benthic stages (see Ólafsson et al. 1994). In order to test this for soft-bottom fauna, 

the spatial patterns of larval abundance inside the basin were analyzed in Chapter 3 

(Spatial patterns of abundance in meroplanktonic polychaete larvae in a tidal basin), 

sampling polychaete larvae at three spatial scales during a 3-year period and comprising 

flood and ebb periods (whenever possible). It was tested whether strong tidal mixing 

prevents the development of non-random spatial patterns within the waters of the basin, 

whether polychaete larvae show differential vertical distributions in the water column 
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during flood and ebb flows, and whether they correspond to an onshore gradient of 

suspended particles of comparable size. Results obtained at three spatial scales point to 

larval retention as the dominant process inside the basin and suggest that a combination 

of benthic occurrence and coastal morphology enhances species-specific distribution 

patterns. These findings support recent studies (e.g. Kingsford et al. 2002 and Swearer 

et al. 2002), and illustrate that our understanding of marine invertebrate larval dispersal 

is changing. 

The study of abundance fluctuations has been one of the most important tasks of 

ecology (Hanski 1997). Ecologists are interested in knowing when larvae occur and 

how large their abundance fluctuations are. The wide spectrum of morphologies, 

behaviors, and life histories of polychaetes complicates the picture on mechanisms of 

reproductive timing and synchrony. Reproductive synchronization can be achieved by 

coupled endogenous rhythms and environmental factors, but it is complicated by spatial 

changes and seasonal shifts in environmental parameters. The environmental variability 

of the Wadden Sea (e.g. strong winters and marked environmental seasonality) 

influences abundance fluctuations of benthic stages, but relationships between larval 

abundances and the environment have not been studied until now. Here, temporal 

dynamics and seasonality of polychaete larvae and environmental variables were 

analyzed with explorative multivariate methods, comprising 6 years (Temporal 

dynamics of meroplanktonic polychaete larvae in a tidal basin of the North Sea: Are 

year-to-year fluctuations related to environmental variability?). Locally, larval 

abundances show a high inter-annual variability. Lagged fluctuations of water 

temperature, NO2, pH-values, PO4, and total silicate have significant effects on larval 

abundances, being probably involved in endocrinal processes and gonadal maturation. 

Instantaneous fluctuations of phytoplankton biomass, NO2, pH-values, PO4, salinity, and 

water temperature affect larval abundances significantly, being probably related to the 

triggering of spawning, larval feeding, and feeding of adults to support ongoing 

spawning. The seasonality in larval abundance and diversity is rather regular, being 

positively and significantly correlated with increments in phytoplankton biomass, pH-

values, and water temperatures during the spring-summer period.  

Studying the ecology of planktonic larvae, in a variable environment like the 

Wadden Sea, was a challenge and not a trivial task. 
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Chapter 2. Species identity and taxonomic remarks on 

polychaete larvae in the plankton of a tidal basin in the North 

Sea 
 
Abstract 

Meroplanktonic larvae of 46 polychaete taxa, belonging to 18 families, were identified 

from a set of water samples that covered the List tidal basin from 1996 to 2002. Larvae 

of spionids were the most diverse (36% of the total number of taxa), followed by larvae 

of phyllodocids (14%), and polynoids (9%). Based on the transport pattern of water 

masses by residual currents, at the scale of the German Bight, it is thought that long-

distance vagrants could join the local species spectrum, since larvae from the Elbe 

estuary and the island of Helgoland could drift up to the area. Local records on 

polychaete taxa gathered during the last 75 years revealed that from 94 taxa with or 

presumably with larval stages, 45 are known from benthic stages only, 26 are only 

known as larval stages, and 23 have been found in both forms. This reveals a low 

correspondence between the benthic and planktonic species assemblages, and suggests 

that long-distance larval vagrants may be important. Twelve out of the 46 taxa 

encountered in this study were found at specific sites inside the basin, suggesting that 

location plays an important role for species composition.   

 
1. Introduction  

Polychaete larvae are worldwide components of coastal and open sea 

zooplankton. Their identification to species level is prerequisite for the analysis of 

recruitment processes and improves our knowledge about regional species richness. In 

polychaetes, the latter can substantially increase if plankton samples are included, since 

some species may locally occur only as larvae (Bhaud and Cazaux 1987). 

The European Wadden Sea area is nursery for many marine invertebrates and 

fishes, and serves as feeding and resting ground for flocks of migratory birds. 

Polychaetes are an important diet of these consumers. Taxonomic studies on polychaete 

larvae from this region started with the description of material from Ringköbing 

(Denmark, 60 km north from the northernmost tip of the Wadden Sea) by Thorson 

(1946). Smidt (1951) described material from the Danish Wadden Sea. Finally, Plate 

and Huseman (1991 and 1994) described larvae from Helgoland. This short list is in 
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marked contrast to an extensive literature on the benthic adults (see Hartmann-Schröder 

1996). 

Residual currents transport water masses from the Dutch coast eastward and, 

after passing the Elbe estuary, northward (Postma 1983). This may allow long-distance 

vagrants to join the local species spectrum. This was looked for, when the composition 

of polychaete meroplanktonic larvae inside the List tidal basin was studied.   

 
2. Methodology  

2.1. Sampling schemes 

Three sampling strategies were undertaken, covering different temporal and 

spatial scales (Fig. 2.1). First, one surface water sample (10 l) was taken between 

January 1996 and December 2001 at List harbor during diurnal high tides, daily (spring 

to autumn) or weekly (winter). Second, at each of four sampling stations along the main 

tidal channel of Königshafen, five surface water samples (10 l each) were taken during 

diurnal high tides. Third, 11 stations distributed along the three main channels of the 

List tidal basin were sampled during diurnal high and low tides: four stations distributed 

along Lister Ley, four along Høyer Dyb, and three along Rømø Dyb. At each station, 

five water samples (10 l each) were taken from the surface, as well as three meters 

above the bottom. Sampling dates for the second and third schemes are given in Table 

2.I. Königshafen is a shallow area (maximal depth of 5 m during high tides), while the 

rest of the sampled areas have maximal depths of 30 m. Water was filtered through a 80 

µm mesh. 

2.2. Identification of larvae 

Identification was done following identification keys and/or comparing the 

material with illustrations and/or descriptions in the literature. The amount of taxonomic 

literature for polychaete larvae is much smaller than for adult stages, and less focused 

on geographical regions. In many cases, literature sources on adult stages were 

combined with notes on larval stages. Observations of live and fixed material were 

necessary in many cases (e.g. bands of cilia are easily detected in live material, but the 

shape of setae and hooks not). Larvae were fixed in seawater with 10% formol and 

preserved in methanol 70%. All species were schematized, and photographed under 

SEM when possible. Identities were corroborated by Dr. Michel Bhaud (Observatoire 

Oceanographique Banyuls-sur-Mer, France). 
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Fig. 2.1. Study area with sampling stations. Sediment types are taken from Strasser 

(2000). 
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Table 2.I. Sampling dates for polychaete larvae in Königshafen and the main gullies of 

the List tidal basin, between April 2000 and August 2002. 

KÖNIGSHAFEN 
Year 2000: April 20 and 28, May 8, 15, 25, and 31; June 13; July 3, 13, 24; Aug 7 and 22; Sep 
12; Nov 20. 
Year 2002: May 15; June 19; July 8; Aug 20. 

 
LIST TIDAL BASIN 

  Channel  
 Lister Ley Høyer Dyb Rømø Dyb 

High tide 

Dec 6, 2000 
Feb 19, 2001 

July 2 and 17, 2001 
May 7 and  22, 2002 
July 2 and 17, 2002 

Dec 7, 2000 
Feb 20, 2000 

July 3 and 18, 2001 
May 6 and 23, 2002 
July 3 and 18, 2002 

Dec 11, 2000 
Feb 21, 2000 

July 4 and 19, 2001 
May 8 and 24, 2002 
July 4 and 19, 2002 

Low tide 

June 6, 2001 
Sep 3 and 10, 2001 

Apr 4, 2002 
May 27, 2002 
June 11, 2002 
July 24, 2002 
Aug 22, 2002 

June 7, 2001 
Sep 4 and 11, 2001 

Apr 10, 2002 
May 28, 2002 
June 12, 2002 
July 25, 2002 
Aug 23, 2002 

June 8, 2001 
Sep 5 and 12, 2001 

Apr 11, 2002 
May 29, 2002 
June 13, 2002 
July 26, 2002 
Aug 21, 2002 

 
3. Results 

Forty-six taxa were found, belonging to 18 families (Table 2.II). Spionids were 

the most diverse group (36% of the total number of taxa), followed by phyllodocids 

(14%), and polynoids (9%). Brief descriptions and taxonomic remarks are provided, 

followed by a key on the larvae encountered.   

Family Orbiniidae Hartman 1942 

Scoloplos (Scoloplos) armiger (O.F. Müller 1776) (Fig. 2.2) 

Benthic stages of this species occur inside the basin and its larvae are common between 

March-May and October-December. Trochophore were about 360 µm in average 

length. The largest metatrochophore was 470 µm long with 8 setigers. Plate and 

Husemann (1991 and 1994) described meroplanktonic larvae from Helgoland. Based on 

the illustrations of larvae identified as Heteromastus filiformis by Smidt (1951) in the 

Danish Wadden Sea, it is very likely that he also observed meroplanktonic larvae of S. 

armiger. Non-pelagic larvae and juveniles released from egg-cocoons were first 

described by Thorson (1946). Populations in the List basin produce non-pelagic 

juveniles (about 360 µm in length) as well as pelagic larvae with well-developed setae 

and cilia. Non-pelagic juveniles are also commonly re-suspended in the water column. 
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Kruse (2002) recognized populations with pelagic and benthic larvae as belonging to 

separate species, termed as “S” and “I”, in reference to the subtidal and intertidal 

occurrence, respectively.  

Family Spionidae Grube 1850 

Aonides paucibranchiata Southern 1914 (Fig. 2.2) 

Benthic stages occur inside the bight and their larvae are common between May-

September. Only stages having 12-19 setigers were found, being 700-1000 µm long. 

Body without pigmentation. Long palpi are present and ventral hooded hooks have three 

teeth. A detailed description is in Hannerz (1956). 

Laonice cirrata (M. Sars 1851) (Fig. 2.2) 

Benthic stages have not been found inside the basin, but in the German Bight, and its 

larvae are very common between May-June. Sizes ranged from 580 to 1300 µm in 

length, with 4 to 12 setigers. Strong serrated setae in the posterior part of the body are 

characteristic. Descriptions in Hannerz (1956), Bhaud and Cazaux (1987), and Plate and 

Husemann (1994).  

Malacoceros fuliginosus (Claparède 1868) (Fig. 2.3) 

Benthic stages are known inside the basin, but its larvae were found only at 

Königshafen between May-July, being relatively rare. Sizes were about 800 µm in 

length. Palpi are long and the body lacks pigmentation. Description in Plate and 

Husemann (1994). 

Polydora ciliata (Johnson 1838) (Fig. 2.3)  

Benthic stages occur inside the basin and larvae are very common between March-July 

and September-November. Sizes ranged from 650 to 1230 µm in length with 11 to 18 

setigers. Descriptions in Thorson (1946), Hannerz (1956), and Plate and Husemann 

(1994). 

Polydora cornuta Bosc 1802 (Fig. 2.3) 

Benthic stages occur inside the basin and larvae are very common between April-

October. Sizes ranged from 550 to 1170 µm in length, with 9-17 setigers. The 

synonymy between P. ligni and P. cornuta was established by Hartmann-Schröder 

(1996). Smidt (1951) and Rasmussen (1973) discussed a synonymy between P. ligni 

(today P. cornuta) and P. ciliata, but Hannerz (1956), Michaelis (1978), Plate and 

Husemann (1994), and this work regard them as different species. Individuals lack 

ramified melanophores between the eyes described by Hannerz (1956) and Blake 

(1969).  
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Table 2.II. Polychaetes with meroplanktonic larval stages inside the List tidal basin, 
encountered in the period 1996-2002. 
 
Family Orbiniidae Hartman 1942 

1) Scoloplos (Scoloplos) armiger (O.F. Müller 1776) 
Family Spionidae Grube 1850 

Genus Aonides Claparède 1864 
2) Aonides paucibranchiata Southern 1914 

Genus Laonice Malmgren 1867 
3) Laonice cirrata (M. Sars 1851) 

Genus Malacoceros Quatrefages 1843 emend. Pettibone 1963 
4) Malacoceros fuliginosus (Claparède 1868) 

Genus Polydora Bosc 1802 
5) Polydora (Polydora) ciliata (Johnson 1838)   
6) Polydora (P.) cornuta Bosc 1802 
7) Polydora (P.) hermaphroditica Hannerz 1956 
8) Polydora Type I 
9) Polydora Type II 

Genus Pygospio Claperède 1863 
10) Pygospio elegans Claperède 1863 

Genus Scolelepis Blainville 1828 emend. Pettibone 1963 
11) Scolelepis (Scolelepis) bonnieri (Mesnil 1896) 
12) Scolelepis (S. ) squamata (O.M. Müller 1806) 
13) Scolelepis (S. ) girardi (Quatrefages 1866) 
14) Scolelepis Type I 

Genus Spio Fabricius 1785 
15) Spio martinensis Mesnil 1896 
16) Spio theeli (Söderström 1920) 

Genus Spiophanes Grube 1860 
           17) Spiophanes bombyx (Claparède 1870) 

Family Magelonidae Cunningham & Ramage 1888 
Genus Magelona F. Müller 1858 
           18) Magelona mirabilis (Johnston 1865) 

Family Poecilochaetidae Hannerz 1956 
Genus Poecilochaetus Ehlers 1875 
            19) Poecilochaetus serpens Allen 1904 

Familiy Capitellidae Grube 1862 
Genus Capitella Blainville 1828 
            20) Capitella Type I  
            21) Capitella Type II  

Family Polynoidae Malmgren 1867 
Genus Harmothoe Kingber 1855 
            22) Harmothoe (Harmothoe) antilopes McIntosh 1876 
            23) Harmothoe (Harmothoe) glabra (Malmgren 1865) 

 24) Harmothoe (Harmothoe) impar (Johnston 1839) 
            25) Harmothoe (Harmothoe) ljungmani (Malmgren 1867) 
            26) Harmothoe Type I 

Family Sigalionidae Malmgren 1867 
Genus Neolanira Pettibone 1970 

            27) Neolanira c.f. tetragona (Oersted 1845) 
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Table 2.II. Polychaetes with meroplanktonic larval stages inside the List tidal basin, 
encountered in the period 1996-2002 (continued). 

 
Family Phyllodocidae Oersted 1843 

Genus Phyllodoce Lamarck 1818 
            28) Phyllodoce (Anaitides) mucosa Oersted 1843 
            29) Phyllodoce (Anaitides) rosea (McIntosh 1877) 
Genus Eteone Savigni 1820 
Subgenus Eteone Savigni 1820 
            30) Eteone (Eteone) longa (Fabricius 1780) 
Subgenus Mysta Malmgren 1865 
            31) Eteone (Mysta) barbata Malmgren 1865 
Genus Eulalia Savigni 1822 
            32) Eulalia viridis (Linné 1767) 
Genus Pseudomystides Bergström 1914 emend. Pleijel 1991 
            33) Pseudomystides limbata (Saint-Joseph 1888) 
Family Hesionidae Malmgren 1867 
Genus Microphtalmus Mecznikov 1865 

  34) Microphtalmus aberrans (Webster & Benedict 1887) 
Family Nereididae Johnston 1865 

Genus Nereis Linné 1758 
35) Nereis Type I  
36) Nereis Type II 

Family Nephtyidae Grube 1850 
Genus Nephtys Cuvier 1817 

37) Nephtys caeca (Fabricius 1780) 
38) Nephtys hombergii Savigny 1818 

Family Sphaerodoridae Malmgren 1867 
39) Sphaerodoridae Type I 

Family Flabelligeridae Saint-Joseph 1894 
  40) Flabelligeridae Type I 
Family Dinophilidae Schultz 1902 

Genus Dinophilus O.Schmidt 1848 
           41) Dinophilus gyrociliatus O. Schmidt, 1857 

Family Pectinariidae Quatrefages 1865 
Genus Pectinaria Lamarck 1818 
Subgenus Pectinaria Lamarck 1818 
           42) Pectinaria (Lagis) koreni (Malmgren 1865) 

Family Terebellidae Malmgren 1865 
Genus Lanice Malmgren 1865 
           43) Lanice conchilega (Pallas 1766) 

Family Sabellariidae Savigny 1818 
Genus Sabellaria Savigny 1818 
           44) Sabellaria spinulosa Leuckart 1849 

Familie Sabellidae Malmgren 1867 
Genus Chone Kröyer 1856 emend. Banse 1972 
          45) Chone infundibuliformis Kröyer 1856 
          46) Chone Type I 
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Fig. 2.2. Polychaete larvae from the List tidal basin: Scoloplos armiger, Aonides 

paucibranchiata, and Laonice cirrata. 
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Fig. 2.3. Polychaete larvae from the List tidal basin: Malacoceros fuliginosus, Polydora 

ciliata, P. cornuta, and P. hermaphroditica. 

 
Plate and Husemann (1994) stated that this species can be distinguished from P. ciliata 

only with more than 15 setigers. Here, it was possible to separate individuals from nine 

setigers onwards, based on the dorsal band-shaped melanophores. Descriptions as P. 

ligni are in Smidt (1951), Hannerz (1956), Blake (1969), Bhaud and Cazaux (1982), and 

Plate and Husemann (1994). 
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Polydora hermaphroditica Hannerz 1956 (Fig. 2.3) 

Benthic stages have not been found inside the basin. Larvae were found around 

Königshafen, being rare and occurring between April -July. Sizes ranged from 450 to 

1200 µm in length with 7 to 19 setigers. They differ from other Polydora by having 

only one mid dorsal column of star-shaped chromatophores. Descriptions in Hannerz 

(1956) and Plate and Husemann (1994). 

Polydora Type I (Fig. 2.4) 

Benthic stages are unknown. Larvae were common between May-November, at all 

sampled areas. Specimens ranged from 750 to 1260 µm in length with 9 to 19 setigers. 

Prostomium rounded, with well-developed nuchal organs, and short prototroch. Three 

pairs of black eyes are arranged in “V” shape when viewed from above. Palpi are 

relatively short, distally rounded, robust, with black pigmentation at their basis. Nuchal 

crest is low. Five pairs of band-shaped dorsal melanophores are continued by two 

columns of large, bold, and intertwined star-shaped chromatophores. In large 

specimens, the notopodial lobes of the first setiger become fin-shaped and reach the 

second setiger in length (indicated by arrow in Fig. 2.4). Larval setae are not iridescent. 

Individuals with 9-14 setigers had ventral hooded hooks from the 9th setiger onwards, 

and those with 15-19 setigers had these hooks from the 7th setiger onwards. Notopodial 

lobes pigmented and telotroch well developed. 

Polydora Type II (Fig. 2.4) 

Benthic stages are unknown. Larvae were found along Høyer Dyb and Rømø Dyb, 

between November-February, being rare. Sizes ranged from 600 to 1200 µm in length 

with 3 to 20 setigers. Prostomium short, narrow, and rounded, with pigmentation 

restricted to the eyes. Six pairs of band-shaped dorsal melanophores are present, 

continued by two columns of small and diffuse star-shaped chromatophores. Prototroch 

absent and nuchal crest low. In individuals having up to 14 setigers, eyes are disposed in 

three pairs of spots, while in those with more than 18 setigers dorsal eyes are peduncle-

shaped. Nuchal organs rudimentary. Palpi flat, long, blade-shaped, and delicate. When 

their blades brake off, only a long, slender, and cylindrical main stem remains. Larval 

setae iridescent. Ventral hooded hooks appear from the 7th setiger in individuals with 

more than 14 setigers. Notopodial lobes with one pigment spot. Telotroch absent. To 

my knowledge, the presence of peduncle shaped eyes in polychaete larvae is here 

reported for the first time. SEM observations indicate that they do not have a smooth 
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surface, but are formed by small tubes. Juvenile and adult stages are required, to know 

whether eyes remain peduncle-shaped after metamorphosis. 

