
Homework № 7

Kevin Mack (Worked with Alex DeWitt), Clarkson University 12/01/2017

Problem Statement:

In this assignment the task is create a model of the n-body problem, which is a famous problem
in physics. In this case, the system is designated to be celestial bodies who‘s force of action is
the gravitational force exerted by each body on each other. This is a problem that is notoriously
difficult to solve analytically (it was actually shown by Poincarè that there is no analytical solution
given by algebraic expressions and integrals), and it can also exhibit chaotic behavior. Due to
these facts it is often solved with a numerical solution, also making it an appropriate problem to
apply equation-free methods in order to extract the dynamics from the data. A database of the
movement of celestial bodies would be an ideal place to gather data for equation-free modeling,
and is available from NASA and other astronomical societies. In this work no specific system is
modeled, however a general case of the n-body problem will be simulated using the ODE solver
in Matlab, which will then be compared with equation-free models.

Solution to the N-Body Problem:

The n-body problem can be generalized with an equation of motion that can be applied to each
body of the system. When all bodies are considered, the system will provide the motion of each
body with the consideration of the gravitational forces from every other body. The equations of
motion are given by,

mi
d2qi

dt2
=

n∑
j=1
j 6=i

Gmimj

(
qj − qi

)
‖qj − qi‖3

=
∂U

∂qi
(1)

where qi is the position vector of the ith body, mi is the mass of the ith body, and G is the
universal gravitational constant. Using (1) it can be seen that in three spatial dimensions, the
number of differential equations used to solve the system is on the order of 6n (where n is the
number of bodies), which can become increasing computationally expensive for sets of large
particles. The ODE‘s, written in code as n_body.m (listing 1), is solved using Matlab‘s built-in
ODE solver ode113.m.

Listing 1: Matlab code – n_body.m
1 f unc t i on dx = n_body(~ , x)
2 %GM = 1 ; % Normalized G*mass
3 GM = 1e2 ; % Mass*G that "works we l l " f o r our i n i t i a l d i s t an c e s and ←↩

v e l o c i t i e s

Assignment № 7 Page 1

4 %x = reshape (x , [2 , 6]) ;
5 N = s i z e (x , 1) /6 ;
6 x = reshape (x , [6 , N]) ‘ ; % reshape from vecto r to matrix
7 %x = [x (1 : 6) ‘ ; x (7 : end) ‘] ;
8 dx (: , 1) = x (: , 4) ; % s e t v e l o c i t y in x
9 dx (: , 2) = x (: , 5) ; % s e t v e l o c i t y in y

10 dx (: , 3) = x (: , 6) ; % s e t v e l o c i t y in z
11 f o r i = 1 : s i z e (x , 1)
12 dx (i , 4 : 6) = 0 ;
13 f o r j = 1 : s i z e (x , 1)
14 i f (j~= i)
15 df = x(j , 1 : 3) - x (i , 1 : 3) ; % get d i f f e r e n c e between each pa i r ←↩

o f p a r t i c l e s
16 dx (i , 4 : 6) = dx (i , 4 : 6) + GM*(df) /(df * df . ‘) .^ (3/2) ; % compute←↩

g r a v i t a t i o n a l e f f e c t s
17 end
18 end
19 end
20 dx = reshape (dx ‘ , [N*6 , 1]) ; % ODE must output a column vecto r
21 end

In this code, ode113 is used instead of ode45 due to its improvement in accuracy. When
using ode45 to solve these equations, the round-off error in the implementation of the Runge-
Kutta method was causing the system to lose energy artificially over time. The ode113 method
is variable-step, variable order (VSVO) Adams-Bashforth-Moulton solver of orders 1 to 13, and
has been noted for its ability to be used in celestial mechanics problems (which is similar, if
not equivalent to this problem). Using this solver and the code in n_body.m, we generate the
micro-scale model that is necessary to perform equation-free modeling.

