Stability and Wall-Crossing

Tom Bridgeland
Notes by Tony Feng

1 Hearts and tilting

1.1 Torsion pair

Let \mathcal{A} be an abelian category.
A "torsion pair" axiomatizes the idea of torsion and torsion-free objects.
Definition 1.1. A torsion pair $(\mathcal{T}, \mathcal{F}) \subset \mathcal{A}$ is a pair of full categories such that

1. $\operatorname{Hom}(T, F)=0$ for $T \in \mathcal{T}, F \in \mathcal{F}$.
2. For every $E \in \mathcal{A}$, there is a short exact sequence

$$
0 \rightarrow T \rightarrow E \rightarrow F \rightarrow 0
$$

for some pair of objects $T \in \mathcal{T}$ and $F \in \mathcal{F}$.
Remark 1.2. The first axiom implies that the sequence in the second axiom is unique. (If you had another sequence with T^{\prime} and F^{\prime}, then T^{\prime} couldn't map to F, hence its inclusion in E would factor through T, etc.)
Example 1.3. The standard example is \mathcal{T} being the torsion sheaves on X and \mathcal{F} the torsionfree sheaves.

1.2 Hearts of triangulated categories

Let D be a triangulated subcategory.
Definition 1.4. A heart $\mathcal{A} \subset D$ is a full subcategory such that

1. $\operatorname{Hom}(A[j], B[k])=0$ for all $A, B \in \mathcal{A}$ for $j>k$ ("no maps backward").
2. For every object $E \in D$ there is a finite filtration

$$
0=E_{m} \rightarrow E_{m+1} \rightarrow \ldots \rightarrow E_{n-1} \rightarrow E_{n}=E
$$

with factors $F_{j}=\operatorname{Cone}\left(E_{j-1} \rightarrow E_{j}\right) \in \mathcal{A}[-j]$.
The cone is the analog of the "factor" in the usual sense of filtration.

Example 1.5. The prototypical example is \mathcal{A} an abelian category insided its bounded derived category, and the filtration being obtained by truncation.

Properties.

1. It would be more standard to say that $\mathcal{A} \subset D$ is the "heart of a bounded t-structure on D." However, the heart is equivalent to the data of a t-structure.
2. In analogy, we define $H_{\mathcal{A}}^{j}(E)=F_{j}[j] \in \mathcal{A}$. (By a similar argument, this is unique up to isomorphism.)
3. Any such \mathcal{A} is automatically an abelian category.
4. The short exact sequences in \mathcal{A} are precisely the triangles in D all of whose terms lie in \mathcal{A}.
5. The inclusion functor gives an identification $K_{0}(\mathcal{A}) \cong K_{0}(D)$. (Indeed, any object in D has a filtration by objects in \mathcal{A}.)

Remark 1.6. It is not necessarily the case that $D^{b}(\mathcal{A}) \cong D$.

1.3 Tilting

Suppose that $\mathcal{A} \subset D$ is a heart, and $(\mathcal{T}, \mathcal{F}) \subset \mathcal{A}$ is a torsion pair. We can define a new, tilted heart $A^{\#} \subset D$ formed out of the torsion pair $(\mathcal{T}, \mathcal{F}[1])$ (thus shifting only the \mathcal{F} part of the previous one). There are enlightening pictures in the slides.

Rigorously, how do we know if $E \in D$ lies in $\mathcal{A}^{\#}$? We look at its cohomology, so $E \in \mathcal{A}^{\#}$ if and only if (with respect to the old heart)

$$
\left\{\begin{array}{l}
H_{\mathcal{A}}^{-1}(E) \in \mathcal{F} \\
H_{\mathcal{F}}^{0}(E) \in \mathcal{T} \\
H_{\mathcal{A}}^{i}(E)=0 \quad i \neq 0,-1 .
\end{array}\right.
$$

Example 1.7. A threefold flop

$$
X_{+} \rightarrow Y \leftarrow X_{-}
$$

induces a derived equivalence $D^{b}\left(X_{+}\right) \xrightarrow{\sim} D^{b}\left(X_{-}\right)$. More precisely, a tilt on each side identifies the hearts (which turn out to be the perverse sheaves on X_{+}, X_{-}).
Example 1.8. Consider tilting $\mathcal{A}=\boldsymbol{\operatorname { C o h }}(X) \subset D(X)$ with respect to the torsion pair $(\mathcal{T}, \mathcal{F})$ where \mathcal{T} consists of coherent sheaves with 0 -dimensional support, and \mathcal{F} consists of coherent sheaves without any zero-dimensional subsheaves.

Note that $O_{X} \in \mathcal{F} \subset A^{\#}$. Recall that we defined the PT moduli space of stable pairs parametrizing maps

$$
O_{X} \rightarrow E \rightarrow \text { coker } \rightarrow 0
$$

such that E had pure dimension 1 and dim supp coker $f=0$. This refined the Hilbert scheme parametrizing surjections

$$
O_{X} \rightarrow E \rightarrow 0
$$

We claim that this moduli space of stable pairs (β, n) is the space of surjetions in the tilt $\mathcal{A}^{\#}$

$$
\mathcal{O}_{X} \rightarrow E
$$

Indeed, suppose that we have a short exact sequence in $\mathcal{F}^{\#}$

$$
0 \rightarrow J \rightarrow O_{X} \xrightarrow{f} E \rightarrow 0
$$

Think of this not as a short exact sequence, but as a triangle in D all of whose terms are in $\mathcal{A}^{\#}$. If we take cohomology with respect to $\mathcal{A} \subset D$, then we get a long exact sequence

$$
0 \rightarrow H_{\mathcal{A}}^{0}(J) \rightarrow O_{X} \stackrel{f}{\rightarrow} H_{\mathcal{A}}^{0}(E) \rightarrow H_{\mathcal{A}}^{1}(J) \rightarrow 0 \rightarrow H_{\mathcal{A}}^{1}(E) \rightarrow 0
$$

ana TONY: [the indices don't seem compatible with what was said before.] It follows that $E \in \mathcal{A} \cap \mathcal{A}^{\#}=\mathcal{F}$ and $\operatorname{coker}(f)=H_{\mathcal{A}}^{1}(J) \in \mathcal{T}$.