 

 
Fig. 2.4. Polychaete larvae from the List tidal basin: Polydora Types I and II. 

 
Pygospio elegans Claperède 1863 (Fig. 2.5) 

Benthic stages occur inside the basin and larvae are very common between March-

December. Sizes ranged from 420 to 1000 µm in length, with 8 to 15 setigers. 

Descriptions in Thorson (1946), Smidt (1951), Hannerz (1956), Rasmussen (1973), and 
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Plate and Husemann (1994). This species is able to reproduce by larvae and asexually 

(Morgan et al. 1999). Sexual and asexual reproduction (poecilogony) has been also 

reported for populations from Sylt (Anger et al. 1986). 

Scolelepis (S.) bonnieri (Mesnil 1896) (Fig. 2.5) 

Benthic stages have not been found inside the basin, but larvae are common between 

May-June. Sizes were around 2.5 mm in length, with 19 setigers. Body without 

chromatophores. Description in Plate and Husemann (1994). 

Scolelepis (S.) squamata (O.M. Müller 1806) (Fig. 2.5) 

Benthic stages occur inside the basin and larvae are very common between June-

August. Sizes ranged from 2 to 3.5 mm in length with 12 to 26 setigers. Pigmentation 

restricted to the prostomium (slightly red). Description in Plate and Husemann (1994). 

Scolelepis (S.) girardi (Quatrefages 1866) (Fig. 2.6) 

Benthic stages have not been found inside the bight. Larvae occurred between May-

July, being relatively rare. Body short and wide (400 to 1000 µm in length, with 5 to 12 

setigers). Early stages with thin black lines intertwined in the back and bold black spots 

close to the nuchal area. Larger individuals have scattered dorsal star-shaped 

chromatophores. Hoods from ventral hooks truncated. Description in Hannerz (1956).  

Scolelepis Type I (Fig. 2.6) 

Benthic stages unknown. Occurrence between May-July, being relatively rare. Body 

short and wide (600 to 1200 µm in length with 6 to 14 setigers). Early stages with two 

columns of bold rectangular chromatophores on the back. Older stages with irregularly 

distributed star-shaped chromatophores. Prostomium strongly rectangular and broad. 

Palpi are long. Ventral hooded-hooks have grooved hoods. 

Spio martinensis Mesnil 1896 (Fig. 2.7) 

Benthic stages occur inside the basin and larvae are very common between May-

October. Sizes range from 200 to 1200 µm in length with 6 to 18 setigers. Two columns 

of circular chromatophores run along the body back. These chromatophores reflect the 

light. Larval setae markedly long and give the body a fluffy appearance. Descriptions in 

Hannerz (1956), and Plate and Husemann (1994). Probably, the “Spionid larva F” 

illustrated and described by Thorson (1946) corresponds to S. martinensis. Poecilogony 

was reported by Blake and Arnofsky (1999). Adults occur in the lower intertidal 

(Lackschewitz and Reise 1998). 
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Fig. 2.5. Polychaete larvae from the List tidal basin: Pygospio elegans, Scolelepis 

bonnieri, and S. squamata. 
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Fig. 2.6. Polychaete larvae from the List tidal basin: Scolelepis girardi and Scolelepis 

Type I. 

 
Spio theeli (Söderström 1920) (Fig. 2.7) 

Benthic stages have not been found inside the basin. Larvae present between May-

October, being relatively rare. Size between 600 and 1400 µm in length with 10 to 23 

setigers. Dorsal chromatophores composed by thin and diffuse horizontal bands. Larval 

setae are long, giving the body a fluffy appearance. Description in Hannerz (1956).  

Spiophanes bombyx (Claparède 1870) (Fig. 2.7) 

Benthic stages are known for the basin. Larvae are common between May-July. Sizes 

were about 1000 µm in length with 13 setigers. Neurosetae from the first setiger are 

curved and the prostomium has small horns in the anterior region. Back of the body 

with two columns of black chromatophores between the 2nd and 6th setigers. 

Descriptions in Thorson (1946), Hannerz (1956), and Plate and Husemann (1994). 
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Fig. 2.7. Polychaete larvae from the List tidal basin: Spio martinensis, S. theeli, 

Spiophanes bombyx, Magelona mirabilis, and Poecilochaetus serpens. 
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Magelona mirabilis (Johnston 1865) (Fig. 2.7) 

Benthic stages have been found inside the basin. Larvae are very common between 

May-June. Sizes ranged between 400 and 900 µm in length with 2 to 10 setigers. 

Tentacles are ciliated. One modified lancelet-shaped seta present in the 10th setiger. 

Descriptions in Smidt (1951), Bhaud and Cazaux (1982), Wilson (1982), and Plate and 

Husemann (1994). M. papillicornis is a synonymy of mirabilis (Hartmann-Schröder 

1996). 

Poecilochaetus serpens Allen 1904 (Fig. 2.7) 

Benthic stages have not been found inside the basin. Larvae were rare, but present 

between June-July. Larvae were 7 mm in length with 29 setigers. Descriptions in 

Hannerz (1956), Bhaud and Cazaux (1982), and Plate and Husemann (1994). Bhaud 

(1983) described very similar larvae as paraonids. 

Capitella Types I and II (Fig. 2.8) 

Benthic stages of Capitella capitata occur inside the basin. Larvae of both types were 

common between March-October. In the first type, stages with lengths about 400 µm 

were found. The body lacking pigmentation. The anterior and posterior ends with rings 

of cilia. The length of the anterior and posterior regions is alike. Similar larvae were 

described by Plate and Husemann (1994). The second type had lengths between 300-

400 µm. Small black chromatophores more or less homogeneously distributed over the 

body. Cilia restricted to the pigydium. The length of the anterior an posterior regions is 

similar. Gamenick et al. (1998) observed that Capitella capitata in Königshafen is 

represented by two sibling species.  

Harmothoe (Harmothoe) antilopes McIntosh 1876 (Fig. 2.8) 

Benthic stages have not been found inside the basin. Larvae were found around 

Königshafen, being relatively common between July-September. Larvae were 2 mm in 

length with 13 setigers. Six pairs of dorsal elytra were present with small papilla 

homogeneously distributed over the surface, bordering also the edge of the elytra. Four 

types of papilla present: simple nipple-shaped, nipple-shaped with peaks on the top, 

short and rounded with peaks on the top, and short globule-shaped with peaks on the 

top. Noto- and neurosetae serrated. Identification was based on features from adults 

given in Hartmann-Schröder (1996). 
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Harmothoe (H.) glabra (Malmgren 1865) (Fig. 2.8) 

Benthic stages have not been found inside the basin. Larvae were found around 

Königshafen, being relatively common between July-September. Larvae were around 

400 µm in length with 7 setigers. Body with four pairs of dorsal elytra with few papilla 

covering their surface. Elytra with smooth edges. Finger-like papilla and short and 

globular papilla with short cilia present. Notosetae longer than neurosetae, both with 

only one side of the blade serrated. Identification was based on the features from adults 

given in Hartmann-Schröder (1996). Three pairs of dorsal eyes arranged as triangles.  

Harmothoe (H.) impar (Johnston 1839) (Fig. 2.9) 

Benthic stages are known for the basin. Larvae were found around Königshafen, being 

common between July-September. Individuals were around 300 µm in length with 6 

setigers. Body covered by four pairs of dorsal elytra, which were only covered with 

simple long papilla. Elytral edges smooth. Noto- and neurosetae similar in length. 

Neurosetae with one serrated edge. Two types of notosetae present: setae with both 

edges serrated and setae with only one serrated edge. Description in Plate and 

Husemann (1994).  

Harmothoe (H.) ljungmani (Malmgren 1867) (Fig. 2.9) 

Benthic stages have not been found inside the basin. Larvae were found around 

Königshafen, between July-September, being relatively rare. Sizes were about 1 mm in 

length with 6 setigers. Specimens lacked of elytra, but features from dorsal cirri and 

prostomium agree with those of adults described by Hartmann-Schröder (1996). 

Harmothoe Type I (Fig. 2.9) 

Benthic stages are unknown. Larvae were found around Königshafen, between July-

September, being relatively rare. Sizes were about 1 mm in length with 11 setigers. Six 

pairs of dorsal elytra were present. The surface of the elytra has smooth and porous 

sections, and their edges are smooth. Tube-shaped papilla long and slender. Notosetae 

with one serrated edge, while neurosetae with both edges serrated. 

Neolanira cf. tetragona (Oersted 1845) (Fig. 2.10) 

Benthic stages have not been found inside the basin. Larvae were found around 

Königshafen, between July-September, being rare. Body delta-shaped. Sizes were 

around 900 µm in length with 8 setigers. Two pairs of large black eyes present. Tips of 

the parapodial lobes pigmented black. Four large and thin jaws, with one short tooth, 

present. Four pairs of dorsal elytra present, covered with large and thin tube-like papilla 

restricted to the superior left quarter of the edge. Neurosetae articulated and notosetae 
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simple. Identification was based in the description of adults given in Hartmann-

Schröder (1996). 

 

 

 
 
Fig. 2.8. Polychaete larvae from the List tidal basin: Capitella Types I and II, 

Harmothoe antilopes, and H. glabra. 
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Fig. 2.9. Polychaete larvae from the List tidal basin: Harmothoe impar, H. ljungmani, 

and Harmothoe Type I. 

 

 26



Phyllodoce (Anaitides) mucosa Oersted 1843 (Fig. 2.10) 

Benthic stages occur inside the basin. Larvae were very common between March-

October. Sizes ranged from 600 to 900 µm in length with 7 to 17 setigers. Live larvae 

had greenish color. Early stages lack chromatophores, while older ones have rows of 

dorsal black chromatophores. Two pairs of black eyes present. Post-larval stages 

commonly found in the water column by re-suspension. Chromatophores vanish in post-

larval stages. Descriptions in Smidt (1951), Bhaud and Cazaux (1987), and Plate and 

Husemann (1994). 

Phyllodoce (Anaitides) rosea (McIntosh 1877) (Fig. 2.10) 

Benthic stages have not been found inside the basin. Larvae occurred between March-

October, being relatively rare. Sizes ranged from 500 to 1000 µm in length with 6 to 11 

setiger. Live larvae with pale bodies. Spots of black chromatophores are present at the 

basis of each parapodial lobe from early stages on. Eyes red. Post-larval stages were 

commonly found in the water column by re-suspension. Chromatophores remain in 

post-larval stages. Description in Plate and Husemann (1994). 

Eteone (Eteone) longa (Fabricius 1780) (Fig. 2.11) 

Benthic stages are known for the basin. Larvae occurred between March-October, being 

very common. Individuals were about 900 µm in length with 6 setigers. Dorsal and 

ventral tentacular cirri similar in length. Descriptions in Thorson (1946), Smidt (1951), 

and Plate and Husemann (1994). 

Eteone (Mysta) barbata Malmgren 1865 (Fig. 2.11) 

Benthic stages have not been found inside the basin. Larvae occurred between March-

October, being common, and ranging from 600 to 700 µm in length with 5 to 7 setigers. 

Dorsal tentacular cirri longer than ventral ones. Descriptions in Thorson (1946) and 

Plate and Husemann (1994).  

Eulalia viridis (Linné 1767) (Fig. 2.11) 

Benthic stages have been found inside the basin. Larvae present between March-

October, being common. Sizes from 600 to 1100 µm in length with 8 to 12 setigers. 

Prostomium with 5 antenna, 3 tentacular cirri, and red eyes. Dorsal bands of red 

chromatophores present. Descriptions in Thorson (1946) and Plate and Husemann 

(1994). 
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Fig. 2.10. Polychaete larvae from the List tidal basin: Neolanira cf. tetragona, 

Phyllodoce mucosa, and P. rosea. 

 
Pseudomystides limbata (Saint-Joseph 1888) (Fig. 2.11) 

Benthic stages have not been found inside the basin. Larvae present between March-

October, being common. Sizes from 700 to 1000 µm in length with 8 to 11 setigers. 
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Prostomium with 5 antenna, 3 tentacular cirri, and black eyes. Black dorsal 

pigmentation present. Description in Plate and Husemann (1994). 

Microphthalmus aberrans (Webster & Benedict 1887) (Fig. 2.11) 

Benthic stages occur inside the basin. Larvae were relatively rare, occurring between 

July-September. Sizes were about 700 µm in length with 6 setigers. Body broadest in 

the anterior part. Prostomium with four small black eyes, a pair of short antennae, and 

short palpi. Notopodial cirri at the 1st, 2nd, 4th, and 6th parapods. Early larval stages were 

described by Westheide (1967) and the identification was aided with the description of 

adults given by Hartman-Schröder (1996). 

Nereis Type I and II (Fig. 2.11) 

Benthic stages unknown. Larvae of both types occurred between April-July, being very 

common. Those belonging to Type I ranged from 300 to 700 µm in length, with 3 to 6 

setigers. Blue-green yolk grains present in all stages. Pigmentation restricted to four 

small black eyes. Individuals resemble those described as N. (Nereis) pelagica by 

Thorson (1946) and Plate and Husemann (1994). Larvae of Type II ranged from 500 to 

1000 µm in length with 5 to 11 setigers. Yolk grains absent. Jaws and proboscis 

musculature present from the earliest stages onwards. Dorsal red spots were present. 

Larvae of Type II resemble those described as N. (Neanthes) succinea by Rasmussen 

(1973) and Plate and Husemann (1994).  

Nephtys caeca (Fabricius 1780) (Fig. 2.12) 

Benthic stages occur inside the basin. Larvae occurred between June-October and are 

common. Sizes were about 800 µm in length with 7 setigers. Prostomium large, broad, 

and rounded. Anal cirri short. Descriptions in Thorson (1946), and Plate and Husemann 

(1994).   

Nephtys hombergii Savigny 1818 (Fig. 2.12) 

Benthic stages occur inside the basin. Larvae occurred between June-October and were 

common. Sizes were around 900 µm in length with 9 setigers. Prostomium small, 

narrow, and rectangular. Anal cirri long. Descriptions in Thorson (1946), Smidt (1951), 

Rasmussen (1973), and Bhaud and Cazaux (1982). 

Sphaerodoridae Type I (Fig. 2.12) 

Benthic stages of this family have not been found inside the basin. Larvae found around 

Königshafen, in August, and were rare. Body around 1mm in length with 10 setigers. 

Bodies barrel-shaped covered with small papilla. Prostomium rudimentary and 

pigydium bifurcated. Eyes were not visible. Setae bundles long and rigid. Bhaud and 
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Cazaux (1982) illustrated another type that differs markedly from the one found inside 

the bight.   

 
 

 
 

Fig. 2.11. Polychaete larvae from the List tidal basin: Eteone longa, E. barbata, Eulalia 

viridis, Pseudomystides limbata, Microphthalmus aberrans, and Nereis Types I and II. 
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Flabelligeridae Type I (Fig 2.12) 

Benthic stages of this family have not been found inside the basin. Larvae found around 

Königshafen, in May, being rare. Body about 1 mm in length with 15 setigers. Body 

elongated with its anterior region wider that the posterior one. Setae of the first setiger 

directed anteriorly. The body was covered by simple papilla. Ventral hooded hooks 

present from the first setiger onwards. The prostomium has three small antennae, two 

laterals, and one in the middle. The pygidium has four long fin-like lobules. 

Identification based on the description of adults given by Hartman-Schröder (1996). 

Dinophilus gyrociliatus O. Schmidt, 1857 (Fig. 2.12) 

This species has no pelagic larvae (Hartmann-Schröder, 1996) but re-suspended 

juveniles were frequent between September and October, in spite that benthic stages 

have not been found inside the basin. Sizes were around 500 µm in length. Their 

appearance was similar to larvae of Protodrilidae described by Bhaud and Cazaux 

(1987) and Plate and Husemann (1994) but differ for having three complete cilia-rings 

and one pair of black eyes. The body lacked pigmentation. Ciliated rings from the 1st, 

2nd, and last segments were incomplete. The prostomium is elongated and has cilia in its 

anterior region.  

Pectinaria (Lagis) koreni (Malmgren 1865) (Fig. 2.12) 

Benthic stages occur inside the basin. Larvae occurred between April-September and 

were relatively common. The body is protected by a tube, about 10 mm in length, with 

sand grains encrusted at its entrance. Larvae were about 800 µm in length with 10 

setigers. Golden paleae are directed to the front. Black dorsal chromatophores occur at 

the basis of each parapod. Setae lancet-shaped. Dorsal avicular uncini present in the 

posterior part of the body. Descriptions in Thorson (1946) and Smidt (1951). 

Lanice conchilega (Pallas 1766) (Fig. 2.13) 

Benthic stages occur inside the basin. Larvae occurred between April-September and 

are very common. Sizes ranged from 80 µm to 15 mm in length, with 2 to 25 setigers. 

The body is enclosed in a hyaline tube. Descriptions in Thorson (1946), Smidt (1951), 

Bhaud and Cazaux (1987), Bhaud (1988a), Marcano and Bhaud (1995), and Plate and 

Husemann (1994). 

Sabellaria spinulosa Leuckart 1849 (Fig. 2.13) 

Benthic stages are probably gone from the basin. Larvae were found around 

Königshafen, between May-June, and were rare. Sizes were about 500 µm in length 

with 4 setigers. Setae of the first setiger serrated and long, giving the body a fluffy 
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appearance. Bifurcated setae and uncini are present in the posterior part of the body. 

Palpi pigmented black. Body pigmented with black bands. Descriptions in Smidt 

(1951), Bhaud and Cazaux (1987), and Plate and Husemann (1994).  

 

 
Fig. 2.12. Polychaete larvae from the List tidal basin: Nephtys caeca, N. hombergii, 

Sphaerodoridae Type I, Flabelligeridae Type I, Dinophyllus gyrociliatus, and Pectinaria 

koreni. 
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Chone infundibuliformis Kröyer 1856 (Fig. 2.13) 

Benthic stages have not been found inside the basin. Larvae occurred between October-

November, being common. Sizes were about 400 µm in length with 3 setigers. Bodies 

barrel-shaped. Prostomium with a distal bundle of cilia and one pair of eyes. Setae 

composed by avicular uncini, as well as sword- and leaf-shaped setae. Body lack 

pigmentation. Identification based on adult features given in Hartmann-Schröder 

(1996).     

Chone Type I (Fig. 2.13) 

Benthic stages are unknown. Larvae present between October-November, being 

common. Sizes were about 300 µm in length with 3 setigers. Bodies barrel-shaped and 

pigmented orange-red. Prostomium without distal cilia. One pair of eyes present. Leaf-

shaped setae and avicular uncini present. Sword-shaped setae absent. 
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Fig. 2.13. Polychaete larvae from the List tidal basin: Lanice conchilega, Sabellaria 

spinulosa, Chone infundibiliformis, and Chone Type I. 

