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Zusammenfassung:  

Die Eigenschaften des Meerwassers im Ozean sind nicht gleichmäßig verteilt. Merkmale in 

verschiedenen Regionen und Tiefen unterscheiden sich erheblich. Das Verständnis der Verteilung und 

Variation von Meerwasser spielt eine wichtige Rolle bei der Untersuchung der thermohalinen 

Zirkulation des Weltmeers oder der Vorhersage von Klimaänderungen. Ein Meerwasserkörper, der aus 

einem bestimmten Gebiet stammt und eine gemeinsame Formationsgeschichte aufweist, hat immer 

ähnliche Eigenschaften, und ein solcher Wasserkörper wird als Wassermasse definiert. Der 

Quellwassertyp definiert die Eigenschaften der ursprünglichen Wassermasse im Formationsbereich. 

Die Eigenschaften der Wassermassen bleiben nicht konstant, sondern verändern sich entlang des 

Fließweges aufgrund biogeochemischer Änderungen und auch aufgrund der Vermischung mit 

umgebenden Wassermassen, so dass die Optimal Multiparameter (OMP)-Methode zur Untersuchung 

der Verteilung der Wassermassen erforderlich ist. Bei der OMP-Methode werden die besten 

Komponenten und Anteile von mehr Wassermassen berechnet, indem die Wassereigenschaften 

(potentielle Temperatur, Salzgehalt, Sauerstoff, Phosphatnitrat und Silicat in dieser Studie) analysiert 

und die Gleichungen des linearen Mischens ohne Annahmen gelöst werden. Mit den Anwendungen 

von transienten Tracern (wie: CFC-12 und SF6) können Wassermassen markiert und ihr mittleres Alter 

(Zeitaufwand während des Pfads vom Formationsbereich) berechnet werden. Durch die Kombination 

der Verteilungen und des Durchschnittsalters können die Transportzeit und die Geschwindigkeiten der 

Wassermassen geschätzt werden. 

Das Hauptziel dieser Arbeit ist es, die Verteilungen und Transporte der Hauptwassermassen im 

Atlantik in den letzten Jahrzehnten auf der Grundlage der Beobachtungsdaten aus dem Global Ocean 

Data Analysis Project version 2 (GLODAPv2) Datensatz abzubilden und so den hydrologischen 

Hintergrund und die theoretische Grundlage für weitere biogeochemische Forschung (z. B.) zu 

schaffen : der Lüftungsprozess oder der anthropogene Kohlenstoffkreislauf) im gesamten atlantischen 

Maßstab. 

Im Allgemeinen sind die Wassersäulen im Atlantik in vier vertikale Schichten unterteilt, basierend auf 

der potentiellen Dichte. Die obere Schicht hat die niedrigste potentielle Dichte von weniger als 27,0 

kg · m
-3

 und enthält vier zentrale Wassermassen, darunter East North Atlantic Central Water 

(ENACW), West North Atlantic Central Water (WNACW), East South Atlantic Central Water 

(ESACW) und West South Atlantic Central Water (WSACW). Die zentralen Gewässer werden 

während der Subduktion im Winter gebildet und dominieren die obere Schicht mit der linearen T-S-

Beziehung als gemeinsames bemerkenswertes Merkmal. Ihre Formationen und Transporte werden von 

den Strömungen in der flachen Schicht beeinflusst und bilden schließlich innerhalb von 1200 m ein 

relativ ausgeprägtes Gewässer. Im Allgemeinen sind zentrale Gewässer in den Regionen näher an 

ihren Formationsgebieten verteilt, und in der vertikalen Skala haben östliche zentrale Gewässer 
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(ENACW und ESACW) eine relativ höhere potentielle Dichte und liegen unterhalb der westlichen 

zentralen Gewässer (WNACW und WSACW). In Bezug auf die Zeit haben Zentralgewässer auch das 

niedrigste Durchschnittsalter innerhalb von 50 Jahren. Das bedeutet, dass sie während ihrer 

Formationen und Transporte keine komplizierten Ausbreitungsprozesse durchmachen mussten. 

Die Zwischenschicht befindet sich unter der oberen Schicht mit potentiellen Dichten zwischen 27,0 

und 27,7 kg · m
-3

. Ähnlich wie bei zentralen Wassermassen stammen auch die intermediären 

Wassermassen aus den Subduktionen, aber tiefer in die Tiefe zwischen 1000-1500 m und Strömungen 

in dieser Schicht haben offensichtliche Auswirkungen auf die Verteilung und den Transport. Im 

Atlantik werden zwei Hauptzwischenwassermassen definiert: Subarctic Intermediate Water (SAIW) 

aus dem Norden und Antarctic Inter Mediater Water (AAIW) aus dem Süden. Beide Wassermassen 

bilden sich in der Oberfläche der subpolaren Region und sinken auf ihrem Weg in die unteren Breiten. 

Neben AAIW und SAIW wird Mediterranean Overflow Water (MOW) aufgrund der ähnlichen Dichte 

und Tiefe auch als intermediäre Wassermasse definiert. Die MOW stammt aus dem Osten des Golfs 

von Cádiz und breitet sich sowohl nach Norden in das westeuropäische Becken als auch nach Westen 

aus, um den Mittelatlantikkamm zu passieren. Im Vergleich zu den zentralen Gewässern weisen 

Zwischengewässer mit ~ 400 Jahren ein viel höheres Durchschnittsalter auf. Dies zeigt, dass sie viel 

länger brauchen, um sich vom Formationsbereich bis zur endgültigen Verteilungsposition zu 

verbreiten. 

Die tiefe und Überlaufschicht liegt unterhalb der Zwischenschicht mit einer Potentialdichte zwischen 

27,7 und 27,88 kg · m-3. North Atlantic Deep Water (NADW), die vorherrschende Wassermasse in 

dieser Schicht, wird hauptsächlich im Labrador-See und im Irminger-Becken gebildet. Die Bildung 

von NADW ist das Mischen von Labrador Sea Water (LSW), Iceland-Scotland Overflow Water 

(ISOW) und Denmark Strait Overflow Water (DSOW). In dieser Studie wird zwischen oberen NADW, 

die von LSW stammen, und unteren NADW, die von ISOW und DSOW stammen, unterschieden. 

LSW ist in der Mitteltiefe zwischen 1000 und 2500 m in der Labrador-See-Region vorherrschend, 

während sowohl DSOW als auch ISOW aus dem arktischen Ozean und den nordischen Meeren 

stammen. Nach der Bildung breiten sich die oberen und unteren NADW-Gebiete entlang des DWBC 

im Süden und die Wirbel im Osten aus. Der Transport von NADW ist ein langer Prozess mit einem 

Durchschnittsalter von ~ 500 Jahren. 

Die Bodenschicht, die von Bodenwassermassen eingenommen wird, ist die unterste Schicht der 

Wassersäule und ist mit potentiellen Dichten von mehr als 27,88 kg · m-3 definiert. Die unteren 

Wassermassen in dieser Schicht haben ihren Ursprung im Südpolarmeer und zeichnen sich auch durch 

ihre hohen potentiellen Dichten und Silikatkonzentrationen aus. Antarctic Bottom Water (AABW), 

das in der Weddell Sea Region gebildet wird, ist die Hauptwassermasse des Bodens durch das 

Mischen von Circumpolar Deep Water (CDW) und Weddell Sea Bottom Water (WSBW). Nach der 

Formation breitet sich AABW nach Norden aus und leidet nach dem Überqueren des Äquators an 
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einer starken Abnahme der Silikatkonzentration. Dies ist der Grund, warum AABW, der den Äquator 

hinter sich hat, als neue Wassermasse Northeast Atlantic Bottom Water (NEABW) definiert wird. 

AABW und NEABW dominieren die untere Schicht des Atlantiks und bedecken den größten Boden 

des Süd- und Nordatlantiks. Der Transport von AABW in Richtung Norden sowie von NADW in 

Richtung Süden ist ein weiterer langjähriger Prozess mit einem Durchschnittsalter von ~ 500 Jahren. 
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Abstract:  

Properties of seawater in the ocean are not uniformly distributed. Characteristics in different regions 

and depths are significantly different. Understanding of the distribution and variation of seawater plays 

an important role in investigating the thermohaline circulation of the world ocean or predicting climate 

changes. A body of seawater that originates in a particular area and shares a common formation 

history always has similar properties and such a water body is defined as a water mass. Source water 

type defines the properties of the original water mass in the formation area. The properties of water 

masses do not stay constant but change along the flow path due to biogeochemical changes and also 

due to the mixing with surrounding water masses so that the OMP method is required to investigate 

the distribution of water masses. The OMP method is to calculate the best components and fractions of 

more water masses by analyzing water properties (potential temperature, salinity, oxygen, phosphate 

nitrate and silicate in this study) and solving the equations of linear mixing without assumptions. With 

the applications of transient tracers (such as: CFC-12 and SF6), water masses can be labeled and their 

mean ages (consuming time during the pathway from formation area) are calculated. Combining the 

distributions and mean ages, the transport time and velocities of water masses can be estimated. 

The main goal of this work is to map out the distributions and transportations of main water masses in 

the Atlantic Ocean in the past few decades based on the observational data from Global Ocean Data 

Analysis Project version 2 (GLODAPv2) dataset thus providing the hydrological background and 

theoretical basis for further biogeochemical research (for instance: the ventilation process or 

anthropogenic carbon cycle) in the whole Atlantic scale. 

In general, the water columns in the Atlantic Ocean are divided into four vertical layers based on 

potential density. The upper layer has the lowest potential density lower than 27.0 kg·m
-3 

and contains 

four central water masses, including East North Atlantic Central Water (ENACW), West North 

Atlantic Central Water (WNACW), East South Atlantic Central Water (ESACW) und West South 

Atlantic Central Water (WSACW). The central waters are formed during winter subduction and 

dominate the upper layer with the linear T-S relationship as a common remarkable characteristic. Their 

formations and transports are influenced by the currents in the shallow layer and finally form a relative 

distinct body of water within 1200m. In general, central waters are distributed in the regions closer to 

their formation areas and in the vertical scale, eastern central waters (ENACW and ESACW), have 

relative higher potential density and are located below western central waters (WNACW and 

WSACW). From the time perspective, central waters also have the lowest mean ages within 50 years. 

That means they did not experience complicate spreading processes during their formations and 

transports. 

The intermediate layer is located below the upper layer with potential densities between 27.0 and 27.7 

kg·m
-3

. Similar with central water masses, the intermediate water masses also origins from the 
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subductions but deeper into intermediate depth between 1000-1500m and currents in this layer also 

have obvious impacts on the distribution and transport. In the Atlantic Ocean, two main intermediate 

water masses are defined: Subarctic Intermediate Water (SAIW) from the north and Antarctic 

Intermediate Water (AAIW) from the south. Both water masses are formed in the surface of sub-polar 

region and sink during their way towards the lower latitudes. Besides AAIW and SAIW, 

Mediterranean Overflow Water (MOW) is also defined as an intermediate water mass due to the 

similar density and depth. The MOW originates from the east in the Gulf of Cadiz and spreads both to 

the northward into the West European Basin and westward to pass the Mid-Atlantic-Ridge. Compared 

with the central waters, the intermediate waters have much higher mean ages with ~400 years. This 

shows that they take a much longer time to spread from formation areas to the final distribution 

position. 

The deep and overflow layer lies below the intermediate layer with potential density between 27.7 and 

27.88 kg·m
-3

. North Atlantic Deep Water (NADW), the dominate water mass in this layer, is mainly 

formed in the Labrador Sea and Irminger Basin. The formation of NADW is the mixing of Labrador 

Sea Water (LSW), Iceland-Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water 

(DSOW). In this study, a distinction between upper NADW, which origins from LSW, and lower 

NADW, which origins from ISOW and DSOW, is taken. LSW is predominant in mid-depth between 

1000 and 2500m in the Labrador Sea region while both DSOW and ISOW originate from Arctic 

Ocean and the Nordic Seas. After formation, upper and lower NADW spread and dominate the most 

area of the deep Atlantic Ocean along the Deep Western Boundary Current (DWBC) to the south and 

eddies to the east. The transport of NADW is a long process with mean ages of ~500 years. 

The bottom layer that occupied by bottom water masses is the lowest layers of the water column and 

defined with potential densities higher than 27.88 kg·m
-3

. Bottom water masses in this layer have an 

origin in the Southern Ocean and are also characterized by their high potential densities and silicate 

concentrations. Antarctic Bottom Water (AABW) formed in the Weddell Sea region is the main 

bottom water mass, through the mixing of Circumpolar Deep Water (CDW) and Weddell Sea Bottom 

Water (WSBW). After the formation, AABW spreads northward and suffers from a sharp decline of 

silicate concentration after crossing the equator. That is the reason why AABW that past the equator is 

defined as a new water mass Northeast Atlantic Bottom Water (NEABW). AABW and NEABW 

dominate the bottom layer of the Atlantic Ocean and cover the most bottom area of south and north 

Atlantic respectively. The northward transport of AABW, as well as southward NADW, is another 

long time scale process with mean ages ~500 years. 
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Chapter I: Motivations and Scientific Background 

 

1. Introduction 

1.1 Scientific Background of Water Mass 

1.1.1 Cognition Progress to Marine Science 

The vast and deep ocean is a familiar but still mysterious topic. Throughout the ages, 

countless seafarers, adventurers and scientists spent their lifelong effort in hoping to conquer 

the ocean or to experience its mysteries. Early understanding of the ocean can be traced back 

to the ancient Holy Bible. ‘‘And God called the dry land Earth; and the gathering together of 

the waters called the Seas: and God saw that it was good’’ (Genesis, Bible). Since then, 

curiosity to the ocean has never stopped and for a long time, enthusiasm from human for the 

exploration did not subsided, but grows with each passing day. Throughout the history, 

development of marine science can be roughly divided into following three periods. 

Period 1: Ancient times to the end of the 18th century 

The first period can be traced back from ancient times to the end of the 18th century. Human 

accumulated knowledge and experience to the marine in this time. Due to the limitations of 

navigation technology, understanding of the marine during this period is confined to only 

exterior observation and simple logical reasoning. In about the sixth century BC, ancient 

Greek philosopher Thales of Miletus believed water as a first principle and the earth floats in 

the vast sea. In the 1st century AD, Wang Chong, philosopher in Han Dynasty of China 

history, pointed out the correspondence between tidal movement and moon operation 

scientifically. During the Age of Exploration (from the 15th to the end of the 18th century), 

with the development of navigation and natural sciences, the accumulation of marine 

knowledge has been rapidly developed. One of the representative examples is Captain James 

Cook. From 1768 to 1779, he made the first batch of data on sea surface temperatures (SST), 

currents and sea depths, and coral reefs during his three Pacific cruises. 

Period 2: Beginning of the 19th century and the middle of the 20th century 

The second period is between the beginning of the 19th century and the middle of the 20th 

century when oceanography was established. In this period, navigation and observation 
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technology have strongly promoted the establishment of oceanography with the development 

of machine industry. Between 1872 and 1876, Challenger Expedition was considered as the 

real beginning and the foundation of modern oceanography. The Challenger made a multi-

disciplinary and comprehensive ocean observation over more than 120,000 km of voyage and 

made a great deal of achievements in ocean meteorology, ocean current, seawater temperature, 

chemical composition, marine organisms and seafloor sediments. Challenger Expedition 

differentiates oceanography from the traditional field of physical geography and gradually 

forms itself into an independent discipline. Since then, from 1925 to1927, German research 

vessel "Meteor" made scientific investigation in the South Atlantic. During this cruise, 

electronic acoustic sounding method was firstly used and measured more than 70,000 data of 

ocean depth, and revealing that the bottom of the ocean is not flat, but varied as surface of the 

continent. Numbers of research achievements and publications also came out during this 

period. The most classic reference is so-called ‘unsurpassed’ given by Sverdrup (1942) 

(Warren, 1993). This literature made a comprehensive and profound summary of marine 

science and is considered as a symbol of oceanography. 

Period 3: After middle of the 20th century 

The establishments of Scientific Committee on Oceanic Research (SCOR) in 1957 and 

Intergovernmental Oceanographic Commission (IOC) in 1960 mark a new/the third period in 

the development of marine science. Simultaneously, maturity of the detection technology 

provides strong technical support to oceanography. For instance, U.S. nuclear submarine 

"Nautilus" crossed the North Pole from ice in 1958 and US submersible "Trieste II" dived 

deep into the depths of 10,919 meters of the sea in 1960, indicate that any part of the ocean 

could be conquest by human. However, the too many unknown truths of the fact also prove 

that marine is still impossible to grasp by humans. The development of oceanography in this 

new period has the following features. Firstly, general research on specific observational 

phenomena or specific areas develops from traditional static qualitative description and 

simple causal analysis toward the development of dynamic quantitative analysis. Secondly, 

the combination and penetration between branches of oceanography, even between other 

related sciences (such as meteorology or geology), come more frequently and inevitably and 

finally formed series of interdisciplinary highly integrated research topics. Thirdly, 

tremendous progress has been made in the modernization of marine survey methods and in 

the international cooperation in oceanography. Just as GLODAPv2 used in this study, the 

dataset is composed of huge numbers of expeditions from multiple countries. In the meantime, 
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the traditional qualitative description is replaced by "simulated" quantitative analysis. The 

specific and complex natural entities are reflected by simplify and approximate the simulation 

or numerical model. Simulation increases the uncertainty of the results, but the advantage is 

that time and cost required by observation are greatly reduced. In this study, we also use the 

simulation to interpolate values between data at relatively long distances to display the 

distribution of key parameters in the whole Atlantic Ocean scale. 

1.1.2 Classic Investigation to the Water Mass based on Physical Oceanography 

With the development of observation technology, we found that properties of seawater in the 

ocean are not uniformly distributed; waters in different regions and depths are characterized 

by different properties like temperatures (T) or potential temperatures (θ), salinities and 

nutrients (for instance Nitrate, Phosphate and Silicate). However, similar properties in a range 

of variables can be found around particular regions or depths. Water body of similar 

properties and formation are often referred to as a water mass. Understanding of the 

distribution and variation of water masses in the ocean play an important role in several 

disciplines of oceanography. For instance while investigating the thermohaline circulation of 

the world ocean or predicting the climate changes (e.g. Haine and Hall, 2002; Poole and 

Tomczak, 1999). Particularly important is the concept of water masses for biogeochemical 

and biological applications where the transformation of properties over time can be viewed in 

the water mass frame-work. For instance, the formation of Denmark Strait Overflow water in 

the Denmark Strait could be described using mixing of a large number of water masses from 

the Arctic Ocean and the Nordic Seas (Tanhua et al., 2009). In a more recent work, Garcia-

Ibanez et al. (2015) considered 14 water masses combined with velocity fields to estimate 

water mass in the north North Atlantic. Jullion et al. (2017) used water mass analysis in the 

Mediterranean Sea together with measurements of dissolved Barium to better understand the 

dynamics of dissolved Barium. In this paper we use the concepts and definitions of water 

masses as given by Tomczak (1999) that reviews the theoretical and applied aspects of water 

mass analysis. 

The definition of a water mass is the whole body of water that originates in a particular are of 

the ocean with a common formation history. The T-S diagram invented by Helland-Hansen, 

was recognized for a long time as the most important tool and the most effective method for 

analyzing water mass. Seawater from the same water mass shares common properties such as 

temperature (T) or potential temperature (θ) and salinity (S) that is distinct from surrounding 

https://en.wikipedia.org/wiki/Water
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bodies of water (Helland-Hansen, 1916). And a water mass has a measurable extent both in 

the vertical and horizontal, and thus a quantifiable volume. Since a water mass is always 

surrounded by other water masses, there will be mixing (both along and across density 

surfaces) between them, so that away from the formation regions one tend to find mixtures of 

water masses  with different properties compared to the ones in the formation area. Early 

work by  Jacobsen (1927) and Defant (1929) illustrated the application of T-S relationship in 

the oceanography. In particular, Defant (1929) further clarified the definition of "water mass" 

by reference to the definition of "air mass" in meteorology. According to his definition, water 

mass is a limited or unlimited volume of water that contains clear and constant (or 

conservative) physical and chemical characteristics (such as, temperature and salinity). 

 

Fig 1.1 T-S diagram of water samples based on cruise from A16 section in 2003 

(Expocode: 33RO20030604) in the North Atlantic Ocean 

With the continuous deepening of understanding and research, the definition of a water mass 

is also constantly improving. In the history of research to water mass, the predecessors 

provided us with many precious experiences and the results those are still of great reference 

value. For instance, Wüst and Defant (1936) and Wüst and Defant (1936) illustrated the 

stratification and circulation of water masses in the Atlantic Ocean based on the observational 

date from Meteor Cruise 1925-1927. In Sverdrup’s literature, physical, chemical and 

biological properties in the ocean are described in detail. Water mass refers to a relative large 

body of water formed in a defined area (formation area) of the ocean and has unique physical, 

chemical and biological properties. These properties remain almost constant and continuously 

distributed for a long period and spread with this water mass as an important feature, and such 
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properties are defined as the Source Water Type (SWT) of this water mass and play a vital 

role in the following investigations. The details about relationship between water mass and 

SWT will be described in the next section. 

In the meantime, however, Sverdrup pointed out in his literature that it was still difficult to 

define surface water masses by applying the above properties even in the relatively stable 

open ocean area, due to the wide ranges of temperature and salinity in surface seawater. To 

make up for this regret, plenty of work has been done in the following decades. The concept 

of water mass has been redefined over time and in Emery and Meincke (1986), for instance, 

the water masses were divided into upper, intermediate and deep/abyssal layers including the 

depth to the T-S relationship.  

1.1.3 Limitation of Classic Investigation to Water Mass and Combination of Physical 

and Biogeochemical Parameters  

During the last decades, the classic water mass analysis based on physical properties (T and S) 

formed a complete theoretical system. However, the limitation is also obvious at the same 

time. When the number of water masses exceeds more than three, or the definition of water 

mass is a range of values (for instance, Central Waters) rather than a point, this classic 

analysis method cannot perform accurate analysis. As shown in Fig 1.2, when there are only 

three water masses, Antarctic Intermediate Water (AAIW), Subarctic Intermediate Water 

(SAIW) and Mediterranean Overflow Water (MOW), contributions from each water mass can 

be inferred within the triangle area. However, when more water masses exist, such as 

NEABW, especially when the water mass is defined by a range of values like East North 

Atlantic Central Water (ENACW) or East South Atlantic Central Water (ESACW), the 

composition between them cannot be inferred by the classic Temperature(T)-Salinity(S)-

Pressure(P) relationship. In this situation, more additional properties/parameters are required 

to solve the equations of linear mixing without additional assumptions (Tomczak, 1981). 
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Fig 1.2 T-S diagram based on A10 cruise with definition of water masses 

With the development of observational capacities for a range of variables, definition of water 

masses is not only limited by the T-S-P relationship. New physical and chemical parameters, 

both conservative and non-conservative, are added in the concept e.g. (Tomczak, 1981; 

Tomczak and Large, 1989b). These additional variables exhibit different importance in 

defining a water masses but are complementary to each other and provide a more solid basis 

for the water mass definition. Based on researches in last decades, Tomczak summarized the 

history of the water mass research and looked forward to the evolution of researches in water 

mass in the future (Tomczak, 1999). With the consummation of this theoretical system, the 

Optimal Multi-parameter (OMP) analysis came into being and was applied to calculate the 

contribution from each water mass, when multiple water masses (more than three) coexist. 

Besides abovementioned physical parameters (potential temperature and salinity), more 

biogeochemical parameters (oxygen, silicate, phosphate and nitrate in this study) are added in 

OMP analysis, so the number of water masses that can be calculated in one OMP run 

increases to five. Details of OMP analysis will be displayed in the Data and Method Section. 