Listing 2: Matlab code – Micro-scale simulation
1 %% n - body problem s imu la t i on
2
3 N = 50 ; % number o f bod ie s
4 pdim = 3 ; % number o f s p a t i a l d imensions
5 vdim = 3 ; % number o f v e l o c i t y dimensions
6 vvar = 1e0 ; % var iance f o r i n i t i a l v e l o c i t y o f p a r t i c l e s
7 max = 1e2 ; % max d i s t anc e f o r i n i t a l p o s i t i o n s o f p a r t i c l e s
8
9 po s i t i o n s = -max+(max+max) . * rand (N, pdim) ;

10 v e l o c i t i e s = sq r t (vvar) *randn (N, vdim) ;
11 i c = [po s i t i on s , v e l o c i t i e s] ;
12 i c = reshape (i c . ‘ , [1 , N*6]) ;
13
14 % se t time parameters
15 t_start = 0 ;

Assignment № 7 Page 2

16 t_end = 1e4 ;
17 % t_step = 5e1 ;
18 t = [t_start t_end] ;
19
20 t i c
21 [T,Y] = ode113 (@n_body , t , [i c]) ; % Solve ODE‘ s
22 toc
23
24 % get output in c o r r e c t form to p lo t time - s e r i e s
25 Y_plot = ze ro s (pdim+vdim , N, s i z e (T, 1)) ;
26 f o r i = 1 : s i z e (T, 1)
27 Y_plot (: , : , i) = reshape (Y(i , :) . ‘ , [pdim+vdim , N]) ;
28 end
29
30 %% Plot output
31 f i g u r e
32 hold a l l
33 g r id on
34 g r id minor
35 box on
36
37 f o r i = 1 : s i z e (T, 1)
38 i f (i ~= 1 && i~= s i z e (T, 1))
39 p lo t3 (Y_plot (1 , : , i) , Y_plot (2 , : , i) , Y_plot (3 , : , i) , ‘ b . ‘ , ‘←↩

MarkerSize ‘ , 3) % p lo t p a r t i c l e path with blue marker
40 e l s e i f (i == 1)
41 p lo t3 (Y_plot (1 , : , i) , Y_plot (2 , : , i) , Y_plot (3 , : , i) , ‘ g . ‘ , ‘←↩

MarkerSize ‘ , 10) % p lo t s t a r t i n g po int with green marker
42 e l s e
43 p lo t3 (Y_plot (1 , : , i) , Y_plot (2 , : , i) , Y_plot (3 , : , i) , ‘ r . ‘ , ‘←↩

MarkerSize ‘ , 10)% p lo t end po int with red marker
44 end
45 end
46 x l ab e l (‘ x ‘)
47 y l ab e l (‘ y ‘)
48 z l a b e l (‘ z ‘)
49 t i t l e ([‘ n - body s imu la t i on f o r n = ‘ num2str (N)])

Since the equations cannot be solved analytically, as stated above, a numerical solution in
Matlab has been obtained. The solver will compute the position and velocity vectors for each
particle in the system. Several different values for the number of particles will be considered,
and several graphs will show the output from each solution. In the solver, the initial conditions
for position of each particle in the system are generated from a uniform random distribution,
while the initial velocities are generated from a Gaussian distribution. Further, each mass is of
equal magnitude, and all have been normalized so thatmiG = 1 (wheremi is the mass of the ith

Assignment № 7 Page 3

body, G is the universal gravitational constant). This is to limit the complexity of the simulation
and keep the computation times as small as possible.

(a) n-body simulation for n = 3 (b) n-body simulation for n = 3

(c) n-body simulation for n = 5 (d) n-body simulation for n = 5

Figure 1: Solutions to the n-body problem for n = 3, and n = 5 bodies. Each mass in the system
is equal, with only the initial conditions being different. Two trials of each case are shown, and
it is clear that the initial conditions play a large role in the manifested dynamics of the system.