 
IDENTIFICATION KEY FOR MEROPLANKTONIC POLYCHAETE LARVAE 

FROM THE LIST TIDAL BASIN 

(1) Larvae with tube …………………………………………………….……………..(2)  

     Larvae without tube ...…………...……………………………………...……….…(3) 

(2) Prostomium with paleae……..……………………………Pectinaria (Lagis) belgica 

      Prostomium without paleae…………………...……...……………Lanice conchilega 

(3) Body with elytra………………………...………………………………………….(4) 

      Body without elytra…………………………………...…………………………....(9) 
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(4) Dorsal cirri absent, notosetae simple and neurosetae compound, elytral papilla 

restricted to the superior left quarter of the elytra and over their 

edges.…………………………………………………...……Neolanira ca. tetragona  

      Dorsal cirri present, dorsal and ventral setae simple……………………..…….….(5) 

(5) With two pairs of dorsal cirri…….………..……...…………..……………………(6) 

      With three to four pairs of dorsal cirri………………….……….…………………(7) 

(6) Anal cirri long…… …...…………...…..………. Harmothoe (Harmothoe) ljungmani 

     Anal cirri short. Elytral surface with numerous 

papillae………………………………………………Harmothoe (Harmothoe) impar 

(7) Elytral edge with numerous short papillae…….... Harmothoe (Harmothoe) antilopes 

      Elytral papilla scarce and elytral edges smooth….…..…………………...………..(8) 

(8) Elytral surface with smooth and porous areas and covered by long 

papillae………………………………………………………….....Harmothoe Type I 

      Elytral surface homogeneously smooth.…..…..……Harmothoe (Harmothoe) glabra 

(9) Body without setigers …………………………...………………………..………(10) 

      Body with setigers ………….………...………….……...………………………..(12) 

(10) Body without setae or hooks. One pair of eyes 

present……………………………………….……..Juvenile Dinophilus gyrociliatus  

        Eyes absent. Setae and hooks present…...…………………..………………..…(11) 

(11) Body without chromatophores……....………….……….…………Capitella Type I 

        Body with black chromatophores……………...……………..…...Capitella Type II 

(12) Body with no more than three setigers…..……………...……...………………..(13) 

        Body with more than three setigers……………………………………..………(14) 

(13) Prostomium with cilia. Setae composed by avicular uncini as well as sword- and 

leaf-shaped setae.............………………………………….Chone infundibuliformis 

         Prostomium without cilia. Setae composed only of avicular uncini and leaf-shaped 

setae .......…………………….…………………………….…….…...Chone Type I 

(14) Prostomium with very long ciliated tentacles………….…..…...Magelona mirabilis 

        Prostomium without very long tentacles……………….………..………………(15) 

(15) Neuropods with hooded hooks………………………………...………………...(16) 

        Neuropods without hooded hooks…………………………………..…………..(32) 

(16) Hooded hooks starting since the first parapod. Body covered by 

papillae…………………………………………..…………..Flabelligeridae Type I 

        Hooded hooks appearing after the 7th parapod. Body without papillae.…...…....(17) 

 35



(17)  Two pairs of red eyes present...………...………………………………….……(18) 

         Three pairs of black eyes present...……………...…………………….………..(22) 

(18)  Prostomium bell-shaped …………………………….…………….……………(19) 

         Prostomium rectangular or  rounded ………………………...…...………….....(20)  

(19)  Prostomium orange………………………...…… Scolelepis (Scolelepis) squamata 

         Prostomium without pigmentation………….…….Scolelepis (Scolelepis) bonnieri  

(20)  Prostomium rounded. Tentacular cirri thin and long …….Aonides paucibranchiata 

   Prostomium rectangular. Tentacular cirri short and wide …………...…………(21) 

(21) Dorsal melanophores absent……………… ……………..…………Laonice cirrata 

        Band shaped melanophores in the anterior half of the body. Prostomium and 

pygidium yellow……….…………….…..……….…………....Spiophanes bombyx 

(22)  With modified setae in the 5th setiger…...……………...…...………………..…(23) 

         Without modified setae in the 5th setiger absent……...………...…....………....(27) 

(23) Body with only one column of star-shaped 

melanophores……………………………...………Polydora  (P.) hermaphroditica 

         Body with two columns of star-shaped melanophores………………..………..(24)     

(24) Star-shaped chromatophores large, bold, and intertwined.....……...Polydora Type I 

        Star-shaped melanophores not intertwined...………………...………………….(25) 

(25) Body with only four pairs of band-shaped melanophores……..….Polydora cornuta 

       Body with six pairs of band-shaped melanophores………………..……….…....(26) 

(26) Palpi flat, long, blade-shaped, and delicate. Star-shaped chromatophores small and 

diffused. Dorsal eyes peduncle-shaped...........................................Polydora Type II 

          Palpi long but not flat nor blade-shaped. Star-shaped chromatophores small and 

well defined. Dorsal eyes not peduncle-shaped…………..…...…. Polydora ciliata 

(27) Pygidium with numerous large papillae.………………..…..….…Pygospio elegans 

         Pygidium without papillae……………………………………..……...………..(28) 

(28) Dorsal chromatophores absent………………………….... Malacoceros fuliginosus 

       Dorsal chromatophores present………………..….…………………...…………(29) 

(29)  Body robust, prostomium rectangular………………...………………..……….(30)  

         Body slender, prostomium rounded……………………………………...……..(31) 

(30) Dorsal chromatophores as transversal lines, diffused and 

irregular.………………………………………………………….Scolelepis girardi 

         Dorsal chromatophores as well marked and rectangular spots...…Scolelepis Type I 

(31)  Dorsal chromatophores as spots with white center……...……...…Spio martinensis 
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         Dorsal chromatophores as diffused lines……………………..…..…...…Spio thelli 

(32)  Antennae present…………………………………………...…...………………(35) 

         Antennae absent…………………………………………...……………………(43) 

(35)  Prostomium with two antennae ……………………...…………………………(36) 

         Prostomium with four or five antennae ………………………………….…….(37) 

(36)  Larvae with up to six setigers. Blue-green yolk grains present…...….Nereis Type I 

         Larvae develop more than six setigers. Yolk grain absent. Body broader in the 

frontal part. Palps short. Notopodial cirri in the 1st, 2nd, 4th, and 6th 

parapods……………………………...…………….….….Microphtalmus aberrans 

(37)  Two pairs of tentacular cirri…...………...………………………………...……(38) 

         Three to four pairs of tentacular cirri………………………………...…………(40) 

(38) Dorsal tentacular cirri longer than the ventral ones….……..Eteone (Mysta) barbata 

        Dorsal and ventral tentacular cirri of the same length………………….……….(39) 

(39) Pharynx with papilla. Body without chromatophores..............Eteone (Eteone) longa 

        Pharynx with jaws. Body with dorsal chromatophores as red spots....Nereis Type II 

(40)  Four pairs of tentacular cirri…………………………...………….…………….(41) 

         Three pairs of tentacular cirri……………………………………...……………(42) 

(41) Body greenish. Dorsal black chromatophores in transversal 

bands……………………………………...………..Phyllodoce (Anaitides) mucosa 

         Body without color. Dorsal chromatophores as small spots at the basis of each 

parapod……………………...……………….……….Phyllodoce (Anaitides) rosea 

(42)  Dorsal chromatophores as broad transversal bands………….……... Eulalia viridis 

         Dorsal chromatophores absent……...……...…………….. Pseudomystides limbata 

(43) Body long and slender. Parapodial lobes between segments 6 and 10 

enlarged…………………………………………...………. Poecilochaetus serpens 

Body short and broad. Parapodial lobes of the same size all along the body......(44) 

(44) Prostomium conical……………………………..….. Scoloplos (Scoloplos) armiger 

        Prostomium rounded or rectangular ……………………………….……………(45) 

(45)  Pygidium with anal cirrus……………………..……………………………..…(46) 

         Pygidium without anal cirrus…………………………………………...………(47) 

(46)  Prostomium broadly rounded…………………………..…..………. Nephtys caeca 

         Prostomium rectangular………………………...………………Nephtys hombergii 

(47) Body covered with papillae. Ventral hooded-hoods present...Sphaerodoridae Type I 
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         Body without papillae. Setae from the first setiger very long and serrated, 

companied by serrated paleae. Hooded-hooks absent.………..Sabellaria spinulosa 

 
4. Discussion 

Plate and Husemann (1994) reported 54 polychaete species with meroplanktonic 

larval stages around Helgoland. In the present study, only 22 of those species were 

found inside the List tidal basin. This suggests that both sites share a small fraction of 

benthic stages and that the meroplanktonic composition of open and costal zones is 

different.   

One of the applications of taxonomic studies is the identification of species 

representative for a region. Often, the dispersal capabilities between developmental 

stages in marine invertebrates diverge. Post-settlement dispersal capabilities of 

juvenile/adult benthic stages tend to be limited, due to their need of contact with the 

sediment, compared to the pelagic larval stages. These are often regarded as passive 

particles at the mercy of the currents (Banse 1986; Jackson 1986; Butman 1987; 

Possingham and Roughgarden 1990; Ellien et al. 2000), and the populations are 

consequently assumed to be open assemblages (Gaines and Lafferty 1995), implying 

that the larval production of one benthic population disperses far beyond from the adult 

site recruiting other populations but rarely itself. Therefore, larvae collected at one 

location could originate from distant regions. In that case, the species assemblage from 

benthic and planktonic compartments might differ in taxonomic composition, and the 

number of species increases if both are taken into account, since some species may 

locally occur only as larvae (Bhaud and Cazaux 1987). 

Furthermore, we have to ask to what extend the assemblage of meroplanktonic 

stages could reflect the composition of the local benthic assemblage. Table 2.III 

summarizes research on polychaetes around the study area over a period of 75 years, 

and species are listed which were encountered as meroplanktonic larvae and/or as 

juvenile/adult benthic stages. This table comprises 113 species. From these species, 19 

do not have pelagic larvae or are unlikely to do it (Arenicola marina, Heteromastus 

filiformis, Scalibregma inflatum, Microphtalmus sczelkowii, M. similis, M. listensis, 

Hesionides arenaria, H. maxima, Exogone naidina, Streptosyllis websteri, Fabricia 

sabella, T. marioni, Manayunkia aestuarina, Dinophilus gyrociliatus, Psammodrilus 

balanoglossoides, Stygocapitella subterranea, Trilobodrilus axi, Protodrilus 

symbioticus, and P. chaetifer). These are substracted from the total. From the 94 
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remaining species, 45 are only known as benthic stages, 26 are only known as pelagic 

larval stages, and 23 have been found in both stages. This indicates that the 

correspondence between the benthic and planktonic species assemblages is low, 

suggesting that meroplanktonic stages could include long distance vagrants. 

Nevertheless, this approximation is too simple. It is likely that the species 

spectrum in the planktonic compartment is underestimated, because the effort dedicated 

to study pelagic larval stages was much lower than for benthic stages. Unfortunately, 

uncertainties on taxonomic identity in the polychaete fauna occur in both compartments. 

Records up to family and/or genus levels (see Wohlenberg 1937, Westheide 1966, Reise 

1978, Wolter 1987, Armonies and Hellwig-Armonies 1987, Schories 1991, Beushausen 

1994, Raddatz 1994, Reise et al. 1994, Pieloth 1996, Suhr 1996, and Wolf 2002) make 

it impossible to know if they refer to new species, unidentified juvenile stages, cases 

where the specific level was not intended, or mixtures of different reasons. Inaccurate 

taxonomic resolution in the benthic compartment could have also lumped the sources of 

several larval stages.  

If long-distance vagrants are present in the larval stage, they could originate 

from England, Belgium, or the Netherlands, because the residual current flows west to 

east, and then north (Postma 1983). On the other hand, if such vagrants are continuously 

recorded inside the bight, they should not be considered as vagrants anymore, since they 

can also be part of the local representative species spectrum as larval forms (Bhaud and 

Cazaux 1987). 

There are many reasons to explain why larvae of some benthic stages have not 

been found. Some have no or a short pelagic life and/or dispersal, their recruitment 

could be undertaken by re-suspended juvenile stages, and others may have multiple 

developmental modes (poecilogony).  

Poecilogony is common in polychaetes (Hoagland and Robertson 1988; Chia et 

al. 1996; Willcox and Nickel 1998; Blake and Arnofsky 1999; Duchene 2000). Anger et 

al. (1986) proposed that populations of Pygospio elegans from the List tidal basin are 

poecilogonic and the same applies for Polydora quadrilobata (K. Reise pers. com.). 

Poecilogony may be switched on by environmental stress (Chia et al. 1996) and the 

study area is characteristic for that. Climatic factors are responsible for many 

fluctuations in benthic stages of invertebrates in the Sylt area  (Strasser et al. 2001 a and 

b; Strasser and Pieloth, 2001), but we do not know how these affect meroplanktonic 

stages. 

 39



Finally, it should be noted that several taxa were found at specific areas (around 

Königshafen or along specific gullies). This suggests that location plays a role in the 

species composition. In benthic stages this occurs due to the natural patchiness in 

sediment types. Patchiness in abundance of plankton is a very common phenomenon as 

well (Brentnall et al. 2003), but the patchiness in composition of meroplanktonic 

organisms has not been recorded yet. The assumption that the List tidal basin is 

permanently well mixed, due to the tidal currents and strong wind effects, is not 

supported by the presence of certain species at specific areas. This suggests a non-

homogeneous horizontal mixing. Mileikovsky (1968) found that the distribution of 

larvae and juveniles of bottom invertebrates from the Norwegian and Barents Seas 

resembled that of their parental forms, while currents influenced the larval distribution 

secondarily. Hadfield (1986) suggested that larval behavior would place the larvae 

above suitable bottoms along shores. Swimming behavior, biotic and abiotic features of 

the sediment, microbial layers, co-generic and/or co-specific chemical signals, presence 

of sympatric species and/or food could help to define larval distribution areas (Wilson 

1981; Gallagher et al. 1983; Cuomo 1984; Woodin 1985; Barke 1986; Qian 1999). 

Buoyancy or vertical positioning can help larvae to maintain their position, a behavior 

being of more importance than horizontal swimming (Mileikovsky 1973; Cameron 

1986). Bhaud (1998b) proposed that controlled occupation of space should soon 

substitute the idea of passive dispersal in polychaete larvae. In a certain way, the 

possibility that larvae may control their horizontal distribution is reasonable, because 

often polychaete larvae settle near or at their con-specifics (Wilson 1968; Meadows and 

Campbell 1972; Barke 1986; Woodin 1986; Qian 1999), and some species are able to 

maintain their distribution areas close to the adult population in spite of a highly 

advective and diffusive environment (see Thiébaut et al. 1998). 

Oceanographic processes (e.g. eddies) may also enhance gregarious distributions 

of larval clouds. However, local current patterns were not addressed in this study. This 

should be attempted in the future, seeking for relationships between location-dependent 

distributions and hydrodynamic processes.  
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Table 2.III. List of species found as larval and juvenile/adult benthic stages around the study area. Species are listed following the phylogenetic scheme proposed 

by Fauchald (1977). Sylt=Wadden Sea side of the island; DWS= Danish Wadden Sea. References listed at the end of the table. 

 
Species 

Pelagic 
larval 
stage 

  
Location

 
Reference

Benthic 
stage 

 
Location

 
Reference 

1. Scoloplos (S.) armiger X    Sylt
DWS 

39 
4 

X Sylt 2,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,22,23,24,27,28,29,30,31,33,35,38  
DWS 4 

2. Tharyx killariensis=T. 
marioni 

      

       
      

       
       

       
       
      
    

     
      
     

    

     

       

 X Sylt 6,7,8,11,12,13,14,15,17,20,22,23,24,28,29,33,38

3. Aricidea minuta X Sylt 13,14,18,27,28,29,33,35
 4. A. (Allia) suecica=A. 

jefreysii 
X Sylt 5,13,19,30,33

5. Paraonis fulgens X Sylt 17,18
6.Aonides 
paucibranchiata 

X Sylt 39 X Sylt 18,31

7. Laonice cirrata X Sylt 39
8.Malacoceros fuliginosus X Sylt 39 X Sylt 5,6,8,12,14,19,20,22,23,24,27,29,33,38

 9. Polydora (P.) ciliata X Sylt 26,39 X Sylt 1,3,8,12,20,24,28,29,33,37
10.P.(P.)cornuta=P. ligni X Sylt

DWS 
26,39 

4 
X Sylt 2,6,7,10,11,12,14,15,19,20,23,28,29,30,31,33 

DWS 
 

4 
 11P. (P.) hermaphroditica X Sylt

 
39

12. P. quadrilobata X Sylt
 

7,14,20,22,23,29,33
 13. P. pulchra X Sylt 26

14. Polydora Type I X  Sylt 39    
15. Polydora Type II X  Sylt 39    
16. Pygospio elegans X Sylt

DWS 
26,39 

4 
X Sylt 2,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,27,28,29,31,33,35,38  

DWS 
 

4 
 17. Scolelepis (S.) 

bonnieri  
X Sylt 39
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Table 2.III. List of species found as larval and juvenile/adult benthic stages around the study area. Species are listed following the phylogenetic scheme proposed 

by Fauchald (1977). Sylt=Wadden Sea side of the island; DWS= Danish Wadden Sea. References listed at the end of the table (continued). 

 
Species 

Pelagic 
larval 
stage 

  
Location

 
Reference

Benthic 
stage 

 
Location

 
Reference 

18. S. (S.) squamata X      Sylt 39 X Sylt
DWS 

2,5,13,16,17,18,27,29,35 
4 

19. S. (S.) girardi X     
      
       

       
     

      
      
       

      

       
      

       
      
      
      

       
     

Sylt
 

39   
20. S. (S.) foliosa X Sylt 2,8,13,27,29,33,35
21. S. ciliata = 
Colobranchus ciliatus = 
Malacoceros tetracerus 

X Sylt 2, 8,12,17,18,20,24,29,33,35,38

22. Scolelepis Type I X  Sylt 39    
23. Spio martinensis X Sylt 39 X Sylt

 
35
 24. S. theelli X Sylt

 
39

25. S. filicornis X Sylt 6,7,8,11,12,13,14,17,18,21,22,27,29,30,31,33
 26. S. mecznikowianus X Sylt 18

27. Spiophanes bombyx  X Sylt
 

39 X Sylt 13,14,17,18,27
28. Streblospio 
benedicti=S. shrubsolii 

X Sylt 12,14,27,29,33

29. Microspio wireni X Sylt 2
30. Magelona 
mirabilis=M. 
papillicornis 

X Sylt 26,39 X Sylt
DWS 

2,8,13,17,18,27,29,33,35 
4 

31.Poecilochaetus serpens X Sylt
 

39
32. Chaetozone setosa X Sylt 18,33

 33. Cirratulus cirratulus X DWS 4
34. Capitella capitata X DWS 4 X Sylt

DWS 
2,6,7, 8,11, 12,13,14,15,16,17,19,20,21,22,24,27,29,31,32,33,34,35,38 
4 

35. Capitella minima X Sylt
 

33
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Table 2.III. List of species found as larval and juvenile/adult benthic stages around the study area. Species are listed following the phylogenetic scheme proposed 

by Fauchald (1977). Sylt=Wadden Sea side of the island; DWS= Danish Wadden Sea. References listed at the end of the table (continued). 

 
Species 

Pelagic 
larval 
stage 

  
Location

 
Reference

Benthic 
stage 

 
Location

 
Reference 

36. Capitella Type I  X  Sylt 39    
37. Capitella Type II  X  Sylt 

 
39    

38. Capitomastus minimus       
      

      

      

       
      
       

       
      

    

      
     
       

     
     

       
     

X Sylt 5,12,17
39. Arenicola  marina X Sylt

DWS 
2,5,6,9,11,12,14,17,19,20,21,23,24,27,28,29,33,35 
4 

40. Heteromastus 
filiformis 

X Sylt
DWS 

2,5,7,8,11,12,13,14,17,20,23,24,27,28,29,31,35,38 
4 

41. Ophelia limacina X Sylt
DWS 

8,17,18, 
4 

42.O.rathkei=O.cluthensis X Sylt 2,5,12,14,15,16,17,18,24,27
 43. Scalibregma inflatum X Sylt 8

44. Phyllodoce (A.) 
mucosa 

X Sylt 39 X Sylt 6,7,8,11,12,14,17,19,21,23,24,27,28,29,30,31,33,35,37,38

45. P. (A.) rosea X Sylt 39
46. P. (A.) maculata X DWS 4 X Sylt

DWS 
2,31 
4 

47. Eteone (E.) longa X Sylt
DWS 

 

39 
4 

X Sylt 5,6,7,8,11,12,13,14,17,18,19,20,21,23,24,27,28,29,30,31,33,35,38 
DWS 4 

48. E. (E.) spetsbergensis X Sylt
 

17
 49. E. (M.) barbata X Sylt 39

50. Eulalia viridis X Sylt
 

39 X Sylt 2,8,20,29,33,37
 51. E. bilineata X Sylt

 
31
 52.Pseudomystides 

limbata 
X Sylt 39

53. Eumida sanguinea X Sylt
 

8,20,30
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Table 2.III. List of species found as larval and juvenile/adult benthic stages around the study area. Species are listed following the phylogenetic scheme proposed 

by Fauchald (1977). Sylt=Wadden Sea side of the island; DWS= Danish Wadden Sea. References listed at the end of the table (continued). 