1.2 Significance of Water Mass to Biogeochemical Oceanography 

As described in the last section, early researches on the water mass are mainly done in the 

physical oceanography and mostly of around the T-S-P relationship. With the development of 

oceanographic research and the improvement of survey techniques, directions in 

oceanography (physical, chemical or biological oceanography) have broken their traditional 

boundaries and have more combination and cooperation. Biogeochemical methods are often 
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used to investigate and analyze the physical processes in oceanography. Transient tracers 

(CFCs, SF6 or helium isotopes) become important tools to measure upwelling velocities 

(Rhein et al., 2010; Tanhua and Liu, 2015). Physical oceanography, on the other hand, can 

also provide biogeochemistry with effective support. For instance, during the investigation of 

nitrogen cycle, physical knowledge about eastern boundary upwelling systems (EBUS) can 

provide corresponding help. Upwelling brings N2O, which is a potent greenhouse gas, from 

intermediate layer, where N2O is produced, to the surface, influences the emissions to the 

atmosphere and has further impacts on the nitrification and denitrification processes (Alvarez 

et al., 2014). The same reasoning, understanding about currents has also significance to the 

biogeochemical oceanography. One of the typical examples is that the zonal equatorial 

currents in Pacific Ocean affect the distribution of OMZ and finally change the ventilation of 

the ocean’s interior and biogeochemical cycles (Karstensen et al., 2008). 

Recent developments of sensitive, autonomous and environmental friendly measurement 

techniques have created numerous datasets with large spatial and temporal resolution, which 

foster inter-disciplinary collaborations among physical, chemical and biological oceanography. 

Physical processes, such as the variability of coastal upwelling, can be quantified by 

monitoring the distribution of transient tracers (CFCs, etc…) over time. Likewise, physical 

and chemical interactions (temperature, nutrients and solar radiation) fundamentally 

determine the timing and magnitude of spring phytoplankton bloom (Townsend and Spinrad, 

1986). These examples highlight the importance of water mass characterization (temperature, 

salinity and other variables) in understanding the ocean biogeochemistry.  

Water mass, traditionally defined by physical oceanography with (potential) temperature and 

salinity, has also extensive applications in contemporary biogeochemical oceanography. In 

the Atlantic Ocean, warm water masses in the upper/central layer are transported northward 

into high latitude region in North Atlantic, where cold deep water is formed. After formation, 

cold deep water with high density sinks, spreads southward across the equator, into South 

Atlantic (Zickfeld et al., 2007). During this process, transport of surface water masses has 

certain impact on Sea-Air carbon exchange, while formation of deep water masses in north 

Atlantic transports carbon from surface to the deep ocean (e.g. Duplessy et al., 1984; Tanhua 

et al., 2013). Distribution of oxygen is also influenced. Warm surface water with relative low 

oxygen spreads to the north, where cold deep water with high oxygen is formed, and further 

influence the distribution of biogeochemical elements, such as carbon or nitrogen, and 

biological densities in the Atlantic Ocean (e.g. Keeling et al., 2009; Stramma et al., 2010). All 
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of these studies show that the study of water masses plays not only an important role in 

physical oceanography, but also irreplaceable role in biogeochemistry.  

1.3 Water Masses and Source Water Types (SWTs) 

After we realized the significance of water mass to biogeochemical oceanography, we also 

found that the ocean is thus composed of a large number of different water masses. Water 

masses, however, are not simply piled up in the ocean like bricks; in fact there are no clear 

boundaries between them so that there is a gradual and mixed process between water masses 

(Castro et al., 1998). In order to quantify how water masses are distributed and how they are 

being mixed we use the concept of Source Water Types (SWTs). SWTs describe the original 

properties of water masses in their formation area, and can be considered as the original form 

of water masses (Tomczak, 1999).  

1.3.1 Definition of SWTs 

It is important to realize that a water mass has a defined volume and extent, while a Source 

Water Type is only a mathematical definition that does not have a physical extent. A SWT is 

defined based on a number of properties and their variance, or standard deviation (Tomczak, 

1999). Knowledge of the properties of the SWT is essential in labeling a water masses, 

tracking their spreading and mixing progresses. In other words, the SWT is just like the 

fingerprint of a water mass and no matter how a water mass spreads, it can be recognized by 

its own SWT. So an accurate definition to all the SWTs is an essential step for performing 

OMP analysis (Tomczak and Large, 1989b), or any other water mass mixing investigation. In 

practice though, defining source water types is often a difficult and time-consuming part of 

water mass analysis, particularly when analyzing data from a particular region of the ocean 

distant from the water mass formation regions. In order to facilitate water mass analysis we, in 

this paper, use the GLODAPv2 Atlantic data to identify and define source water types for the 

most prominent water masses in the Atlantic Ocean based on 6 commonly measured variables.  

The aim of this work is to facilitate water mass analysis and understanding for particularly 

biogeochemical and biological oceanographic work in a broad sense. We realize that the 

SWTs that we define here are static, i.e. they do not change with time, and are relatively 

course so that we do not consider subtle differences between closely related SWTs but rather 

paint the picture with a rather broad brush. Studies looking at temporal variability of water 

masses, or water mass formation processes in detail, for instance, may find this study useful 
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but will certainly want to use a more granular approach to water mass analysis in their 

particular area.  

1.3.2 Water Masses in the Atlantic Ocean 

As early as the beginning of 20th century, Bjerknes and Sandström proposed, both 

theoretically and experimentally, the existence of heat source into the deep Atlantic Ocean 

and opened up the large scale research on heat transport and water mass in the Atlantic Ocean 

(Bjerknes, 1920; Sandström, 1908, 1916). With the development of the research, the fact is 

gradually realized that in the Atlantic Ocean there are four processes, or more specifically, a 

complete large scale cycle that composed by four parts. 1. Surface waters are transport by 

surface currents northward until high latitude in the North Atlantic; 2. Deep waters are formed 

and sink near Labrador and Irminger Sea region, where surface water becomes dense due to 

low temperature and high salinity. 3. The formed deep water spreads southwards with Deep 

Western Boundary Currents (DWBC); 4. Upwelling of deep water to the surface takes place 

in the Southern Ocean. This cycle also constitutes the main part of thermohaline circulation 

and AMOC (e.g. Bryden et al., 2005; Hall and Bryden, 1982; Kuhlbrodt et al., 2007). Almost 

all main water masses in the Atlantic Ocean are involved in the above cycle. In order to better 

define and distinguish water masses, the Atlantic Ocean can be roughly divided into four 

layers from the vertical direction based on potential density (𝜎𝜃). The shallowest layer is 

defined as the upper/central layer with 𝜎𝜃 <27 kg/m
3
. There are four main water masses 

formed in this layer, including East and West North Atlantic Central Water (ENACW and 

WNACW), East and West South Atlantic Central Water (ESACW and WSACW). Below the 

upper/central layer, there is the intermediate layer with 𝜎𝜃  between 27 and 27.7 kg/m
3
. 

Antarctic Intermediate Water (AAIW), Subarctic Intermediate Water (SAIW) and 

Mediterranean Overflow Water (MOW) are main water masses in this layer. The deep and 

overflow lies below the intermediate layer with 𝜎𝜃 between 27.7 and 27.88 kg/m
3
. Labrador 

Sea Water (LSW), Iceland-Scotland Overflow Water (ISOW), Denmark Strait Overflow 

Water (DSOW), they finally form upper and lower North Atlantic Deep Water (uNADW and 

lNADW), are located in this layer. The bottom layer with 𝜎𝜃>27.88 kg/m
3
 contains Antarctic 

Bottom Water (AABW), Northeast Atlantic Bottom Water (NEABW), Circumpolar Deep 

Water (CDW) and Weddell Sea Bottom Water (WSBW). 

1.4 Transient Tracers and Water Masses 

1.4.1 Transient Tracers (CFCs and SF6) 
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Concentration of transient tracers in the atmosphere increases (or decreases) monotonously in 

the history, and their surface concentration depends on time (Fine, 2011). From measuring 

their concentrations in the water masses, we can calculate that, to which year from the 

atmospheric history it is equilibrium, and how many years did it take to move from surface 

into the deep ocean. 

CFCs: Chlorofluorocarbon (CFC) is a group of halogenated paraffin compounds composed 

by carbon, chlorine and fluorine. CFCs are widely used in industry and daily life 

as refrigerants, propellants or solvents due to their low activity, non-flammability and non-

toxicity. As the increasing of atmospheric concentration since early 1950s, the accumulation 

(or solution) of CFCs in seawater also increase continuously. This situation, although harmful 

to the ozone layer, provides a new using of CFCs as tracers (e.g. Bullister and Weiss, 1983; 

Gammon et al., 1982). In Warner and Weiss (1985), measurement and calculation of CFC 

solubility in seawater are improve and elaborated, and since then, CFCs are more widely used 

as tracers in the oceanic measurements. Walker et al. (2000) reconstructed the atmospheric 

history of CFC groups and provides basis for calculation of mixing ratio and transit time 

distribution (TTD) in the ocean. Since then, CFCs are frequently used as tracers, for instance, 

to measure East Greenland Current (Olsson et al., 2005) and overflow water from the 

Greenland to the Labrador Sea (Tanhua et al., 2005a). Dichlorodifluoromethane (CFC-12) is 

the most common representative of Chlorofluorocarbons (CFCs) and used together with SF6 

to label water masses in this study. 

SF6: As mentioned, the reduction of CFCs in the atmosphere since late 1990s makes the 

demand for new tracers appear to be concerned. Sulfur hexafluoride (SF6) is an anthropogenic 

and extremely stable trace gas produced and released during the development of the 

electronics industry since 1960s (Maiss et al., 1996). As early as in Watson and Liddicoat 

(1985), the application of SF6 as a new tracer was illustrated. In this article, practicality of 

using SF6 as tracer was demonstrated and a primary profile decreased with depth in the 

Atlantic Ocean was displayed. After that, the operability of SF6 was further elaborated and an 

experiment in Santa Monica Basin was enumerated as example, furthermore, the prospect of 

using SF6 was also predicted (Watson et al., 1988). As a new transient tracer, advantages of 

SF6 are obvious. Besides chemical and biological inertness and harmless to the handlers or 

environment, an important feature different from CFC-12 is that its atmospheric concentration 

of is still increasing so far (Fig 1.4). And meanwhile, the increase of concentration in seawater 

and the development of high sensitivity of the electron capture detector (ECD) to SF6 make 

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Chlorine
https://en.wikipedia.org/wiki/Fluorine
https://en.wikipedia.org/wiki/Refrigerants
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the accuracy of SF6 measurement greatly increased (Law et al., 1994). This development 

reduced the original disadvantage (relative higher standard deviation due to low 

concentration). Since then, SF6 becomes another significant tracer and measurements in 

different sea areas are available. SF6 was used to label the seawater transport in Persian Gulf 

Water (Law and Watson, 2001), in the Southern Ocean (Tanhua et al., 2004) and in the North 

Atlantic, from Greenland to Labrador Sea (Tanhua et al., 2005a). And SF6 was also used to 

estimate biogeochemical process like anthropogenic CO2 in the upper ocean (Tanhua et al., 

2008). Figure 1.4 provides the basis for the choice of tracers. Concentration of CFC-12 in 

atmospheric history increased until early 1990s, and decreased from 2000s. The uncertainties 

of mean ages based on CFC-12 increases for the recently formed water masses (pCFC-12 > 

450ppt). For the deeper water masses, the relative error will increase due to the pretty low 

absolute concentration of SF6. As a result, mean ages are calculated based of SF6 for pCFC-

12 > 450ppt, while CFC-12 is the better choice for pCFC-12 < 450ppt (Tanhua et al., 2008). 

 

Fig 1.4 Atmospheric history of CFC-12 (blue) and SF6 (red) in ppt 

 

1.4.2 Application of Transient Tracers in Water Mass Analysis 

As mentioned above, distributions of water masses in the Atlantic Ocean are not static, but 

constantly varying with the passage of time and changes of currents. Key properties are the 

main basis to find the formation area and SWTs, furthermore, OMP analysis can be used to 

display the distribution of the water mass. However, there are still many interesting or 

meaningful information, like the age of water masses or the duration of transports, cannot be 

measured or quantified directly. In this situation, we need to resort to transient tracers. 
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In a broad sense, property that can provide signals to reflect the physical or biogeochemical 

processes in the ocean can all be recognized as tracers. So from this aspect, 6 key properties 

used to define SWTs are also belongs to tracer category. Tracers with no sources or sinks in 

the ocean (e.g. T and S) are distinguished as conservative from non-conservative those are 

involved in biogeochemical actions (oxygen and nutrients). Transient tracers (e.g. CFCs or 

SF6) are conservative tracers with a time varying source or sink in the atmosphere. Early use 

of transient tracers was associated air movements (Lovelock, 1971). With the sea-air 

exchange and accumulation of tracers in the seawater, use of transient tracers in the 

oceanography also became extensive. As transient tracers used to label the water masses, 

following additional features are required. The concentration of them in the atmosphere 

increases (or decreases) monotonously in the history, and their concentration in the surface (in 

formation area) depends on time (Fine, 2011). On this basis, by measuring the concentration 

in each water mass, we can clearly know that, to which year it is equilibrium to the 

atmospheric history (or in other words, in which year the water mass is formed in the 

formation area) and how many years were taken to spread to the final distribution location. 

Among the transient tracers, following two of them are chosen in our study to label water 

masses in the Atlantic Ocean. 

2 Data and Methods 

2.1 GLODAPv2 data set 

As mentioned in the introduction section, research of marine science has entered a new 

historical period since the late 1950s, after the establishment of the Scientific Committee for 

Marine Research (SCOR) under the Council of the International Union of Science in 1957 

and the Intergovernmental Oceanographic Commission (IOC) of UNESCO in 1960. Besides 

the widely using of modern stereoscopic observation technology systems, the other feature of 

this period is that marine surveys from various countries are actively organized and 

coordinated, and meanwhile, academic exchanges between world countries and organizations 

become frequent and popular. 

The Geochemical Ocean Sections Program (GEOSECS) during the 1970s is the earliest 

global data set that included the essential chemical parameters in the ocean especially for 

studying distribution and cycling of carbon (Craig and Turekian, 1976; Craig and Turekian, 

1980; Kroopnick and Craig, 1972; Pearson, 1974). After entering the 1990s, programs in 

purposes of better understanding of circulation or biogeochemical processes in the ocean, and 
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air-sea exchange further developed. And meanwhile, numerical models are developed to 

determine future changes in the ocean and to predict the impacts from changing of parameters 

or anthropogenic factors. WOCE (World Ocean Circulation Experiment), JGOFS (Joint 

Global Ocean Flux Study) and OACES (Ocean Atmosphere Carbon Exchange Study) are the 

three most typical representatives during this period. These programs are often initiated by 

different countries, and with their respective backgrounds and goals, coordination and 

collaboration between them are necessary and beneficial. GLODAP (Global Ocean Data 

Analysis Project) is such a dataset that came into being in this context. In addition to create a 

global dataset based on above programs, goals of GLODAP include also to describe 

distribution and biogeochemical processes in the global ocean and to make data publicly 

available (Key et al., 2004). 

GLODAP dataset shows a good start for global data sharing however the shortcomings also 

cannot be ignored. From the spatial scale, few data in high latitude region, north of 60 °N or 

in the Arctic region, are collected in this dataset, and meanwhile, data from Mediterranean 

Sea are also not included. In the term of time, GLODAPv1.1 contains data only until1999. 

The updated and expanded dataset GLODAPv2 successfully made up for the above 

disadvantages. In addition to the integration of the other two datasets, CARINA (CARbon 

dioxide IN the Atlantic Ocean) and PACIFICA (PACIFic ocean Interior CArbon), 

GLODAPv2 also includes and 168 additional independent cruises those never been collected 

by any datasets. Thus the coverage of GLODAPv2 is almost global (Lauvset et al., 2016). 

2.2 Key variables 

In this study six key variables are used to define source water types (SWTs) in Atlantic Ocean, 

including two conservative variables, potential temperature (θ) and salinity (S), and four non-

conservative variables, silicate, oxygen, phosphate and nitrate.  We utilize the GLODAPv2 

data product (Lauvset et al., 2016) to quantify the properties and related standard deviation of 

these variables for Atlantic Ocean SWTs. The GLODAPv2 data product is a compilation of 

interior ocean carbon relevant data from ship-based observations and includes data on oxygen 

and nutrients. The data in the GLODAPv2 product has passed both a primary quality control 

(aiming at precision of the data) and a secondary data quality control (aiming at the accuracy 

of the data).  The data product that we use in this work thus uses adjusted values to correct for 

any biases in data. The methodologies for the QC processes in GLODAPv2 are similar to 

those used for the CARINA data product and are described in detail in Tanhua and Pérez 

(2010). Through these QC routines, the GLODAPv2 product is unique in its internal 



14 
 

consistency, and is thus an ideal product to use for this work aiming at definitions of major 

water masses and source water types in the Atlantic Ocean. Armed with the internally 

consistent data in GLODAPv2, we utilize previously published studies on water masses and 

their formation areas to define areas and depth / density ranges that can be considered to be 

representative samples of a SWT. As a second step we characterize the SWT in a 6 parameter 

space by quantifying the concentrations of these variables and use the standard deviation as a 

measure of the variability of each SWT and variable combination.  

Source Water Types (SWTs) in the Atlantic Ocean 

In line with the  results from Emery and Meincke (1986) and from our interpretation of the 

observational data from GLODAPv2, we consider that the water masses in the Atlantic Ocean 

are distributed in four main vertical layers (Figure 1) roughly separated by surfaces of equal 

density. Potential density is the main basis to divide the shallow layers whereas the 

concentration of silicate is used to distinguish deep and bottom layer. In this concept we do 

not consider the mixed layer as the properties of that tend to be strongly variable on seasonal 

time-scales so that other methods to characterize the water masses is needed, mostly based on 

geographic region. The Upper Layer is the shallowest layer (i.e. lowest density) under 

consideration is located within upper 500-1000m of the water column but below the mixed 

layer. The Intermediate Layer is located between ~1000 to 1500/2000m, below the Central 

Layer. The Deep and Overflow Layer occupies the layer roughly between 2000-4000m of the 

Atlantic Ocean. The Bottom Layer is the deepest layer distributes and transports below 

4000m and is often characterized by high silicate concentrations. In this section we will 

identify key SWTs in each of the four layers. Table 1 lists the four layers and the water 

masses that we consider in this study. The table also lists the selection criteria that we used to 

define a Source Water Type in pressure, potential temperature or density space.  

During our narrative of each SWT we will display four figures that will guide us to a more 

intuitive understanding of the SWTs: 1) maps of all GLODAPv2 station locations marked as 

light gray dots where stations within the area of formation that we consider are marked in red 

and stations with any samples within the desired properties as defined by a water mass in blue    

sampling stations, 2) the T-S relationship with the same color coding, 3) depth profiles of the 

6 variables under consideration (same color coding), and 4) bar plots of the distribution of the 

samples within the criteria for a SWT. In the bar plot we have added a Gaussian curve to the 

distribution derived from the average and standard deviation of the distribution (the amplitude 

of the curve defined as 2/3 of the highest bar). The plots of properties vs pressure provides an 
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intuitive understanding of each STW compared to others in the same region. The properties 

distribution and the Gaussian curve will help us to visually determine and confirm the SWT 

property values and associated standard deviation.  

2.3 OMP (Optimum Multi-Parameter) Analysis 

2.3.1 Development and mathematic background of OMP analysis 

Key properties of water masses based on the GLODAPv2 data are helpful to make rough 

estimation for their distribution. But it is obviously not enough to make accurate positioning 

for water masses only by displaying key properties. In order to determine the distribution of 

water masses exactly, we have to resort to more accurate mathematical calculations. Since the 

first publication of global distributions of water masses (Sverdrup, 1942), early studies on 

water masses are mainly based on potential temperature and salinity. Emery and Meincke 

(1986) made on summary and review on this kind of analysis. The limitation of this method is 

that distribution of more (more than three) water masses cannot be calculated at the same time 

with only these two parameters. So during the same time as the development of this theory, 

physical and chemical oceanographers also tried to add more parameters to the calculation 

and the Optimum Multi-parameter (OMP) analysis is one of the typical products. 

Base on above results, Tomczak extended the analysis into more than three water masses by 

adding more parameters/water properties (such as phosphate and silicate) and solving the 

equations of linear mixing without assumptions (Tomczak, 1981). In Tomczak and Large 

(1989a), they successfully applied this method to the analysis of mixing in the thermocline in 

Eastern Indian Ocean. As a summary and practical use of the above results, OMP analysis is 

developed by Karstenson and Tomczak (Karstensen and Tomczak, 1998a). Parameters (6 key 

water properties in this study) from the water samples are extracted and compared with SWTs 

of each water masses to identify their composition structure and percentage in detail.  

Before we start the calculation of OMP analysis, some basic definitions of SWTs need to be 

reiterated again. SWTs are the origin water masses in their formation area and carry their own 

properties (Poole and Tomczak, 1999). During transport and mixing on the pathway, the total 

amount of water properties remains constant. In a mixed product of two water masses, 

contribution from each SWT can be calculated by using a linear set of mixing equations, if we 

know one water property (such as salinity) in this mixed product and both SWTs. But only 

one property/parameter becomes insufficient if there are three or more water masses mix 

together. As a result, we can tell the percentages of each water mass in a final mixed product 
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with more water masses, with the essential prerequisite that the number of water masses not 

larger than the number of key properties plus one. 

The theory and formulas in the OMP analysis are described in detail by Karstenson and 

Tomczak in their articles and website (Karstensen and Tomczak, 1998a; Tomczak, 1981; 

Tomczak and Large, 1989a) (http://omp.geomar.de/). Here we make a brief introduction to the 

calculation of OMP calculation that related to our research. OMP calculation is based on a 

simple model of linear mixing, assuming that all key properties of water masses are affected 

by the same mixing process, and then to determine the distribution and of water masses 

through the following linear equations.  

Gx - d = R; 

Where G is a parameter matrix of defined source water types (6 key properties in this study),  

x is a vector containing the relative contributions of the source water types to the sample (i.e. 

solution vector of the source water type fractions),  

d is a data vector of water samples (observational data from GLODAPv2 in this study) and R 

is a vector of residual. 

The solution is to find out the minimum the residual (R) with linear fit of parameters (key 

properties) for each data point with a non-negative values. 

Prerequisites (or restriction) for using classic OMP is that source water types are defined 

closely enough to the observational water samples with short transport times, so that the 

mixing can be assumed not influenced by biogeochemical processes (i.e. consider all the 

parameters as quasi-conservative). Obviously, this prerequisite does not apply to our 

investigation for the entire Atlantic scale, so we use expand OMP analysis instead.  The way 

of considering biogeochemical processes is to convert non-conservative parameters 

(phosphate and nitrate) into conservative parameters by introducing the "preformed" nutrients 

PO and NO (Broecker, 1974; Karstensen and Tomczak, 1998b). 

2.3.2 OMP runs in this study 

As mentioned in the introduction section, SWT is the origin form of each water masses in 

formation area and we grasp the properties of main SWTs in the Atlantic Ocean. In this study, 

we show the distributions of water masses in Atlantic Ocean after their formation based on 

OMP analysis. 
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In upper/central layer (𝜎𝜃 < 27 kg/m
3
 and most with pressure within ~500-1000m), central 

waters are the dominate water masses in this layer, and we define four SWTs, ENACW, 

WNACW, ESACW and WSACW. Below upper/central layer lies intermediate layer (𝜎𝜃 

between 27 and 27.7 kg/m
3
 and most with pressures between ~1000 and 2000m). In this layer, 

we have following SWTs, SAIW from the north AAIW from the south and MOW from the 

east, in this layer. Deep layer is from ~2000 to 4000m and 𝜎𝜃 between 27.7 and 27.88 kg/m
3
. 

Upper and lower NADW are two main SWTs in mid and low latitude region in this layer. 

And their origin, LSW, ISOW and DSOW will also be investigated in relative high latitude 

region. Both bottom waters lie in the lowest layer below 4000m with 𝜎𝜃 >27.88 kg/m
3
. 

AABW and NEABW are two main water masses in this layer and have similar properties, 

especially high silicate.  Traced back to the source, NEABW is a branch from AABW after 

passing the equator. After spanning most Atlantic there is a sharp reduction of silicate 

concentration this is the reason why we define a new SWT of NEABW. 