From Figure 1 it appears that the nbody simulator is working correctly for the n = 3 and
n = 5 cases. It is now important to test situations where the number of bodies is significantly
higher. Tests for n = 50 and n = 100 are given in Figures 2 and 3. These tests caused a large
rise in computational complexity, this is due to the fact that the number of equations that are
solved by the ODE solver in Matlab is on the order of 6n (n being the number of bodies). As the

Assignment № 7 Page 4

(a) Angle 1, n-body simulation for n = 50 (b) Angle 2, n-body simulation for n = 50

(c) Angle 1, n-body simulation for n = 50 (long time) (d) Angle 2, n-body simulation for n = 50 (long time)

(e) Angle 3, n-body simulation for n = 50 (long time) (f) Angle 4, n-body simulation for n = 50 (long time)

Figure 2: Solutions to the n-body problem for n = 50 bodies. Each mass in the system is equal,
with only the initial conditions being different. Again, the starting positions of each mass is
labeled with a green dot, with the final position shown as a red dot. Sub-figures (a) and (b) are
from the same simulation, with different angles. Sub-figures (c),(d),(e), and (f) go together and
show a longer time evolution.
Assignment № 7 Page 5

(a) Angle 1, n-body simulation for n = 100

(b) Angle 2 (c) Angle 3

Figure 3: The images are similar to the previous n-body simulations, with only the number of
particles being different. The system, as in the other figures, is heavily dependent on the initial
conditions of particle position and velocity (on the micro-scale).

Assignment № 7 Page 6

Equation Free Modeling:

Due to the fact that this model becomes computationally expensive for sets of large particles
or over long periods of time, it is appropriate to consider an equation free modeling approach.
The equation-free modeling algorithm consists of two main aspects, restricting and lifting. In
restriction, a selection of macroscopic variables is made in order to generate a model of the
system. The restriction operator converts the microscopic (fine) model into the macroscopic
(course) model. The restriction operator generally completes the task of projecting the prin-
cipal components of the microscopic variables, onto the chosen macroscopic variables (using
methods such as SVD/PCA/POD). This is described in (2),

U =Mu, (2)

where U is the system of variables for the macroscopic behavior,M is the restriction op-
erator, and u is the system of variables for the microscopic behavior. It is important to note
that U ∈ RM and u ∈ Rm, where generally M << m. Assuming that the microscopic system
can be adequately modeled by the macroscopic variables U, then the the remaining statistical
characteristics at the microscopic scale should be properly approximated by functionals of the
those selected for the restriction operation. If we say that the microscopic dynamics can be
transformed to a new set of variables, this gives a system of differential equations,

dv1

dt
= g(v1,v2), (3)

where v = (v1,v2) is partitioned into M and m − M components. Then the variable v1

corresponds to with the macroscopic variable U so that,

dU

dt
=

dv1

dt
= g(v1, r(v1)) = F (U). (4)

Thus, the functions g, r, and F can be constructed systematically (not in closed form) to give
the process its equation-free approach.

In this work the cumulative distribution is used as the restriction operator. This portion of
the code computes the cumulative distributions of radial distance and radial velocity. The Lifting
operation is performed to bring the simulation from a lower-dimensional macroscale simulation
to a higher dimensional microscale model. The lifting operator generates initial conditions from
themacroscale variables for the individual particles in the simulation. The overall process can be
summarized in order by performing a Lift, evolving the microscopic variables in fine-scale time
(Evolve), and then Restricting to the to the macroscopic variables for coarse-time evolution. The
code for the three steps mentioned previously (Lift, Evolve, Restrict) can be found in listing 3
below. In this case, the lifting operator will be performing Dynamic Mode Decomposition (DMD)
analysis (listing 4, dmd.m) on the chosen variables. This will also allow us to evolve the system
in time.