 
Species 

Pelagic 
larval 
stage 

  
Location

 
Reference

Benthic 
stage 

 
Location

 
Reference 

54. E. punctifera        X Sylt 29
55. Harmothoe (H.) 
antilopes 

X     

       
      
     

     

       
      

     

      

       
     

       
       

        
      
       
      
     

Sylt 39   

56. H. (H.) glabra X Sylt 39
57. H. (H.) impar X Sylt 39 X Sylt

 
8,17,20,37
 58. H. (H.) ljungmani X Sylt

 
39

59. H. (H.) imbricata X Sylt
DWS 

6,8,12,20,27,29,33,37 
4 

60. H. (Antionella) sarsi X Sylt 6,12,13,27,29,31,33,35
 61. H. lunata X Sylt 30

62. Harmothoe Type I X  Sylt 
 

39    
 63. Lepidonotus 
squamatus 

X Sylt
DWS 

2,5,8,20,24,27,29,33,37 
4 

64. Gattyana cirrosa X Sylt
DWS 

5,2,8 
4 

65. Pholoe minuta X Sylt
 

6,20,29
 66. Neolanira c.f. 

tetragona 
X Sylt 39

67. Keferestenia cirrata X Sylt 20,24
68. Microphtalmus 
aberrans 

X Sylt 39 X Sylt 5,6,11,12,13,14,29,33

69. M. sczelkowii X Sylt 5,11,12,14,15,21,22,23,27,29
 70. M. similis X Sylt 5,14

71. M. listensis X Sylt 5,14,23
 72. Hesionides arenaria X Sylt

 
5,15
  

 44



Table 2.III. List of species found as larval and juvenile/adult benthic stages around the study area. Species are listed following the phylogenetic scheme proposed 

by Fauchald (1977). Sylt=Wadden Sea side of the island; DWS= Danish Wadden Sea. References listed at the end of the table (continued). 

 
Species 

Pelagic 
larval 
stage 

  
Location

 
Reference

Benthic 
stage 

 
Location

 
Reference 

73. H. maxima        X Sylt 5
74. Exogone naidina      

        
       

       
      

      

      
       
       
   

      
       
       
       

       

      
       

 X Sylt 29
75. Streptosyllis websteri X Sylt 29
76.Nereis (Nereis) 
pelagica 

X Sylt 2,4,8

77.N. (Neanthes) succinea X Sylt 8,20,29,33,37
78. N. (Neanthes) virens X Sylt

DWS 
5,6,8,9,12,13,14,17,18,23,24,27,29,33,37,38 
4 

79.N.(Hediste)diversicolor X DWS 4 X Sylt
DWS 

2,5,6,9,12,14,15,16,17,18,19,20,21,23,24,27,29,31,33,35,37 
4 

80. Nereis Type I X  Sylt    32 
81. Nereis Type II X  Sylt 

 
   32 

82. Goniada maculata X Sylt 14
83. Goniadella bobretzkii X Sylt 8,14
84. Nephtys caeca X Sylt 39 X Sylt 5,8,12,13,17,18,23
85. N. hombergii X Sylt 

DWS 
 

39 
4 

X Sylt 2,5,6,8,11,13,14,17,23,24,27,28,29,30,31,33,35 
DWS 4 

86. N. ciliata X Sylt 13
87. N. longosetosa X Sylt 13
88. N. cirrosa X Sylt 25
89. Sphaerodorum 
balticum 

X Sylt 5,30

90. S. minimum X DWS 4
91. Sphaerodoridae Type I X  Sylt 

 
39    

92. Ophryotrocha gracilis 
 

X Sylt 14
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Table 2.III. List of species found as larval and juvenile/adult benthic stages around the study area. Species are listed following the phylogenetic scheme proposed 

by Fauchald (1977). Sylt=Wadden Sea side of the island; DWS= Danish Wadden Sea. References listed at the end of the table (continued). 

 
Species 

Pelagic 
larval 
stage 

  
Location

 
Reference

Benthic 
stage 

 
Location

 
Reference 

93.Parapodrilus 
psammophilus 

       X Sylt 14

94. Flabelligeridae Type I X  Sylt 39    
95. Sabellaria spinulosa X       

    

      

       

       
     

       
       
       
     

      

       

       

       
        

Sylt 39 X DWS 4
96. Pectinaria (L.) koreni X DWS

Sylt 
4 
39 

X Sylt 5,6,8,9,13,29,33 
DWS 4 

97. Lanice conchilega X Sylt 26,39 X Sylt
DWS 

2,5,6,7,8,12,14,17,24,27,29,31,33,35,38  
4 

98. Ampharete acutifrons 
=  A. grubei 

X Sylt 2,6,8,12,23,24,26,27,29,33

99. A. baltica X Sylt 38
100. A. finmarchica   X Sylt 20
101. Amphitrite johnstoni X Sylt 2
102.Neoamphitrite figulus X Sylt 20,37
103. Fabricia sabella X Sylt

 
15,28,29
 104. Chone 

infundibuliformis 
X Sylt 39

105. Chone Type I X  Sylt 
 

39    
106. Pomatoceros 
triqueter 

X DWS 4,36

107. Manayunkia 
aestuarina 

X Sylt 12,14

108. Dinophilus 
gyrociliatus 

X Sylt 39
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Table 2.III. List of species found as larval and juvenile/adult benthic stages around the study area. Species are listed following the phylogenetic scheme proposed 

by Fauchald (1977). Sylt=Wadden Sea side of the island; DWS= Danish Wadden Sea. References listed at the end of the table (continued). 

 
Species 

Pelagic 
larval 
stage 

  
Location

 
Reference

Benthic 
stage 

 
Location

 
Reference 

109.Psammodrilus 
balanoglossoides 

       X Sylt 14,29

110. Stygocapitella 
subterranea 

       

       
       

       

X Sylt 14

111. Trilobodrilus axi X Sylt 14
112. Protodrilus 
symbioticus 

X Sylt 14

113. P. chaetifer X Sylt 14
 

 

 

 

 

 

 

    

1Hagmeier and Kändler (1927); 2Wohlenberg (1937); 3Linke (1939); 4Smidt (1951); 5Westheide (1966); 6Reise (1978); 7Debus (1979); 8Riesen and Reise (1982);
9Reise (1981); 10Reise (1983a); 11Reise (1983b); 12Buchholz (1984); 13Wolter (1987); 14Armonies and Helwig-Armonies (1987); 15Hellwig-Armonies and

Armonies (1987); 16Reise (1989); 17Schülke (1989); 18Sander (1989); 19Siebert (1989); 20Ditmann (1990); 21Majewski (1990); 22Reise (1991), 23Schories (1991);
24Albrecht and Reise (1994); 25Beushausen (1994); 26Raddatz (1994); 27Reise et al. (1994); 28Guenther (1996); 29Lackschewitz (1996); 30Pieloth (1996); 31Suhr

(1996); 32Buschbaum (1997); 33Rasel (1997); 34Gamenick et al. (1998); 35Lackschewitz and Reise (1998); 36Reise (1998); 37Saier (2002); 38Wolf (2002); 39This

study. 
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Chapter 3. Spatial patterns of abundance in meroplanktonic 

polychaete larvae in a tidal basin 

 
Abstract 

The analysis of abundance patterns in meroplanktonic polychaete larvae inside the List 

tidal basin (northern Wadden Sea) revealed that highest larval abundances were 

concentrated at the innermost parts of the three main tidal channels of the bight. This 

was a recurrent pattern during both tidal phases, and occurred at a 10-km scale. At a 1-

km scale, the same phenomenon was apparent during high tides along the main channel 

of a bay completely exposed at low tides. At the species level, larvae of Pygospio 

elegans and Lanice conchilega showed different spatial patterns around a sandy hook, 

resembling the pattern of their benthic stages. Polychaete larvae distribution resembled 

that of suspended particulate organic matter of similar size inside the basin, suggesting 

that they distribute like passive suspended particles. With regard to vertical position, 

there was no preference at high water, but at low water highest abundance were 

significantly more frequent close to the bottom. However, species diversity and species 

richness in the polychaete larval plankton showed only random spatial patterns at all 

locations. The results suggest that larval retention is the dominant local process and 

indicate that benthic occurrence of adult stages and coastal morphology may also 

influence species-specific distribution patterns.  

 
1. Introduction 

Why benthic marine invertebrates have pelagic larvae is a controversial issue. 

They may either constitute an escape of small life stages from a plenitude of predators 

and competitors at the bottom or they are essential for long-distance dispersal 

(Strathmann et al. 2002; Young 1990). In spite of the potential of wide dispersal for 

pelagic larvae, there is growing evidence that larval retention in localized areas may be 

a common phenomenon (Swearer et al. 2002). This has implications on the theory of 

open vs. closed marine populations as well as implications on the areal size and the 

potential effects of marine reserves (Warner and Cowen 2002).  

Studies have shown that the supply of larvae is often a crucial factor in 

explaining distribution and abundance of recruitment to the rocky shore fauna (Ólafsson 

et al. 1994; Gaines and Lafferty 1995). To what extend this also applies to the sediment 
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fauna is a controversial matter. It may be the case in some species (Strasser and Pieloth 

2001). Not only the amount of larval supply may be important, but also their dispersal 

in the coastal waters to explain benthic patterns (Ólafsson et al. 1994; Gaines and 

Lafferty 1995). Therefore, the spatial distribution of larvae within a sedimentary 

embayment has been studied. In the shallow, eastern North Sea, polychaetes are a 

dominant component in the benthic macrofauna (Hartmann-Schröder 1996) as well as in 

the meroplankton (Hickel 1975; Martens 1980; Jak 1999). Accordingly, the polychaete 

larvae have been selected for this study. 

The study area constitutes an artificially semi-enclosed embayment. Two 

adjacent barrier islands are connected by causeways to the mainland, thus enclosing a 

lagoon of 410 km2, with a 2.5 km wide tidal inlet, flushing about half of the high water 

volume offshore with each ebbing tide. Consequently, the first question to be analyzed 

is whether strong tidal mixing prevents the development of any non-random spatial 

patterns in the meroplanktonic larvae within the tidal basin. This was assumed by 

Hickel (1975). He conducted the first quantitative survey of the zooplankton in the area. 

He selected a single sampling station at List harbor, close to the tidal inlet, and 

described the seasonal variability. Later, Martens (1980) sampled three stations, one in 

each of the major tidal channels of the List basin, but subsequently lumped the data to 

produce average values on zooplankton biomass. Thus, there is no knowledge whether 

differences in the composition and abundance of the polychaete larval plankton occur 

between branches of the tidal inlet, and between the inlet and the innermost parts of the 

channels. Fransz (1981) suggested that such differences occur in the western Dutch 

Wadden Sea. He found that biomasses of polychaete larvae were lowest near the tidal 

watershed of the Marsdiep tidal basin. Such a pattern may result in spite of the tidal 

mixing when zooplankton is mainly imported from the sea and subjected to severe 

predation and/or settling on the tidal flats.         

Non-random distributions of polychaete larvae within a tidal basin may also 

result when larvae modify their vertical position within the tidal flow. Staying high in 

the water column during flooding tide and lower during ebbing tide might result in 

retention of larvae within the basin, assuming swifter flood currents close to the surface 

than ebb currents close to the bottom. This has been inferred for gelatinous zooplankton 

in the List tidal basin (Kopacz 1994). Consequently, the second question to be analyzed 

is whether polychaete larvae show differential vertical distributions in the water column 

during high and low tides in the channels. 
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Polychaete larvae might show a spatial pattern similar to passive suspended 

particles in a tidal basin. Particle transports have been described for tidal basins in 

general (Oost and De Boer 1994), and in particular for the List tidal basin on both small 

(1 km) and large (10 km) scales (Austen 1994; Austen et. al. 1998). Based on these 

descriptions, the third question to be analyzed is whether polychaete larvae correspond 

to the onshore gradient of suspended particles of comparable size.  

 If polychaete larvae distribute like passive particles, one would not expect to 

encounter species-specific patterns. On a small scale (1 km), the pattern of larvae of the 

terebellid Lanice conchilega and the spionid Pygospio elegans were compared with 

respect to adult populations and coastal morphology. The surrounding of a sandy hook 

separating a small and sheltered bay was studied. The final corresponding question to be 

assessed is, whether only benthic processes cause species-specific benthic patterns, or 

whether the availability of pelagic larvae generates the benthic pattern. 

  
2. Methods  

Attempts were made to obtain quasi-synoptic samples of polychaete larvae from 

the tidal waters to get snapshots of the spatial distribution at three scales (Fig. 3.1 and 

Table 3.I). 

10-km scale: Samplings were undertaken inside the List tidal basin (410 km2), 

sheltered by the islands of Sylt (Germany) and Rømø (Denmark) (Fig. 3.1), which are 

connected to the mainland by causeways. Tidal channels occupy 10% of the basin area 

with maximal depths of 30 m during high-water conditions; shallow subtidal sands 

occupy 60%, and tidal flats the remaining 30%. Tides are semidiurnal (range ≈2 m) and 

cause the exchange of roughly half of the high water volume. Detailed information is 

given in Gätje and Reise (1998). The ship followed the advancing peak of tidal high 

water, from the tidal inlet along one of the three main tidal channels of the List tidal 

basin. As there was only one ship available, the three channels were sampled at 

successive days. The same route was also taken at peak tidal low water. At each of 3 to 

4 stations along the channels, a 30-l Van Dorn bottle was repeatedly used and its 

volume fractioned in order to collect five 10-l water samples from the surface, and five 

more from 3 m above the bottom. Depths for each sampling station during high water 

conditions are shown in Fig. 3.1. Samples were fixed on board, immediately after being 

filtered through a 80 µm mesh. Wind flow patterns and tidal current speeds are shown 
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for each sampling date in Appendix 3.I. Mean velocities for superficial tidal currents 

ranged between 0.3-0.6 m·s-1 during high tides, and 0.3-0.8 m·s-1 during low tides. 

1-km scale: Sampling was undertaken in the sheltered sandy intertidal back 

barrier bay Königshafen (6 km2; see Austen 1994 and Reise and Gätje 1994), inide the 

List tidal basin (Fig. 3.1). Tides are semidiurnal with average amplitude of 1.8 m 

(Armonies 1994). This bay has a curved tidal creek with maximal depths of 4-5 m 

during high water conditions (Austen 1994). Four sampling stations we chosen, about 

300 m apart along the tidal creek (Fig. 3.1). Five 10-l samples from the surface were 

taken at each station during the peak diurnal high tide. Water samples were taken from a 

ship, using a 10 l bucket, and were immediately fixed on board after being filtered 

through a 80 µm mesh. This sample gear was also used by Martens (1995) in the same 

locality. Wind flow patterns during each sampling date are shown in Appendix 3.II. 

100-m scale: Sampling was undertaken at Oddewatt, which is a small bay (<1 

km2) in the outer Königshafen (Fig. 3.1). The sandy island of Üthorn in the north and a 

dike in the west provide shelter. During low water conditions the site is exposed, and 

during high water conditions maximal depths are 2 m. Six sampling stations were 

chosen (Fig. 3.1). Four 2-l samples were taken with a bucket at each station during the 

peak of diurnal high tides. Samples were fixed on the field immediately after being 

filtered through a 80 µm mesh. Data of the three outer stations were pooled representing 

“Outside” (O) conditions and those of the inner part pooled to represent “Inside” (I) 

conditions (Fig. 3.1). Distribution patterns of larvae of Pygospio elegans and Lanice 

conchilega were compared versus those of their juvenile and adult benthic stages. The 

spatial distribution of benthic stages of Lanice, during autumn 2001 was kindly 

provided by Dr. Matthias Strasser (Alfred Wegener Institute) and was part of an 

ongoing mapping program to study spatio-temporal dynamics (Strasser and Pieloth 

2001). Spatial distribution patterns for Pygospio were obtained from sediment samples 

(three replicates at each sampling point, Fig. 3.1) taken with a tube (sampling area=13 

cm2, volume=50 ml) during low water conditions between May and August 2001. 

Abundances were estimated by sorting the samples under a stereomicroscope without 

sieving, to avoid the loss of juvenile stages.  

 
In all sampling schemes, One-way ANOVA was applied to assess significant 

differences in abundance. In order to test the significance of patterns shown by groups 

of sampling dates, a Sign Test was used for the significance of recurrent patterns. 
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Fig. 3.1. Study area and position of sampling stations for three spatial scales in the List 

tidal basin. Numbers in italics at each sampling point along the main gullies of the basin 

show the depth during high tides. 
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Table 3.I. Sampling dates for three spatial scales chosen in the List tidal basin.  

 
10-km scale: List tidal basin 

  Channel  
 Lister Ley Høyer Dyb Rømø Dyb 

High tide 

Dec 6, 2000 
Feb 19, 2001 

July 2 and 17, 2001 
May 7 and  22, 2002
July 2 and 17, 2002 

Dec 7, 2000 
Feb 20, 2000 

July 3 and 18, 2001 
May 6 and 23, 2002 
July 3 and 18, 2002 

Dec 11, 2000 
Feb 21, 2000 

July 4 and 19, 2001 
May 8 and 24, 2002 
July 4 and 19, 2002 

Low tide 

June 6, 2001 
Sep 3 and 10, 2001 

Apr 4, 2002 
May 27, 2002 
June 11, 2002 
July 24, 2002 
Aug 22, 2002 

June 7, 2001 
Sep 4 and 11, 2001 

Apr 10, 2002 
May 28, 2002 
June 12, 2002 
July 25, 2002 
Aug 23, 2002 

June 8, 2001 
Sep 5 and 12, 2001 

Apr 11, 2002 
May 29, 2002 
June 13, 2002 
July 26, 2002 
Aug 21, 2002 

    
1-km scale: Königshafen 

Year 2000: May 8, 15, 25, and 31; July 3, 13, 24; Aug 7 and 22; Sep 12; Nov 20. 
Year 2002: May 15; June 19; July 8; Aug 20. 

    
100-m scale: Oddewatt 

Year 2001: May 19,23, and 30; June 12,17,22, and 28; July 8. 
 

3. Results 

3.1. Overall abundance data 

 The overall mean larval density of all samples taken within the List tidal basin, 

between May 2000-August 2002, was 36.7 larvae·10 l-1 (±2.5; number of 

samples=2452). As this mean is strongly affected by the unequal seasonal coverage of 

sampling, the mean for the most intensively studied summer (May-August 2002) is 

given as well: 26.0 larvae·10 l-1 (±2.0; number of samples=960).  

 There was a significant difference in overall larval densities during high water 

conditions between areas within the List tidal basin (“Tidal inlet” (Lister Ley, Høyer 

Dyb, and Rømo Dyb station 1); “Main channels” (Lister Ley stations 2-4, Høyer Dyb 

stations 2-4, and Rømo Dyb stations 2-3); “Channel in Königshafen” (Königshafen 

stations 1-4); and “Tidal flat” (Oddewatt stations 1-6)) during the most intensively 

sampled periods from May-August 2001 for Oddewatt, and May-August 2002 for the 

other locations (Fig. 3.2). 

 58



 
Fig. 3.2. Overall mean larval densities and 95% confidence intervals, during high water 

conditions, between areas within the List tidal basin. F-value refers to ANOVA test 

assessing significant differences in mean values between areas. 

 
 3.2. Spatial patterns at the 10-km scale 

Differences in total larval abundance between channels were significant in 6 out 

of 15 cases during high-tide conditions (Table 3.II). In these cases, abundances were 

always highest at Lister Ley. During low-tide conditions, differences were more 

frequent with 10 out of 16 cases (Table 3.III), and highest abundances also occurred at 

Høyer Dyb and Rømø Dyb. 

There was a recurrent spatial pattern, with highest abundances at the middle and 

inner intervals in each channel, at both depth levels of the water column during both 

tidal conditions (Figs. 3.3-3.5). In 69% (64 out of 93) of all cases, differences in 

abundance along each channel were significant. Significant deviations from random 

patterns dominated also when tidal phases and depth intervals were considered 

separately. In Lister Ley, the frequency of cases with highest abundances at stations 

from the middle and inner intervals was significantly higher than from the tidal inlet 

station (Sign test; Z(31)=3.8, p<0.01). The same occurred in Høyer Dyb (Sign test; 

Z(31)=3.9, p<0.01) and Rømø Dyb (Sign test; Z(31)=4.7, p<0.01). Most apparent was, that 

the tidal inlet (Station 1) often showed low abundances. In 64% of all cases the lowest 

abundance occurred at that site.  
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Diversity and species richness showed no consistent pattern between and along 

the three channels, during both tidal conditions, and at both levels of the water column. 