In this study, we analyze all the GLODAPv2 data in the Atlantic Ocean with OMP method 

developed by Karstenson and Tomczak. We have in total 6 key properties from each water 

samples, including two conservative potential temperature and salinity and for non-

conservative oxygen silicate phosphate and nitrate. However phosphate and nitrate in some 

water samples are too similar, so we have to control that in each OMP run we should have 

less than 6 water masses. Some regional factors should also be considered, as some water 

masses mix and new SWTs are formed during their mixing process. For example, LSW, 

ISOW and DSOW mix in the North Atlantic after leaving their formation area, as a result, 

SWTs of upper and lower NADW are formed. Here we specify some ‘mixing regions’ for 

these water masses. Between 40 and 60 °N, we define such a ‘mixing region’, since already 

formed three water masses LSW, ISOW and DSOW and newly formed two new water masses 

upper and lower NADW simultaneously exist. So in this region, all these five SWTs are used 

simultaneously in OMP runs. In south of 40 °N, only upper and lower NADW are used while 

north of 60 °N, only LSW, ISOW and DSOW are used. In South Atlantic, the same situation, 

we consider south of 50 °S as a ‘mixing region’ of old water masses CDW, WSBW and new 

water mass AABW. So in this region, all the three SWTs are used in the OMP runs while in 

north of 50 °S, only AABW is used. 

Consolidate the above reasons, and also consider the distribution of all the water masses, we 

firstly divide into North Atlantic and South Atlantic by the equator, since most water masses 

distributes within the hemisphere of their SWTs (e.g. Central Waters), except some long 
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transport water masses such as AAIW. Furthermore, North Atlantic Ocean is divided into 

three parts. The region north of 60 °N contains the LSW, ISOW and DSOW in the OMP runs. 

The second part, from 40 to 60 °N, mixing region of LSW, ISOW, and DSOW, all the five 

SWTs should be contained in the OMP runs. And the third part, from equator to 40 °N, only 

upper and lower NADW are considered. The situation is similar in South Atlantic. Mixing 

region south of 50 °S contains CDW, WSBW and AABW, while from 50°S to equator we 

only use AABW. In addition, for relative special long transport water masses those across the 

equator, AAIW upper and lower NADW, we do not subject to restrictions of equator in this 

case when analyzing. Additional OMP runs (from 17 - 22) are set in order to maintain the 

consistency of distribution. 
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Table 2.0 schematic diagram of OMP runs in the Atlantic Ocean 

 

2.3.3 Sensitivity of OMP 

As mentioned above, OMP analysis calculates the optimal fraction of water mass 

configuration (minimum value of the residual R) based on the six key properties. Therefore, 
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the results are more or less influenced by changes in these properties and the accuracy of 

measurement. For some water masses a slight change or subtle error can result in a big change 

in the result, but for some others, the result is not obviously influenced. This mainly depends 

on whether this property has difference with surrounding water mass. In A16 section (Figure 

2.1), comparisons are made by increasing or decreasing key properties, potential temperature 

with ±0.5 °C salinity with 0.05 oxygen and nutrients with 2% (That is the original oxygen and 

all nutrients, nitrate phosphate and silicate, × 98% and 102%).  Compared with the original 

result, distribution of AAIW expands or shrinks slightly when the above properties change. 

This is because more surrounding water is consistent with features of AAIW and is 

considered as AAIW by OMP.  

There is not much error in the measurement of temperature or potential temperature. However, 

there will be certain change in temperature itself. Due to the certain difference in potential 

temperature between the water masses, the OMP results will be affected by maximum ±20% 

when the temperature changes by 0.5 °C, although temperature is one of the most significant 

properties. Salinity is one iconic property to identify AAIW (low salinity) in the intermediate 

layer. Similar with potential temperature, there are also certain differences between 

neighboring water masses (e.g. ~34.05 for AAIW, ~34.9 for upper NADW and ~36.5 for 

MOW). Therefore, errors or changes of salinity are also not sensitive to the results. As shown 

in Figure 2.2 changing 0.05 in salinity can lead to a difference result about ±20%. The change 

of oxygen and nutrients with 2% can lead to impacts on the results of OMP analysis with 

±20%. 
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Fig 2.1 Sensitivity of changing Potential Temperature by 0.5 °C Salinity by 0.05 oxygen and nutrients by 2% 

based on A16 cruise in 2013 

Different distributions of AAIW are shown by decreased key propertiy values (upper left), increased (upper right), 

original data (lower left) and difference in % between increased and decreased values  (lower right). The solid 

contourlines show fractions of AAIW by 20, 50 and 80%; dash yellow lines show four vertial layers of water 

columns. 

2.4 Transient Tracers and Transit Time Distribution 

2.4.1 Concentration, Partial Pressure and Saturation 

The concentration (solubility) of tracer gas in the seawater is a function of potential 

temperature (θ), salinity (S). Solubility functions of CFC-12 and SF6 is described Warner and 

Weiss (1985) and Bullister et al. (2002) and follow: 
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ln 𝐹 = a1+a2·(
100

T
)+a3·ln(

T

100
)+a4·(
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2
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T
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T

100
)

2
]·S 

F is the solubility of the tracers and T is the potential temperature and S is the salinity. And a1 

a2 a3 b1 b2 b3 are all constants based on tracers. 

Due to the different sampling time, seasons or regions, the potential temperature and salinity 

of samples are also very different. Concentration of tracers in seawater cannot be compared 

directly. Partial Pressure is required to remove impacts from different potential temperature 

and salinity. Partial pressure of tracers (CFC-12 and SF6  follow (Doney and Bullister, 1992): 

 

Ptracer = 
𝐶𝑡𝑟𝑎𝑐𝑒𝑟

𝐹(𝑇,𝑆)
 

P is the partial pressure of tracers in ppt. C is the tracer concentration in mol/kg and F is the 

solubility function in mol/(kg·atm). 

In the long time scale, concentrations of tracers in the can also be very different in the history, 

it is also meaningless to compare partial pressure, for example in 1980s with 2010s, directly. 

Therefore, saturation, which equals partial pressure divided by atmospheric concentration, is 

required to remove the difference in the atmospheric history. Calculation of mean ages is 

based on saturation of tracers. 

 

Saturation = 
𝐏𝐚𝐫𝐭𝐢𝐚𝐥 𝐏𝐫𝐞𝐬𝐬𝐮𝐫𝐞

𝐡𝐢𝐬𝐭𝐨𝐫𝐲
 

 

2.4.2 Transit Time Distribution (TTD) 

Due to the mixing and diffusion in the ocean, it is difficult to measure the whole process in 

one timescale and the transit time distribution (TTD) is a required and composed by following 

parameters (Waugh et al., 2003):  

Tracer age (c(t)) describes the time that water particle takes from surface to the deeper layer. 

For water mass, tracer age means consuming time from formation area to the destination. 

c(t) = c0(𝐭 − 𝛕); 
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Mean age (Γ) shows the year in which the water mass is equilibrium to the atmosphere (i.e. In 

which year that water mass is formed). 

𝚪 = ∫ 𝛏𝐆(𝛏)𝐝𝛏
∞

𝟎
; 

Width (Δ2) describes the mixing and the diffusion in the ocean. 

𝚫𝟐 =  
𝟏

𝟐
∫ (𝛏 − 𝚪)𝟐𝐆(𝛏)𝐝𝛏
∞

𝟎
; 

The relationship between all the above parameters is often assumed to follow an inverse 

Gauss distribution: 

G(t) = √
𝚪𝟑

𝟒𝛑𝚫𝟐𝐭𝟑
 exp(

−𝚪(𝐭−𝚪)𝟐

𝟒𝚫𝟐𝐭
); 

In this equation t, Γ and Δ describes the tracer age, mean age and the width of TTD. The 

mixing ratio ( 𝛥 𝛤⁄  ) indicates the advective (low ratio) or diffusive (high ratio) situation in 

the ocean. In this study, a standard mixing ratio (𝛥 𝛤⁄  = 1) is considered. 

3. Conclusion and Outlook 

Understanding the characteristics, distributions and transports of water masses in the ocean 

can provide the support of hydrological background for investigating the thermohaline 

circulation or biogeochemical process in the world oceans. By analyzing the observational 

data during the past few decades from GLODAPv2 dataset, this study mapped out the origins, 

distributions and transportations of main water masses in the Atlantic Ocean.  

This study mapped out main water masses in the Atlantic Ocean with 4-layer vertical 

stratification based on potential density. The upper layer with the lowest potential density 

lower than 27.0 kg·m
-3

 and contains four central water masses which are formed during 

winter subduction and with the linear T-S relationship. The intermediate layer is located 

below the upper layer with potential densities between 27.0 and 27.7 kg·m
-3

. Two main water 

masses, SAIW from the North Atlantic and AAIW from the South Atlantic, in this layer are 

formed in the surface of sub-polar region and subduction deep into intermediate depth during 

their way towards the lower latitudes. MOW, which is also defined as intermediate water 

mass due to similar density and pressure, originates from the east in the Gulf of Cadiz and 

spreads northward and westward. The deep and overflow layer lies below the intermediate 

layer with potential density between 27.7 and 27.88 kg·m
-3

. NADW is formed by the mixing 
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of LSW, ISOW and DSOW in the Labrador Sea and Irminger Basin. A distinction is taken 

between upper and lower portion based on the origins from LSW or from ISOW and DSOW. 

NADW spreads and dominates the most area of the deep Atlantic Ocean along the DWBC to 

the south and eddies to the east. The bottom layer that occupied by bottom water masses is the 

lowest layers with potential densities higher than 27.88 kg·m
-3

. Bottom water masses in this 

layer have an origin in the Southern Ocean and are also characterized by their high potential 

densities and silicate concentrations. AABW formed in the Weddell Sea region is the main 

bottom water mass, through the mixing of CDW and WSBW. After the formation, AABW 

spreads northward and suffers from a sharp decline of silicate concentration after crossing the 

equator and redefined as a new water mass NEABW. To illustrate the situation of water 

masses in the Atlantic Ocean, the details are split into three chapters. Characteristics (Chapter 

II), Distribution (Chapter III) and Transport Time (Mean Ages) (Chapter IV) of Water Masses 

in the Atlantic Ocean based on GLODAPv2 dataset. 

The main goal of this study is to map out the distributions and transportations of main water 

masses in the Atlantic Ocean in the past few decades based on the observational data from 

GLODAPv2 dataset and furthermore to provide the hydrological background or theoretical 

basis for further biogeochemical research in the whole Atlantic scale. For instances, 

understanding of water masses has applications in the following research fields.  

Water masses play indispensable role in investigating thermohaline circulation and 

Atlantic meridional overturning circulation (AMOC).  

The heat transport in the Atlantic Ocean is in general northward rather than polarward as in 

the atmosphere or in the Pacific Ocean. The AMOC, as a significant part that impacts the 

European and Earth climate, exerts a strong control on heat distribution in the Atlantic Ocean, 

and the water mass is the main carrier of heat transport. Water masses those participate in the 

four branches of AMOC have obvious impacts on the heat distribution. 1) The northward heat 

transport in the shallow Atlantic is achieved by the propagation of central water masses. 2) In 

the high latitude region of North Atlantic near Labrador and Irminger Sea, surface water 

becomes dense and due to low temperature and high salinity and NADW is formed and sinks. 

3) The formed NADW spreads southwards with Deep Western Boundary Currents (DWBC). 

2) and 3) form the cold branch of AMOC and make a southward cold flux of sea water in the 

deep layer. 4) Upwelling of cold deep water to the surface takes place in the Southern Ocean 

and closes the cycle. This closed cycle also constitutes the main part of thermohaline 

circulation in the Atlantic Ocean: the deep southward flow of cold water is matched by a 
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surface northward warm flow, thus a net heat flux is formed into the North Atlantic which 

moderates the climate in Europe. 

Water mass has impacts on oxygen distribution and ventilation processes in the ocean. 

Oxygen concentration in the seawater, as an indispensable element of life activities, plays an 

extremely important role in biogeochemical processes and can be recognized as a sensitive 

early warning system for global climate change in the ocean. The oxygen distribution in the 

ocean is determined by both physical and biological processes. Therefore, changes in the 

distribution of water masses can also lead to changes in the oxygen distribution. In the 

shallow layer, oxygen is determined by temperature and salinity as well as currents and 

mixing, while in the deep ocean is thus determined by circulation of water masses. In 

meridional scale, the higher oxygen concentrations are found at high latitudes, where the 

ocean is cold, especially well-mixed and ventilated. In mid-latitude region, oxygen-deficient 

zones exist especially on the western coasts of the continents due to the sluggish water 

circulation. In vertical scale, elevated oxygen consumption due to high biological productivity 

leads to an oxygen-minimum zone in the depth range between 100 and 1000 meters.  

Water mass and carbon cycle 

Carbon plays important role in the atmospheric regulator of Earth’s climate as a fundamental 

component and the oceans contain ~60 times more carbon than the atmosphere. Besides 

photosynthesis from phytoplankton, the ocean takes up carbon dioxide also by simply 

dissolving in seawater. Carbonic acid is created and releases hydrogen ions, which combine 

with carbonate in seawater to form bicarbonate that doesn’t escape into the atmosphere easily. 

The carbon cycle in the ocean is also closely related to the characteristics and transports of 

water mass. More carbon would be absorbed by the ocean when more carbon dioxide is 

released into the atmosphere, for instance by burning fossil fuels. The carbon exchange 

between the ocean and atmosphere is determined directly from the (temperature-dependent) 

chemical interaction rates in the mixed layer, using a standard CO2 flux relation at the air-sea 

interface. In the surface, carbon dioxide leaks out of seawater when temperatures rise, while 

in the deep of the ocean, upwelling brings cold waters with high carbonate to the surface. The 

newly formed surface water masses take up more carbon to match the atmosphere, while the 

old deep water masses capture carbon into the ocean. 
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Abstract: The characteristics of the main water masses in the Atlantic Ocean are investigated and 

defined as Source Water Types (SWTs) from their formation area by six key properties based on the 

GLODAPv2 observational data. These include both conservative (potential temperature and salinity) 

and non-conservative (oxygen, silicate, phosphate and nitrate) variables. For this we divided the 

Atlantic Ocean into four vertical layers by distinct potential densities in the shallow and intermediate 

water column, and additionally by concentration of silicate in the deep waters. The SWTs in the 

upper/central water layer originates from subduction during winter and are defined as central waters, 

formed in four distinct areas;  East North Atlantic Central water (ENACW), West North Atlantic 

Central Water (WNACW), East South Atlantic Central Water (ESACW) and West South Atlantic 

Central Water (WSACW). Below the upper/central layer the intermediate layer consist of three main 

SWTs; Antarctic Intermediate Water (AAIW), Subarctic Intermediate Water (SAIW) and 

Mediterranean Overflow Water (MOW). The North Atlantic Deep Water (NADW) is the dominating 

SWT in the deep and overflow layer, and is divided into upper and lower NADW based on the 

different origins and properties. The origin of both the upper and lower NADW is the Labrador Sea 

Water (LSW), the Iceland-Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water 

(DSOW). Antarctic Bottom Water (AABW) is the only natural SWT in the bottom layer and this SWT 

is redefined as North East Atlantic Bottom Water (NEABW) in the north of equator due to the change 

of key properties, especial silicate. Similar with NADW, two additional SWTS, Circumpolar Deep 

Water (CDW) and Weddell Sea Bottom Water (WSBW), are defined in the Weddell Sea in order to 

understand the origin of AABW. The definition of water masses in biogeochemical space is useful for, 

in particular, chemical and biological oceanography to understand the origin and mixing history of 

water samples.  

 

Key Words: Water Mass, Source Water Types, GLODAP, Atlantic Ocean 
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1. Introduction 

Properties of water in the ocean are, obviously, not uniformly distributed so that different regions and 

depths (or densities) are characterized by different properties. Bodies of water with similar properties 

often share a common formation history and are referred to as water masses, or, more generally, sea 

water types. Understanding of the distribution and variation of water masses play an important role in 

several disciplines of oceanography, for instance while investigating the thermohaline circulation of 

the world ocean or predicting climate changes (e.g. Haine and Hall, 2002; Tomczak, 1999). 

Particularly important is the concept of water masses for biogeochemical and biological applications 

where the transformation of properties over time can be successfully viewed in the water mass frame-

work. For instance, the formation of Denmark Strait Overflow water in the Denmark Strait could be 

described using mixing of a large number of water masses from the Arctic Ocean and the Nordic Seas 

(Tanhua et al., 2005b). In a more recent work, Garcia-Ibanez et al. (2015) considered 14 water masses 

combined with velocity fields to estimate transport of water mass, and thus chemical constituents, in 

the north Atlantic. Similarly, Jullion et al. (2017) used water mass analysis in the Mediterranean Sea to 

better understand the dynamics of dissolved Barium. Also, Wüst and Defant (1936) illustrated the 

stratification and circulation of water masses in the Atlantic Ocean based on the observational data 

from Meteor Cruise 1925-1927. Based on research during last few decades, Tomczak (1999) 

summarized the history of the water mass research and provided an outlook for the evolution of water 

mass research. In this paper we use the concepts and definitions of water masses as given by Tomczak 

(1999). 

The definition of a water mass is a body of water that originates in a particular area of the ocean with a 

common formation history. Water masses share common properties such as temperature, salinity and 

biogeochemical variables that are distinct from surrounding bodies of water (e.g. Helland-Hansen, 

1916; Montgomery, 1958) and have a measurable extent both in the vertical and horizontal, and thus a 

quantifiable volume. Since water masses are surrounded by other water masses there will be mixing 

(both along and across density surfaces) between the water masses, so that away from the formation 

regions one tend to find mixtures of water masses  with different properties compared to the ones in 

the formation area. Early work by Schaffer and JACOBSEN (1927) and Defant (1929) illustrated the 

application of T-S relationship in the oceanography. This concept has been redefined over time and in 

Emery and Meincke (1986), for instance, the water masses were divided into upper, intermediate and 

deep/abyssal layers including the depth to the T-S relationship. With the development of observational 

capacities for a range of variables, definition of water masses is not only limited by the T-S-P 

relationship. New physical and chemical parameters, both conservation and non-conservative, are 

added in the water mass concept e.g. (Tomczak, 1981; Tomczak and Large, 1989b). These additional 

variables exhibit different importance in defining a water masses but are complementary to each other 

and provide a more solid basis for the water mass definition.  
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The ocean is thus composed a large number of water masses, these are however not simply piled up in 

the ocean like bricks. In fact, there are no clear boundaries between them. Or, in other words, there is a 

gradual and mixed process between water masses (Castro et al., 1998). As a direct result another 

concept was introduced: Source Water Types (SWTs). SWTs describe the original properties of water 

masses in their formation area, and can thus be considered as the original form of water masses 

(Tomczak, 1999). 

It is important to realize that while water masses have a defined volume and extent, a water type is 

only a mathematical definition that does not have a physical extent. A SWT is defined based on a 

number of properties and their variance, or standard deviation (Tomczak, 1999). Knowledge of the 

properties of the SWTs is essential in labeling water masses, tracking their spreading and mixing 

progresses. Accurate definition and characterization of SWTs is an essential step for performing any 

water mass mixing analysis, such as the Optimum Multi-parameter (OMP) analysis (Tomczak and 

Large, 1989b). In practice though, defining properties of source water types and water masses is often 

a difficult and time-consuming part of water mass analysis, particularly when analyzing data from a 

region distant from the water mass formation regions. In order to facilitate water mass analysis we use 

the Atlantic data from the data product GLODAPv2 (Lauvset et al., 2016) to identify and define 

source water types for the most prominent water masses in the Atlantic Ocean based on 6 commonly 

measured physical and biogeochemical variables.  The aim of this work is to facilitate water mass 

analysis and in particularly we aim at supporting biogeochemical and biological oceanographic work 

in a broad sense. We realize that we define the SWTs in a static sense, i.e. we assume that they do not 

change with time, and that our analysis is relatively course in that we do not consider subtle 

differences between closely related SWTs but rather paint the picture with a rather broad brush. 

Studies looking at temporal variability of water masses, or water mass formation processes in detail, 

for instance, may find this study useful but will certainly want to use a more granular approach to 

water mass analysis in their particular area.  

In a companion paper (Liu and Tanhua, 2018) we will use the here defined Atlantic Ocean SWTs to 

estimate the distribution of the water masses in the Atlantic Ocean based on the GLODAPv2 data.  
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2 Data and Methods 

In this study we use six key variables to define source water types (SWTs) in Atlantic Ocean, 

including two conservative variables, potential temperature (θ) and salinity (S), and four non-

conservative variables, silicate, oxygen, phosphate and nitrate.  We utilize the GLODAPv2 data 

product (Lauvset et al., 2016) to quantify the properties and related standard deviation of these 

variables for Atlantic Ocean SWTs. The GLODAPv2 data product is a compilation of interior ocean 

carbon relevant data from ship-based observations and includes data on oxygen and nutrients. The data 

in the GLODAPv2 product has passed both a primary quality control (aiming at precision of the data) 

and a secondary data quality control (aiming at the accuracy of the data).  The data product that we use 

in this work thus uses adjusted values to correct for any biases in data. The methodologies for the QC 

processes in GLODAPv2 are similar to those used for the CARINA data product and are described in 

detail in (Key et al., 2010). Through these QC routines, the GLODAPv2 product is unique in its 

internal consistency, and is thus an ideal product to use for this work aiming at definitions of major 

water masses and source water types in the Atlantic Ocean. Armed with the internally consistent data 

in GLODAPv2, we utilize previously published studies on water masses and their formation areas to 

define areas and depth / density ranges that can be considered to be representative samples of a SWT. 

As a second step we characterize the SWT in a 6 parameter space by quantifying the concentrations of 

these variables and use the standard deviation as a measure of the variability of each SWT and variable 

combination.  

3 Source Water Types (SWTs) in the Atlantic Ocean 

In line with the  results from Emery and Meincke (1986) and from our interpretation of the 

observational data from GLODAPv2, we consider that the water masses in the Atlantic Ocean are 

distributed in four main vertical layers (Figure 1) roughly separated by surfaces of equal density. 

Potential density is the main basis to divide the shallow layers whereas for the deep and bottom layers 

the concentration of silicate is additionally used to distinguish these layers. In this concept we do not 

consider the mixed layer as its properties tend to be strongly variable on seasonal time-scales so that 

other methods to characterize the water masses is needed, mostly based on geographic region. The 

Upper Layer is the shallowest layer (i.e. lowest density) under consideration and is located within 

upper 500-1000m of the water column but below the mixed layer. The Intermediate Layer is located 

between ~1000 to 1500/2000m, below the Upper Layer. The Deep and Overflow layer occupies the 

layer roughly between 2000-4000m of the Atlantic Ocean. The Bottom Layer is the deepest layer, 

mostly located below 4000m, and is often characterized by high silicate concentrations. In this section 

we will identify key SWTs in each of the four layers. Table 1 lists the four layers and the water masses 

that we consider in this study. The table also lists the selection criteria that we used to define a Source 

Water Type in pressure, potential temperature or density space, for some SWTs, key properties such as 
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salinity, oxygen or silicate are also necessary, in order to characterize the biogeochemical properties as 

well.  

During our narrative of each SWT we will display four figures that will guide us to a more intuitive 

understanding of the SWTs: (a) maps of all GLODAPv2 station locations marked as light gray dots 

where stations within the area of formation that we consider are marked in red and stations with any 

samples within the desired properties as defined by Table 1 in blue, (b) the T-S relationship with the 

same color coding, (c) depth profiles of the 6 variables under consideration (same color coding), and 

(d) bar plots of the distribution of the samples within the criteria for a SWT. In the bar plot we have 

added a Gaussian curve to the distribution derived from the average and standard deviation of the 

distribution (the amplitude of the curve defined as 2/3 of the highest bar). The plots of properties vs 

pressure provides an intuitive understanding of each STW compared to others in the same region. The 

properties distribution and the Gaussian curve will help us to visually determine and confirm the SWT 

property values and associated standard deviation.  