Listing 3: Matlab code – Lift -> Evolve -> Restrict

Assignment № 7 Page 7

1 %Alex DeWitt & Kevin Mack
2 %
3 %% n - body problem s imu la t i on
4 c l e a r
5
6 N = 50 ; % number o f bod ie s
7 pdim = 3 ; % number o f s p a t i a l d imensions
8 vdim = 3 ; % number o f v e l o c i t y dimensions
9 vvar = 5e0 ; % var iance f o r i n i t i a l v e l o c i t y o f p a r t i c l e s

10 max = 1e3 ; % max d i s t anc e f o r i n i t a l p o s i t i o n s o f p a r t i c l e s
11
12 po s i t i o n s = -max+(max+max) . * rand (N, pdim) ;
13 v e l o c i t i e s = sq r t (vvar) *randn (N, vdim) ;
14 i c = [po s i t i on s , v e l o c i t i e s] . ‘ ;
15 output_600_t = ze ro s (10+1 ,6 ,N) ;
16 output_600_t (1 , : , :) = i c ;
17 num_iters = 100 ;
18 s t a r t = 1 ;
19 quarte r = f l o o r (num_iters /4) ;
20 ha l f = f l o o r (num_iters /2) ;
21 three_quarter = f l o o r (3* num_iters /4) ;
22
23 f o r i t e r a t o r = 1 : num_iters
24 i c = output_600_t (i t e r a t o r , : , :) ;
25 i c = reshape (ic , [1 , N*6]) ;
26 % se t time parameters
27 t_start = 0 ;
28 t_end = 5e2 ;
29 t = [t_start : 1 : t_end] ;
30
31 t i c
32 [T,Y] = ode113 (@n_body , t , [i c]) ; % Solve ODE‘ s
33 toc
34 Tc = s i z e (T, 1) ;
35 % get output in c o r r e c t form to p lo t time - s e r i e s
36 Y_plot = ze ro s (pdim+vdim , N, Tc) ;
37 f o r i = 1 :Tc
38 Y_plot (: , : , i) = reshape (Y(i , :) . ‘ , [pdim+vdim , N]) ;
39 end
40
41 Y_r = ze ro s (Tc ,N) ;
42 hboxs_r = l i n s p a c e (0 ,4000 ,10) ;
43 f o r i = 1 :Tc
44 Y_r(i , :) = Y_plot (1 , : , i) .^2+Y_plot (2 , : , i) .^2+Y_plot (3 , : , i) . ^ 2 ;
45 Y_r(i , :) = sq r t (Y_r(i , :)) ;
46 r_h(i , :) = h i s t (Y_r(i , :) , hboxs_r) ;
47 end

Assignment № 7 Page 8

48
49
50 Y_v = ze ro s (Tc ,N) ;
51 hboxs_v = 0 : 1 : 1 0 ;
52 f o r i = 1 :Tc
53 Y_v(i , :) = Y_plot (4 , : , i) .^2+Y_plot (5 , : , i) .^2+Y_plot (6 , : , i) . ^ 2 ;
54 Y_v(i , :) = sq r t (Y_v(i , :)) ;
55 v_h(i , :) = h i s t (Y_v(i , :) , hboxs_v) ;
56 end
57
58 % DMD
59 X = [r_h , v_h] . ‘ ;
60 dt = (t_end - t_start) /(Tc - 1) ;
61 t = [T;T(2 : 1 00)+T(end)] ;
62 [~ ,X_dmd, modes] = dmd(t ,X, dt) ;
63 X_dmd = r e a l (X_dmd) ;
64
65 %%%%%%%% L i f t i n g %%%%%%%%%%
66 xx = l i n s p a c e (0 ,5000 ,1000) ;
67 dT = 5000/1000;
68 [pos_pdf] = csaps (hboxs_r ,X_dmd(1 : 1 0 , t (end)) , . 9 9 , xx) ; % smooth with s p l i n e
69 pos_pdf (pos_pdf < 0) = 0 ;
70 pos_cdf = cumtrapz (xx , pos_pdf) ;
71 pos_cdf = pos_cdf . / pos_cdf (end) ;
72
73 pos_r = ze ro s (N, 1) ;
74 uni = rand (N, 1) ;
75
76 f o r i = 1 :N
77 pos_r (i) = f i nd (pos_cdf>uni (i) , 1) . *dT ;
78 end
79
80 theta = rand (N, 1) *2* p i ;
81 phi = rand (N, 1) * p i ;
82
83 o j = ze ro s (6 ,N) ;
84 o j (1 , :) = pos_r . * s i n (phi) . * cos (theta) ;
85 o j (2 , :) = pos_r . * s i n (phi) . * s i n (theta) ;
86 o j (3 , :) = pos_r . * cos (phi) ;
87
88 cdf_dummy = @cumtrapz ;
89 %rad i a l v e l o c i t y
90 xx = l i n s p a c e (0 ,10 ,1000) ;
91 dT = 10/1000;
92 [v_pdf] = csaps (hboxs_v ,X_dmd(11 : 21 , t (end)) , . 9 9 , xx) ;%smooth with s p l i n e
93 v_pdf (v_pdf < 0) = 0 ;
94 v_cdf = cdf_dummy(xx , v_pdf) ;