H´ and S had the same probability (50%) of being highest at the inner- and outermost 

parts of the bight, during both phases of tide, and both levels of the water column (Sign 

test for Lister Ley: Z(28)=-0.2, p>0.05 for H´ and S; for Høyer Dyb Z(28)=2.1, p>0.05 for 

H´ and Z(28)=0.6, p>0.05 for S; for Rømø Dyb Z(28)=0.6, p>0.05 for H´ and Z(28)=1.3, 

p>0.05 for S). Neither were there any consistent differences between high- and low-tide 

conditions as well as between surface and near bottom samples.  

 
 

 

Table 3.II. Comparisons of mean larval densities (Larvae/10 l) between tidal channels, 

during high tides, for each sampling campaigns. The channel deviating significantly 

with a high mean is shaded (after Tukey HSD-test). *=p<0.05; **=p<0.01. 

 
  Tidal Channel  

Period 
(Days/Month/Year) Water level Lister Ley Høyer Dyb Rømø Dyb 

ANOVA 
F-value 

(d.f.=2,52) 
6-7-11/VII/00 Surface 8.6±2.2 6.5±2.2 5.1±2.3 2.1 
19-20-21/II/01 Surface 3.8±1.2 4.6±1.2 4.7±1.4 0.4 

 Bottom 5.1±1.6 4.5±0.4 4.8±2.0 0.2 
2-3-4/VII/01 Surface 17.0±5.8 17.8±5.4 11.6±6.2 1.2 

 Bottom 21.7±3.4 10.9±7.2 19.2±8.2 2.4 
17-18-19/VII/01 Surface 15.1±3.8 20.2±3.8 21.0±4.4 2.5 

 Bottom 25.9±4.6 24.5±4.6 26.7±5.2 0.9 
6-7-8/V/02 Surface 28.4±8.0 12.5±8.0 20.2±9.0 4.0* 

 Bottom 25.4±3.0 14.5±5.0 21.3±6.0 4.8** 
22-23-24/V/02 Surface 34.1±13.2 34.7±13.6 29.9±14.7 0.1 

 Bottom 53.4±13.4 66.6±13.4 51.1±16.8 1.4 
2-3-4/VII/02 Surface 27.3±2.8 19.2±2.8 4.3±3.2 59.9** 

 Bottom 26.3±4.6 24.2±4.6 11.8±3.4 92.0** 
17-18-19/VII/02 Surface 26.3±15.6 13.2±5.0 11.3±4.8 8.1** 

 Bottom 42.1±9.8 21.0±8.6 17.0±8.6 8.3** 
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Table 3.III. Comparisons of mean larval densities (Larvae/10 l) between tidal channels, 

during low tides, for each sampling campaigns. The channels deviating significantly 

with a high mean are shaded (after Tukey HSD-test). *=p<0.05; **=p<0.01. 

 
  Tidal Channel  

Period 
(Days/Month/Year) Water level Lister Ley Høyer Dyb Rømø Dyb 

ANOVA 
F-value 

(d.f.=2,52) 
6-7-8/VI/01 Surface 68.4±12.0 51.0±12.4 61.2±14.0 2.0 

 Bottom 60.5±10.6 65.1±10.6 62.0±12.8 0.2 
3-4-5/IX/01 Surface 17.4±5.4 25.2±5.4 16.8±6.8 2.7 

 Bottom 32.4±6.0 42.7±6.2 21.3±7.0 10.3** 
10-11-12/IX/01 Surface 26.2±8.8 21.6±9.0 41.6±10.0 4.6* 

 Bottom 37.2±8.8 37.4±8.8 44.4±10.0 0.7 
4-10-11/IV/02 Surface 19.2±7.6 6.2±1.6 30.3±9.0 8.5** 

 Bottom 18.7±4.2 4.8±4.0 8.2±4.6 12.0** 
27-28-29/V/02 Surface 52.2±11.2 36.3±11.4 39.3±13.2 2.1 

 Bottom 132.5±21.8 55.4±21.8 42.2±25.2 18.5** 
11-12-13/VI/02 Surface 64.7±20.5 28.5±20.0 16.2±14.0 5.5** 

 Bottom 75.1±18.8 32.6±18.8 17.6±12.6 9.6** 
21-22-23/VIII/02 Surface 10.1±3.6 19.9±3.6 13.1±4.4 6.8** 

 Bottom 25.0±4.4 19.9±3.6 13.1±4.4 1.5 
24-25-26/VII/02 Surface 14.5±2.8 5.9±2.8 8.7±3.2 9.4** 

 Bottom 35.0±3.4 9.0±3.4 10.4±4.0 65.4** 
 

3.3. Vertical distribution of the total abundance of polychaete larvae 

Mean larval abundances at the surface and near-bottom levels in the water 

column at stations along the three main channels of the List tidal basin, during both tidal 

phases, are shown in Figs. 3.6-3.8. During high tide conditions, significant differences 

between both levels of the water column were detected in 18 out of 62 cases. 

Differences were more common during low tide conditions with 35 significant cases out 

of 72. In most of the significant cases, abundances close to the bottom were the highest. 

During high-water conditions, abundance had the same probability (50%) of being 

highest at either of the two levels in the water column. On the other hand, during low-

water conditions the frequency of cases with highest larval abundances at the lower 

level in the water column was significantly higher than that of cases with highest 

abundances at the upper level, in two of the three main channels (Sign tests for high-tide 

conditions: Lister Ley, Z(6)=1.5, p>0.05; Høyer Dyb, Z(7)=1.5, p>0.05; Rømø Dyb, 

Z(6)=1.2, p>0.05. Sign tests for low-tide conditions: Lister Ley, Z(11)=0.6, p>0.05; Høyer 

Dyb, Z(14)=3.5, p<0.01; Rømø Dyb,  Z(10)=2.2, p<0.05). 
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Fig. 3.3. Total abundances (Mean and S.E.) of polychaete larvae at four stations, from the tidal inlet to the inner channel along Lister Ley during 

high and low tide phases, and near the surface and 3 m above the bottom (below). Sets of samples were taken at irregular intervals between 

December 2000 and August 2002. F-values refer to ANOVA tests indicating significant differences in mean values between stations at each 

sampling date (**=p<0.01). 
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Fig. 3.4. Total abundances (Mean and S.E.) of polychaete larvae at four stations, from the tidal inlet to the inner channel along Høyer Dyb during 

high and low tide phases, and near the surface and 3 m above the bottom (below). Sets of samples were taken at irregular intervals between 

December 2000 and August 2002. F-values refer to ANOVA tests indicating significant differences in mean values between stations at each 

sampling date (**=p<0.01; *= p<0.05). 
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Fig. 3.5. Total abundances (Mean and S.E.) of polychaete larvae at three stations, from the tidal inlet to the inner channel along Rømø Dyb during 

high and low tide phases, and near the surface and 3 m above the bottom (below). Sets of samples were taken at irregular intervals between 

December 2000 and August 2002. F-values refer to ANOVA tests indicating significant differences in mean values between stations at each 

sampling date (**=p<0.01; *= p<0.05). 
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Fig. 3.6. Vertical distribution of polychaete larvae (Mean and S.E.) at stations along Lister Ley, during high and low tide, and at various dates in 

2001 and 2002. S=Surface level; B=Bottom level. Numbers in italics refer to F-values of ANOVA tests indicating significant differences between 

surface and bottom levels (*=p<0.05; **=p<0.01, only significant cases are indicated). 
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Fig. 3.7. Vertical distribution of polychaete larvae (Mean and S.E.) at stations along Høyer Dyb, during high and low tide, and at various dates in 

2001 and 2002. S=Surface level; B=Bottom level. Numbers in italics refer to F-values of ANOVA tests indicating significant differences between 

surface and bottom levels (*=p<0.05; **=p<0.01, only significant cases are indicated). 
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Fig. 3.8. Vertical distribution of polychaete larvae (Mean and S.E.) at stations along Rømø Dyb, during high and low tide conditions, and at various 

dates in 2001 and 2002. S=Surface level; B=Bottom level. Numbers in italics refer to F-values of ANOVA tests indicating significant differences 

between surface and bottom levels (*=p<0.05; **=p<0.01, only significant cases are indicated). 
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3.4. Spatial patterns at the 1-km scale 

Along the main tidal channel in Königshafen, about 3 km in length, highest 

abundances were repeatedly found at the two innermost stations (Fig. 3.9). In 11 out of 14 

cases, differences in abundance along the tidal creek were significant. The probability of 

finding highest abundances at the inner part was significantly higher than by chance (Sign 

test; Z(12)=2.6, p<0.01). 

Diversity and species richness showed no consistent pattern. Highest values had the 

same probability (50%) of occurring in the inner (Stations 1-2) or outer (Stations 3-4) parts of 

Königshafen (Sign tests; for H’: Z(15)=0.3, p>0.05, and for S: Z(15)=0.5, p>0.05). 

 

3.5. Spatial patterns at the 100-m scale. 

To explore whether small-scale shore topography, such as a sandy hook 500 m in 

length, might have effects on polychaete larval abundances, comparisons between outside and 

inside this sheltering structure in Oddewatt were undertaken. Significant differences between 

larval abundances inside and outside this area were detected at 7 out of 12 sampling dates 

(Fig. 3.10). Both locations (I and O) did not differ significantly in the probability of having 

highest larval abundances (Z(12)=0.3, p>0.05). However, in 6 of the 7 significant cases, 

abundances in the inner area were higher. Diversity and species richness showed no consistent 

spatial pattern between inside and outside (Sign test for H`: Z(8)=0.7, p>0.05, and for S: Z(8)=-

0.35, p>0.05). 

Abundances of Pygospio elegans were significantly higher at the inner area 

(X2
(1)=48.1, p<0.01). Larvae of Lanice conchilega, on the other hand, were always absent 

from the inner area but usually present outside (Fig. 3.11). Distribution patterns of larvae of 

both species were in agreement with those of their benthic stages (Fig. 3.11). Benthic stages 

of P. elegans were abundant outside as well as inside, while those of L. conchilega were 

absent from the inner part of Oddewatt. 
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Fig. 3.9. Total abundances (Mean and S.E.) of polychaete larvae in Königshafen during high 

tides. Samples were taken from the surface with a 10-l bucket at intervals between May-

November 2000 and at three dates in 2002. F-values refer to ANOVA tests indicating 

significant differences in mean values between stations at each sampling date. 
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Fig. 3.10. Abundance of polychaete meroplanktonic larvae outside (O) and inside (I) a 

small embayment formed by a sandy hook. *=p<0.05; **=p<0.01. 

 

 

 70



 
 
Fig. 3.11. Distribution of meroplanktonic larvae during high tides (see stations 1-6 on 

map), and benthic stages during low tide, of Pygospio elegans (dot sizes indicate 

relative abundances) and Lanice conchilega (shading refers to abundance) in Oddewatt 

around a sandy hook in 2001. Values in tables are means (S.E.) for each sampling 

station. 
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4. Discussion 

 In the List tidal basin, polychaete larvae are not evenly or randomly distributed 

and tend to be most abundant at the inner and shallow parts, and close to the bottom. 

This overall pattern suggests that there is some process of larval concentration or 

retention in the innermost areas of the basin, and implies a disproportional supply of 

larvae to these areas. 

 Polychaete larvae are an important part of the Wadden Sea meroplankton 

(Hickel 1975, Martens 1980, Martens 1995, Jak 1999). Unfortunately, data on total 

abundances of polychaete larvae in offshore areas of the North Sea, for the same period 

covered in this study are not available. During this study, it was only possible to take 

samples in the open North Sea in front of Sylt at one date (July 10, 2001) obtaining a 

mean larval abundance of 5.5 larvae·10 l-1 (±3.7). This value is roughly half of the mean 

density present at the same time along the main tidal channels inside the tidal basin. 

This suggests that larval polychaetes are more abundant in the basin than further 

offshore. 

 The idea of larval retention inside the basin is supported by: 1) recurrently 

highest abundances on tidal flats (Oddewatt) and lowest abundances at the tidal inlet, 

showing an apparent sequence from shallow inner areas to deep outer areas during both 

tidal phases; 2) the presence of higher abundances in the channels at low tide near the 

bottom than at high tide at the surface; 3) the low incidence of high-density patches 

close to the inlet of the bight, suggesting that massive larval export or import are not the 

rule. These snapshots patterns were rather consistent, in spite of the fact that patterns 

vary from one day to another (see also Armonies 1994). Mathivat-Lallier and Cazaux 

(1990) also found higher densities of polychaete larvae close to the bottom than at the 

surface of the Bay of Arcachon.   

Highest abundances and biomasses of barnacle and polychaete larvae at inner 

parts of the Dutch Wadden Sea were also reported by De Wolff (1974) and Fransz 

(1981), respectively. Significantly higher abundances of zooplankton at the inner parts 

of four embayments of different size and degree of exposure were interpreted as larval 

retention by Archambault et al. (1998) at the Lower St. Lawrence Estuary (Canada).  

The amount of evidence indicating that the coastal retention of zooplankton may 

be frequent has been increasing (at scales of 1 to 10 km and even for species with long 

larval durations) (see Swearer et al. 2002; Warner and Cowen et al. 2002). Gagnon and 

Lacroix (1983) observed that the exchange of zooplankton between the inner and outer 
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sections of the St. Lawrence estuary is not proportional to the exchange of water 

between both sections, and Mathivat-Lallier and Cazaux (1990) found that large water 

fluxes produced by tides at the Bay of Arcachon are not always associated with 

polychaete larval transport. A similar phenomenon was suggested to occur in the 

Wadden Sea since the 70’s (de Wolff 1974). Modern hydrographic models also indicate 

that, in areas with non-unidirectional currents (e.g. the List tidal basin), a significant 

proportion of larvae might not be transported away from their natal place (Swearer et al. 

2002). Basically all physical factors resulting in the departure from unidirectional and 

depth-uniform water flows provide the opportunity for larval retention (Sponaugle et al. 

2002) (e.g. tidal currents driven by semi-diurnal cycles over the irregular bottom of the 

List tidal basin). 

Sponaugle et al. (2002) recognized two types of retention: a) physical, where 

larvae remain passive and the whole process is driven by physical processes, and b) 

biophysical, involving active behavioral input from larvae. Results disclosed here do not 

allow to know which kind is more frequent inside the bight, but at least some physical 

processes enhancing the retention of suspended particles (and probably larvae) can be 

recognized:  

a) Strong (>8 m·s-1) westerly onshore winds that raise the high-tide level 

(Backhaus et al. 1998) and partially prevent the ebbing flow. 

b) Increased residence time of water by the combined effect of (a) with 

water stagnation caused by topographically influenced circulation at 

scales of tens of km (Sponaugle et al. 2002). Tidal currents and 

residual currents inside the List tidal basin are strongly modified by 

topography (Backhaus et al. 1998) and the average residence time of 

water is 25 tidal cycles (pers. com. J. van Beusekom, Alfred Wegener 

Institute). 

c) Asymmetrical flood-tide waves. Tidal waves become asymmetrical in 

the inner parts of the Wadden Sea, causing a net transport inwards 

(Oost and de Boer 1994). Similar landward accumulation of larvae and 

other particles was reported at Californian mudflats by Levin (1986). 

d) The permanent presence of eddies inside the List tidal basin powered 

by residual tidal currents (Fig. 3.12). These delay water in its way out 

of the basin during ebb periods. Residual tidal currents are locally 

ruled by topography (Backhaus et al. 1998), and according to Thorrold 
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et al. (2002) the mixture of irregular bottom topography and eddies is 

decisive for enhancing retention. 

Factors enhancing biophysical retention could be chemical cues (Gallagher et al. 

1983; Cuomo 1984; Barke 1986; Qian 1999), active vertical movements (Mileikovsky 

1973; Cameron 1986; Thiébaut et al. 1998), coupling of vertical and horizontal 

movements with mesoscale circulation features and wind induction (Cowen et al. 2000), 

and active larval swimming behavior (Mileikovsky 1968, Hadfield 1986, Mathivat-

Lallier and Cazaux 1990, Young 1990, Wiafe and Frid 1996, Bhaud 1998, Qian 1999, 

Cowen et al. 2000).  

 

 

 
 

Fig. 3.12. Residual currents in the List tidal basin (modified from Backhaus et al. 1998). 
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The most common consequence of retention is auto-recruitment (Swearer et al. 

2002; Kingsford et al. 2002; Thorrold et al. 2002), which may be understood as levels 

of retention that substantially enhance the abundance of local populations (Sponaugle et 

al. 2002). This implies that retention should be measured and not only detected, and this 

still needs to be done in the study area. The only accurate and robust choice to do it is 

mark-recapture techniques using natural or artificial markers (see Thorrold et al. 2002). 

In spite that significant differences in abundance between the three gullies were not 

persistent, they occurred and abundances at Lister Ley and Høyer Dyb were higher in 

both tidal phases. Therefore, it could be speculated that retention at these gullies is 

stronger than at Rømø Dyb.   

Highest abundances of polychaete larvae occurred repeatedly at the inner parts 

of the main channels of the List tidal basin, as well as along the inner part of the main 

channel in Königshafen. These patterns correspond well with those of particulate 

organic matter described by Austen (1994) and Austen et al. (1998). De Wolff (1974) 

found that abundances of barnacle larvae and the amount of suspended matter were 

correlated inside the Dutch Wadden Sea and suggested that physical processes should 

rule their distributions. This reflects the concept of larval dispersal as a passive 

phenomenon, entirely dependent on current patterns, and larvae acting as neutrally 

buoyant bodies (see Banse 1986, Possingham and Roughgarden 1990, and Ellien et al. 

2000). On the other hand, current knowledge on marine invertebrate larvae rejects the 

assumption of passive behavior and transport (Swearer et al. 2002; Thorrold et al. 

2002). The problem resides in differentiating between behavior and fine-scale 

hydrographic phenomena (Thorrold et al. 2002). The correspondence between larval 

concentration areas and particulate organic matter could also reflect the presence of 

favorable conditions for polychaete larvae. 

Results show that in spite of tidal mixing, highest larval densities were 

frequently close to the bottom than at the surface of the channels. This could reflect 

active vertical movements, but another sampling design with frequent sampling during a 

tidal cycle at a fixed point would allow to obtain more reliable results. Position control 

by vertical migration potentially provides a means to affect transport to specific 

locations or promote retention in particular areas (see Hill 1991). Active vertical 

movements are usually thought to be undertaken only in stagnant waters. However, 

Kopacz (1994) demonstrated that gelatinous zooplankton performs vertical movements 

in the tidal currents of the Lister Ley. 
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In Oddewatt, larvae of Pygospio and Lanice showed different distribution areas 

that resemble those of their benthic stages, suggesting that coastal morphology and/or 

benthic adult occurrence could enhance species-specific distribution patterns. Larvae are 

usually thought not to be able to influence their distribution patterns actively (see Banse 

1986; Jackson 1986; Butman 1987; and Armonies 1996). Nevertheless, resemblances 

between distributions of larval and parental forms were suggested since the 60’s (see 

Mileikovsky 1968). Posteriorly, behavioral traits (Hadfield 1986), chemical signs (see 

Wilson 1981, Gallagher et al. 1983, Cuomo 1984, and Woodin 1985), and active 

vertical movements (Mileikovsky 1973, Wiafe and Frid 1996, Bhaud 1998, Thiébaut et 

al. 1998, Qian 1999) were proposed as mechanisms enhancing controlled horizontal 

distributions. The discovery of navigation and orientation capabilities of polychaete 

larvae (see Kingsford et al. 2002), mixed with the interplay of larval behavior and 

physically induced retention, can lead to non-random larval distributions reflected by 

species-specific distribution patterns (Sponaugle et al. 2002).  
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6. Appendices 
 
Appendix 3.I. Wind flow patterns and superficial tidal current velocities (Mean±S.E.) 
inside the List tidal basin (Wind data provided from the German Meteorological 
Service). Tidal velocities were estimated using the hydrographic model of Behrens et al. 
(1997). 