3.1 The Upper Layer, Central Waters 

The Upper Layer is occupied by four SWTs called central waters that are known to be formed by 

subducted into the thermocline (Sprintall and Tomczak, 1993; Tomczak and Godfrey, 2013) into the 

interior of the ocean (Pollard et al., 1996). Figure 2 illustrate a schematic of the main currents in this 

layer and the main formation regions of the central waters in the Atlantic Ocean. Water masses or 

SWTs in this layer can be easily recognized by their linear T-S relationship (Pollard et al., 1996; 

Stramma and England, 1999). In this study, we define upper layer water masses to be located above 

potential density isoline of 27.0 kg/m
3
 (see Fig 3.0), but below the mixed layer. The formation and 

transport of the Central Water is influenced by the currents in the shallow layer and finally forms a 

relative distinct body of water in both the horizontal and vertical. Mode Waters, on the other hand, are 

considered as the precursor or the prototype of the central waters (Alvarez et al., 2014; Cianca et al., 

2009). In this study we will refer to Mode Waters in the description in defining or formation of the 

central waters but do not relate to their details. 

3.1.1 Eastern North Atlantic Central Water (ENACW) 

The main water mass in the upper layer of the region east of the Mid Atlantic Ridge (MAR) is the East 

North Atlantic Central Water (ENACW) (Harvey, 1982). This water mass is formed during winter and 

gets subducted in the seas west of Iberian Penisular. In addition, one component of the Subpolar Mode 

Water (SPMW) is carried by the south branch of North Atlantic Current (Figure 3a) and mixed in 

ESAW contributing to the properties of this water mass (McCartney and Talley, 1982) so that 

ENACW shows a typical linear T-S relationship (Pollard et al., 1996). ENACW advects in the general 

southern direction along the south branch of the North Atlantic Current (Arhan, 1990), passes 

northwest Africa, and then turns southwest into Canary basin. In the vertical scale, ENACW occupies 
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at the upper ~500m with a relative low salinity, while SAIW is often occupying the water column 

below ENACW, often with contribution of MOW from the east in the intermediate depth (Garcia-

Ibanez et al., 2015; Pollard et al., 1996; Pollard and Pu, 1985; Prieto et al., 2015). This straticication 

can also be clearly seen in the salinity/depth plot of Figure 3c where the MOW is primarily 

characterized by high salinity (see also Figure 9c and discription of MOW ). 

In our analysis, we follow the analysis of Pollard et al. (1996) and choose latitude between 39 and 

48 °N and between 15 and 25 °E of longitude (east of Mid-Atlantic-Ridge) as the formation area of 

ENACW (Figure 3a). Based on the work of (Pollard and Pu, 1985) we choose potential density, 𝜎𝜃  = 

26.50 kg/m
3
 as higher boundary and 𝜎𝜃   = 27.30 kg/m

3
 as the lower boundary to define ENACW in our 

analysis.  

In Figure 3b, we can see clearly the linear T-S distribution of this water masses, consistent with 

Pollard et al. (1996) and the definition of ENACW12 in Garcia-Ibanez et al. (2015). In Garcia-Ibanez et 

al. (2015), there is another definition ENACW16, but water samples show a discrete distribution 

warmer than 16 °C by GLODAPv2 data set in this region, so also samples with potential temperature 

below 16 °C are selected in this study. As shown in Figure 3c, ENACW dominates the upper 500m 

depth. The main character of ENACW is the large potential temperature and salinity ranges and low 

nutrients (especially low in silicate).  

3.1.2 Western North Atlantic Central Water (WNACW) 

Western North Atlantic Central Water (WNACW) is another SWT formed during winter through 

subduction (McCartney and Talley, 1982; Worthington, 1959). WNACW is formed at the south flank 

of the Gulf Stream (Klein and Hogg, 1996) and is in some literatures referred to as 18 ° water since a 

potential temperature of around 18 °C and salinity around 36.5 are standard features of this SWT 

(Talley and Raymer, 1982). In general, ocean water in the Northeast Atlantic has higher salinity than 

in the Northwest Atlantic due to the stronger winter convection (Pollard and Pu, 1985) and input of 

MOW (Pollard et al., 1996; Prieto et al., 2015). However, for the central waters, we find the opposite. 

WNACW has a significantly higher salinity than ENACW by 0.9 PSU units. This is due to a number 

of reasons, such as different latitudes of formation; WNACW is formed in lower latitude than 

ENACW so that surface water with higher salinity subducts during winter convection to form 

WNACW. 

In this study, we follow McCartney and Talley (1982) and choose the region 24-37°N, 50-70°W as the 

formation area and pressures less than 1000 m. By defining the depth of this SWT water samples show 

a discrete T-S distribution with potential densities lower than 26.30 or  larger than 26.60 kg/m
3
. 

Besides the potential density constraint, we added the constraint that concentrations of phosphate have 

to be lower than 0.3 and silicate lower than 3 µmol kg
-1

. 
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The properties of WNACW are shown in Figure 4. Besides the linear T-S relationship, a feature of all 

central waters, another feature of this water mass is, as the alternative name suggests, a potential 

temperature around18 °C. This is the warmest of the four STWs in the Atlantic Ocean since it has the 

lowest latitude of formation and is influenced by the high salinity Gulf Stream during formation. Low 

nutrients, including silicate, phosphate and nitrate are other features compared to other central waters 

that generally are low in nutrients compared to deeper water masses 

3.1.3 Western South Atlantic Central Water (WSACW) 

Western South Atlantic Central Water (WSACW) is located in the starting point that central water is 

transported to the north during the Meridional Overturning Circulation (Kuhlbrodt et al., 2007). For 

this reason, the importance of WSACW is clear. The WSACW is formed with little directly influence 

from other central water masses (Stramma and England, 1999), while the origin of other central water 

masses (e.g. ESACW or ENACW) can, to some extent at least, be traced back to WSACW (Peterson 

and Stramma, 1991). This water mass is a product of three mode waters mixed together: the Brazil 

current brings Salinity Maximum Water (SMW) and Subtropical Mode Water (STMW) from the north, 

while the Falkland Current brings Subarctic Mode Water (SAMW) from the south (Alvarez et al., 

2014). Here we follow the work of Stramma and England (1999) and Alvarez et al. (2014) that choose 

the meeting region of these two currents (25-60°W, 30-45°S) as the formation region of WSACW. We 

choose potential density (𝜎𝜃) between 26.0 and 27.0 kg/m
3 

and salinity higher than 34.5 for defining 

WSACW. In addition to the physical properties we used the requirement of silicate concentrations 

lower than 10 µmol kg
-1

 and oxygen concentrations lower than 230 µmol kg
-1

 to define this SWT. 

The temperature distribution in this region indicates another peak in the abundance (histogram) for 

potential densities higher than 27.0 kg m
-3

, indicating that the boundary between WSACW and AAIW 

is at 𝜎𝜃 = 27.0 kg m
-3

 in this region. The hydrochemical properties of WSACW are shown in Figure 5. 

Similar to other central waters, WSACW shows a linear T-S relationship with large T and S ranges 

and low concentration of nutrients, especially low silicate.  

3.1.4 Eastern South Atlantic Central Water (ESACW) 

The other formation area of SACW in the eastern South Atlantic Ocean is located in area southwest of 

South Africa. In this region the Agulhas Current brings water from the Indian Ocean (Deruijter, 1982; 

Lutjeharms and van Ballegooyen, 1988) that meets and mixes with the South Atlantic Current 

(Gordon et al., 1992; Stramma and Peterson, 1990) from the west. Water mass formed during this 

process spreads to the northwest and intrudes water from the Benguela Current and enters the 

subtropical gyre (Peterson and Stramma, 1991). Tracing back to the origin of ESACW, it can be 

considered as partly originating from WSACW, but since water from Indian Ocean is added by the 

Agulhas Current we can define WSACW as a new independent STW with characteristic properties. 
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We choose the meeting region of Agulhas Current and South Atlantic Current (30-40 °S, 0-20 °E) as 

the formation area of ESACW and display properties of this SWT. To investigate the properties of 

ESACW, we also follow Stramma and England (1999), and choose 200-700m as the core of this water 

mass. For the properties, potential density ( 𝜎𝜃 ) between 26.00 and 27.20 kg m
-3 

and oxygen 

concentration between 200 and 240 µmol kg
-1

 are used to define ESACW.  

Figure 6a clearly shows the linear T-S relationship for potential density (𝜎𝜃) between 26.00 and 27.20 

kg m
-3

, which is consists with the general property of Central Waters (Alvarez et al., 2014; Emery and 

Meincke, 1986; Harvey, 1982). As shown in Figure 6b, ESACW exhibits a relative large potential 

temperature and salinity range and low nutrient concentrations (especially low in silicate) compared to 

the AAIW below. The properties in ESACW are similar to that of WSACW, although with higher 

nutrient concentrations due to input from the Agulhas current. 

3.2 The Intermediate Layer 

The intermediate water masses origins from the upper part of the ocean (i.e. the upper 500m of the 

water column) but subduct into intermediate depth (1000-1500m) during their formation process. 

Similarly to the water masses of the central layer, currents in this layer play a significant role to 

influence the distribution and transport of intermediate water masses. The potential density (𝜎𝜃) of the 

intermediate water masses usually is between 27.00 and 27.70 kg m
-3

. 

In the Atlantic Ocean we find two main intermediate water masses: SAIW that originates from the 

north and AAIW that originates from the south, Figure 8. These two water masses are formed in the 

surface of sub-polar region, and then sink during their way towards the lower latitudes. 

Besides AAIW and SAIW here we also define MOW as an intermediate water mass in the north 

Atlantic since the MOW occupies a similar density range as AAIW and SAIW, although the formation 

is different. Schematic of main currents in the intermediate layer is shown in Figure 7. 

3.2.1 Antarctic Intermediate Water (AAIW) 

AAIW is the main water mass in the intermediate depth of the South Atlantic Ocean. This water mass 

originates from the surface layer (upper 200m) north of the Antarctic Circumpolar Current (ACC) and 

east of Drake Passage (Alvarez et al., 2014; McCartney, 1982). After formation AAIW subducts and 

spreads northward along the continental slope of South America (Piola and Gordon, 1989). AAIW can 

be found through most of the Atlantic Ocean at the depth between 500 and 1200m, below the layer of 

central water and above the deep waters (Talley, 1996). Two characteristic features of AAIW is low 

salinity and high oxygen concentration (Stramma and England, 1999). 

Based on the work by Stramma and England (1999), we choose the region between 55 and 40°S (east 

of the Drake Passage) as the formation area of AAIW and look at depths below 200 m so that not only 

AAIW samples in the formation area but also some samples during the subduction and spreading in 
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the primary stage are considered. As for the boundaries between AAIW and surrounding SWTs, 

including SACW in the north and NADW in the deep, there are several slightly different definitions. 

Piola and Georgi (1982) and Talley (1996) define AAIW to have potential densities between 27.00-

27.10 and 27.40 kg/m
3
. Here however we follow Stramma and England (1999) that define the 

boundary between AAIW and SACW at 𝜎𝜃  = 27.00 kg m
-3

 and the boundary between AAIW and 

NADW at 𝜎1 = 32.15 kg m
-3

.  

Although the density difference between AAIW and AABW is significant, in the formation areas, 

there is a direct contact between AAIW and AABW near Drake Strait. Since AABW is easily 

separated from AAIW on higher silicate concentrations we used silicate concentrations lower than 20 

µmol kg
-1

 as a criteria for AAIW. Furthermore we used these criteria in our selection of AAIW: 

potential density between 26.95 and 27.50 kg m
-3

 and pressure within 300m. More criteria are required 

to identify AAIW with neighboring SWTs, since the formation area of AAIW is bordered with 

WSACW in the north and AABW in the south. High oxygen (> 230 µmol kg
-1

) is the important sign 

that distinguishes AAIW from Central Waters (WSACW and ESACW), while relative high potential 

temperature (>-0.5 °C) and low silicate (< 30 µmol kg
-1

) are differentiated standards between AAIW 

and AABW. As shown in Figure 8, most of the AAIW samples have a potential density between 𝜎𝜃  = 

27.00-27.40 kg m
-3

; the few exceptions still adhere to the boundary σ1 < 32.15 kg m
-3

. The 

characteristics of AAIW show low salinity, high oxygen and low silicate concentrations compared to 

SACW and NADW, and low silicate concentration.  

3.2.2 Subarctic Intermediate Water (SAIW) 

Subarctic Intermediate Water (SAIW) originates from the surface layer of the western boundary of the 

North Atlantic Subpolar Gyre, along the Labrador Current (Lazier and Wright, 1993; Pickart et al., 

1997). This SWT subducts and spreads southeast in the region north of the NAC, advects across the 

MAR and finally interacts with MOW, that comes from the eastern Atlantic below ENACW (Arhan, 

1990; Arhan and King, 1995). The formation of SAIW is mixture of two surface water types: Water 

with high temperature and salinity carried by the NAC and cold and fresh water from the Labrador 

Current (Garcia-Ibanez et al., 2015; Read, 2000). In Garcia-Ibanez et al. (2015), there are two 

definitions of SAIW, SAIW6, which is biased to the warmer and saltier NAC, and SAIW4, which is 

closer to the cooler and fresher Labrador Current. In this study we discuss the combination of these 

two end-members when considering the whole Atlantic Ocean scale. 

For the spatial boundaries we follow Arhan (1990) and choose longitudes between 35 and 55°W, and 

latitudes between 50 and 60 °N, i.e. the region along the Labrador Current and north of the NAC as the 

formation area of SAIW (Figure 9a). Within this area we follow Read (2000), and choose potential 

densities higher than 27.65 kg m
-3

 and potential temperature higher than 4.5 °C to define SAIW. 

Similar to the definition of AAIW, we include samples in the depth range from the MLD to 500m as 

the core layer of SAIW; this pressure includes formation and subduction of SAIW.  
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In the T-S relationship (Figure 9b), the mixing of two main sources, the warmer and saltier NAC and 

the colder and fresher Labrador Current, is evident. In Figure 9c we can see that this SWT is 

characterized by relative low potential temperature, salinity and silicate concentration but is high in 

oxygen 

3.2.3 Mediterranean Overflow Water (MOW) 

The predecessor of the Mediterranean Overflow Water (MOW) is Mediterranean Waters flowing out 

through the Strait of Gibraltar whose main component is modified Levantine Intermediate Water. This 

is a SWT characterized by high salinity and temperature and intermediate potential density in the 

Northeast Atlantic Ocean (Carracedo et al., 2016). After passing the Strait of Gibraltar, the 

Mediterranean water mixes rapidly with the overlying ENACW leading to a sharp decrease of salinity 

and potential density (Baringer and Price, 1997). In Gulf of Cadiz, the outflow of MOW turns into two 

branches: One branch continues to the west, descending the continental slope, mixing with 

surrounding water masses in the intermediate depth and influence the water mass composition as far 

west as the MAR (Price et al., 1993). The other branch spreads northwards along the coast of Iberian 

peninsula and along the European coast and its influence can be observed as far north as the 

Norwegian Sea (Reid, 1978, 1979). 

Here we follow Baringer and Price (1997) and consider MOW to be represented by the high salinity 

(salinity between 36.35 and 36.65) samples west of the Strait of Gibraltar as a SWT in the Northeast 

Atlantic (Figure 10) although the Mediterranean waters in the Strait are characterized by salinity 

higher than 38.4). 

Almost the entire Northeast Atlantic, east of the MAR, intermediate layer is influenced by MOW. As 

the most characteristic property of MOW is the high salinity, we display a salinity section plot (Figure 

10d) of A05 cruise from 2005 (74AB2005050), where the high salinity of MOW can be seen and how 

the high salinity core erodes westward towards the MAR. The high potential temperature and salinity 

compared to other water samples at same depth, and the characteristically low and nutrient 

concentrations are evident in Figure 10b. Due to the limited number of samples (less than 200) within 

our definition of MOW in GLODAPv2, we refrain from showing the histogram. The properties of 

MOW can be seen in Figure 10 and Table 3. 

3.3 The Deep and Overflow Layer 

To the deep and overflow water masses belongs those below the Intermediate Layer, approximately 

from 1500 to 4000m, with potential densities between 27.7 and 27.88 kg m
-3

. Relative high salinity in 

the deep (compared to the intermediate and bottom waters) is another significant property. The source 

region of these waters is confined to the North Atlantic, the formation areas and main currents in this 

layer are shown in Figure 11. The southward flow of NADW in the North Atlantic, as well as 

northward flow of AABW in the South Atlantic are indispensable components of Atlantic Meridional 
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Overturning Circulation (AMOC) (Lynch-Stieglitz et al., 2007) (Broecker and Denton, 1989; Elliot et 

al., 2002).  

The North Atlantic Deep Water (NADW) is the main water mass in this layer. NADW is mainly 

formed in the Labrador Sea and Irminger Basin in relative high latitude region in North Atlantic by 

mixing of Labrador Sea Water and the two variations of overflow waters; ISOW and DSOW. We 

make a distinction of upper and lower NADW, the upper portion origins from LSW and lower portion 

origins from ISOW and DSOW. From the formation area, NADW spreads to the south mainly with the 

Deep Western Boundary Current (DWBC) (Dengler et al., 2004), through the most Atlantic Ocean 

until ~50 °S where it meets Antarctic Circumpolar Current. During the south way along DWBC, 

NADW also spreads significantly in the zonal direction, so that we can find NADW in the whole 

Atlantic basin at these densities (Lozier, 2012).  

Both Denmark Strait Overflow Water (DSOW) and Iceland-Scotland Overflow water (ISOW) 

originate from Arctic Ocean and the Nordic Seas. In North Atlantic, these two water masses sink and 

flow west and east of Iceland respectively, and finally, they meet and mix with each other in the 

Irminger Basin (Stramma et al., 2004; Tanhua et al., 2005b).  As two main contributions to the 

formation of lower portion of NADW, they play a significant role in AMOC. Here we show our 

analysis based on GLODAPv2 database and discuss DSOW and ISOW separately. 

3.3.1 Labrador Sea Water (LSW) 

As an important water mass by its own virtue and for the formation of North Atlantic Deep Water 

(NADW), LSW is predominant in mid-depth (between 1000m and 2500m depth) in the Labrador Sea 

region (Elliot et al., 2002). LSW is characterized by relative low salinity (lower than 34.9) and high 

oxygen concentration (~290 µmol kg
-1

) (Talley and Mccartney, 1982). Another important criterion of 

LSW is the potential density (𝜎𝜃), that ranges from 27.68 to 27.88 kg m
-3

 (Clarke and Gascard, 1983; 

Gascard and Clarke, 1983; Kieke et al., 2006; Stramma et al., 2004). In the large spatial scale, LSW 

can be considered as one water mass (Dickson and Brown, 1994), however significant differences of 

different “vintages” of LSW exitst (Kieke et al., 2006; Stramma et al., 2004). LSW can broadly be 

divided into upper Labrador Sea Water (uLSW) and classic Labrador Sea Water (cLSW) with the 

boundary between them at potential density of 27.74 kg m
-3 

  (Kieke et al., 2007; Kieke et al., 2006; 

Smethie and Fine, 2001). 

The following results show our analysis based on GLODAPv2 in the Labrador Sea and Irminger Basin, 

west of Mid-Atlantic-Ridge. For the purpose of our analysis (the whole scale of the Atlantic Ocean) 

we consider LSW as one integral water mass. Although the Labrador Sea is located in North Atlantic 

between the Labrador Peninsula and Greenland, for this analysis we consider the formation region of 

LSW (Figure 12a). Within this geographical region we follow the definition from Clarke and Gascard 
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(1983) and Stramma and England (1999), defining LSW as samples with potential density (𝜎𝜃 ) 

between 27.68 to 27.88 kg m
-3

 (Figure 12b) in the depth range of 500-2000m (Elliot et al., 2002). 

Obvious characteristics of LSW are relative low salinity and high oxygen concentration is obvious. 

Figure 12c shows the histogram of all samples that we consider to represent LSW in this analysis. The 

relatively large spread in properties is indicative of the different “vintages” of LSW, in particular the 

bi-modal distribution of density, and partly for oxygen.   

3.3.2 Denmark Strait Overflow Water (DSOW) 

In North Atlantic, a number of water masses from the Arctic Ocean and the Nordic Seas flows through 

Denmark Strait west of Iceland. At the sill of the Denmark Strait and during the descent into the 

Irminger Sea these water masses undergo intense mixing. Here we use samples from the Irminger Sea 

with potential density higher than 27.88 kg m
-3

 (Tanhua et al., 2005b) for our definition of DSOW. In 

addition we require the silicate concentration to be lower than 11 µmol kg
-1

 to distinguish DSOW from 

NEABW, which has a high silicate concentration. 

As shown in Figure 13b DSOW is mostly found close to the bottom between 2000 and 4000m, as 

expected for an overflow water. In addition to the high density and low temperature DSOW also has 

high oxygen concentration (~ 290-310 µmol kg
-1

).  

3.3.3 Iceland-Scotland Overflow Water (ISOW) 

The Iceland Scotland Overflow Water, ISOW, flows from the Iceland Sea to the North Atlantic in the 

region east of Iceland, mainly through the Faroe-Bank Channel close to the bottom. ISOW flows and 

turn into two main branches when passing the Charlie-Gibbs Fracture Zone (CGFZ). The first one 

flows through the Mid-Atlantic-Ridge, into the Irminger basin, meets and mixes with DSOW there, 

and finally joins the lower portion of NADW. The other branch goes southward and mixes with 

Northeast Atlantic Bottom Water (NEABW) (Garcia-Ibanez et al., 2015). The pathway of ISOW 

closely follows the Mid-Atlantic-Ridge in the Iceland Basin where also NEABW could be found, 

characterized by high nutrient and low oxygen concentration. In order to safely distinguish ISOW 

from LSW in the region west of MAR, we define ISOW as samples with salinity higher than 34.95, 

potential density higher than 27.83 kg m
-3

. Figure 14 displays our characterization of ISOW based on 

GLODAPv2 in the Iceland Basin, which is consistent from the result in the literature (Garcia-Ibanez et 

al., 2015). 

3.3.4 Upper North Atlantic Deep Water (uNADW) 

The uNADW is formed by mixing of mainly ISOW and LSW and we consider this to be a distinct 

water mass just south of the Labrador Sea as this region is identified as the formation area of upper 

and lower NADW (Dickson and Brown, 1994).  
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We select the region between latitude 40 and 50°N, west of the MAR as the formation area of NADW 

(Figure 15b) and use the criteria of  potential density between 27.72 and 27.82 kg m
-3

 with depth range 

from  1200 to 2000m to define the upper NADW (Stramma et al., 2004). 

As a product of mixing from LSW and ISOW, upper NADW inherits main properties from LSW but 

also contains some of characteristics from ISOW. Relative low salinity and high salinity is still 

significant features of uNADW. However, as shown in Figure 15d, relatively increased salinity and 

decreased oxygen concentration can be found due to the impact from ISOW. Furthermore, ISOW also 

brings slight increase of nutrients including silicate, phosphate and nitrate. 

3.3.5 Lower North Atlantic Deep Water (lNADW) 

We select water samples from the same geographic region as upper NADW to define the lower 

NADW. Below the uNADW in this region, ISOW and DSOW (with influence of LSW) mix with each 

other and form the lower portion of NADW (Stramma et al., 2004). We use water samples found at 

depths between 2000 and 3000 m with potential densities between 27.76 and 27.88 kg m
-3

 to define 

lower NADW. 

From the data shown on Figure 16d, we can see lower NADW has properties more inclined to ISOW 

compared with DSOW. For instance, values of salinity and oxygen concentration are between ISOW 

and DSOW but obviously closer to ISOW. The nutrients, lower NADW have almost the same values 

to ISOW, further verified this inference. High potential temperature shows that the impact from LSW 

to lower NADW cannot be ignored.  

3.4 The Bottom Layer 

We define bottom waters as the densest water masses that occupy the lowest layers of the water 

column, typically below 4000 m depth and with potential densities higher than 27.88 kg m
-3

. These 

water masses have an origin in the Southern Ocean (Figure 17) and are also characterized by their high 

silicate concentrations (higher than 100 µmol kg
-1

), in addition to the high densities.  