Assignment № 7 Page 9

95 v_cdf = v_cdf . / v_cdf (end) ;
96
97 v_r = ze ro s (N, 1) ;
98 uni = rand (N, 1) ;
99 f o r i = 1 :N

100 v_r(i) = f i nd (v_cdf>uni (i) , 1) . *dT ;
101 end
102
103 % plo t histograms and graphs
104 i f (i t e r a t o r == s t a r t | | i t e r a t o r == quarte r | | i t e r a t o r == ha l f | | ←↩

i t e r a t o r == three_quarter | | i t e r a t o r == num_iters)
105 bins_pos = f l o o r (s q r t (s i z e (pos_r , 1))) ;
106 bins_v = f l o o r (s q r t (s i z e (v_r , 1))) ;
107 f i g u r e
108 hold on
109 histogram (pos_r , bins_pos)
110 t i t l e ({ ‘ Histogram of Radial Distances , i t e r a t i o n ‘ i t e r a t o r })
111
112 f i g u r e
113 hold on
114 histogram (pos_r , bins_v)
115 t i t l e ({ ‘ Histogram of Radial Ve l o c i t i e s , i t e r a t i o n ‘ i t e r a t o r })
116
117 f i g u r e
118 hold on
119 g r id on
120 g r id minor
121 box on
122 p lo t (v_pdf)
123 t i t l e ({ ‘CDF of Radial Ve loc i ty , i t e r a t i o n ‘ i t e r a t o r })
124 end
125
126 %rad i a l v e l o c i t y i s in the d i r e c t i o n as r
127 o j (4 , :) = v_r . * s i n (phi) . * cos (theta) ;
128 o j (5 , :) = v_r . * s i n (phi) . * s i n (theta) ;
129 o j (6 , :) = v_r . * cos (phi) ;
130
131 %tang en t i a l v e l o c i t y i s p ropo r t i ona l to r
132 theta = rand (N, 1) *2* p i ;
133 phi = phi + pi /2 ;
134
135 %compute c i r c u l a r o r b i t s
136 v_t = sq r t (100*N./ pos_r) ;%
137 o j (4 , :) = o j (4 , :) ‘ + v_t . * s i n (phi) . * cos (theta) ;
138 o j (5 , :) = o j (5 , :) ‘ + v_t . * s i n (phi) . * s i n (theta) ;
139 o j (6 , :) = o j (6 , :) ‘ + v_t . * cos (phi) ;
140