Date  Wind conditions Tidal cycle Tidal channel  Current speed 
(m·s-1) 

  Direction Velocity (m·s-1)    Mean±S.E. 
Dec 6, 2000  S 7.5 High tide Lister Ley  0.3±0.02 
Dec 7, 2000  SE 8 High tide Høyer Dyb  0.6±0.09 
Dec 11, 2000  SE 11.5 High tide Rømø Dyb  0.3±0.06 
Feb 19, 2001  W 8.5 High tide Lister Ley  0.4±0.08 
Feb 20, 2001  N 9 High tide Høyer Dyb  0.35±0.06 
Feb 21, 2001  N 11 High tide Rømø Dyb  0.3±0.07 
June 6, 2001  SW 5 Low tide Lister Ley  0.8±0.06 
June 7, 2001  SW 15 Low tide Høyer Dyb  0.8±0.04 
June 8, 2001  W 8 Low tide Rømø Dyb  0.7±0.05 
July 2, 2001  N 8 High tide Lister Ley  0.6±0.1 
July 3, 2001  N 3 High tide Høyer Dyb  0.7±0.07 
July 4, 2001  E 7.5 High tide Rømø Dyb  0.6±0.05 
July 17, 2001  N 5.5 High tide Lister Ley  0.4±0.1 
July 18, 2001  SE 9.5 High tide Høyer Dyb  0.6±0.09 
July 19, 2001  S 5 High tide Rømø Dyb  0.4±0.05 
Sep 3, 2001  W 5 Low tide Lister Ley  0.7±0.1 
Sep 4, 2001  W 2.5 Low tide Høyer Dyb  0.5±0.02 
Sep 5, 2001  N 5.5 Low tide Rømø Ley  0.3±0.05 
Sep 10, 2001  N 8.5 Low tide Lister Dyb  0.8±0.1 
Sep 11, 2001  N 4.5 Low tide Høyer Dyb  0.6±0.07 
Sep 12, 2001  W 3.5 Low tide Rømø Dyb  0.5±0.02 
Apr 4, 2002  E 9.0 Low tide Lister Ley  0.6±0.07 
Apr 10, 2002  N 6.5 Low tide Høyer Dyb  0.1±0.04 
Apr 11, 2002  E 6.0 Low tide Rømø Dyb  0.6±0.05 
May 6, 2002  NE 5.0 High tide Høyer Dyb  0.6±0.05 
May 7, 2002  E 5.5 High tide Lister Ley  0.6±0.1 
May 8, 2002  E 4.0 High tide Rømø Dyb  0.5±0.05 
May 22, 2002  SE 7.5 High tide Lister Ley  0.7±0.03 
May 23, 2002  SW 5.0 High tide Høyer Dyb  0.4±0.05 
May 24, 2002  SW 8.0 High tide Rømø Dyb  0.1±0.03 
May 27, 2002  S 6.5 Low tide Lister Ley  0.6±0.05 
May 28, 2002  E 2.0 Low tide Høyer Dyb  0.5±0.05 
May 29, 2002  W 7.0 Low tide Rømø Dyb  0.7±0.05 
June 11, 2002  W 8.0 Low tide Lister Ley  0.4±0.08 
June 12, 2002  SW 9.0 Low tide Høyer Dyb  0.8±0.04 
June 13, 2002  NW 6.5 Low tide Rømø Dyb  0.1±0.03 
July 2, 2002  SW 10.0 High tide Lister Ley  0.4±0.07 
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Appendix 3.I (Continued). Wind flow patterns and superficial tidal current velocities 
(Mean±S.E.) inside the List tidal basin (Wind data provided from the German 
Meteorological Service). Tidal velocities were estimated using the hydrographic model 
of Behrens et al. (1997). 
 

Date  Wind conditions Tidal cycle Tidal channel  Current speed 
(m·s-1) 

  Direction Velocity (m·s-1)    Mean±S.E. 
July 3, 2002  S 9.0 High tide Høyer Dyb  0.6±0.04 
July 4, 2002  N 8.0 High tide Rømø Dyb  0.4±0.06 
July 17, 2002  N 9.5 High tide Lister Ley  0.6±0.1 
July 18, 2002  N 10.0 High tide Høyer Dyb  0.3±0.06 
July 19, 2002  N 11.0 High tide Rømø Dyb  0.3±0.07 
July 24, 2002  NW 12.0 Low tide Lister Ley  0.6±0.02 
July 25, 2002  NW 11.0 Low tide Høyer Dyb  0.6±0.02 
July 26, 2002  W 7.5 Low tide Rømø Dyb  0.7±0.05 
Aug 21, 2002  E 5.0 Low tide Rømø Dyb  0.6±0.05 
Aug 22, 2002  SE 3.5 Low tide Lister Ley  0.7±0.02 
Aug 23, 2002  N 5.0 Low tide Høyer Dyb  0.5±0.03 

 
 
Appendix 3.II. Wind flow patterns and superficial tidal current velocities (Mean±S.E.) 
during maximal diurnal high tides in Königshafen. 

 

 1 h before the 
maximum diurnal 

high tide 

During the maximum 
diurnal high tide Current speed  

(m·s-1) 

Sampling date  Velocity 
 (m·s-1) 

Direction Velocity 
(m·s-1) 

Mean±S.E Mean±S.E. 

April 20, 2000 8.3 E 8.7 E 0.07±0.01 
May 8, 2000 7.0 E 6.0 E 0.07±0.01 
May 15, 2000 4.4 S 4.4 S 0.04±0.008 
May 25, 2000 8.7 E 7.1 E 0.07±0.01 
July 3, 2000 3.0 E 2.7 E 0.07±0.01 
July 13, 2000 7.5 W 7.5 W 0.2±0.02 
July 24, 2000 4.0 N 4.4 N 0.02±0.001 
Aug 7, 2000 9.9 NW 9.6 NW 0.08±0.01 
Aug 22, 2000 5.8 NW 7.0 NW 0.08±0.01 
Sep 12, 2000 7.2 SE 7.5 SE 0.2±0.05 
Nov 20, 2000 8.7 SE 9.5 SE 0.2±0.05 
May 15, 2002 9.0 SW 8.4 SW 0.1±0.02 
June 19, 2002 7.0 SW 7.0 SW 0.1±0.02 
July 8, 2002 9.0 S 8.3 S 0.1±0.02 
Aug 20, 2002 3.5 SE 4.0 SE 0.07±0.01 
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Chapter 4. Temporal dynamics of meroplanktonic polychaete 

larvae in a tidal basin of the North Sea: Are year-to-year 

fluctuations related to environmental variability? 

 
Abstract 

The temporal variability between the years 1996-2001 in meroplanktonic polychaete 

larvae of the List tidal basin (northern Wadden Sea) is described. Environmental 

variables significantly affecting abundance fluctuations and a description of the 

seasonality in abundances and environmental variables are presented as well. 

Significant fluctuations in larval abundances and diversity are detected, with 

outstanding changes occurring after 1998. Larvae of Pygospio elegans, Spio 

martinensis, Polydora cornuta, and Lanice conchilega were the most abundant. The 

inter-annual variability in abundance was high. Environmental variability was 

characterized by significant fluctuations in salinity and PO4, both apparently decreasing 

over the years; by significant fluctuations in NO2 and Si, both apparently increasing 

over the years; by significant fluctuations in phytoplankton biomass and pH-values 

without an apparent trend; by a reduced incidence of N- and NE-winds and increased 

incidence of S- and SE-winds; and by a restored influence from the Elbe River plume 

after the winter 1995/1996. Cross-correlations and multiple linear regressions detected 

significant lag effects (<1-12 months) of water temperature, NO2, pH-values, PO4, and 

total silicate on larval abundances. These may be related to effects on endocrinal 

processes and gonadal maturation. Canonical Correspondence Analysis detected the 

significant instantaneous effect on larval abundances by phytoplankton biomass, NO2, 
pH-values, PO4, salinity, and water temperature fluctuations. These variables might be 

related to the triggering of spawning, larval feeding, and feeding of adults to support 

ongoing spawning. The seasonality in abundance and diversity was rather regular, with 

maximal values during spring and summer, positively correlated with increments in 

phytoplankton biomass, pH-values, and water temperatures. 

 

1. Introduction 

The study of abundance fluctuations is one of the most important tasks of 

ecology (Hanski 1997), and the analysis of relationships between abundance 

fluctuations and the environment has direct application in ecosystems modeling. Marine 
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invertebrate populations in shallow coastal waters undergo strong abundance 

fluctuations in their benthic stages (see Niermann 1996; Strasser and Pieloth, 2001; 

Strasser et al. 2001 a and b). 

The effect of climatic factors on the abundance fluctuations of benthic stages in 

the List tidal basin has been demonstrated for several species (e.g. the polychaete 

Lanice conchilega, see Strasser and Pieloth 2001; several bivalves, see Reise 1985 and 

Strasser et al. 2001b; and Arenicola marina, see Reise et al. 2001), while on pelagic 

stages have not been studied up to now.  

The first studies on temporal dynamics in zooplankton of the Wadden Sea were 

conducted by Hickel (1975) and Martens (1980), describing short-term (seasonal) 

fluctuations of copepod and mesozooplankton biomass. Martens (1995) found that 

water temperatures, rainfall, and nitrogen affected the seasonality of mesozooplankton 

inside the List tidal basin. Jak (1999) concluded that the between-year composition and 

biomass of zooplankton in the Wadden Sea fluctuate irregularly in response to shifts in 

spring phytoplankton blooms, driven by unknown stochastic factors. It is known that 

severe winters, characterized by increased salinities and low nitrite concentrations are 

followed by exceptional diatoms blooms (Martens 2001), but it is unknown if this could 

also affect meroplanktonic larvae. Colebrook (1985) and Greve et al. (2001) analyzed 

the relationships between zooplankton and environmental variables in the North Sea, 

suggesting that temperature might be a key factor. 

Zooplankton studies in the List tidal basin never have covered a time span longer 

than one year, and the effort focused on holoplanktonic copepods. However, 

meroplankton is a dominant component, being mainly represented by polychaete larvae 

(Hickel 1975; Martens 1980; Jak 1999). Polychaete larvae are an important food item 

for fish, and their temporal fluctuations may affect local food chains and other 

ecological processes (Martens 1995). Locally, there are no quantitative data on 

polychaete larvae. In 1996 a regular zooplankton-sampling program started, and the 

polychaete component of this ongoing data series constitutes the basis of this study.  

Polychaetes are thought to spawn under species-specific “optimal” conditions 

(Bhaud 1972; Clark and Olive 1973; Todd and Doyle 1981; Fisher 1999; Andries 

2001). Nevertheless, relations between the time of spawning and environmental factors 

have been mainly studied in species lacking meroplanktonic larvae (see Schiedges 1979, 

Franke 1999), mainly focusing on physiological experiments (see Clark and Olive 1973; 

Hauenschild 1974; Olive and Garwood 1979; Franke and Pfannnestiel 1984; Bentley 
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and Pacey 1992). Larval abundances of polychaetes are often positively correlated with 

phytoplankton biomass considering some time lag (see Zajac 1991 a and b; Hansen 

1999; Calbet et al. 2001). Geographical variations in the time of spawning are common 

(see Bentley and Pacey 1992).  

The scope of this study is to analyze abundance fluctuations of meroplanktonic 

polychaete larvae inside the List tidal basin between 1996 and 2001, and to find 

environmental variables significantly affecting abundances, as well as to describe the 

seasonality in larval abundances and environmental variables.  

Based on the references mentioned above, abundances of meroplanktonic 

polychaete larvae are expected to be affected by fluctuations in water temperature, 

salinity, and nitrogen compounds. These three factors potentially affect the production 

of phytoplankton, which is food for many adult and larval polychaetes, and also triggers 

the secondary productivity, so it could be expected that phytoplankton also affects the 

larval abundances of carnivore larvae. The study area is characterized by marked 

seasonal differences in the environment. Therefore, considerable seasonality in larval 

production is expected, because species should take advantage of “optimal conditions” 

for reproduction. 

 
2. Methodology 

2.1. Study site and sampling 

A fixed sampling station was located at List harbor, inside the List tidal basin, 

on the eastern shore of the northern tip of the island of Sylt. The mean depth at this 

station is 10 m. It is influenced by a permanent eddy located in front of Königshafen 

Bay, powered by tidal currents (0.5-1 m·s-1) (Behrens et al. 1997). The water column at 

this station is well mixed (Martens 1980, 1995). 

Between January 1996 and December 2001, one surface water sample (10 l) was 

taken during peak diurnal flood, daily (spring to autumn) or weekly (winter), as part of a 

regular zooplankton-monitoring program (contact person: Dr. M. Strasser, Alfred-

Wegener-Institute). Each sample was filtered through an 80 µm mesh and fixed in 

filtered seawater with 10% formol. Abundances of meroplanktonic polychaete larvae 

were obtained from these samples (1463 samples in total). For the same period, 

measurements of physical and chemical water properties at the sampling site were 

obtained from an environmental and phytoplankton monitoring program (contact 

person: Dr. J. van Beusekom, Alfred-Wegener-Institute). The German Meteorological 
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Service (DWD) provided mean wind speeds and directions for each sampling date, 

measured 2 km south of List harbor. 

The environmental data set consists of measurements of wind speed (Wm/s, in 

m·s-1) and direction (NE, E, SE, S, SW, W, NW, and N); water temperature (°C); 

phytoplankton biomass (Chla in mg·l-1); salinity (Sal in PSU); pH-value (pH); 

concentration of dissolved nitrite (NO2), phosphate (PO4), and total silicate (Si), all in 

µmol·l-1; and records of full moon (FM) and new moon (NM). This set of environmental 

variables was selected, because only these have been measured without interruption 

along the six-year span analyzed here.   

2.2. Statistical analyses 

Relationships between total larval abundance, abundances of 14 taxa comprising 

90% of the total larval abundance, and the environmental data were calculated in two 

ways. 

1) Combining cross-correlation and multiple linear regressions (Legendre and 

Legendre 1995): This technique is suitable when the interval between 

consecutive sampling dates is short (1 day during spring-autumn and 8 days 

during winter in the present study), and it is assumed that abundance responds to 

events that occurred at a previous time (lag). Cross-correlation is used to identify 

time lags that maximize the correlation between abundance and environmental 

variables. Of course, it is also possible that the correlation gets maximized with 

a time lag of 0, if so, an instantaneous effect is considered. Once the optimal lag 

for each variable was found, multiple regression is applied, with each 

environmental variable lagged by the appropriate number of sampling intervals. 

These procedures were applied to raw data and progressive changes in the 

environmental characteristics (trends) were retained, because it was considered 

that they had an effect on larval abundances. Data series were equispaced, using 

averages for intervals of 8 sampling dates along the whole six-year span, 

independently of the season. Wind directions and moon phases (qualitative 

variables) were not included in these analyses. 

2) Canonical Correspondence Analysis (CCA): (Legendre and Legendre 1995; 

Lepš and Šmilauer 2003). This multivariate technique allows the definition of 

models describing the instantaneous effect of environmental variables on larval 

abundances. Significance is evaluated through Monte Carlo permutation tests. 

Here, qualitative variables (wind directions and moon phases) were included as 
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nominal dummy variables. Analyses were performed using CANOCO for 

Windows 4.5. Data series were not equispaced and temporal autocorrelation was 

removed applying permutations designed for time-series designs, available in 

the software. Only the first pair of canonical axes was taken into account. 

Statistically significant pair-wise dependences of abundances on environmental 

variables were assessed using t-value biplots with Van Dobben circles (Ter 

Braak and Šmilauer 2002; Lepš and Šmilauer 2003) (see Fig. 4.1 for an 

example). These specialized ordination diagrams are formed by t-values of 

multiple regression coefficients, obtained from regressions between abundances 

and the set of environmental variables, taking into account the model defined by 

the CCA-analysis. Arrows represent species. Two circles enclose areas where 

positive and negative effects of a particular environmental variable are 

significant (one circle for the positive effect and another for the negative effect). 

Species of which arrows end inside these circles depend significantly on that 

environmental variable. Results derived from this method should be interpreted 

in terms of regression. There are as many t-value biplots with Van Dobben 

circles as environmental variables.  

 

 
Fig. 4.1. Example of a t-value biplot with Van Dobben circles. Arrows represent five 

taxa: Polydora cornuta (Pcor), Spio martinensis (Smar), Lanice conchilega (Lani), 

Pygospio elegans (Pele), and Phyllodocidae (Phyll). Circles represent areas where the 

effect of NO2
 is significant. Since only arrows of Pele and Smar end inside the circles, 

the increase of NO2 is only significantly positive for Pele, while decreases are only 

significantly negative for Smar. 
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2.3. Assumptions behind the analyses 

Abundance fluctuations could reflect the effect of environmental changes on the 

performance of larvae inside the bight and/or on egg production, temporal changes in 

larval import/export from/to the North Sea, as well as dislocations inside the bight. No 

data on egg production are available, and it is unknown if the water exchange between 

the bight and the open sea fluctuated significantly between 1996-2001. Results shown in 

Chapter 3 indicate that larval retention inside the bight is a dominant process and that 

larval inputs from the North Sea may be quantitatively negligible. Therefore, it will be 

assumed here that larval retention leads to local auto-recruitment and that larval sources 

are mainly located inside the bight. It is important to make this a priori assumption in 

this chapter; because it is believed that temporal fluctuations in larval abundances and 

diversity are responses to processes occurring inside the basin, and not in the adjacent 

North Sea. 

 

3. Results 

3.1. Inter-annual variability of larval abundances and environmental variables 

 Within the study period, the mean abundance of polychaete larvae was rather 

similar between years, except for the year 2000, when the mean abundance (42 

larvae·10 l-1 ±6.0; number of samples=250) was more than twice as high as the average 

of the other five years (17 larvae·10 l-1 ±1.2; number of samples=1213) (Fig. 4.2a). This 

exceptional abundance was caused by coinciding peaks of several taxa (see below). 

Because of the exceptional year 2000, inter-annual fluctuations over the 6-year period 

are significant (after Tukey-HSD Post hoc-Tests). Annual diversity also fluctuated 

significantly but was not correlated with mean abundance (r=0.8, p>0.05), The high r-

value suggests that the lack of significance was caused by the shortness of the time 

series. However, the year 2000 with the highest abundance also showed the highest 

diversity (Fig. 4.2b). Of the 14 most abundant taxa, most peaked in annual abundance 

either in 1998 or in 2000, and these were the years with the highest diversity. Neither 

total abundance, nor diversity, showed significant linear trends over the study period 

(total abundance: β=0.4, F(1,4)=1.0, p>0.05; diversity: β=0.4, F(1,4)=0.6, p>0.05).  

The 14 most abundant taxa comprised a grand total of 31,462 larvae. Their 

monthly sums over the six-year span, abbreviations of their names used in the text, and 

the percentage of the grand total of each taxa are shown in Fig. 4.3. 
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Fig. 4.2. Annual means and 95% confidence limits of (a) total abundance and (b) 

species diversity (1/Simpson diversity index). F-values refer to tests for significant 

temporal fluctuations with ANOVA, **=p<0.01. 

   
Averaged over 1996 to 2001, the most abundant taxa were Pygospio elegans, 

followed by other spionids (Spio martinensis and Polydora cornuta), and the terebellid 

Lanice conchilega (Table 4.I). Magelona mirabilis, L. conchilega, Laonice cirrata, 

Nereis Types I and II, Nephtys spp. and Chone spp. showed the highest inter-annual 

variability in abundance (Relative variation coefficients between 25-52%), while the 

rest of taxa showed coefficients between 4-18%. Most of the taxa (Phyllodocidae, 

Polydora ciliata, Scoloplos armiger, Chone spp., Scolelepis spp., and Nephtys spp.) had 

abundance peaks during 1998. 

Yearly mean abundances of S. armiger, Chone spp., L. conchilega, P. cornuta, 

L. cirrata, and nereidids showed no significant overall temporal fluctuations (Fig. 4.4). 

In all cases, except that of P. cornuta, high intra-annual variability may have concealed 

the detection of significant temporal fluctuations. 