Antarctic Bottom Water (AABW) is the main water mass in the bottom layer, and is formed in the 

Weddell Sea region, south of Antarctic Circumpolar Current (ACC) through mixing of Circumpolar 

Deep Water (CDW) and Weddell Sea Bottom Water (WSBW) (van Heuven et al., 2011). After the 

formation, AABW spreads to the north across the equator and further northwards until ~40 °N, where 

we define this water mass as North East Atlantic Bottom Water (NEABW).  

3.4.1 Antarctic Bottom Water (AABW) 

Antarctic Bottom Water (AABW) is the main bottom water in the South Atlantic Ocean and is also an 

important bottom water mass in the North Atlantic. As one of the important components in Atlantic 

Meridional Overturning Circulation (AMOC), AABW spreads northward below 4000m depth, mainly 
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west of Mid-Atlantic-Ridge (MAR) and plays a significant role in the Thermohaline Circulation 

(Andrié et al., 2003; Rhein et al., 1998). The origin of AABW in Atlantic section can be traced back to 

the Weddell Sea as a product of mixing of Weddell Sea Bottom Water (WSBW) and Circumpolar 

Deep Water (CDW) (Alvarez et al., 2014; Foldvik and Gammelsrod, 1988). 

The definition of AABW is all water samples formed south of the Antarctic Circumpolar Current 

(ACC), i.e. south of 63°S in the Weddell Sea, with neutral density (γ) larger than 28.27 kg m
-3

 (Orsi et 

al., 1999; Weiss et al., 1979). As an additional constraint we define AABW as water samples with 

silicate higher than 120 µmol kg
-1

 to distinguish AABW from other water masses in this region as high 

silicate is a trade mark characteristic of AABW. The main source region of AABW is the Weddell Sea.  

In Figure 18, we can see clearly that there are two main original water masses (red points) in the 

selected formation area of AABW (blue points). This result is also consistent with Orsi et al. (1999) 

and van Heuven et al. (2011). The first water mass is the relative warm (θ>0 °C) remnants from CDW, 

which comes with the ACC from the north. The other one, which is the extremely cold Shelf Water 

(θ<-1.0°C) comes as Weddell Sea Bottom Water (WSBW) from the south. As shown in Figure 18 we 

find AABW from 1000m to 5500m depth. The characterisitc properties of AABW is the low 

temperature (θ<0 °C), salinity (<34.68) and high nutrient concentration, especially the high silicate 

concentrations. In Figure 17c we can see a relative complex distribution of potential temperature, 

probably due to the mixing between different water masses with quite different temperatures (warm 

CDW and cold shelf water) that forms AABW. 

3.4.2 Northeast Atlantic Bottom Water (NEABW) 

Northeast Atlantic Bottom Water (NEABW), also called lower Northeast Atlantic Deep Water 

(lNEADW in Garcia-Ibanez et al. (2015)), is mainly found below 4000m depth in the eastern basin of 

the North Atlantic. This water mass is an extension of AABW during the way to the north, since the 

characteristics of AABW changes significantly on the slow transport north we choose to define this as 

a new water mass north of the Equator, similar to the formation of NADW south of the Labrador Sea.  

To define we choose the region east of the MAR and between the equator and 30 °N, i.e. before 

NEABW enters the Iberian Basin, as the formation area (Figure 19). We also use the criteria of water 

samples from a depth deeper than 4000m and potential temperature above 1.8 °C. In the T-S diagram 

of NEABW (Figure 19) we can see the linear T-S relationship similar to AABW in the Weddell Sea, 

but with significantly higher potential temperatures and salinities, roughly 1.95 °C and 34.887, 

respectively. Most NEABW samples have a potential density higher than 27.88 kg m
-3

 and NEABW is 

characterized by low potential temperature (θ), low salinity but high silicate concentration. This shows 

that NEABW originates from AABW, although most properties have been changed significantly from 

the South Atlantic.  
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3.4.3 Circumpolar Deep Water (CDW) / Warm Deep Water (WDW) 

Circumpolar Deep Water (CDW) or, as it is also called, Warm Deep Water (WDW), is the lighter of 

the two SWTs that constitutes AABW. In our study we consider water mass that mixes with WSBW 

directly as CDW (WDW in van Heuven et al. (2011)) and the region between 55 and 65 °S as the 

formation area. The origin of CDW can be tracked to the southward flow of NADW. At about 50°S 

NADW is deflected upward by AABW before reaching the ACC area, this NADW mixes with other 

water masses in ACC and forms a new water mass called CDW. Then CDW flows further southward 

and passes the ACC.  

To specify CDW we selected water samples with from depth between 200 and 1000m in the region 

east of 60°W between 55 and 65°S as the core of CDW. We also placed the additional constraints of 

having salinity lower than 34.64 and potential density higher than 27.80 kg m
-3

. The properties of 

CDW are shown in Figure 20. Similar to other bottom SWTs, CDW is characterized by high nutrient 

concentrations (silicate, phosphate and nitrate) and low oxygen concentration. The potential 

temperature of CDW is between 0 and 1 °C while the potential density is larger than 27.8 kg m
-3

, and 

the salinity higher than 34.63. 

3.4.4 Weddell Sea Bottom Water (WSBW) 

The Weddell Sea Bottom Water (WSBW) is the denser SWT that takes part in the formation of 

AABW. Similar to CDW, WSBW is also formed in the Weddell Sea region, relative warm water (𝜎𝜃 > 

0 °C) flows southward and cools down to 𝜎𝜃 lower than -1°C by mixing with extremely cold shelf 

water that is transported down along the continental slop.  WSBW is thus formed in the Weddell Sea 

basin below the depth of 3000m, before it meets and mixes with CDW/WDW. Compared with CDW, 

its low potential temperature is a significant property of WSBW (van Heuven et al., 2011). 

We follow van Heuven et al. (2011) and choose water samples in the latitudinal boundaries of 55 - 

65 °S in the Weddell Sea with pressures larger than 3000 m as the formation core area. We 

additionally constrain our selection to samples with potential temperature lower than -0.7 °C and 

silicate higher than 105 µmol/kg. The properties of WSBW are shown in Figures 21a and b. In 

addition to the physical properties, such as low potential temperature and high potential density, 

WSBW has high nutrient concentrations, but dislike CDW, WSBW has high oxygen concentration.  

4. Discussion 

We have defined Atlantic Ocean Water Masses (WMs) in their formation area as source water types 

(SWTs) in a 7-dimensional hydrochemical space. The properties of SWTs are important since this is 

the fundamental basis to label and investigate water mass transport, distribution and mixing. Table 3 

provides an overview of the properties, and the standard deviation, of the 16 Atlantic Ocean SWTs 

considered in this study. We used seven often measured hydrochemical and physical variables to 
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characterize 16 main SWTs in the Atlantic Ocean. To guide the water mass descriptions we divided 

the distribution of SWTs into four main vertical layers roughly separated by potential density in the 

shallow and concentration of silicate in the deep southern Hemisphere. The upper layer (σϴ<27.00 kg 

m
-3

) occupies the most shallow layer (typically down to about 500 m depth) of the ocean below the 

mixed layer, that we do not consider in this analysis. The upper layer is occupied by central waters: 

ENACW, WNACW, WSACW and ESACW, mainly characterized by relative high potential 

temperature and salinity. The intermediate layer is situated between the upper layer and the deep layer 

at roughly 1000 and 2000m depth. Of the three SWTs in this layer, AAIW and SAIW are both 

characterized have relative low salinity and temperature, while the MOW has high salinity and 

temperature. In the deep and overflow layer between roughly 2000 and 4000m we find SWTs with an 

origin in the north Atlantic. The bottom layer is occupied by SWTs with a southern origin; these are 

very cold SWTs with high densities and silicate concentrations.  

In Figure 22 we show an overview of the position of the SWTs in a Salinity-Temperature plot where 

we plotted the SWTs from the different layers in different colors. It is obvious that a range of 

additional variables other than temperature and salinity is helpful, if not necessary, to reliable 

distinguish different water masses from each other, and to calculate the mixing ratios of water masses 

in a water sample with a particular characteristic. 

The here presented characteristics and (property value and the standard deviation) of Atlantic Ocean 

SWTs is intended to guide water mass analysis of hydrographic data.  
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Figure 1: Salinity section from the A16 GO-SHIP cruises in 2013  

(Expocode 33RO20130803 in North Atlantic & 33RO20131223 in South Atlantic) 

The dashed lines show the four vertical layers divided by potential density except for the boundary between the 

deep and bottom layers in the south hemisphere which is based on the concentration of silicate. 

 

 

 
 

Figure 2: The water mass formation areas and the schematic of main currents (Warm currents in red and cold 

currents in blue) in the Upper Layer. 
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Figure 3: Overview of Eastern North Atlantic Central Water (ENACW):  

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples 

used to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients 

in µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 4: Overview of Western North Atlantic Central Water (WNACW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples used 

to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients in 

µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 5: Overview of Western South Atlantic Central Water (WSACW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples used 

to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients in 

µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 6: Overview of Eastern South Atlantic Central Water (ESACW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples 

used to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients 

in µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 7: The water mass formation areas and the schematic of main currents 

in the Intermediate Layer 
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Figure 8: Overview of Antarctic Intermediate Water (AAIW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples used 

to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients in 

µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 9: Overview of Subarctic Intermediate Water (SAIW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples used 

to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients in 

µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 10: Overview of Mediterranean Overflow Water (MOW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show the salinity along A05 cruise. 
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Figure 11: The water mass formation areas and the schematic of main currents 

in the Deep and Overflow Layer. 
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Figure 12: Overview of Labrador Sea Water (LSW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples 

used to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients 

in µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 13: Overview of Denmark Strait Overflow Water (DSOW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples used 

to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients in 

µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 



65 
 

 

 

 
 

Figure 14: Overview of Iceland-Scotland Overflow Water (ISOW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples used 

to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients in 

µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 15: Overview of upper North Atlantic Deep Water (uNADW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples used 

to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients in 

µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 16: Overview of lower North Atlantic Deep Water (lNADW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples used 

to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients in 

µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 17: The water mass formation areas and the schematic of main currents in the Bottom Layer 
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Figure 18: Overview of Antarctic Bottom Water (AABW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples 

used to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients 

in µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 19: Overview of Northeast Atlantic Bottom Water (NEABW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples 

used to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients 

in µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 20: Overview of Circumpolar Deep Water (CDW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples 

used to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients 

in µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 21: Overview of Weddell Sea Bottom Water (WSBW): 

Panel a) shows the formation area used to define the water mass, panel b) show a T-S diagram and panel c) the 

distribution of key properties vs. pressure. In panel d) we show bar plots of the data distribution of samples 

used to define the water mass. Potential Temperature in (°C), Potential Density in kg/m
3
, Oxygen and nutrients 

in µmol/kg
3
. The red Gaussian fit shows mean and σ based on selected data. 
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Figure 22: Potential temperature / Salinity distribution of the 16 main SWTs in the Atlantic Ocean discussed in 

this study. Colored dots with letters A-P show the mean value of each SWT and gray dots show all the data from 

GLODAPv2. 
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Table 1: Table of all the water masses and the four main layers as defined in this study.  

The variables defined are used to select water samples that defines water masses in the formation regions. 

 

Layer SWT Longitude Latitude Pressure 

dbar 

Potential 

Temperature 

°C 

Salinity Potential Density 

kg m
-3

 

Oxygen 

µmol kg
-1

 

Silicate 

µmol kg
-1

 

Upper Layer 

ENACW 

WNACW 

WSACW 

ESACW 

15°W—25°W 

50°W—70°W 

25°W—60°W 

      0—15°E 

39°N—48°N 

24°N—37°N 

30°S—45°S 

30°S—40°S 

100 — 500 

  100 —1000 

  100 —1000 

200 — 700 

--- 

--- 

--- 

--- 

--- 

--- 

> 34.5 

--- 

26.50—27.30 

26.30—26.60 

26.00—27.00 

26.00—27.20 

--- 

--- 

< 230 

200--240 

--- 

< 3 

< 5 

< 10 

Intermediate 

Layer 

AAIW 

SAIW 

MOW 

25°W—55°W 

35°W—55°W 

  6°W—24°W 

45°S—60°S 

50°N—60°N 

33°N—48°N 

> 300 

100 — 500 

> 300 

> -0.5 

> 4.5 

--- 

--- 

< 34.6 

36.35—36.65 

26.95—27.50 

> 27.65 

--- 

> 230 

--- 

--- 

< 30 

--- 

--- 

Deep and 

Overflow 

Layer 

uNADW 

lNADW 

LSW 

ISOW 

DSOW 

32°W—50°W 

32°W—50°W 

24°W—60°W 

0—45°W 

19°W—46°W 

40°N—50°N 

40°N—50°N 

48°N—66°N 

50°N—66°N 

55°N—66°N 

1200—2000 

2000—3000 

500 —2000 

1500—3000 

>1500 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

> 34.95 

--- 

27.72—27.82 

27.76—27.88 

27.68—27.88 

> 27.83 

> 27.88 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

< 11 

Bottom 

Layer 

AABW 

CDW 

WSBW 

NEABW 

--- 

< 60°W 

--- 

10°W—45°W 

> 63°S 

55°S—65°S 

55°S—65°S 

0—30°N 

--- 

200—1000 

3000---6000 

> 4000 

--- 

0—1 

< -0.7 

> 1.8 

--- 

> 34.64 

--- 

--- 

>28.27 

> 27.80 

--- 

--- 

--- 

--- 

--- 

--- 

> 120 

--- 

> 105 

--- 
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Table 2: The full name of the water masses discussed in this study, and the abbreviation. 

Full name of Water Mass Abbreviation 

East North Atlantic Central Water ENACW 

West North Atlantic Central Water WNACW 

West South Atlantic Central Water WSACW 

East South Atlantic Central Water ESACW 

Antarctic Intermediate Water AAIW 

Subarctic Intermediate Water SAIW 

Mediterranean Overflow Water MOW 

Upper North Atlantic Deep Water uNADW 

Lower North Atlantic Deep Water lNADW 

Labrador Sea Water LSW 

Iceland-Scotland Overflow Water ISOW 

Denmark Strait Overflow Water DSOW 

Antarctic Bottom Water AABW 

Circumpolar Deep Water CDW 

Weddell See Bottom Water WSBW 

Northeast Atlantic Bottom Water NEABW 

 

 

Table 3: Table of the mean value, and the standard deviation, of all variables for all the water 

masses discussed in this study. 

Layer SWTs 

Potential 

Temperature 

(°C) 
Salinity 

Potential 

Density 

(kg m
-3

) 

Oxygen 

(µmol kg
-1

) 

Silicate 

(µmol kg
-1

) 

Phosphate 

(µmol kg
-1

) 

Nitrate 

(µmol kg
-1

) 

Upper Layer 

ENACW 12.31±0.95 35.662±0.124 27.039±0.097 234.4±13.2 3.67±1.20 0.57±0.16 9.34±2.38 

WNACW 18.03±0.47 36.536±0.079 26.441±0.069 204.3±9.3 1.32±0.46 0.17±0.06 3.68±1.16 

ESACW 11.26±2.25 34.944±0.272 26.659±0.207 219.2±9.1 5.50±1.96 0.96±0.31 13.27±4.73 

WSACW 14.27±2.02 35.439±0.320 26.451±0.191 216.0±6.2 2.60±0.99 0.56±0.24 6.85±3.60 

Intermediate 

Layer 

AAIW 2.58±0.56 34.051±0.135 27.148±0.125 303.2±28.1 15.68±6.78 1.79±0.23 24.65±2.95 

SAIW 3.60±0.41 34.841±0.043 27.700±0.025 294.9±8.9 8.57±0.74 1.04±0.06 15.69±0.86 

MOW 12.28±0.77 36.510±0.081 27.704±0.150 186.3±10.7 7.22±1.75 0.74±0.11 12.61±1.96 

Deep and 

Overflow 

Layer 

Upper 

NADW 
3.45±0.43 34.913±0.039 27.772±0.018 276.7±10.9 11.39±0.78 1.11±0.05 17.10±0.55 

Lower 

NADW 
2.93±0.25 34.914±0.018 27.823±0.025 278.2±4.6 13.21±1.44 1.10±0.05 16.77±0.50 

LSW 3.29±0.39 34.880±0.033 27.760±0.034 286.8±9.1 9.77±0.86 1.08±0.06 16.32±0.60 

ISOW 2.78±0.24 34.968±0.011 27.880±0.024 274.5±4.0 13.73±2.66 1.09±0.06 16.21±0.67 

DSOW 1.45±0.38 34.886±0.016 27.922±0.025 298.2±5.1 8.95±0.88 0.97±0.06 14.18±0.62 

 

Bottom 

Layer 

AABW -0.47±0.23 34.657±0.007 27.853±0.005 238.6±9.8 124.91±2.33 2.27±0.03 32.83±0.45 

CDW 0.40±0.22 34.678±0.012 27.824±0.010 204.2±10.2 115.18±7.99 2.31±0.06 33.42±0.93 

WSBW -0.80±0.06 34.646±0.005 27.858±0.004 251.7±4.4 119.65±4.04 2.24±0.03 32.49±0.38 

NEABW 1.95±0.06 34.887±0.008 27.885±0.003 245.8±3.7 47.07±2.33 1.49±0.04 22.27±0.53 
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Abstract: The distribution of the main water masses in the Atlantic Ocean are investigated with the 

Optimal Multi-Parameter (OMP) method. The properties of the main water masses in the Atlantic 

Ocean are described in a companion article; here these definitions are used to map out the general 

distribution of those water masses. Six key properties, including conservative (potential temperature 

and salinity) and non-conservative (oxygen, silicate, phosphate and nitrate), are incorporated into the 

OMP analysis to determine the contribution of the water masses in the Atlantic Ocean based on the 

GLODAP v2 observational data. To facilitate the analysis the Atlantic Ocean is divided into four 

vertical layers based on potential density. Due to the high seasonal variability in the mixed layer, this 

layer is excluded from the analysis. Central waters are the main water masses in the upper/central layer, 

generally featuring high potential temperature and salinity and low nutrient concentrations and are 

easily distinguished from the intermediate water masses. In the intermediate layer, the Antarctic 

Intermediate Water (AAIW) from the south can be detected to ~30 °N, whereas the Subarctic 

Intermediate Water (SAIW), having similarly low salinity to the AAIW flows from the north.  

Mediterranean Overflow Water (MOW) flows from the Strait of Gibraltar as a high salinity water. 

NADW dominates the deep and overflow layer both in the North and South Atlantic. In the bottom 

layer, AABW is the only natural water mass with high silicate signature spreading from the Antarctic 

to the North Atlantic. Due to the change of water mass properties, in this work we renamed to North 

East Antarctic Bottom Water NEABW north of the equator. Similarly, the distributions of Labrador 

Sea Water (LSW), Iceland Scotland Overflow Water (ISOW), and Denmark Strait Overflow Water 

(DSOW) forms upper and lower portion of NADW, respectively roughly south of the Grand Banks 

between ~50 and 66 °N. In the far south the distributions of Circumpolar Deep Water (CDW) and 

Weddell Sea Bottom Water (WSBW) are of significance to understand the formation of the AABW. 

 

Key words: Water Masses, Optimal-Multi-Parameter Analysis, Atlantic Ocean 
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1. Introduction 

The distribution of properties in the ocean tends to be distributed along bodies of water with similar 

history, or water masses (Mackas et al., 1987). The properties of water masses further more tend to 

change along the flow path of a water mass, partly due to biological or chemical changes, i.e. non-

conservative behavior of properties, and due to mixing with surrounding water masses (Hinrichsen and 

Tomczak, 1993; Klein and Tomczak, 1994). Knowledge of the distribution and variation of water 

masses is of fundamental importance in oceanography, particularly for biogeochemical and biological 

applications where the transformation of properties over time can be successfully viewed in the water 

mass frame-work. For instance, the process of deep water formation from near surface waters enable 

the effects of air-sea gas exchange to penetrate the deep waters. In the North Atlantic deep water 

formation transports anthropogenic carbon and oxygen from the surface to the deep ocean (e.g. 

Garcia-Ibanez et al., 2015). Furthermore, the interactions of water masses influence the distribution of 

biologically important elements, such as oxygen, carbon and nutrients (e.g. Karstensen et al., 2008). 

All of these studies show that the study of water masses plays not only an important role in physical 

oceanography, but also irreplaceable role in biogeochemistry.  

With an increasing number of publications focusing on water mass characterization on a global (e.g. 

Stramma and England, 1999) and regional scale (e.g. Carracedo et al., 2016; Talley, 1996), differences 

in research goals and areas has resulted in different definitions and names of water masses by 

researchers. For example, in a study focusing on T-S distribution, shallow water masses are named as 

Mode Water due to their linear, T-S relationship (McCartney and Talley, 1982). But other works 

referred the same water masses as Central Water, since the authors focused more on the distribution 

and transport of mass and chemical constituents (Garcia-Ibanez et al., 2015). Here we follow the 

approach by Garcia-Ibanez et al. (2015) and utilize the definitions of water masses that we present in a 

companion paper to map out the general distribution of water masses in the Atlantic Ocean. 

In the Atlantic Ocean, warm upper/central waters are generally transported northward into the high 

latitude North Atlantic, where the dense and cold deep water is formed,  and subsequently sinks and 

spreads southward across the equator into the South Atlantic (Fyfe et al., 2007).  

Consistent with the work in our companion paper (Liu and Tanhua, 2019), we divide the water column 

into four vertical layers based on potential density (𝜎𝜃). Water masses in the upper/central layer (𝜎𝜃 < 

27 kg/m
3
) origin from seawater that subduct into the thermocline during winter time. Four water 

masses are located in this layer: the East North Atlantic Central Water (ENACW), West North 

Atlantic Central Water (WNACW), East South Atlantic Central Water (ESACW) and West South 

Atlantic Central Water (WSACW). In the intermediate layer (𝜎𝜃  = 27 – 27.7 kg/m
3
), three water 

masses are identified. In the South Atlantic, Antarctic Intermediate Water (AAIW) originates from the 

surface (upper 200m) in the region north of Antarctic Circumpolar Current (ACC) and east of Drake 
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Passage (Alvarez et al., 2014; Talley, 1996). In the North Atlantic, Subarctic Intermediate Water 

(SAIW) originates from surface in the western boundary of Subpolar Gyre and spreads southward 

along the Labrador Current (Pickart et al., 1997). In the east, Mediterranean Overflow Water (MOW) 

flows through the Strait of Gibraltar with a feature of high salinity. North Atlantic Deep Water 

(NADW) is the dominant water mass in the deep and overflow layer (𝜎𝜃 = 27.7 – 27.88 kg/m
3
). This 

water mass is formed in the high latitude North Atlantic, with relatively high potential density due to 

the low potential temperature and high salinity. We further divide the NADW into upper and lower 

portions by different potential density and origins. Labrador Sea Water (LSW) is the origin of upper 

version of NADW (uNADW) whereas Iceland-Scotland Overflow Water (ISOW) and Denmark Strait 

Overflow Water (DSOW) are origins of lower NADW. Antarctic Bottom Water (AABW) is the main 

water mass in the bottom layer (𝜎𝜃 > 27.88 kg/m
3
). This water mass is a mixed product between 

Weddell Sea Bottom Water (WSBW) and Circumpolar Deep Water (CDW) (van Heuven et al., 2011; 

Weiss et al., 1979). In regions north of the equator we define AABW as a new water mass, the 

Northeast Atlantic Bottom Water (NEABW). 

2. Data and Methods 

There are some key features of the distribution of properties that are well known, but never the less are 

helpful in understanding the distribution of water masses in the Atlantic Ocean. We use a meridional  

section across the Atlantic Ocean to illustrate this, the WOCE/GO-SHIP A16 section as occupied by 

cruise 33RO20130803 (North Atlantic) & 33RO20131223 (South Atlantic), Figure 1. In the upper 

layer, high temperatures, salinities and low nutrients, especially nitrate can be seen on the section plots. 