Assignment № 7 Page 10

141 %%%%%%%%oj = new Y vecto r%%%%%%%%%%%
142
143 output_600_t (i t e r a t o r +1 , : , :) = o j ;
144 end
145
146 markers = { ‘k . ‘ , ‘ b . ‘ , ‘ g . ‘ , ‘ r . ‘ , ‘m. ‘ } ;
147 p l o t s = 0 ;
148 f i g u r e
149 hold on
150 % Plot bod ie s at d i f f e r e n t po in t s in the s imu la t i on
151 f o r i =1: i t e r a t o r
152 i f (i == s t a r t | | i == quarte r | | i == ha l f | | i == three_quarter | | i ←↩

== num_iters)
153 p lo t3 (squeeze (output_600_t (i , 1 , :)) , squeeze (output_600_t (i , 2 , :)) , ←↩

squeeze (output_600_t (i , 3 , :)) , markers { p l o t s })
154 ax i s ([- 5000 ,5000 , - 5000 ,5000 , - 5000 ,5000]) ;
155 end
156 end

Listing 4: Matlab code – dmd.m
1 f unc t i on [t ,u_dmd, u_modes] = dmd(t ,X, dt)
2 u = X(: , 1) ; % c r ea t e i n t i a l c ond i t i on s
3 X1 = X(: , 1 : end - 1) ;
4 X2 = X(: , 2 : end) ;
5
6 %perform dmd
7 [U, Sigma ,V] = svd (X1 , ‘ econ ‘) ;
8 Sigma = Sigma + diag (10^ -10* ones (s i z e (Sigma , 1) ,1)) ;
9 Sigma_inv = diag (1 . / diag (Sigma)) ;

10 S = U‘*X2*V*Sigma_inv ;
11 [ev ,D] = e i g (S) ;
12 mu = diag (D) ;
13 omega = log (mu) /(dt) ;
14 Phi = U*ev ;
15
16 y0 = pinv (Phi) *u ; %pseudo - i nv e r s e on i n i t i a l c ond i t i on s
17 u_modes = ze ro s (s i z e (V, 2) , l ength (t)) ;
18 f o r i t e r = 1 : l ength (t)
19 u_modes (: , i t e r) = (y0 . * exp (omega* t (i t e r))) ;
20 end
21 u_dmd = Phi*u_modes ; % return the dmd modes

In conclusion, the code above provides the macro-evolution of the system, with the aid from
simulating small steps in the microscale evolution at regular time intervals. This allows for the

Assignment № 7 Page 11

modeling of the behavior of the chosen macro-scale variables (radial distance and radial veloc-
ity) over comparatively large time scales to the microscale simulation. Figures 4 and 5 represent
some of the histograms created for the restriction operator. As for the initial conditions of the
simulation, the starting positions of the particles were computed from a uniform distribution,
while the initial velocities were computed from a random normal distribution. For the lifting op-
erator, the new initial conditions for microscale simulation were again generated from random
distributions, but this time in compliance with the histograms of the macro-scale variables at that
specific time. The overall result is the evolution of the macro-scale variables across coarse time
(Figures 4 and 5). The graphs were generated through 100 iterations (meaning 100 instances
of micro-scale iterations).

Assignment № 7 Page 12

(a) CDF of radial position for iteration 1 (b) CDF of radial velocity for iteration 1

(c) CDF of radial position for iteration 50 (d) CDF of radial velocity for iteration 50

(e) CDF of radial position for iteration 100 (f) CDF of radial velocity for iteration 100

Figure 4: The figures in the left column represent the CDF of the radial position, with the right
column being the distribution for the radial velocity for the particles in the simulation. The CDF
is used in the restriction phase of the simulation.

Assignment № 7 Page 13

(a) Histogram of radial position for iteration 1 (b) Histogram of radial velocity for iteration 1

(c) Histogram of radial position for iteration 50 (d) Histogram of radial velocity for iteration 50

(e) Histogram of radial position for iteration 100 (f) Histogram of radial velocity for iteration 100

Figure 5: The histograms in the left column represent the radial distances of the particles at
different points in the simulation, withe the histograms on the right representing the radial veloc-
ities. These histograms represent the evolution of the macro-scale variables over coarse-scale
time.

Assignment № 7 Page 14