Some of these taxa showed some suggestive temporal patterns: abundances of S. 

armiger increased between 1996-1998, with posterior decrements; those of L. 

conchilega increased between 1996-1999, decreasing after; and those of L. cirrata were 

characterized by two increasing cycles, one between 1996-1998, and another between 

1999-2001. 
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Fig. 4.3. Monthly sums of the 14 taxa comprising 90% of the grand total, as well as 

their percentage (%) of the grand total (31,462 larvae).   
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Table 4.I. Averaged abundances (larvae/ 10 l) and 95% confidence limits of polychaete 
larvae in the List tidal basin for the period 1996-2001, relative variation coefficients 
(CVr), and years of peak abundance of the 14 most abundant taxa. 

Taxa Overall mean
1996-2001 CVr (%) Year of peak  

abundance 
Pygospio elegans 7.00±0.70 10.70 2000 
Spio martinensis 5.20±0.70 13.00 2000 
Polydora cornuta 1.40±0.10 9.00 2001 
Lanice conchilega 0.60±0.20 25.80 1999 
Phyllodocidae 0.30±0.04 12.70 1998 
Polydora ciliata 0.30±0.04 14.50 1998 
Scoloplos armiger 0.24±0.06 4.20 1998 
Magelona mirabilis 0.20±0.05 25.50 1999 
Chone spp. 0.20±0.10 51.10 1998 
Laonice cirrata 0.20±0.06 25.80 2001 
Scolelepis spp. 0.11±0.01 14.30 1998 
Nephtys spp.  0.08±0.03 33.10 1998 
Polydora Type I 0.07±0.01 17.60 2000 
Nereis Types I&II 0.05±0.01 31.00 1996 

 

 
Fig. 4.4. Annual mean abundances and 95% confidence limits of taxa without 
significant abundance fluctuations between years. F-values refer to tests on temporal 
fluctuations with ANOVA. Abbreviations as in Fig. 4.3. 
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Significant temporal fluctuations in abundance among years were detected in the 

other eight taxa (Fig. 4.5). Four groups were defined, based on their fluctuation patterns: 

1) Taxa with a decrease until 1999, but sudden increase after 2000: P. elegans, 

Polydora T1, and S. martinensis; 2) Taxa with peaks between 1998-1999: Phyllocidae 

and M. mirabilis; 3) Taxa with sudden increments in 1998: Nephtys spp.; and 4) Taxa 

with apparently random fluctuations: P. ciliata and Scolelepis spp. 

The temporal variability of environmental variables shows significant 

fluctuations in salinity and phosphate which seem to have decreased, but their trends 

were not significant (salinity:β=-0.4, F(1,4)=0.7, p>0.05; phosphate:β=-0.4, F(1,4)=0.8, 

p>0.05) (Fig. 4.6). Significant fluctuations in phytoplankton biomass and pH-values 

also have no significant trend (phytoplankton:β=0.3, F(1,4)=0.3, p>0.05; pH:β=-0.3, 

F(1,4)=0.3, p>0.05.  

Significant fluctuations in nitrite and silicate concentrations occurred. Both seem 

to have increased, but the trends were not significant (nitrite:β=0.3, F(1,4)=0.3, p>0.05; 

silicate:β=0.2, F(1,4)=0.2, p>0.05). Annual water temperatures show no significant 

fluctuations between years. Winds >6 m·s-1 were more common between 1997-2000, but 

temporal differences between modes were not significant. Percentages of S- and SE-

winds increased between 1999 and 2001, while those of N- and NE-winds decreased. 

Significant correlations between the fluctuation patterns of the environmental 

variables are shown in Table 4.II.  In general, most of the temporal patterns are not 

significantly correlated (21 out of 56 cases are significant). Correlation coefficients are 

low and negative correlations slightly dominated among the significant cases (13 out of 

21). This implies that most of the environmental variables did not covary in the same 

way in the period 1996-2001. 
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Fig. 4.5. Annual mean abundances and 95% confidence limits of taxa with significant 

overall temporal fluctuations. F-values refer to tests on temporal fluctuations with 

ANOVA. *=p<0.05, **=p<0.01. Abbreviations as in Fig. 4.3. 
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Fig. 4.6. Temporal patterns (1996-2001) of environmental variables. a) Water temperature; b) Salinity; c) Phytoplankton biomass; d) Phosphate; e) 

Nitrite; f) Silicate; g) Water pH; h) Annual modal wind speeds (the Chi2-value refers to the assessment of significant temporal changes); i) Annual 

percentages of the incidence of wind directions. From a-g, mean values and 95% confidence limits are shown. F-values refer to tests on temporal 

fluctuations with ANOVA, N.S.=Non-significant; **=p<0.01. 
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Table 4.II. Significant Pearson’ correlation coefficients (p<0.05) between environmental 

variables for the period 1996-2001. 
                     (+) Correlations 
(-) Correlations Wm/s °C Chla Sal pH NO2 PO4 Si 
Wind speed       0.21 0.18 
°C -0.23   0.46 0.23    
Chla  -0.19   0.41    
Salinity         
PH -0.13   -0.14     
NO2  -0.65  -0.29 -0.45  0.45 0.60 
PO4  -0.40   -0.20   0.30 
Si  -0.62 -0.23 -0.45 -0.48    

 
3.2. Relationships between larval abundances and environmental variables  

Multiple regressions involving the total abundance, and abundances of Pele, Smar, 

Phyll, Pcorn, and Scole show the highest adjusted coefficients of determination (Table 4.III). 

Regressions for abundances of the other 9 taxa have Ra
2≤0.3 and are not taken into account, 

since in most of the cases these are non-significant. Most of the significant cases involve 

short- and long-term time lags (<1-12 months), while phyllodocids show only long-term lags 

(8-12 months). Water temperature and silicate show the highest cross-correlation coefficients, 

while the speed of the wind has the lowest ones. pH-values, water temperature, nitrite, and 

silicate are the most frequent environmental variables with significant lag effects on larval 

abundances. 

The CCA-model describing instantaneous relationships between environmental 

variables and total larval abundances, as well as abundances of the 14 most abundant taxa is 

statistically significant (F=11.7, p<0.01), but explains only 18% of the total variance. 

Environmental variables significantly related to the first two canonical axes are shown in 

Table 4.IV. The highest significances were found with water temperature, salinity, PO4, and 

phytoplankton biomass. 

Statistically significant pair-wise dependences of abundances on particular 

environmental variables are shown in Fig. 4.7. Phytoplankton biomass, NO2, pH, PO4, 

salinity, and water temperature have significant effects. Abundances of larvae of P. elegans 

are significantly favored by increments in phytoplankton, nitrite, and salinity; while 

increments in pH, PO4, and water temperature are significantly negative for its abundance. 

Abundances of phyllodocid larvae are significantly favored by pH and PO4 increments, while 

salinity increments significantly reduce its abundance. Larval abundances of L. conchilega are 

significantly favored by PO4 increments but negatively affected by salinity increments. 
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Table 4.III. Cross-correlations and multiple regressions between larval abundances and environmental variables. The “Cross-correlation” section 

shows Pearson’s correlation coefficients (r±S.E, all significant at p<0.01) and the optimal time lag in months (in parenthesis). The “Multiple 

regression” section shows variables with significant partial regression coefficients (β, p<0.05), adjusted coefficients of determination (Ra
2), and F-

values of ANOVAs testing the significance of the multiple regressions. **=p<0.01. 

 

    Cross-correlation Multiple regression
 Wm/s °C   Chla Sal pH NO2 PO4 Si Significant β Ra

2 ANOVA 
Total 
abund. 

0.30±0.06
(5) 

0.60±0.06 
(<1) 

0.30±0.06
(3) 

0.40±0.06 
(2) 

0.50±0.06
(1) 

0.50±0.06 
(6) 

-0.40±0.07
(12) 

0.50±0.06 
(7) 

°C (0.80) 
NO2 (0.40) 0.50 F(8,50)=7.80** 

Pele 
0.30±0.06

(7) 
0.40±0.07 

(10) 
0.20±0.06

(9) 
0.40±0.06 

(12) 
0.40±0.06

(1) 
0.5±0.06 

(7) 
-0.40±0.06

(<1) 
-0.40±0.06

(7) 

Sal (-0.3) 
pH (0.40) 

PO4 (-0.40) 
Si (0.30) 

0.51 F(4,85)=24.50** 

Smar 0.30±0.06
(5) 

0.50±0.06 
(<1) 

0.40±0.07
(12) 

-0.50±0.06
(4) 

0.40±0.06
(8) 

0.50±0.06 
(8) 

-0.40±0.06
(12) 

0.50±0.06 
(5) 

Wm/s (0.20) 
pH (0.30) 
Si (0.20) 

0.50 F(6,183)=26.30** 

Phyll 0.30±0.06
(10) 

0.50±0.07 
(10) 

0.60±0.06
(12) 

-0.50±0.06
(8) 

0.40±0.06
(12) 

0.50±0.06 
(12) 

0.40±0.06 
(8) 

0.50±0.06 
(12) 

NO2 (0.60) 
Si (0.20) 0.50 F(4,96)=24.20** 

Pcorn 0.30±0.06
(12) 

0.60±0.06 
(0) 

0.30±0.06
(12) 

0.30±0.06 
(1) 

0.40±0.06
(12) 

0.40±0.06 
(8) 

0.30±0.06 
(12) 

0.50±0.06 
(6) 

°C (0.60) 
pH(0.10) 

PO4 (-0.10) 
0.41 F(5,133)=20.00** 

Scole 0.20±0.06
(10) 

0.40±0.06 
(1) 

0.30±0.06
(12) 

-0.40±0.06
(9) 

0.50±0.06
(1) 

0.40±0.06 
(11) 

0.30±0.06 
(10) 

0.50±0.06 
(6) 

°C (0.20) 
pH (0.20) 

NO2 (0.30) 
0.40 F(6,193)=22.00** 
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Table 4.IV. Environmental factors significantly related to the first pair of canonical axes of 

the CCA-model describing instantaneous relationships between environmental variables and 

larval abundances. Values shown are t-values of regression/canonical coefficients for 

standardized variables (tcrit(α=0.05)=1.6, d.f.≥90). 

                                                  Canonical axis
Environmental variable 1st 2nd

°C 116.8 53.9 
Salinity 72.2 33.5 
PO4 39.3 62.0 
Chla 52.4 40.3 
NO2 59.9 27.9 
SE-wind direction 10.7 15.4 
Wind speed 0.4 24.1 
SW-wind direction 17.9 0.7 
Si 13.4 0.4 
E-wind direction 11.4 0.8 

 

Abundances of larval Scolelepis spp., Nephtys spp., and Chone are significantly 

favored by PO4 increments. Salinity increments affect significantly and negatively the total 

larval abundances, and abundances of P. cornuta, S. armiger, and M. mirabilis. Larvae of L. 

cirrata, Polydora Type I, Nereis spp., S. martinensis, and P. ciliata are not significantly 

affected by this set of environmental variables. Instantaneous effects of silicate, wind speed, 

both lunar phases, and any wind direction are not significant (Fig. 4.8). 

3.3. Seasonality of the environmental variables and larval abundances 

Environmental variables and abundances show a marked seasonality. pH-values, 

phytoplankton biomass, and larval abundances of L. conchilega, P. ciliata, nereid, nephtids, 

L. cirrata, S. armiger, and M. mirabilis peaked during spring (Fig. 4.9). The seasonal counts 

of L. conchilega, P. ciliata, and nereid significantly correlate with pH-values, while 

seasonality of L. cirrata, S. armiger, and M. mirabilis correlate significantly with 

phytoplankton biomass. The seasonal pattern of Nephtys spp. shows no significant correlation 

with either of the measured environmental parameters. 

Water temperature, salinity, the total polychaete larval abundance, and abundances of 

P. cornuta, S. martinensis, and Scolelepis spp. peaked during the summer season (Fig. 4.10). 

Significant correlations are only found between the total larval abundance and abundance of 

P. cornuta with water temperature. 
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Fig. 4.7. t-value plots with van Dobben circles showing significant pair-wise dependences of abundances on environmental variables. The table 

shows the type of effect (positive or negative) of each environmental variable over the taxa. TOTAL=Abundance comprised by the 14 most 

abundant taxa.  
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Fig. 4.8. t-value plots with van Dobben circles showing non-significant pair-wise dependences of abundances on environmental variables. 

TOTAL=Abundance comprised by the 14 most abundant taxa. 
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Fig. 4.9. Seasonality of means and 95% confidence limits of environmental variables 

and abundances peaking during the spring season. F-values refer to tests on significant 

differences between seasons with ANOVA, and r-values refer to significant Pearson’ 

correlation coefficients between environmental variables and larval abundances. 

*=p<0.05, **=p<0.01. 
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Fig. 4.10. Seasonality of means and 95% confidence limits of environmental variables 

and abundances peaking during the summer season. F-values refer to tests on significant 

differences between seasons with ANOVA, and r-values refer to significant Pearson’ 

correlation coefficients between environmental variables and larval abundances. 

*=p<0.05, **=p<0.01. 
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 PO4, Si, NO2, and wind speed peaked during winter and seasonality of none of 

the taxa correlated significantly with these (Fig. 4.11). Diversity and larval abundances 

of P. elegans and Polydora Type I were high between spring-autumn, showing no 

significant correlation with the seasonal patterns of any environmental variable. Larval 

abundances of phyllodocids and Chone sp. peaked during autumn and were not 

significantly correlated with the seasonal pattern of any environmental variable. 

The frequency of NE-, N-, and NW-wind directions remained almost constant 

over the seasons (Fig. 4.12). Those of W-, SW-, S-, and SE-winds increased during 

autumn, while the frequency of E-winds was maximal during spring, and decreased 

gradually over the year. No taxon was significantly correlated with the seasonal patterns 

of wind directions. 

Based on the seasonal distribution of abundance the following reproductive 

periods were assumed (Table 4.V): (1) Species with continuous reproduction throughout 

the year and reproductive peaks in spring (P. elegans, L. conchilega, P. ciliata, L. 

cirrata, Nepthys spp., P. cornuta, and Polydora Type I.); (2) Species with continuous 

reproduction during the year and reproductive peaks during summer (S. martinensis and 

Scolelepis spp.); (3) Species with seasonally limited reproduction and reproductive 

peaks in spring or autumn (Phyllodocidae, S. armiger, Chone spp., M. mirabilis, and 

Nereis spp.). 
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Fig. 4.11. Environmental variables, taxa abundances, and diversity values (means and 

95% confidence limits) peaking during autumn, winter, and the spring-autumn period. 

F- and Chi2-values refer to tests of significant differences between seasons. *=p<0.05, 

**=p<0.01, N.S.=non-significant. 

 

  
Fig. 4.12. Seasonal patterns of the percentual frequency of wind directions. 
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 Table 4.V. Reproductive periods for the 14 polychaete taxa analyzed. 

 

 
  

4. Discussion 

 The study period was characterized by significant annual fluctuations in salinity, 

phytoplankton biomass, pH-values, and concentrations of NO2, PO4, and Si. Apparent 

reductions in salinity and increments of NO2 occurred due to the restored influence of 

the Elbe River plume, when the strong offshore winds during the winter 1995/1996 

ceased; and increased salinities during 1996 occurred due to low precipitation and ice 

formation inside the basin during the same winter (Martens 2001). The apparent 

increase in total silicate may be interpreted as increased freshwater runoff into the basin. 

The reduction in PO4 would suggest an increased phytoplankton production. 

Environmental fluctuations coincided with significant fluctuations in abundance 

and diversity. Water temperature, NO2, pH-values, PO4, and total silicate had significant 

time lag effects on larval abundances; while significant instantaneous effects were those 

of phytoplankton biomass, NO2, pH-values, PO4, salinity, and water temperature. This 

study provides no experimental evidence for cause-effect relationships.  
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Similar relationships between environmental variables and larval abundances of 

polychaetes have been recognized since the 70`s (see Bhaud 1972), and have been 

demonstrated in temporal development of populations of copepods and phytoplankton 

in the List tidal basin (water temperature, see Martens 1995, 2001). They have been also 

found in non-gelatinous zooplankton from the Caribbean Sea (nutrient inputs from 

rainfall, see García and López 1989), zooplankton and polychaete larvae from the 

Mediterranean Sea (water temperature and nutrients, see Siokou-Frangou et al. 1998). 

Salinity and water temperature are known to affect the larval abundance of 

Marenzelleria viridis from the Baltic Sea (Bochert et. al. 1996). Positive correlations 

between abundances of polychaete larvae and phytoplankton biomass (Chl a) have been 

reported by Calbet et al. (2001) in the Mediterranean Sea. It is interesting to note that, 

although the previous references included species inhabiting different habitats at other 

regions of the world (e.g. Mediterranean and tropical environments), such relationships 

are common.  

A schematic and hypothetic description of how environmental variables may 

influence larval abundances is shown in Fig. 4.13. Variables with time lag effects may 

be related to endocrinal processes and gonadal maturation of adults. This is exemplified 

by the seasonal pattern of the total larval abundance, since it becomes maximal in 

summer, after the winter and spring algal blooms. Zajac (1991a and b) reported that 

adult Polydora use winter phytoplankton blooms in order to maturate their gonads, start 

to spawn in early spring, and produce maximal larval abundances in summer. Summer 

phytoplankton blooms would support the ongoing spawning and settlement (Todd and 

Doyle 1981; Zajac 1991a and 1991b). The advantage of producing the highest larval 

abundances during spring-summer is, that larval cohorts experience the highest water 

temperatures, shorten their development and residence times with low starvation risk 

(although Polydora larvae seem to cope well with fluctuations in food availability, see 

Winging-Hansen 1999). Larvae spawned in autumn/winter have longer egg-juvenile 

periods (Todd and Doyle 1981).   

Environmental variables with significant instantaneous “effects” may be related 

to the triggering of spawning, larval feeding, and feeding of adults to support ongoing 

spawning. The triggering effect of water temperature over polychaete gametogenesis 

has been reported by Lawrence (1996) and Bentley and Pacey (1992).  The role of water 

temperature in gonadal maturation of polychaetes was described by Clark and Olive 

(1973), Schiedges (1979), Todd and Doyle (1981), Franke (1983), Franke and 
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Pfannenstiel (1984), and Bentley and Pacey (1992). Water temperature as spawning 

trigger was reported by Clark and Olive (1973), Todd and Doyle (1981), Franke (1983), 

Bentley and Pacey (1992), Fischer (1999), Franke (1999), and Andries (2001).  The 

triggering effect of salinity over spawning was reported by Clark and Olive (1973), and 

its influence over larval performance was reported by Mathivat-Lallier and Cazaux 

(1990) and Bochert et. al. (1996).  The importance of food supply for gonadal maturity 

was reported by Clark and Olive (1973) and Schiedges (1979), and for spawning by 

Bentley and Pacey (1992). Omori and Ikeda (1984), and DeMott (1989) mentioned that 

fluctuations of salinity, temperature, and pH affect zooplankton fitness (performance) 

by depressing feeding and growth rates and influencing the balance between energy 

intake and metabolic demands. 

 

 
Fig. 4.13. Hypothetic description of time lag and instantaneous effects of environmental 

variables (Sal=salinity). 
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Apparently, the environmental fluctuations did not affect all taxa to the same 

extend. This is exemplified with the larval abundances of P. cornuta and M. mirabilis. 

Larvae of both species occur during the whole year, but abundances of P. cornuta have 

not significantly fluctuated between 1996 and 2001, while the larval abundance of M. 

mirabilis was low between 1996-1998 and increased significantly between 1999-2001. 

Severe winters have effects on many components of the Wadden Sea fauna (see Strasser 

and Pieloth 2001) and it may be speculated that the low larval abundance of M. 

mirabilis between 1996-1998 was related to the severe winter 1995/1996. The same 

applies to larvae of L. conchilega. Their absence during 1996 may have been caused by 

the massive adult mortality during that winter (Strasser and Pieloth 2001). However, the 

decline observed in its larval abundance after 1999 cannot be related to the occurrence 

of another severe winter. On the other hand, nereid larval abundances were maximal 

during 1996 and decreased thereafter. These differences suggest that taxa differ in their 

response to severe winters in terms of their larval production. In most of the taxa 

analyzed, outstanding changes in abundance occurred after 1998, suggesting that 

processes other than severe winters may be controlling their abundance fluctuations. 