The above characteristics are consistent with the properties of central water masses. The intermediate 

layer is characterized by low salinity and high nitrate and silicate in the South Atlantic. According to 

this feature, the location of AAIW can be initially determined. And relative high salinity distributes 

around 40 °N is the signal of MOW. High oxygen in the north helps to label SAIW. Relative higher 

salinity and oxygen but lower nutrients (silicate and nitrate) are important signals of water masses in 

deep and overflow layer (upper and lower NADW) to distinguish from intermediate and bottom waters. 

High silicate is one significant property to identify AABW in bottom layer. Also this layer has the 

lowest potential temperature. In the north hemisphere, there is a sudden reduction of silicate compared 

with south of equator. This is the reason that a new water mass, NEABW, is defined in this region. 

2.1. The GLODAPv2 dataset 

Marine surveys from different countries are actively organized and coordinated since late 1950s, after 

the establishment of the Scientific Committee for Marine Research (SCOR) in 1957 and the 

Intergovernmental Oceanographic Commission (IOC) in 1960. And meanwhile, academic exchanges 

between world countries and organizations became frequent and popular. WOCE (the World Ocean 

Circulation Experiment), JGOFS (Joint Global Ocean Flux Study) and OACES (Ocean Atmosphere 
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Carbon Exchange Study) are the three most typical representatives after entering 1990s. However, 

these programs are initiated by different countries and with their respective aims and goals. Hence, 

coordination and collaboration between the countries are necessary and beneficial. GLODAP (Global 

Ocean Data Analysis Project) is a data product that came into being in this context. In addition to 

create a global dataset based on above programs, the goals of GLODAP include also to describe 

distribution and biogeochemical properties in the global ocean and to make data publicly available 

(Key et al., 2004). The GLODAP dataset shows a good start for global data sharing however the 

shortcomings also cannot be ignored. From the spatial scale, few data in high latitude region, north of 

60 °N or in the Arctic region, are collected in this dataset, and meanwhile, data from Mediterranean 

Sea are also not included. In the term of time, GLODAPv1.1 contains data only until 1999. The 

updated and expanded dataset GLODAPv2 successfully made up for the above disadvantages (Lauvset 

et al., 2016). In addition to the integration of two other datasets, CARINA (CARbon dioxide IN the 

Atlantic Ocean, Key et al., 2010) and PACIFICA (PACIFic ocean Interior Carbon, Ishii et al., 2011), 

GLODAPv2 also includes an 168 additional independent cruises those never been collected by any 

datasets. Thus GLODAPv2 is a dataset that includes relatively complete data and with an almost 

global coverage, and also include a mapped product. 

2.2. OMP Analysis 

For the water mass analysis we used in total 6 key properties, including two conservative (potential 

temperature and salinity) and four non-conservative (oxygen, silicate, phosphate and nitrate) properties 

to define the Source Water Types (SWTs) as origins of water masses, see the companion study (Liu 

and Tanhua 2019 for details). Based on the above observational data, it is obviously not enough to 

make accurate estimation of the distribution of the water masses only by displaying key properties. In 

order to determine the distribution of water masses exactly, we have to resort to more accurate 

mathematical calculations. Since the first publication of global distributions of water masses (Sverdrup, 

1942), early studies on water masses are mainly based on potential temperature and salinity. Emery 

and Meincke made on summary and review on this kind of analysis in 1986 (Emery and Meincke, 

1986). The limitation of this method is that distribution of more (more than three) water masses cannot 

be calculated at the same time with only these two parameters. So during the same time as the 

development of this theory, physical and chemical oceanographers also tried to add more parameters 

to the calculation and the Optimum Multi-parameter (OMP) analysis is one of the typical products. 

Base on above results, Tomczak (1981) extended the analysis into more than three water masses by 

adding more parameters/water properties (such as phosphate and silicate) and solving the equations of 

linear mixing without assumptions. In Tomczak and Large (1989a),  this method was successfully 

applied to the analysis of mixing in the thermocline in Eastern Indian Ocean. As a summary and 

practical use of the above results, the Optimal Multivariable Parameter (OMP) analysis was developed 

and successfully applied in the analysis of water masses in specific regions (e.g. Karstensen and 
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Tomczak, 1997, 1998a). Parameters (6 key water properties in our study) from the water samples are 

extracted and compared with SWTs of each water masses to identify their composition structure and 

percentage in detail. 

Before we start the calculation of OMP analysis, some basic definitions of SWTs need to be reiterated 

again. SWTs are the origin water masses in their formation area and carry their own properties (Poole 

and Tomczak, 1999). During transport and mixing on the pathway, the total amount of water 

properties remains constant. In a mixed product of two water masses, contribution from each SWT can 

be calculated by using a linear set of mixing equations, if we know one water property (such as 

salinity) in this mixed product and both SWTs. But only one property/parameter becomes insufficient 

if there are three or more water masses mix together. As a result, we can calculate the percentages of 

each water mass in a final mixed product with more water masses, with the essential prerequisite that 

the number of water masses not larger than the number of variables plus one. 

The theory and formulas in the OMP analysis are described in detail in Tomczak and Large (1989a) 

and the website http://omp.geomar.de/. Here we make a brief introduction to the OMP calculation that 

relates directly to our research, for more details see the references above. OMP calculation is based on 

a simple model of linear mixing, assuming that all key properties of water masses are affected by the 

same mixing process, and then to determine the distribution and of water masses through the following 

linear equations.  

Gx - d = R; 

Where G is a parameter matrix of defined source water types (6 key properties in this study), x is a 

vector containing the relative contributions of the water types to the sample (i.e. solution vector of the 

source water type fractions), d is a data vector of water samples (observational data from GLODAPv2 

in this study) and R is a vector of residual. The solution is to find out the minimum the residual (R) 

with linear fit of parameters (key properties) for each data point with a non-negative values. 

Prerequisites (or restrictions) for using classic OMP is that source water types are defined closely 

enough to the observational water samples with short transport times, so that the mixing can be 

assumed not influenced by biogeochemical processes (i.e. consider all the parameters as quasi-

conservative). Obviously, this prerequisite does not apply to our investigation for the entire Atlantic 

scale, so we use the extended OMP analysis instead.  The way of considering biogeochemical 

processes is to convert non-conservative parameters (phosphate and nitrate) into conservative 

parameters by introducing the "preformed" nutrients PO and NO, where PO and NO show the 

concentrations of Phosphate and Nitrate in sea water by considering the consumption of dissolved 

Oxygen from respiration (in other words, the alteration due to respiration is eliminated) (Broecker, 

1974; Karstensen and Tomczak, 1998b). 
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2.3. OMP runs in this study 

As mentioned in the companion paper (Liu and Tanhua, 2019) Source Water Types (SWTs) are the 

origin form of each water mass in the formation area and we grasp the properties of main SWTs in the 

Atlantic Ocean. In this study, we show the distributions of water masses in Atlantic Ocean after 

formations based on OMP analysis. The key properties of SWTs are used in OMP analysis as the basis 

to determining the distributions of water masses. 

In order to map all the distribution of water masses in the Atlantic we analyzed all the GLODAPv2 

data in the Atlantic Ocean with OMP method by using 6 key properties from each water sample 

(potential temperature, salinity, oxygen, silicate, phosphate and nitrate). However some of these 

variables co-vary to some extent, in particular phosphate and nitrate, so that we have to control that in 

each OMP run we should have less than 6 water masses. Some regional factors should also be 

considered, as some water masses mix and new SWTs are formed during their mixing process. For 

example, LSW, ISOW and DSOW mix in the North Atlantic after leaving their formation area, as a 

result, SWTs of upper and lower NADW are formed. Here we specify some ‘mixing regions’ for these 

water masses. Between 40 and 60 °N, we define such a ‘mixing region’, since all the five water 

masses including already formed LSW, ISOW and DSOW and newly formed upper and lower NADW 

simultaneously exist. So in this region, key properties from all these five SWTs are used 

simultaneously in OMP runs. In south of 40 °N, only upper and lower NADW are used while north of 

60 °N, only LSW, ISOW and DSOW are used. A similar situation exists in the South Atlantic where 

we consider south of 50 °S as another ‘mixing region’, since a new SWT of AABW is formed here 

due to the mixing of CDW and WSBW. So in this region, key properties from all the three SWTs are 

used in the OMP runs while in north of 50 °S, only AABW is used. 

Consolidate the above reasons, and also consider the distribution of all the water masses, all the data in 

the Atlantic Ocean are divided into four, almost vertical, layers by potential density, since all the water 

masses distribute within their core layer and only mix with neighboring water masses at the boundary 

of each layer. In horizontal direction, Atlantic Ocean is manually divided into several horizontal 

sections in order to remove water masses that are not likely to appear in the area to avoid excessive 

(more than 6) water masses in each OMP run. The central layer is divided into two sections by 35 °N 

to distinguish SAIW and AAIW, which has similar properties. In the intermediate and deep layer, 

Atlantic Ocean is divided into three sections. The region north of 60 °N contains the LSW, ISOW and 

DSOW. From 40 to 60 °N is defined as mixing region. LSW, ISOW, DSOW mix with each other and 

finally form upper and lower NADW. As a result, all the five SWTs should be contained in one OMP 

runs in this section. And the third part, from 50 °S to 40 °N, only upper and lower NADW are 

considered. In high latitude region in South Atlantic, mixing region of CDW and WSBW is defined as 

south of 50 °S. In this mixing region, CDW, WSBW mix and AABW is formed, but no horizontal 

layer division in this area because the difference of density is not obvious. From north of 50°S only 
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AABW are used in OMP runs until equator. In addition, for relative special long transport water 

masses those across the equator, AAIW upper and lower NADW, we do not subject to restrictions of 

equator.  

This way we end up with a set of 13 different OMPs that are used for estimating the fraction of water 

masses in each water sample. The density and the latitude of the water sample is used to determine 

which IMP should be applied, Table 1. Note that all water masses are present in more than one OMP 

so that reasonable smooth (i.e. realistic) transitions between the different OMPs can be realized. 

However, it is unavoidable that there will occasionally be step-like features across the vertical and 

horizontal boundaries defined in Table 1. 

3. Result: Distribution of water masses based on GLODAPv2 

In this section, the horizontal and vertical distributions of the main water masses are displayed in 

different density layers. On the maps of horizontal view, water mass fractions are plotted at each 

station with the interpolated format at their core densities. In order to avoid large interpolation errors, a 

station is considered as without data and plotted as grey rather than colored dots if there is no data 

within ±0.1 kg/m
3
 from core density. 

To exemplify the vertical distribution of the water masses we are also display sections from 

representative cruises. For this we use 5 selected WOCE/GO-SHIP cruises that together provide a 

reasonable representation of the Atlantic Ocean, as shown in Figure 2. These are the A16 cruise 

(Expocodes: 33RO20130803 & 33RO20131223) that is a meridional overview of all the main water 

masses in the Atlantic Ocean, and that was also used for the distribution of the properties in Figure 1. 

The A05 (Expocode: 74AB20050501) and A10 (Expocode: 33RO20110906) sections displays the 

zonal distribution of the water masses in the North (A05) and South (A10) Atlantic separately. The 

A25 (Expocode: 06MM20060523) section is located at a relative higher latitude region compared to 

the A05 section and better represent the deep and overflow waters in particular. From this cruise, we 

focus on the investigation of LSW, ISOW and DSOW, with the purpose to show origin of upper and 

lower NADW. The SR04 (Expocode: 06AQ20101128) on the other hand is a section in the Antarctic 

region near Weddell Sea with certain significance for the origin and formation of AABW. For each 

figure with horizontal distribution we also display a map with a cartoon of the main currents in that 

density layer and with the main formation region of each water mass indicated as striped boxes. 

In this section horizontal and vertical distribution of all water masses discussed and defined in the 

companion paper (Liu and Tanhua, 2019) are displayed on maps and sections respectively. We start 

with the Upper Layer and work our way down the water column. In the Upper Layer (𝜎𝜃 < 27 kg/m
3
 

and mostly with depths above ~500-1000m), central waters are the dominate water masses in this layer, 

where we define four SWTs, ENACW, WNACW, ESACW and WSACW (see table 3 in the 
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companion paper, Liu and Tanhua, 2019 for definitions). Below the Upper Layer resides the 

Intermediate Layer (𝜎𝜃  between 27 and 27.7 kg/m
3
 and mostly with depths between ~1000 and 

2000m). In this layer, we have the following SWTs; SAIW from the north AAIW from the south and 

MOW from the east. The Deep Layer resides from ~2000 to 4000m and 𝜎𝜃 between 27.7 and 27.88 

kg/m
3
. The upper and lower NADW are two main SWTs in mid and low latitude region in this layer. 

Their origin, LSW, ISOW and DSOW will also be investigated in relative high latitude region. Both 

bottom waters are located in the Bottom Layer below 4000m with 𝜎𝜃 >27.88 kg/m
3
. AABW and 

NEABW are two main water masses in this layer and have similar properties, especially high silicate.  

Traced back to the source, NEABW is a branch from AABW after passing the equator. After spanning 

most Atlantic there is a sharp reduction of silicate concentration this is the reason why we define a 

new SWT of NEABW. 

3.1. The Upper Layer: ENACW, WNCAW, ESACW and WSCAW 

The horizontal distributions of four main water masses in the Upper Layer are shown on the maps in 

Figure 3. In general, eastern central waters, both for the northern and southern variation, have relative 

higher potential density and are located at deeper depth (i.e. higher density) compared with western 

central waters. In spatially distribution, the East North Atlantic Central Water (ENACW) is mainly 

located in the north east part of North Atlantic, near the formation area. The ENACW is formed during 

winter subduction in the seas west of Iberian Peninsula and drifts to the south along the south branch 

of the North Atlantic Current (McCartney and Talley, 1982) and mainly locates in north east part of 

North Atlantic, near the formation area  (Garcia-Ibanez et al., 2015; Talley and Raymer, 1982). The 

WNACW, which is formed at the south flank of the Gulf Stream (Klein and Hogg, 1996), spreads 

along the North Atlantic Current and distributes in east-west band between ~ 10 °N and 40 °N. 

East South Atlantic Central Water (ESACW) distributes all over most South Atlantic and with lower 

percentages (~30 -- 40%) can also be found in the tropical and subtropical north Atlantic below (at 

higher densities) than the West North Atlantic Central Water (WNACW). WNACW is located in north 

tropical and subtropical North Atlantic, where this water mass is formed. West South Atlantic Central 

Water (WSACW) dominates the upper layer of South Atlantic, resides over ESACW and can also be 

seen above ENACW in the North Atlantic. In the South Atlantic, our results are similar  to those of 

(Kirchner et al., 2009) that found that the WSACW and ESACW spread all over the South Atlantic, 

eastward along South Atlantic Current, and then northwest along the Benguela Current and South 

Equator Current, and finally southward along Brazilian Current. In general, both WSACW and 

ESACW dominate the central/upper layer in South Atlantic and across the equator until ~10 °N. 

The WSACW is formed in the region near the South America coast between 30 and 45 °S, where 

surface South Atlantic Current brings central water to the east (Kuhlbrodt et al., 2007). Formation of 

ESACW takes place in the eastern South Atlantic Ocean close to the area southwest of South Africa 
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(Deruijter, 1982; Lutjeharms and van Ballegooyen, 1988) and spreads to the north along the Benguela 

Current (Peterson and Stramma, 1991). 

From the A16 and A05 sections the meridional and zonal distribution of WNACW and ENACW, the 

both dominating central water masses in North Atlantic, can be seen. The vertical distribution shows 

that the WNACW is located at lower densities compared to the ENACW. In the zonal A05 section the 

difference between east and west of the Mid-Atlantic-Ridge (MAR) is obvious; west of the MAR 

WNACW dominates the upper layer. Both thickness and percentage are significantly larger than east, 

while the situation in east of MAR is the opposite, due to their distance from respective formation 

areas. ENACW is located at the upper ~500m—1000m below WNACW and over SAIW and MOW. 

The vertical distribution of WSACW and ESACW based on A16 and A10 sections has similarities to 

the north central waters where the western variety is located at lower densities compared to the eastern 

variety. The distribution of WSACW and ESACW can be clearly seen by Figure 4 including their 

transports to the north that can be clearly seen by the A16 section. In contrast to the north Atlantic the 

difference between east and west of the MAR, as seen in the A10 section, is not clear compared with 

the A05 section for the North Atlantic.  

3.2. The Intermediate Layer: AAIW, SAIW and MOW 

In the intermediate layer (σθ between 27 and 27.7 kg/m3) three water masses can be considered as 

dominating. Two of them, the Subarctic Intermediate Water (SAIW) and the Mediterranean Overflow 

Water (MOW), show Northwest-Southeast distinction in their distribution in the North Atlantic 

although with similar densities. The SAIW is located in north of 40 °N with higher percentages in the 

western part while the MOW is mainly distributed in the region east  of the Mid-Atlantic-Ridge, which 

is  consistent with results from (Read, 2000). The third water mass, the AAIW, has s southern origin 

and is found at lighter densities, Figure 5 

In the South Atlantic, AAIW is the only water mass that origins from the south hemisphere in the 

Intermediate Layer and has the lowest potential density (main core with potential density ~27.2 kg/m
3
) 

of these three water masses. The AAIW originates from the surface layer (upper 200m) north of the 

Antarctic Circumpolar Current (ACC) and east of Drake Passage (Alvarez et al., 2014; McCartney, 

1982). Most  AAIW is formed in the region south of 40 °S where it sinks and spreads to the north at 

pressures between ~1000 and 2000db at potential densities between 27.0 and 27.7 kg/m
3
 (Talley, 

1996). 

On the map, the spread of AAIW covers most of the Atlantic Ocean until ~40 °N and the percentage 

shows a decrease trend to the north (Kirchner et al., 2009). The AAIW shows a general distribution 

within the intermediate layer based on potential density (σθ ) between 27.0 and 27.7 kg/m
3
, Figure 7. 

At ~40 °S, upper NADW injects into the space between AAIW and AABW (Figure 12) and all the 
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three water masses mix with each other in this area. From the observations on the meridional A16 

section, the AAIW spreads northward after the leaving the formation area, across the equator and 

further north until ~40 °N, where it meets MOW and SAIW. The upper boundary between AAIW and 

central waters (ENACW and ESACW) are mostly along the potential density line σθ = 27.7 kg/m
3
. 

Based on A10 section the zonal distribution of AAIW is consistent with the results A16 section and is 

the dominating intermediate water mass in the South Atlantic. 

The SAIW, as one of the main intermediate water mass in North Atlantic, originates from the surface 

layer of the western boundary of the North Atlantic Subpolar Gyre, sinks and spreads along the 

Labrador Current, crossing the MAR in the region north of 40 °N (Lazier and Wright, 1993; Pickart et 

al., 1997). 

From the A16 section, only some light trace of SAIW in the north can be found since this cruise in 

2013 was distance away from the formation area of SAIW in northwest Atlantic. On the zonal A05 

section SAIW is a dominating intermediate water mass above the LSW, Figure 6, particularly in the 

western basin since SAIW originates in the west. 

MOW is another main intermediate water mass that is present in the North Atlantic. This water mass 

overflows from Strait of Gibraltar at ~40 °N and spreads in two branches to the north and the west  

(Price et al., 1993). The MOW originates from the east in the Gulf of Cadiz where Mediterranean 

Water exits the Strait of Gibraltar as a deep current and then turns into two branches after leaving the 

formation area near. One branch spreads to the north into the West European Basin until ~50°N, the 

other branch spreads to the west until, and past, the Mid-Atlantic-Ridge. 

From the A16 section the MOW can be found between ~20 and 50 °N, surrounded by ENACW from 

the top, SAIW from the north, AAIW from the south and upper NADW from bottom. The 

observations from the A05 section shows that the MOW flows from the east and spreads westwards 

until passing the MAR. East of the MAR the trace of MOW is clear, particularly in the region close 

the Strait of Gibraltar. 

3.3. The Deep and Overflow Layer: upper and lower NADW, LSW, ISOW and DSOW 

As one of the main components of the thermohaline circulation in Atlantic Ocean, formation and 

distribution of North Atlantic Deep Water (NADW) is the focus of several studies. NADW is the only 

main water mass that dominates the deep and overflow layer with potential density (σθ) between 27.70 

and 27.88 kg/m
3
 and can be divided into two portions (upper and lower) due to different properties and 

origins (Smethie and Fine, 2001). In this section, both portions, together with their origins, are 

analyzed as independent water masses separately. 
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In the deep and overflow layer three water masses dominate the region north of 40 °N, Figure 7: 

Labrador Sea Water (LSW), Iceland-Scotland Overflow Water (ISOW) and Denmark Strait Overflow 

Water (DSOW). They are considered as the origin of North Atlantic Deep Water (NADW). In the 

region south from 40 °N the upper and lower NADW, considered as products from the original three 

overflow water masses, can be found all over the Atlantic Ocean in the deep and overflow layer. 

The Labrador Sea Water (LSW) is formed in the region of Labrador Sea by deep convection during 

winter (Clarke and Gascard, 1983), and is typically found at mid-depth with  σθ = ~27.77 kg/m
3
. This 

water mass was noted by (Wüst and Defant, 1936) due to its salinity minimum and later defined and 

named by Smith et al. (1937). Since then, with the deepening of research on this water mass, the 

character was discovered as a contribution to the driving mechanism of northward heat transport in the 

Atlantic Meridional Overturning Circulation (AMOC) (Rhein et al., 2011). In the specific study on 

this water mass, LSW is divided into two units, ‘upper’ and ‘classic’, based on the differences in 

temperature and salinity (Kieke et al., 2007; Kieke et al., 2006). In the large scale as throughout the 

whole Atlantic Ocean, LSW is still treated as a unified water mass and considered as the main origin 

of upper NADW (Elliot et al., 2002; Talley and Mccartney, 1982). In the general scale, LSW 

distributes in the western part of the North Atlantic in Labrador Sea and Irminger Sea region and the 

distribution is influenced by the Gulf Stream, the Labrador Current and the North Atlantic Current 

(Elliot et al., 2002; Talley and Mccartney, 1982). 

Seen from the aerial view of the analysis results to the whole GLODAPv2 dataset, Figure 8, LSW 

mainly distributes in the Northwest Atlantic north 40 °N near the Labrador Sea and Irminger Basin 

with core at  σθ  = ~27.77 kg/m
3
. In terms of vertical distribution, A25 cruise (Expocode: 

06MM20060523) shows that LSW dominates the depth between 500 and 2000m, and meanwhile, the 

fraction decreases with the spatial change to the east (direction to Iberian Peninsula) thus far away 

from the formation area (Greenland). This distribution is basically consistent with historical literatures. 

After southward transport with Labrador Current, LSW spreads eastward with Gulf Stream and North 

Atlantic Current until it meets MOW. In general, LSW is the dominate mid-depth water mass in the 

region north of 40 °N in Northwest Atlantic. 

The Iceland–Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW), as 

original water masses that contribute to the formation of the  lower NADW (Read, 2000), are located 

in the west and east part of North Atlantic (north of 40 °N) respectively with the main core near σθ = 

27.88 kg/m3. Both ISOW and DSOW are formed by water masses from the Arctic Ocean and the 

Nordic Seas those reach the North Atlantic Ocean (Lacan and Jeandel, 2004; Tanhua et al., 2005b). As 

an indispensable link of the thermohaline circulation, the southward outflow of ISOW and DSOW to 

the Atlantic Ocean plays an important role, as well as LSW, in the deep-water component of the 

AMOC and has certain a certain impact on the European and even the global climate. 
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In general, ISOW is formed in the regions of Greenland, Iceland and Norwegian Seas, outflows 

southward in the west of Iceland, across the Faeroe Bank Channel into the eastern part of North 

Atlantic Ocean (Kissel et al., 1997; Swift, 1984). From a more specific perspective, ISOW has two 

branches. One branch passes near the Charlie-Gibbs Fracture Zone (CGFZ) and flow into Irminger 

basin at densities above the DSOW. The other branch goes southward into the West European Basin 

and meets the Northeast Atlantic Bottom Water (NEABW) (Garcia-Ibanez et al., 2015). 