How much of this variability was produced by the influence of environmental 

fluctuations inside the bight? How much was contributed by external processes (e.g. 

temporal/seasonal fluctuations in the larval input from the open sea)? Unfortunately, it 

is not possible to answer these questions, because the appropriate information is not 

available. The larval input (sensu stricto) from the open sea has never been measured. 

Measurements performed by Raddatz (1994) were done in a zone affected by permanent 

eddies; thus, it is possible that he was continuously sampling the same larval set. Water 

masses cannot be used as proxy for larval exchange because detailed descriptions of 

water movements at different depths of the water column are not available, and their use 

might be valid only at short temporal scales. After using the available data of water 

temperature and salinity to create T-S diagrams, describing the movement of water 

masses inside the bight, only the restored influence from the Elbe River plume after 

1996 is observed (Fig. 4.14). This was demonstrated by Martens (2001). Seasonal 

differences in the water movement shown in these diagrams are expected, since local 

hydrodynamics are highly affected by winds, and seasonal changes in wind patterns 

were previously shown.  
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Fig. 4.14. Seasonal T-S diagrams for the period 1996-2001 (°C=Temperature in celcius 

degrees, PSU= Salinity in PSU units). 

 
Abundances of oceanic taxa (e.g. Appendicularia) could be used as proxy for 

intrusions of North Sea water into the bight (temporal increments in their abundance 

could be interpreted as increased intrusions of offshore water), but the risk is, that we 

may be measuring real population fluctuations and not temporal fluctuations in the 

water exchange. In this sense, intrusions of North Sea water would be easier detected 

during the winter (which is usually harsh at this coast due to freezing), because no taxon 
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reaches its highest larval abundance inside the bight during this season, and if high 

amounts of larvae would suddenly show up, it may be speculated that they have come 

from the open sea. Available models of superficial current patterns (e.g. Behrens et al. 

1997) and waves do not necessarily reflect water exchange between the coast and the 

open sea. Thus, the unique solution for this problem is to get real measurements of the 

larval exchange and to undertake the adequate oceanographic research. 

Assuming a dominance of local larval production, environmental variables 

significantly affecting the larval abundance in time lagged and instantaneous ways, 

show different combinations for different taxa, in agreement with the supposition that 

factors affecting the reproduction of polychaetes are taxa-specific (Bhaud 1972; Clark 

and Olive 1973; Todd and Doyle 1981; Fisher 1999; Andries 2001).  

Methods applied in the present study revealed a negligible instantaneous effect 

of wind direction and full- and new-moon phases on larval abundances. In the case of 

the wind, an artifact could have been present by using wind directions over all speeds. 

Winds <3-4 m·s-1 have weak effect on the local hydrodynamics (W. Armonies, pers. 

com.), thus the use of all wind situations may bring much noise in the data, particularly 

if direction and speed are treated separately. The direction of wind driven flow has been 

found to be important during 1991 for copepod abundances inside the List tidal basin 

(Martens 1995). Westerly winds have positive influence on the North Sea zooplankton 

(Colebrook 1985; Greve et al. 2001), and some gastropods spawn under certain wind 

directions and stormy conditions (Sasaki and Shepherd 1995). Moon phases are 

important for the gonadal maturation in lumbrinerids (Clark and Olive 1973), and for 

spawning in nereids and syllids (Schiedges 1979, Bentley and Pacey 1992, Franke 

1999).   

Another probable artifact affecting these results is, that the significance of some 

environmental factors varies depending on the pooling of abundance data (e.g. total 

abundance, families, single or groups of species, etc.) (Martens 1995), and 

environmental variables not considered here may show better correlations. 

  Strasser and Pieloth (2001) and Strasser et al. (2001a and b) have shown that 

climatic fluctuations may induce abundance fluctuations of marine invertebrates on tidal 

flats. Abundance of larvae has been taken as the traditional sign of reproductive activity 

in polychaetes (Bhaud 1972), but environmental fluctuations may also induce 

poecilogony (Gudmundsson 1985; Hoagland and Robertson 1988; Young and Ebert 

1996; Chia et al. 1996), and we do not know if this occurred in the study area. Some 
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locally important species are potential sibling species or poecilogonic (e.g. Scoloplos 

armiger (Plate and Husemann 1991, Kruse et al. 2003), Pygospio elegans (Anger et al. 

1986; Gibson and Harvey 2000), and Capitella (Gamenick et al. 1998). 

The sampling program is ongoing, and in the future it will be possible to reach a 

higher certainty on the influence of environmental factors on larval abundances. A 

longer temporal coverage would lead to the smoothing of variability induced by 

exceptional conditions (e.g. winter 1995/1996), because more samples would represent 

“normal periods”. Nevertheless; the identification of the larval sources, regular 

oceanographic research to clarify temporal variability in water exchange, and an 

appraisal of the set of environmental variables are inevitable. On the other hand, 

monitoring programs running for more than 20 years can lead to the situation, where no 

significant correlation between environmental factors and zooplankton abundances is 

found (see Kane 2003). 

Several open questions are prompted by the results, for example: 1) A deeper 

analysis on effects of wind directions on larval abundances, transforming the wind data 

to represent an index of turbidity; 2) The environmental variability at the offshore area 

can be expected to be lower than inside the Wadden Sea. Larvae produced inside the 

basin should be adapted to the prevailing conditions there, while those coming from the 

offshore area may be more sensitive to the harshness inside the basin. Therefore, the 

search for reliable representative taxa of both environments should be intensified in 

order to test for this “lack of adaptation”; 3) Up to now, the influence of single 

environmental variables on the taxa was analyzed. This is certainly too simplistic. 

“Optimum curves” might allow the analysis of the interplay of several environmental 

variables on one taxon; 4) It might be useful to re-analyze specific periods or seasons, in 

order to distinguish better between remarkable events (e.g. severe vs. mild winters), or 

specific seasons (e.g. limiting the analyses to spring/summer periods, when larval 

abundances are the highest). 
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Chapter 5. General discussion 
 Once the basis of a description of species composition, distribution, and 

temporal abundance fluctuations of meroplanktonic polychaete larvae inside the basin is 

settled, we may ask, to what extent the local polychaete plankton is representative for 

coastal waters of the North Sea. 

Martens (1998) found at the scale of the List tidal basin that the abundance of 

spionid polychaete larvae in inner surface waters increases during low tides and 

decreases during high tides, concluding that an important proportion of meroplankton is 

exported to the open sea during ebb periods, but based on the copepods found inside the 

basin it was proposed that holoplankton is imported during flood periods. Reise et al. 

(1998) suggested that only few zooplankters could be considered local for the bight (e.g. 

the copepod Acartia spp. and medusas). Acartia reproduces in the basin and medusas 

perform vertical movements that allow them to remain inside the basin. Based on the 

low coherence observed between benthic and planktonic assemblages in the present 

study, it seems that the qualitative input from the North Sea enlarges the species 

spectrum. Larvae of Laonice cirrata, Polydora hermaphroditica, Poecilochaetus 

serpens, and Pseudomystides limbata, of which benthic stages are not known from the 

benthic surveys are candidates of the meroplankton potentially imported during flood 

periods. Nevertheless, evidence for larval retention as the dominant process suggests 

that the effect of the quantitative imput from offshore on overall abundance is small. 

Since a large proportion of the total larval abundance was comprised by species 

with benthic stages well known from inside the basin (e.g. P. elegans, S. martinensis, P. 

cornuta, and L. conchilega), it may be assumed that a large proportion of the polychaete 

larval production is local. 

The study of Smidt (1951) is the only other investigation on species composition 

of meroplanktonic polychaete larvae for the northern Wadden Sea. Species and types of 

spionids, polynoids, and phyllodocids found here indicate that the species composition 

of these groups has not remained static and that periodic taxonomic studies are still 

necessary. In the long-term, the species composition of the Wadden Sea has 

continuously changed, due to the loss of particular habitats (e.g. Sabellaria-reefs and 

sublitoral seagrass-beds) and the establishment of alien species (Reise et al. 1998). 

Since these changes have been common for all the tidal basins along the Wadden Sea, it 

could be expected that the biota of the List tidal basin would not differ from the rest of 
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the tidal flats (Reise et al. 1999), but it would be interesting to test this using the 

meroplanktonic compartment. 

  Martens (1998) proposed that the large tidal exchange of water volume causes 

larvae to enter and leave the bight with each tide. However, his data could also be 

interpreted as follows: Abundances of spionid larvae increased during the ebb phase, 

because they were retained inside the bight and the reduction in water volume was 

concentrating them. On the other hand, their abundance decreased during flood tides, 

because they were diluted in a larger volume of water.   

 One may assume that the tidal mixing is enough to induce random larval 

distributions. However, the occurrence of particular taxa in specific areas of the basin 

and the persistent detection of highest larval abundances at its innermost parts indicate 

that polychaete larvae are not simply homogenized and washed-out by tides. The List 

tidal basin is unique along the Wadden Sea, by being separated from other tidal basins 

by causeways, leaving only one connection open to the North Sea. It would be 

interesting to examine whether abundance patterns are similar to those basins not 

enclosed by causeways. 

The occurrences of particular taxa at specific areas of the basin and the persistent 

detection of highest larval abundances at its innermost parts have implications for the 

ongoing regular zooplankton-sampling program. It should be analyzed if zonations of 

abundance and species composition inside the basin occur in other meroplanktonic 

groups. If so, additional sampling points distributed inside the basin should complement 

the fixed sampling station from List harbor. Nevertheless, the List harbor station should 

be maintained, since a large amount of valuable information has been obtained there 

over the last seven years. This information is necessary to discuss physical variability 

and zooplankton population dynamics, from the point of view of long-term physical and 

biological data sets. Up to now, such discussions have been undertaken for the whole 

North Sea, but the coastal zones should not be left aside. The analysis of year-to-year 

fluctuations in the production of meroplanktonic polychaete larvae and some 

environmental variables at the List tidal basin (Chapter 4) is only one example of a wide 

spectrum of possible analyses. The continuation of the time-series from List harbor will 

lead to the achievement of higher certainty on the influence of environmental factors on 

the meroplankton. Although Biologische Anstalt Helgoland has produced the 25 years 

long zooplankton time-series of Helgoland Roads, representative for the German Bight, 
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similar time series are also necessary for shallow coastal areas, and there lies the 

importance of the List harbour time series. 

An important quantitative role of polychaete larvae in zooplankton has been 

mentioned for the study area by Hickel (1975), Martens (1980), and Jak (1999). 

Bosselman (1989) also recorded a numerical dominance of polychaete larvae at one 

subtidal area of the German Bight. Archambault et al. (1998) noted the numerical 

dominance throughout the year at four bays of the Lower St. Lawrence Estuary 

(Canada). Shanks et al. (2002, 2003) reported the numerical dominance at Cape 

Hatteras. On the other hand, polychaete larvae are a minority at the Faroe shelf (Gaard 

1999) and some locations of the NW-Mediterranean Sea (Calbet et al. 2001). It would 

be desirable to know, how comparable are local abundances of polychaete larvae with 

those of other zooplankters, and if their abundance levels are similar at other regions. 

Data from the literature make such a comparison difficult due to temporal mismatch and 

differences in sampling gears and methodologies. Furthermore, abundance data of 

polychaete larvae are not often provided. They are commonly pooled together in groups 

such as “macrobenthic larvae”, “total zooplankton”, or “others”; or are expressed as 

biomasses. 

The averaged abundance of polychaete larvae along gullies in the bight as well 

as inside Königshafen and Oddewatt, was 37.0 larvae·10 l-1 (±2.0). The averaged 

abundance for the 1996-2001 time series obtained at List harbor was 21.5 larvae·10 l-1 

(±3.0). Table 5.I shows maximal abundances reported for several zooplankters from the 

bight and other areas. Averaged abundances from the present study compare well to the 

maximal abundances reported for haparticoid copepods, appendicularia, medusae, and 

crab larvae inside the bight; nevertheless, abundances of the copepod Acartia and 

bivalve larvae can be higher. Averaged abundances from the present study are higher 

than the maximal larval abundances reported for polychaete taxa at Kiel Bay, German 

Bight, Caribbean Sea, Mediterranean Sea, and Atlantic Ocean. Nevertheless, some 

polychaete taxa from Japan, U.S.A., and the Baltic Sea can reach extremely high 

abundances.  

The contribution of Hamers (2001) provides the opportunity of compare recent 

larval abundances of particular polychaete taxa at open waters around Helgoland and 

inside the bight. The maximal abundance of larvae of P. ligni, S. martinensis, S. 

squamata and S. bonnieri around Helgoland, between 1996-1998, were 0.5-20 times 

lower than the maximal values measured inside the List tidal basin during the same 
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years (24 and 144 larvae·10 l-1 for P. ligni and S. martinensis, respectively; and 5 

larvae·10 l-1 for Scolelepis spp.) (Table 5.I). In the case of P. ciliata, its maximal larval 

abundance around Helgoland during 1998 was 10 times higher than the maximal value 

measured inside the List tidal basin during the same year (16 larvae·10 l-1) and the 

averaged abundance of larval Magelona mirabilis inside the List tidal basin between 

1996-2001 (0.3 larvae·10 l-1 ±0.1) is five times lower than the maximal value measured 

at one subtidal location of the German Bight between 1985-1986 (Table 5.I). These 

differences correspond well with the respective benthic occurrences at Helgoland and 

Sylt (see Ziegelmeier 1978 and Gillandt 1979). 

The data reaffirm the numerical importance of polychaete larvae in the local 

zooplanton, suggest that their abundances inside the List tidal basin are higher than at 

neighboring offshore waters, and partially support the assumption that the quantitative 

input from open water might be low. The present study showed that the highest 

abundance of polychaete larvae occurs between spring-summer. In the Dutch Wadden 

Sea, densities and biomass of macrozoobenthos become maximal during this period also 

(Beukema 1974; Beukema et al. 1999). Buchholz (1984) found at the muddy intertidal 

of the List tidal basin, that densities of polychaetes (dominated by Scoloplos armiger) 

were higher during spring than during autumn. These references suggest, that the 

occurrence of the highest larval abundances relates well to those of benthic stages. A 

similar seasonal coupling between larval and benthic abundances was observed by 

Zajac (1991 a and b) at the east coast of the U.S.A.  

To conclude, the present study shows that the composition of polychaete taxa 

occurring as meroplanktonic larvae inside the List tidal basin is representative of the 

coastal waters of the North Sea. An important qualitative input from the open sea may 

be responsible for this. However, the quantitative input seems to be low because highest 

larval abundances were continuously detected at the innermost parts of the bight. 

Therefore, larval retention seems to be a locally dominant process. Benthic presence and 

costal morphology may enhance non-random and species-specific distribution patterns 

inside the bight. The annual variability in production of polychaete larvae is high with a 

conspicuous and regular seasonality. Temporal fluctuations in larval abundances are 

significantly related to time lag and instantaneous fluctuations of some environmental 

variables, which may influence gonadal maturity and spawning activity of adult stages 

as well as performances and feeding of larval stages. 
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Table 5.I. Maximal abundances of several zooplankton taxa, from different regions of the world. 

Taxa   Location Reported
abundance 

 Abundance 
(Number·l-1)

Sampling 
device 

Mesh size
(µ) 

Depth 
(m) 

Data Year

Harpacticoid copepods List tidal basin 5.00·l-1 5.00   ? 150 Surface Mar-Nov 19721

Polychaete larvae List tidal basin 3.00·l-1 3.00   
   

     

   

     

  

  

   

     
     

  

    

   

   

   

    

? 150 Surface Mar-Nov 19721

Appendicularia List tidal basin 2.00·l-1 2.00 ? 150 Surface Mar-Nov 19721

Larvae of Magelonidae Volcano Bay, Japan 12550.50·100 l-1 125.50 Funnel cone 40 0-0.5 Feb-Apr 19822

Larvae of Phyllodoce 
groenlandica Kiel Bay 32500.00·l-1 0.06 Pump 110 21.0 May/Sep 19533

Larvae of Pseudopolydora 
paucibranchiata 

Mission Bay, 
California 300000.00·m-3 300.00 Plastic jars 63 0.2-0.5 Apr 19804

Magelona spp. Subtidal of the 
German Bight 150.00·m-3 0.15 Net 150 25.0-35.0 Monthly 

samplings 1985-19865

Polychaete larvae Caribbean Sea 617.00·m-3 0.60 Pump 200 0.5-1.0 Monthly 
sampling 1985/19866

Larvae of Lanice conchilega Arcachon Bay 300.00·10 m-3 0.03 Cylindrical 
net 200 30.0 May/June 19887

Rathkea octopunctata List tidal basin 5000.00·m-3 5.00 Hand net
 

500 1.0 May 19918

Larvae of Marenzeriella viridis Southern Baltic 21000000.00·m-3 21000.00 ? 120 Surface Sep-Apr 1992-19949

Total bivalve larvae Schleswig-Holstein 
Wadden Sea 100000.00·m-3 100.00 Paired Bongo 

nets 150 Surface
Weekly-
monthly 

samplings 
 

1990-199210

Polychaete larvae Bay of Blanes 120.00·m-3 0.12 Pump 80 7.0-8.0 Apr 199511

Acartia spp. List tidal basin 49000.00·m-3 49.00 Bucket/Bongo 
net 80/150 Surface Winter 198612

Pseudocalanus elongatus List tidal basin 1200.00·m-3 1.20 Bucket/Bongo 
net 80/150 Surface Winter 198612

Larvae of spionids List tidal basin 9000.00·m-3 9.00 Bucket/Bongo 
net 80/150 Surface Summer 198612

Larvae of Polydora ciliata Helgoland 20000.00·m-3 20.00 Hydro-bios 
net 75 4-12 Two 

times/week 199813
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Table 5.I. Maximal abundances of several zooplankton taxa, from different regions of the world (continued). 
 Taxa Location Reported

abundance 
 Abundance 

(Number·l-1)
Sampling 

device 
Mesh size

(µ) 
Depth 

(m) 
Data  Year

Larvae of P.ligni     Helgoland 810.00·m-3 0.80 Net 75 4-12 Two 
times/week 199613

Larvae of Spio martinensis  Helgoland 590.00·m-3 0.60 Net 75  

    

    

    

   

   

     
     
     

4-12 Two 
times/week 199713

Larvae of Scolelepis squamata Helgoland 21.00·m-3 0.02 Net 75 4-12 Two 
times/week 199613

Larvae of Scolelepis bonnieri Helgoland 100.00·m-3 0.10 Net 75 4-12 Two 
times/week 199813

Total bivalve larvae List harbor 2400.00·0.01 m-3 240.00 Bucket 80 Surface Quasy-
daily May 96-Dec 9814

Carcinus maenas List harbor 2400.00·m-3 2.40 Bucket 80 Surface Quasy-
daily May 96-Dec 9814

Polychaete larvae Coastal NW-
Mediterranean Sea 3000.00·m-3 3.00 Net 200 0-25 Weekly 

samplings 
 

Aug 95-Oct 9615

Phyllodocid larvae Cape Hatteras 2062.00·m-3 2.00 Pump 100 2-5 Aug 199416

Spionid larvae  Cape Hatteras 1269.00·m-3 1.30 Pump 100 2-5 Aug 199416

Spionid larvae Cape Hatteras 947.00·m-3 0.90 Pump 100 2-5 Aug 199416

 

1Hickel (1975)1; 2Yokouchi (1984); 3Banse (1986); 4Levin (1986); 5Bosselmann (1989); 6García and López (1989); 7Mathivat-Lallier and Cazaux 

(1990); 8Kopacz (1994); 9Bochert et al. (1996); 10Pulfrich (1997); 11Martin et al. (1997); 12Martens (1998); 13Hamers (2001); 14Strasser and Günther 

(2001); 15Calbet et al. (2001); 16Shanks et al. (2002).  
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