Consistent with literatures, the top view distribution from map shows ISOW mainly distributes in the 

Northeast Atlantic north 40 °N between Iceland and Iberian Peninsula with core at σθ = ~27.88 kg/m
3
. 

In terms of vertical distribution, the A25 section shows that ISOW outflows at east of Iceland across 

Iceland-Faroe Ridge with core at depth between ~2000 and 3000m. In west of Iceland, ISOW can also 

be found in the Denmark Strait, where core of DSOW is located, with low fraction.  

DSOW is the water mass that overflows through the Denmark Strait in west of Iceland and into 

Irminger Basin and Labrador Sea with σθ = ~27.88 kg/m
3
 (Tanhua et al., 2005b).  This overflow water 

mass is considered as the coldest and densest component of the sea water in the Northwest Atlantic 

Ocean and constitute a significant part of the southward flowing NADW (Swift, 1980). Compositions 

of DSOW can be traced to many surrounding water masses. Besides Arctic Intermediate Water (AIW), 

Re-circulating Atlantic Water (RAW), Polar Surface Water (PSW) and Arctic Atlantic Water (AAW) 

are all considered to be parts of the source (Clarke et al., 1990; Smethie Jr, 1993; Swift, 1980; Tanhua 

et al., 2005b). Rudels et al. (2002) noted the contribution from East Greenland Current (EGC) to the 

DSOW, EGC that brings Arctic Water in deep layer through the Fram Strait into the Greenland Sea is 

known as the main mechanism of forming DSOW and this provided us a theoretical basis for 

determining the distribution of DSOW. 

According to the OMP calculations, and also referring to the above literature, the following 

conclusions about DSOW can be drawn. In the horizontal direction, map distribution shows DSOW 

mainly distributes along the drainage area of EGC with σθ = ~27.88 kg/m
3
. DSOW starts from the 

Greenland Sea, southward flows into the Irminger Sea along EGC and then westward into Labrador 

Sea. The vertical distribution based on the A25 section shows that DSOW overflows through the 

Greenland-Scotland Ridge close proximity to the continental slope with core at depth between ~2500 

and 3000m. Compared with ISOW, pathway of DSOW is relative narrow and limited within the 

eastern bottom in the Irminger Basin. 

Main cores of ISOW and DSOW can be seen in both sides of Iceland separately below LSW. ISOW 

distributes all over the region between Greenland and Iberian Peninsula. After passing the Iceland, 

ISOW and DSOW convergence into one share and spread further southward. All the three water 

masses, LSW ISOW and DSOW, origin from the North Atlantic region, spread southward and finally 

become the dominate water masses in deep and overflow layer. Considering the change of properties 
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during the pathway, especially the final product of mixing compared with original ISOW and DSOW, 

also in order to comply with the needs of large-scale distribution in Atlantic Ocean and without paying 

too much attention to these details, two new water masses, upper and lower NADW based on SWTs in 

the companion paper (Liu and Tanhua, 2019), are adopted in the main Atlantic region south of 40 °N, 

whereas LSW ISOW and DSOW are not used in the OMP analysis and replaced upper and lower 

NADW. 

After passing 40 °N, upper and lower NADW, considered as independent water masses, continue to 

spread until ~50 °S and dominate the most Atlantic Ocean in this layer. During the process to the 

south, NADW is transported along Deep West Boundary Current (DWBC) and also eastward with 

eddies (Lozier, 2012). 

The OMP analysis shows that the upper and lower NADW are the main water masses in Deep and 

Overflow Layer, Figure 9. As the productions and considered as independent water masses, upper 

NADW distributes at a relative shallow pressure, while lower NADW with higher pressure close to 

their original water masses. After molding, upper and lower NADW are formed and spread southward 

with DWBC along the continental slope also spreads eastward and cover mostly all over the Atlantic 

Ocean in this layer due to eddies during the pathway (Lozier, 2012).  

In horizontal scale, the map view shows that upper NADW covers the most area of deep and overflow 

layer, while lower NADW is found with higher fractions in the west region near the Deep Western 

Boundary Current (DWBC), especially in South Atlantic. In the vertical scale based on observation 

from meridional (A16) and zonal (A05 and A10) cruises, relative thicker lower NADW than upper 

NADW are discovered. Upper NADW, due to lower potential density, lies over lower NADW during 

the whole way to the south with their boundary at ~2000m depth. The boundary between upper 

NADW and intermediate water masses, AAIW and SAIW, are almost along our definition line (σθ = 

27.7 kg/m
3
). AABW is the only bottom water mass that contacts with upper NADW. In the region 

south of 40 °S, upper NADW is deflected up after it meets AABW and high mixing happens in this 

region due to ACC. Lower NADW is seen south to ~ 40 °S where it meets AABW.  

3.4. The Bottom Layer: AABW and NEABW 

AABW and NEABW dominate the bottom layer (σθ > 27.88 kg/m
3
). In fact, both water masses have 

the same origin but distinguished by defining a new SWT as NEABW due to the sharp reduction of 

silicate, which is an important signal to label bottom water masses, after passing the equator. From 

aerial view of the maps, Figure 10, AABW and NEABW cover the most bottom area of South and 

North Atlantic respectively. 

The AABW is formed in the Weddell Sea region south of the Antarctic Circumpolar Current (ACC). 

After leaving the formation area, AABW sinks to the bottom due to the high density during the way 
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north. After passing the ACC, AABW meets NADW and they have some water exchange from 50 °S 

until AABW reaches the equator (van Heuven et al., 2011). Due to dramatical change of properties 

after passing the equator, especially the sudden decrease of silicate, AABW is redefined as a new 

SWT, NEABW, in the north of equator. In the north of equator, water mass of NEABW origins from 

the newly defined SWT of NEWBW and as actually a continuation of AABW, becomes the dominate 

bottom water. Similar with AABW, NEABW also mainly mixed with lower NADW between equator 

and 40 °N. In north of 40 °N, NEABW spreads further north until ~50 °N, where it meets lower 

NADW origins from ISOW  (Garcia-Ibanez et al., 2015). 

In the A16 section in Figure 11, AABW sinks to the bottom between ~50 – 60 °S and spreads north to 

equator in the bottom layer below 4000m (σθ > 27.88 kg/m
3
). After passing the ACC at ~ 40 °S, 

AABW meets upper NADW that is, in general, deflected upwards. During this process, part of AABW 

penetrate into the Deep and Overflow Layer (σθ between 27.7 and 27.88 kg/m3), so ~20 – 50 % of 

AABW can be seen in this layer in both the meridional (A16) and the zonal (A10) section. In the 

further north region, between 40 °S and the equator, AABW contacts mainly with lower NADW 

instead of upper NADW. The fraction of AABW also increases with pressure. North of equator, 

NEABW is the only bottom water mass and distributes in the bottom in both sides of the MAR with 

the main core located below ~4000m with σθ >27.88 kg/m
3
. Observations from the A16 and A05 

sections show NEABW in contact with lower NADW from the above and the fraction of NEABW 

increases with depth. 

3.5. The Southern Water masses: WSBW, CDW, and AABW 

In this section the formation of AABW in the Weddell Sea Region is investigated and displayed, 

Figure 12. Similarly to the situation of NADW, AABW originates from two initial water masses, 

CDW and WSBW in the Antarctic region. An additional section, SR04 is analyzed to display the 

detail about formation of AABW. The SR04 section in the Weddell Sea region is formed by two parts 

representing the formation of AABW in both the meridional and zonal directions.  

In the zonal section across the Weddell Sea, AABW can be seen as the product from two original 

water masses, CDW and WSBW. The core of CDW distributes in the upper 1000m and WSBW 

origins at the surface and subducts along the continental slope into the bottom below 4000m. This 

result is consistent with (van Heuven et al., 2011). Both original water masses meet each other at depth 

between ~2000 and 4000m, where AABW is formed with main core locates at ~3000m. 

The meridional section of SR04 cruise shows the northward outflow of AABW into the Atlantic 

Ocean. AABW is located between 2000 and 4000m, as a product from CDW and WSBW. After 

leaving Weddell Sea region, AABW is considered as an independent water mass from north of 60 °S 

and spreads further northward as the only bottom water mass until the equator. In relative low latitude 
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region (north of 60 °S), AAIW can also be found in shallow layer, since here is the boundary between 

formation area of AAIW and AABW. 

4. Conclusion and Discussion 

In this study, the distributions of water masses in Atlantic Ocean are investigated based on the 

GLODAPv2 dataset and the definition of water masses presented by (Liu and Tanhua, 2019). We have   

shown maps and sections of water mass distribution through the Atlantic Ocean basin. Water masses 

are mostly distributed within the density layer where they are formed, and mixing of water masses 

away from their formation areas are evident.. 

The central water masses, ENACW WNACW ESACW and WSACW, occupy the upper/central layer 

of the Atlantic Ocean by following the dividing line σθ < 27 kg/m3 and high salinity is also one 

significant property to identity them. Below the Upper layer, SAIW and MOW are the two main water 

masses in the intermediate layer in North Atlantic. SAIW comes from the northwest, sinks during the 

way to the southeast. In the eastern part, MOW overflows from the Mediterranean Sea, across the 

Strait of Gibraltar and spreads to the north and west. The most significant property of MOW is high 

salinity at around 1000m depth. In the South Atlantic, AAIW is the dominate water mass in 

intermediate layer. After the formation in the shallow layer, AAIW sinks into intermediate depth 

(around 1000m) and spreads to the north until ~ 40 °N and this water mass can easily be found with 

low salinity. 

NADW is the main water mass in the Deep and Overflow Layer. In order to show more clearly the 

distribution of water masses in this layer, more detail are investigated to display upper and lower 

NADW, as well as their origin, LSW, ISOW and DSOW, separately. 

For the bottom waters, AABW and NEABW, have similar properties, especially high silicate content, 

since NEABW, traced back to the source, is a branch from AABW after passing the equator. After 

spanning most Atlantic there is a sharp reduction of silicate concentration, the new defined SWT, 

NEABW becomes the dominate water mass in the bottom. 
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Fig 1 Key properties required by OMP analysis based on A16 cruises in 2013  

Expocode: 33RO20130803 in North Atlantic & 33RO20131223 in South Atlantic 
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Fig 2 Maps of Cruises 

Color lines show representative cruises analyzed in this paper while gray dots show all the GLODAPv2 stations 
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Fig. 3 Currents (left) and Water Masses (right) in the Upper Layer 

Left: The arrows show the warm (red) and cold (blue) currents and rectangular shadow areas show the formation areas of water masses 

in the Upper Layer. 

Right: Color dots show fractions (from 20% to 100%) of water masses in each station around core potential density (kg/m
3
). Stations 

with fractions less than 20% are marked by black dots while gray dots show the GLODAPv2 stations without specified water mass. 
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Fig. 4 Distribution of Central Water Masses based on A16 (upper), A05 (middle), A10 (lower) cruises within 3000m 

Contour lines show fractions of 20% 50% and 80%, blue lines show cross section of other cruises, yellow dashed lines show the 

boundaries of vertical water columns layers (potential density at 27, 27.7 and 27.88 kg/m
3
) 
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Fig.5 Currents (left) and Water Masses (right) in the Intermediate Layer 

Left: The arrows show the currents and rectangular shadow areas show the formation areas of water masses 

 in the Intermediate Layer. 

Right: Color dots show fractions (from 20% to 100%) of water masses in each station around core potential density (kg/m
3
). Stations with 

fractions less than 20% are marked by black dots while gray dots show the GLODAPv2 stations without specified water mass. 
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Fig. 6 Distribution of Water Masses in the Intermediate Layer based on A16 (upper) and A05 (lower) cruises 

Contour lines show fractions of 20% 50% and 80%, blue lines show cross section of other cruises, yellow dashed lines show the 

boundaries of vertical water columns layers (potential density at 27, 27.7 and 27.88 kg/m
3
) 

 

  



104 
 

 

 

 
  

 

Fig.7 Currents (left) and Water Masses (right) in the Deep and Overflow Layer 

Left: The arrows show the currents and rectangular shadow areas show the formation areas of water masses 

 in the Deep and Overflow Layer. 

Right: Color dots show fractions (from 20% to 100%) of water masses in each station around core potential density (kg/m
3
). Stations with 

fractions less than 20% are marked by black dots while gray dots show the GLODAPv2 stations without specified water mass. 
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Fig. 8 Distribution of SAIW (upper left), LSW (upper right), ISOW (lower left) and DSOW (lower right) based on A25 cruise 

Contour lines show fractions of 20% 50% and 80%, blue lines show cross section of other cruises, yellow dashed lines show the boundaries 

of vertical water columns layers (potential density at 27, 27.7 and 27.88 kg/m
3
) 
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Fig. 9 Distribution of upper and lower NADW based on A16 (upper), A05 (middle) and A10 (lower) cruises 

Contour lines show fractions of 20% 50% and 80%, blue lines show cross section of other cruises, yellow dashed lines show the boundaries 

of vertical water columns layers (potential density at 27, 27.7 and 27.88 kg/m
3
) 
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Fig.10 Currents (upper) and Water Masses (lower) in the Bottom Layer (AABW and NEABW) 

and the Southern Area (CDW and WSBW) 

Upper: The arrows show the currents in the Southern Area. 

Lower: Color dots show fractions (from 20% to 100%) of water masses in each station around core potential density (kg/m
3
). Stations 

with fractions less than 20% are marked by black dots while gray dots show the GLODAPv2 stations without specified water mass. 
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Fig. 11 Distribution of AABW and NEABW based on A16 (upper), A10 (lower left) and A05 (lower right) cruises 

Contour lines show fractions of 20% 50% and 80%, blue lines show cross section of other cruises, yellow dashed lines show the boundaries 

of vertical water columns layers (potential density at 27, 27.7 and 27.88 kg/m
3
) 
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Fig. 12 Distribution of Southern Water Masses (CDW, AABW and WSBW) based on SR04 cruises 

Left figures show the west (zonal) part and right figures show the east (meridional) part 

Contour lines show fractions of 20% 50% and 80%, blue lines show cross section of other cruises 
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Chapter IV:  

Ages of Water Masses in the Atlantic Ocean and the Estimation of 

mean Transport Velocities based on cruises from GLODAPv2 dataset 
 

 

 

Abstract: Combining with the distributions of the main water masses in the Atlantic Ocean described 

in previous chapters (Chapter II and III), the mean ages of these water masses observed from 

meridional (A16) and zonal (A05 and A10) sections in the Atlantic Ocean are investigated based on 

transient tracers (CFC-12 and SF6). The mean ages of water masses classified by four vertical layers 

and their transport time during the pathways are calculated and mapped out assuming with a standard 

mixing ratio (𝛥 𝛤⁄  = 1) and a saturation of 100%. In general, mean ages increase with pressure and the 

central waters in the upper layer have the lowest mean ages within 50 years. In the intermediate layer, 

AAIW and MOW show gradients of mean ages in the meridional (south to north) and zonal (east to 

west) direction respectively. The transport time of AAIW is ~400 years from formation area to the 

north boundary at ~20 °N while it takes MOW ~300 years from the Strait of Gibraltar across the Mid-

Atlantic-Ridge to the west basin of North Atlantic. As the main water mass in the deep and overflow 

layer, NADW (both upper and lower parts), which is formed in the high latitude region in the North 

Atlantic, sinks and transports to the south until ACC region at ~ 50 °S. During the pathway to the 

south, NADW also spreads westward and the whole process takes ~500 years. Bottom waters, 

including AABW and NEABW, have the same origin in the Antarctic region and take ~500 years to 

spread to the north boundary at ~50 °N. Velocities of upper NADW can be estimated with the mode 

ages and distances based on CFC-12 and SF6. Result from three cruises along the DWBC shows a 

velocity of ~1.0 cm/s before upper NADW passes the equator while the velocity is difficult to be 

estimated in the south hemisphere due to the complex situation of eddies and hard mixing.  

Key words: Water Mass, Atlantic Ocean, Transient Tracer, Mean Age, GLODAPv2 
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1 Introduction 

Formations and transports of water masses in the Atlantic Ocean, as an indispensable branch of 

Atlantic Meridional Overturning Circulation (AMOC), has been widely concerned for decades due to 

its impacts on the Europe and even global climate (Bryden et al., 2005; Clark et al., 2012). Different 

from the general global situation, heat transport in the Atlantic Ocean shows a net northward direction 

instead of polarward. The heat transfer is mainly achieved through the transport of water masses. 

Warm surface water transports to the north in the shallow, while cold deep water spreads to the south 

(Ganachaud and Wunsch, 2000; Hall and Bryden, 1982; Trenberth and Caron, 2001). Meanwhile, 

transport of water masses in the Atlantic Ocean also plays a critical role in the carbon cycle. As the 

significant carrier/storage of carbon, the ocean contains 60 times as much carbon as in the atmosphere 

and the transport of water masses in the ocean influences the sea-air exchange directly or indirectly 

(Tanhua et al., 2006; Ziska et al., 2013).  

As early as the beginning of 20th century, Bjerknes and Sandström proposed, both theoretically and 

experimentally, the existence of heat source into the deep Atlantic Ocean and opened up the large 

scale research on downward heat and water mass in the Atlantic Ocean (Bjerknes, 1964; Sandström, 

1908, 1916). With the development of the research, the fact is gradually realized that mostly water 

masses in the Atlantic Ocean are included within the following four processes, or more specifically, a 

complete cycle that composed by four parts. 1. Central waters are transport by surface currents 

northward until high latitude in the North Atlantic; 2. Deep water (NADW) is formed and sinks near 

Labrador and Irminger Sea region, where surface water becomes dense and due to low temperature 

and high salinity. 3. The formed deep water (NADW) spreads southwards with Deep Western 

Boundary Currents; 4. Upwelling of deep water to the surface takes place in the Southern Ocean. This 

cycle also constitutes the main part of thermohaline circulation and AMOC (e.g. Bryden et al., 2005; 

Hall and Bryden, 1982; Kuhlbrodt et al., 2007). Simultaneously, this circulation does not remain 

constant but is affected by environmental factors such as wind stress (Rahmstorf, 2000; Rahmstorf et 

al., 2005). Many researches focus on specific areas or details (e.g. Toggweiler and Samuels, 1993; 

Toggweiler and Samuels, 1995) but less sketch out the overview of all the water masses in the Atlantic 

Ocean. A general introduction on movements of water masses is helpful and necessary to understand 

the thermohaline circulation and, furthermore, to speculate the impacts on climate (Kuhlbrodt et al., 

2007).  

In this chapter, main water masses are labeled with transient tracers (CFC-12 and SF6) and their mean 

ages (consuming time during the pathway from formation area) are calculated based on GLODAPv2 

dataset. Since concentrations of CFC-12 and SF6 are not measured in many cruises especially early 

cruises, data of mean ages are insufficient to show an aerial view of distribution in the entire Atlantic 

Ocean, data from representative cruises are analyzed and present. Firstly, as the continuous work of 

previous chapters, the relevant criteria, including for vertical layer division of water columns and 
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distribution of water masses, is still used and transport time of water masses are investigated. Four 

central water masses, due to similar formation and transport processes, are considered as a whole part 

instead of listing the details of each water mass separately. In general, central water masses have the 

low mean ages within 50 years and increase with pressure and the distance from their formation areas. 

In the intermediate layer, AAIW and MOW are two conspicuous water masses and they travel from 

south to north (AAIW) and from east to west (MOW) respectively. As the dominant water mass in the 

deep and overflow layer, NADW, which is formed in the high latitude North Atlantic Ocean, sinks and 

spreads southward with deep western boundary current and further eastward with eddies. The whole 

process takes as long as ~500 years to cover the deep Atlantic Ocean. Upper and lower portions of 

NADW, during their southward transport, are generally similar but different in details. Similar as 

central waters, all water mass in the bottom layer are considered together. Bottom waters origins from 

south of ~50 °S (south of ACC) and take ~500 years spreads to the north. 

2 Data and methods 

2.1 Water Mass Analysis 

The distribution of the main water masses in the Atlantic Ocean are based on investigation of the 

Optimal Multi-Parameter (OMP) analysis in previous chapters (Chapter II and III). The OMP analysis 

is to use six key properties in the water samples to find out the minimum of residual and finally to 

determine the contribution of each water mass in the GLODAP v2 observational data. Central waters, 

which are distinguished by high potential temperature and salinity and low nutrient concentrations, are 

the main water masses in the upper/central layer. In the intermediate layer, the Antarctic Intermediate 

Water (AAIW) with lowest salinity is formed in the south Atlantic sinks into ~1000m depth and 

spreads northward until ~30 °N. Mediterranean Overflow Water (MOW), identify by high salinity, 

flows from the Strait of Gibraltar and eastwards cross the Mid-Atlantic-Ridge. NADW, upper and 

lower, dominates the deep and overflow layer both in the North and South Atlantic. This water mass is 

formed in high latitude region in the North Atlantic and spreads southward at pressure ~ 2000m until 

meets AAIW and AABW at ~ 50 S. In the bottom layer, AABW is the only natural water mass (After 

passing the equator, AABW is redefined as NEABW) with high silicate signature spreading from the 

Antarctic to the North Atlantic in the bottom. 

2.2 Measurement of Transient Tracers 

Data of transient tracers (CFC-12 and SF6) based on GLODAPv2 dataset were taken and measured 

throughout the pass decades. Electron capture-gas chromatography is in general used in the 

measurements of transient tracers and purge-and-trap techniques is the typically way to analyze the 

seawater samples (Bullister and Tanhua, 2010; Bullister and Weiss, 1988). Water samples are 

transferred from the sampling containers (syringes or ampoule) into the glass chamber are then purged 

with a flow of nitrogen in order to make dissolved tracers escape from water samples and collected in 
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a cryogenic trap. After the purging step, the trap is heated and the tracers swept into a chromatographic 

precolumn and main column and elute separately into the Electron Capture Detector (ECD). The peak 

areas displayed from the water samples will be compared with the peak areas of the standard gases 

(known concentration) and finally calculate the concentration of tracers in the water sample. Water 

samples are normally taken by syringes or ampoules and analyzed immediately on board and the rest 

samples are flame sealed and taken back to the lab. 

2.3 Transit Time Distribution (TTD) and Inverse Gauss (IG) Distribution 

Due to the mixing and diffusion in the ocean, it is difficult to measure the whole process in one 

timescale and the transit time distribution (TTD) is a required and composed by following parameters 

(Waugh et al., 2003):  

Tracer age (c(t)) is the time that water mass takes from surface to the deeper layer. 

c(t) = c0(𝐭 − 𝛕); 

Mean age (Γ) shows the year in which the water mass is equilibrium to the atmosphere. 

𝚪 = ∫ 𝛏𝐆(𝛏)𝐝𝛏
∞

𝟎
; 

Width (Δ2) describes the mixing and the diffusion in the ocean. 

𝚫𝟐 =  
𝟏

𝟐
∫ (𝛏 − 𝚪)𝟐𝐆(𝛏)𝐝𝛏

∞

𝟎
; 

The relationship between all the above parameters is often assumed to follow an inverse Gauss 

distribution: 

G(t) = √
𝚪𝟑

𝟒𝛑𝚫𝟐𝐭𝟑 exp(
−𝚪(𝐭−𝚪)𝟐

𝟒𝚫𝟐𝐭
); 

In this equation t, Γ and Δ describes the tracer age, mean age and the width of TTD. The mixing ratio 

( 𝛥 𝛤⁄  ) indicates the advective (low ratio) or diffusive (high ratio) situation in the ocean and the detail 

will be illustrated in the next section. 

3 Involved Definitions in the Water Mass Age Investigation 

Due to complexities and similarities between definitions during the investigation of the water mass age 

and in order to avoid confusions, it is necessary to explain firstly the following definitions and to 

clarify the relationships between them before displaying the results. 
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3.1 The Mixing Ratio (𝜟 𝜞⁄ ): 

As mentioned in the above section, another topic is placed in front of us due to the advective or 

diffusive situations in the ocean: the determination of mixing ratio (𝛥 𝛤⁄ ), where low ratio reflects 

advective while high ratio reflects diffusive situation. The choice of mixing ratio has significant 

impacts on the calculation of the ages. However, in such a large scale calculation as in the whole 

Atlantic Ocean, the mixing ratios can be totally different in different areas (for instance, in the North 

Atlantic upper NADW spreads along the DWBC without much mixing while in the southern ocean 

area a hard mixing with AAIW and AABW exists), a standard ratio of 1 might sometimes not be 

applicable for the general calculation, and the age of water mass need to be calculated in each specific 

area. These situations are common in the oceans since most water masses do not appear alone but two 

or more water masses mix with each other. Under such circumstance, IG-TTD for only one water mass 

appears to be insufficient and a further approach is required to determine the mixing ratio with the 

linear combination of distributions from all the water involved water masses (Ebser et al., 2018; 

Stöven and Tanhua, 2014). A theoretical overall value of mixing follows: 

Γ = α1·Γ1 + α2·Γ2 + …… + αn·Γn 

Where α means the fraction of each water mass and α1 + α2 + …… + αn = 1 and Γn is the mixing of 

each water mass. 

When the details of specific sea areas in a small-scale calculation, or when the area is very diffusive or 

convective (mixing ratio is far from 1), a corresponding values of the ratio (𝛥 𝛤⁄ ) according to the 

specific situation is required, to obtain a more accurate results on ages of water masses. In fact, in 

most cases we still need a standard mixing ratio during the large-scale calculations, when we are 

unable to determine the specific conditions of the sea area or the fractions of the water mass. And a 

typical standard mixing ratio is set to be 1, if further information about the TTD is not available 

(Schneider et al., 2014; Waugh et al., 2004). The calculation about the mean age of water mass can 

still follow the common assumption and the ratio of 𝛥 𝛤⁄  is set to be 1.0 (e.g. Schneider et al., 2010; 

Stöven and Tanhua, 2014; Waugh et al., 2004) since such a ratio is considered to be in large parts of 

the world ocean as standard a ratio (e.g. Huhn et al., 2013; Schneider et al., 2014). In this chapter, a 

standard mixing ratio (𝛥 𝛤⁄  = 1) is used. 

3.2 Partial Pressure (ppt) and the Ages of Water Mass (Tracer Age, Mean Age and Mode Age) 

After determining the mixing ratio, the calculation of ages can be started according to the equations in 

section 2. Firstly, the concentrations (µmol/kg) of tracers are measured from the observation and 

partial pressures in ppt can be calculated directly combining with potential temperature, salinity and 

the sampling year. And finally, the ages of water masses can be estimated from partial pressure. In 

other words, partial pressure is the first-hand data we can get directly, and the following estimations, 
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the ages of the water masses, are derived from it. Refer to the ages of the water mass, the most 

intuitive definition is the tracer age which shows the consuming time on the way from start to 

destination. However, the tracer age considers the ocean as a totally advective situation but ignores the 

diffusion in the ocean. As a result, the tracer age shows an ideal state rather than the actual state, and 

underestimates the actual age of the water mass. Therefore, we need to introduce two more concepts, 

the mean age and the mode age. From the mathematical definition, mode age is the value of t when G(t) 

researches the maximum while mean age is the mean value of t in the whole Inverse Gauss 

Distribution. (Details about Inverse Gauss Distribution and TTD of tracers are described in Chapter I.) 

From the physical perspective, the mean age refers to static states and the mode age refers to dynamic 

states. In other words, the mean age is used to show the mean state of water masses, while mode age is 

a better choice to show the signals or phenomena in the ocean, for instance the transfer velocity. 

Relationships between tracer age, mean age and mode age are shown in Fig 3.0. 

The IG-TTD between mean ages and mode ages under a fixed partial pressure are shown in Fig 3.1 a) 

and b). The assumption is that the saturation is set to be 100% in the year 1990, the differences 

between partial pressures of CFC-12 from 250 and 300 ppt are displayed. In general, both mean age 

and mode age decrease with partial pressure since the concentration of CFC-12 increase monotonically 

in the atmosphere until late 1990s (detail in Chapter I). Under the same partial pressure, the mean age 

increases with mixing ration while the mode age decreases. This is because in the IG-TTD distribution, 

when the mixing ratio increases, the ‘tail’ becomes longer the mean age becomes higher, but on the 

other hand, the ‘peak’ appears earlier so the mode age becomes lower. 

Under a fixed mixing ratio (for instance: 𝛥 𝛤⁄  = 1), the mode ages increase with the mean ages (Fig 

3.1 c). However, the mode ages are also affected by the mixing ratios (𝛥 𝛤⁄ ) on the other hand. As 

shown in Fig 3.1 d), under the same mean age (for instance: 100 years) but depending on different 

mixing ratios (𝛥 𝛤⁄ ), the mode ages can be very different. The general trend is that the mode ages 

decrease with mixing ratios. 

In addition to the above theoretical description, the significance of mixing ratios can also be obviously 

seen in the calculations of actually cruises. The situation between mean ages and mode ages in the 

Atlantic Ocean is shown in the A16 section of Fig 3.2. Both mean ages and the mode ages are closely 

related to the choice of mixing ratio (𝛥 𝛤⁄ ). However, the mean ages increase with the value of mixing 

ratio, while the mode ages decrease. In the relative advective case 𝛥 𝛤⁄  = 0.5, mean ages and mode 

ages both range from 0 to 200 years. The situation become very different in the diffusive case with 

𝛥 𝛤⁄  = 1.5, the mean ages range from 0 to as high as 800 years, while the mode ages range from 0 to 

only 50 years. In our standard case (𝛥 𝛤⁄  = 1.0), mean ages are located between 0 and 500 years 

compared with mode ages between 0 and 100 years.  
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4 Results: Distribution of Transient Tracers and Mean Ages 

Partial pressure of CFC-12 and SF6 shows similar distributions and, as mentioned above, mean age is 

used to show the distributions. In general, partial pressures of both tracers have high values in shallow 

depth and increase with pressure while the situation of mean ages is just the opposite. In the 

upper/central layer and the shallow part of the intermediate layer close to the boundary, partial 

pressure of CFC-12 and SF6 have highest values with ~500 and ~10 PPT. This indicates water masses 

have the lowest mean ages within ~50 years. In the deeper layers, where low partial pressures appear 

and even close to 0, mean ages reach values close to 500 years. In high latitude region in the North 

Atlantic, where NADW is formed and sinks, partial pressures show relative higher in deep and 

overflow layer compared with the same latitude in the southern hemisphere. This represents newly 

formed water mass (NADW) sinks with lower mean age. Combining with the previous work in 

Chapter III, mean ages of water masses can be clear at a glance. 

4.1 The Upper Layer 

WNACW, ENACW, WSACW, ESACW 

As described in the previous two chapters, water masses in upper/central layer are formed by 

subduction from mixed layer water during winter convection and are in general distributed with core 

pressure at potential density (𝜎𝜃) around 26.4 (west central waters) and 26.8 (east central waters) 

kg/m
3
. 

Compared to deeper water in other layers, mean ages of central waters have the lowest (within ~50 

years) mean ages, since they did not experience complicate spreading processes during their 

formations and transports. In vertical scale, central waters are located only in shallow layer within 

~1000m and their mean ages increase with pressure. In horizontal scale, mean ages show low values in 

the mid-latitude while high values in the tropical regions. Such distributions of mean ages are 

determined by formation areas and transports of central waters (SWTs and currents). In shallower 

pressure, where both WNACW and WSACW are distributed (𝜎𝜃= ~26.4 kg/m
3
), mean ages in mid-

latitude region (near formation area) have low values (within 10 years) and in tropical region (spread 

with currents) are relative higher (between 30 and 40 years). In relative deeper pressure, where 

ENACW and ESACW are distributed (𝜎𝜃= ~26.8 kg/m
3
), the situation is similar but differences in 

mid-latitude region and in tropical region are more obvious. 

This result shows the direction and transfer time of each water mass in the upper/central layer. After 

leaving their formation areas, WNACW and WSACW spread general in zonal region and towards the 

formation areas of ENACW and ESACW separately along Azores Current and South Atlantic Current. 

This process lasts for within 20 years. In relative deeper pressure, ENACW and ESACW start from 

their formation areas and spread along the currents towards the equator. In the north hemisphere, 
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ENACW spreads southward with Canaries Current while ESACW in the south hemisphere spreads 

northward with Benguela Current and South Equatorial Current. About 50 years are taken from their 

formation area until they reach the equatorial region. 

4.2 The Intermediate Layer 

AAIW 

The north flow of AAIW is classified to the upper limb of AMOC (Kirchner et al., 2009) and Atlantic 

western boundary current system (Talley, 1996). In general, AAIW is transported northward along the 

path way of Gulf Stream -- North Atlantic Current and spreads also eastward during the way to the 

north (Piola and Gordon, 1989; Tsuchiya, 1989). 

Compared to central waters, the northward transport of AAIW takes much longer time. Totally ~400 

years are required from formation area to the north limit at ~40 °N. In the meridional investigation of 

A16 cruise in 2013, ~50 years are taken from formation area at surface until sinking to the core 

pressure (~1000m). This phase takes place between 60 and 40 °S. The process of spreading northward 

between 40 and 20 °S takes ~100-150 years (from the origin) and ~200-300 years to equator. In total, 

AAIW takes ~400 years from the origin (in formation area) until reaches the north limit. Zonal 

investigation of A10 and A05 cruise also provide supports to these results. A10 section at ~30 °S 

shows mean age ~100 years in the core of AAIW. AAIW can also be found with ~350 years mean 

ages in A05 cruise at ~27 °N. 

Regarding to the north limit of transport, still no unified statement can be found in the relevant 

literatures but most show between them 20 °N and 60 °N (e.g. Tsuchiya, 1989). During the 

investigation of GLODAPv2 data set, the north limit of AAIW is ~40 °N based on all the 

observational data but for also different in each cruise. (For example: A16 cruise in 2005 shows 

AAIW reaches ~40 °N but in 2013 AAIW reaches only ~ 10 °N). 

MOW 

The mixture of three parts, pure Mediterranean Sea Water that overflows across the Strait of Gibraltar, 

Eastern North Atlantic Central Waters (ENACW) and Subarctic Intermediate Water (SAIW), is 

defined as the Mediterranean Overflow Water (MOW) in Chapter I. This water mass is formed in the 

east of the Gulf of Cadiz where Mediterranean Water exits the Strait of Gibraltar as a deep current and 

then turns into two branches after leaving the formation area. One branch spreads to the north into the 

West European Basin until ~50°N, the other branch spreads to the west and past the Mid-Atlantic-

Ridge (Carracedo et al., 2016; Price et al., 1993). Distribution of this water mass can be seen in mostly 

the entire North Atlantic by recognizing its high salinity (Chapter II). 
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Westward transport of MOW, accompanied by spreading to the north and south at the same time, is a 

process that takes ~300 years. In zonal direction based on A05 cruise, original MOW is starts from 

Strait of Gibraltar, across the Mid-Atlantic-Ridge and enters the western North Atlantic. In meridional 

direction, MOW spread both north and southwards. Due to the influence of currents, the northward 

flow goes faster and takes within ~200 years until ~50 °N, while the southward flow takes a relative 

longer time,  between ~300 and 400 years to the region near equator. 

4.3 Deep and Overflow Layer 

Upper and lower NADW 

Upper and lower NADW are the main water masses in deep and overflow layer, meanwhile, 

southward transport of NADW constitutes the deep/cold limb of the AMOC. The main route of the 

southward transport of NADW is DWBC. And during the pathway to the south, NADW expands 

eastward by eddies and further cover the most of Atlantic Ocean in deep layer (𝜎𝜃 between 27.7 and 

27.88 kg/m
3
) (Dickson and Brown, 1994). 

Southward transport of NADW is in general a long process with mean ages ~500 years. In meridional 

scale, upper and lower NADW are located at pressure ~1000 — 2000m and ~2000 — 4000m 

separately. Mean ages of NADW increase with the process of spreading south. After leaving formation 

area, ~100 years are takes from 60 to 40 °N, ~300 years (from the origin) from 40 to 20 °N and ~400 

years 20 °N to 20 °S. In the region south of 20 °S, especially 40 °S, upper and lower NADW meet and 

mix with AABW, which has lower mean ages in this region, so the mean ages decrease slightly to 

~300 years at their junction. In horizontal scale, mean ages show low values in the west basin near 

DWBC while high values in the east. In A05 section, 200 years in the west 400 years in the east. In 

A10 section, mean ages are ~300 years but the difference between west and east is not obvious. 

Such a mean age distribution provides evidence for the southward transport of NADW. Upper and 

lower NADW spread general to the south from ~60 °N until ~ 40 °S with Deep Western Boundary 

Current. This process lasts ~400 years. In zonal direction, NADW spreads eastward by eddies. 

4.4 Bottom Layer 

AABW & NEABW 

AABW, the main water masses in the bottom layer, receives extensive and sustained attentions. As 

early as in Wüst (1933), the bottom layer is noticed out as filled with water origins from the south. 

Sverdrup further pointed out the role of ACC plays in the formation and transport of AABW 

(Sverdrup, 1940). On this basis, Mantyla and Reid (1983) further elaborated that the most original 

dense bottom water is restricted near the Antarctic region by topography and the northward flow of 

bottom water is the mixture of original dense water and the overlying warm water. Gordon and Huber 
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(1990) and Orsi et al. (1999) illustrated the pathway of AABW to the north is through the Drake Passage 

sill into the Argentina and Brazilian Basin. 

Northward transport of AABW, as well as southward NADW, is another large time scale process with 

mean ages ~500 years. In meridional direction based on A16 cruise, original dense AABW is mostly 

limited within 40 °S and the mean age is within 200 years. The mixture with overlying NADW to the 

north until equator has mean ages ~300 – 40 0years. After passing the equator, newly defined 

NEABW has mean ages ~400-500 years. In zonal direction, AABW has mean ages ~200 — 250 years 

at A10 section near 30 °S and the difference between the east and the west is not obvious.  However, 

in the north hemisphere, NEABW in the west is obviously younger than the east. 

5 Results: Mode Ages and Transport Velocities based on Transient Tracers 

Understanding of the velocities and durations of water masses transport, as well as the AMOC in the 

whole Atlantic Ocean, is thus of importance for regional and global climate. The flow velocity in the 

horizontal direction is can be measured directly by the equipment, however such a result is a kind of 

snap-shoot velocity, that means a specific velocity during the specific measuring time but without 

universally representative. The measurement of a general transport velocity of a water mass during a 

relative long time requires transient tracers. In this chapter, the transport velocities of upper NADW, 

which origins from LSW, on the way to the south are estimated based on the investigation of CFC-12 

and SF6 and the mode ages are used instead of mean age in displaying the velocities because velocity 

is a ‘‘dynamic phenomenon’’. 

As described in previous chapters, upper NADW is formed in the high latitude region near Labrador 

Sea in the North Atlantic and spreads southward through the most entire Atlantic Ocean along the 

Deep Western Boundary Current (DWBC). In this chapter, parts from three cruises are selected and 

spliced to display the transport velocity during the pathway in the region along DWBC to show the 

main transport of upper NADW to the south and estimate the transport velocity (Fig 5.1 a). 

In the first part of the cruise from A22 section in 2000, the upper NADW spreads from ~40 °N to 

~15 °N. During this stage, the mode age of our target water mass increases along the path to the south 

until ~25 years near the equator. This cruise starts near the formation area of NADW and shows the 

early stage of upper NADW from forming, sinking and spreading southward. The mode age increases 

with southward transmission (Fig 5.2 a1) with a transport velocity of ~0.83 cm/s (Fig 5.2 a2). 

Compared to the other two stages, mean ages in this stage is relatively low and the boundaries between 

other water masses (central water from the above and lower NADW from the bottom) are also relative 

clear. The linear distribution of mode age with distance shows that DWBC flows southward smoothly 

without much external interference or retard. However, the velocity might be under estimated due to 

the under estimation of transport distance. The A22 cruise went straightly southward while the DWBC 
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went approximately along the continental slope of eastern North American coast so that the actual 

transport distance (calculated according to the distance on the map) may be ~1.2 of the distance 

observed from A22 cruise. Therefore, the actual transport velocity could be ~1.0 cm/s. 

The second part of the cruise from AR04 section in 2003 lasts from ~15 °N to ~20 °S and the mode 

ages during this stage/cruise maintains between ~20 and ~30 years. At the beginning of this stage, 

from ~15 °N to the equator (distance from 0 to ~2200 km), the upper NADW continues the smooth 

transmission as in the stage 1 with a similar velocity of ~ 0.94 cm/s and shows a linear distance -- 

mode age distribution, but this situation changes after upper NADW passes the equator (Fig 5.2 b). 

After passing the equator, the flow of DWBC which carries upper NADW becomes more complicated 

due to a change of sign in planetary vorticity and DWBC breaks up into anticyclonic coherent eddies 

(Dengler et al., 2004). As a result, the distribution of mode age shows an irregular distribution instead 

of the linear with distance before, so the transport velocity cannot be calculated as a whole process. 

The third cruise (A17 section in 1994) takes place between equator and 50 °S. In this region, the upper 

NADW embeds into the space between AAIW and AABW. The mixture between these water masses 

is intense due to the Antarctic Circumpolar Current (Details refer to Chapter III and van Heuven et al. 

(2011)). The fraction of upper NADW involves in this cruise/stage goes lower to the south and is 

mixed with AAIW from the above and AABW from the bottom. The result shows a relative large 

range of mode ages from 0 to ~40 years and the velocity of upper NADW shows a negative value. 

This does not mean the upper NADW turns back to north, but because the hard mixing with newly 

formed AAIW and AABW leads to low mode ages in the south, the actual velocity cannot be 

calculated by transient tracers. 

The selected three parts from different cruises are as close as possible to the region of DWBC, along 

which the upper NADW spreads to the south, but still cannot follow the pathway of DWBC strictly. 

Therefore, the result from the above calculation could be deviated from the actual transport velocity. 

Another difficulty in estimating the overall or average velocity of a water mass during a long transport 

process comes from the complex situations in the ocean (for instance: different mixing ratios or 

mixing with other water masses) so that the transport velocities of one water mass during the pathway 

can also be very different (for instance: the AR04 cruise in stage 2). In this case, we need to focus on 

the transmission in specific sea areas, or specific stages and a relatively complete transmission process 

can be spliced according to each stage. 

6. Conclusion 

In this chapter, ages, including mean ages and mode ages, of main water masses in the Atlantic Ocean 

and the mean transport velocity of upper NADW are investigated combining with the characteristics 

and distributions of water masses described in previous chapters. Based on the transient tracers (CFC-
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12 and SF6), mean ages of these water masses observed from meridional (A16) and zonal (A05 and 

A10) cruises in the Atlantic Ocean are estimated with the assumption that standard mixing ratio (𝛥 𝛤⁄  

= 1) and a saturation of 100%. In general, mean ages increase with pressure and the central waters 

have the lowest mean ages within 50 years. In the intermediate layer, AAIW and MOW show 

gradients of mean ages in the meridional (south to north) and zonal (east to west) direction 

respectively. The transport time of AAIW is ~400 years from formation area to the north boundary at 

~20 °N while it takes MOW ~300 years from the Strait of Gibraltar across the Mid-Atlantic-Ridge to 

the west basin of North Atlantic. As the main water mass in the deep and overflow layer, NADW 

(both upper and lower), which is formed in the high latitude region in the North Atlantic, sinks and 

transports to the south until ACC region at ~ 50 °S. Bottom waters, including AABW and NEABW, 

have the same origin in the Antarctic region and take ~500 years to spread to the north boundary at 

~50 °N.   

Velocities of water masses can be estimated with mode ages based on CFC-12 and SF6 and upper 

NADW is investigated as the example. The southward transport of upper NADW is formed by three 

stages. From ~40 °N to ~15 °N, which takes within 25 years, is the early stage and shows the forming, 

sinking and early south spreading of upper NADW. In the second stage from ~15 °N to ~20 °S, At the 

beginning of this stage, upper NADW continues the smooth transport until the equator, while the 

DWBC breaks into eddies from DWBC brings the upper NADW to the east. The last stage takes place 

between 20 °S and 60 °S and the fractions of NADW is mostly not higher than 50% in this region due 

to the hard mixing. 
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Fig 3.0 Concept of relationships between Tracer ages, Mean ages, Mode ages and Mixing ratios 

based on partial pressure of CFC-12 = 300 ppt under the assumption in the north hemisphere in the 

year 1990 and the saturation is 100% 
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Fig 3.1 Concept of relationships between Tracers, Mean ages, Mode ages and Mixing ratios 

(a) and (b)Relationship between Mode ages and Mean ages with the same tracer partial pressure (CFC-12 = 250 and 300 ppt) 

but different mixing ratio; 

(c) Relationship between different Mode ages and Mean ages with the same Mixing ratio (𝛥 𝛤⁄ = 1); 

(d) Relationship between different Mode ages and Mixing rations with the same Mean age (Γ = 100 𝑦𝑒𝑎𝑟𝑠); 

The colored Inverse Gaussian lines show the TTD and the vertical lines show the Mode ages. 
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Fig 3.2 Mean Ages and Mode Ages with different mixing ratios (𝛥 𝛤⁄ ) based on A16 cruise 
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Fig 4.0 Partial pressure of CFC-12 and SF6  (ppt) and Mean age (year) based on A16 cruise in 2013.  

Mean age is calculated from CFC-12 in ‘old’ water samples (partial pressure of CFC-12 < 450 ppt) and from SF6 in ‘young’ 

water samples (partial pressure of CFC-12 > 450 ppt). The dached lines show four vertical layers of water columns and the 

black dots show sampling points. 
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Fig 4.1 Mean ages of Central Water 

Maps (upper plots) show mean ages of water masses and currents in their core potential density layer. Section plots (lower 

plots) show mean ages based on meridional (A16 cruise in 2013) and zonal cruises (A05 in 2008 and A10 in 2010).Blue lines 

show position of other cruises. Solid black contour lines show fraction of water masses with 20%, 50% and 80% and black 

dots show sampling points. 
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Fig 4.2 Mean ages of Water masses in the intermediate layer (AAIW and MOW) 

Maps (upper plots) show mean ages of water masses and currents in their core potential density layer. Section plots (lower 

plots) show mean ages based on meridional (A16 cruise in 2013) and zonal cruises (A05 in 2008 and A10 in 2010).Blue 

lines show position of other cruises. Solid black contour lines show fraction of water masses with 20%, 50% and 80% and 

black dots show sampling points. 
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Fig 4.3 Mean ages of water masses in the deep and overflow layer (upper and lower NADW) 

Maps (upper plots) show mean ages of water masses and currents in their core potential density layer. Section plots (lower 

plots) show mean ages based on meridional (A16 cruise in 2013) and zonal cruises (A05 in 2008 and A10 in 2010).Blue lines 

show position of other cruises. Solid black contour lines show fraction of water masses with 20%, 50% and 80% and black dots 

show sampling points. 
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Fig 4.4Mean ages of Bottom Water (AABW and NEABW) 

Maps (upper plots) show mean ages of water masses and currents in their core potential density layer. Section plots (lower 

plots) show mean ages based on meridional (A16 cruise in 2013) and zonal cruises (A05 in 2008 and A10 in 2010).Blue lines 

show position of other cruises. Solid black contour lines show fraction of water masses with 20%, 50% and 80% and black dots 

show sampling points. 

 

  
 

Fig 5.1 Map of three cruises in DWBC region (left) and the schematic of pathway of upper NADW to 

the south (right). The colored lines show A22 section in 2000 (red) AR07section in 2003(green) and 

A17 section in 2000 (blue).The grad dots show all the GLODAP samplidsng stations. 
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Fig 5.2 Plots of southward spreading of upper NADW (left) and Distance--Mean age distribution (right) 

Left: The colorbar shows mean ages of upper NADW in each cruise and the  contour lines show fraction of water masses with 

30%, 50% and 70% and black dots show sampling points. The distance in X-Axis shows the distance from the first station of 

each cruise in the north. 

Right: The color dots show the fractions of water mass in each water sample and the colorbar shows fraction of each water 

mass from 50-100% and the blue lines show linear fits calculated from fractions higher than 50%. The numbers show the 

average transport velocity in meters per day (cm/s) based on the linear fit. 
 

 

 