2 Relation to Donaldson-Thomas Theory

2.1 Recap

Last time we discussed:

- Hall algebras and correspondences,
- A character map ch : $K_{0}(C) \rightarrow N \cong \mathbb{Z}^{\oplus n}$.
- A quantum torus, which was a non-commutative deformation of the group algebra (with multiplication twisted by the Euler form).
- An integration map $I: \operatorname{Hall}(C) \rightarrow \mathbb{C}_{q}[N]$.

2.2 Sketch proof of the DT/PT identity

Use Hall algebras to turn categorical statements (e.g. existence/uniqueness of filtrations) into identities.

1. (Reineke's identity) We have

$$
\delta_{\mathcal{A}}^{O}=\operatorname{Quot}_{\mathcal{A}}^{O} * \delta_{\mathcal{A}}
$$

and

$$
\delta_{\mathcal{A}}^{O}=\operatorname{Quot}_{\mathcal{A}}^{O} * \delta_{\mathcal{A}}
$$

(basically stated last time, with the meaning that counting maps is the same as counting surjective maps to a given subobject, over all subobjects.)
2. (Torsion pair identities) We have $\delta_{\mathcal{A}}=\delta_{\mathcal{T}} * \delta_{\mathcal{F}}$ and
3. Torsion pair identities with sections
4. Reineke's identity with section
5. All maps $O_{X} \rightarrow \mathcal{T}[-1]$ are zero, so $\delta_{\mathcal{T}[-1]}^{O}=\delta_{\mathcal{T}}^{O}$.
6. Some more identities.
7. Restrict to sheaves supported in dimension ≤ 1. Then the Euler form is trivial so the quantum torus is commutative. Integrate an identity.

2.3 Moduli space of framed sheaves

Let X be a Calabi-Yau threefold. So far we have been discussing moduli spaces of objects in the category $D^{b} \mathbf{C o h}(X)$ equipped with a kind of framing.

1. The framing eliminates stabilizers, making the moduli space a scheme (so it has a well-defined Euler characteristic).

What about unframed DT invariants? Fix a polarization of X and a class $\alpha \in N$, and consider the stack

$$
\mathcal{M}^{s s}(\alpha)=\{E \in \operatorname{Coh}(X): E \text { semistable, } \operatorname{ch}(E)=\alpha\} .
$$

Now we can't define an Euler characteristic of a stack in general, although we can define a Poincaré polynomial.

In a nice situation (α primitive and the polarization in sgeneral), the Euler characteristic makes sense and you can use it to define a naïve DT invariant.

In the general case, Joyce figured out how to define rational (naïve) invariants with good properties, and showed that they satisfied wall-crossing formulae as the polarization varies. Kontsevich and Soibelman upgraded this using the Behrend function to genuine DT invariants.

2.4 Quantum and classical DT invariants

The generating function for DT invariants is

$$
q D T=\mathcal{I}\left(\left[\mathcal{M}^{s s}(\mu) \subset \mathcal{M}\right]\right) \in \mathbb{C}_{q}\left[\left[N_{+}\right]\right] .
$$

We would like to evaluate this at $q=1$, but there is a pole. Joyce showed that the right thing to do is to take the logarithm, multiply by $q-1$ and then take the limit as $q \rightarrow 1$:

$$
D T_{\mu}=\lim _{q \rightarrow 1}(q-1) \log q D T_{\mu} \in \mathbb{C}\left[\left[N_{+}\right]\right] .
$$

There is another interpretation. The bottom line is that you should think of DT invariants on a ray as automorphisms of the torus.
Example 2.1. This is worked out for the example of a single stable bundle of fixed slope, which corresponds to the Artin stack $\bigsqcup_{n} B \mathrm{GL}_{n}$.

3 Stability conditions

3.1 Abelian categories

Let \mathcal{A} be an abelian category.
Definition 3.1. A stability condition on \mathcal{A} is a map of groups $Z: K_{0}(\mathcal{A}) \rightarrow \mathbb{C}$ such that $0 \neq E \in \mathcal{E}$ implies that $Z(E) \in \overline{\mathbb{H}}$ where $\overline{\mathbb{H}}=\mathbb{H} \cup \mathbb{R}_{<0}$ is the semi-closed upper half plane.

The phase is $\phi(E)=\frac{1}{\pi} \arg Z(E) \in(0,1]$. We say that E is semistable if every subobject of E has a (not necessarily strictly) smaller phase. A stability condition has the HarderNarasimhan property if every $E \in \mathcal{A}$ has a filtration

$$
0 \subset E_{0} \subset \ldots \subset E_{n} \subset E
$$

such that each factor $F_{i}=E_{i} / E_{i-1}$ is Z-semistable and $\phi\left(F_{1}\right)>\ldots>\phi\left(F_{n}\right)$.
The argument to show the existence of these generalized Harder-Narasimhan structures is the same as the usual one: given an object, you choose the first step in the filtration by passing to subobjects with larger and larger phase until you stop. This works as long as \mathcal{A} has some property (e.g. Artinian) that prevents this process from going on forever. If the filtration exists, then the standard argument shows that it is unique.

If C has the Harder-Narasimhan property, then we get another Reineke identity, expressing the uniqueness of the Harder-Narasimhan filtration (the flavor is like that of the earlier identity, expressing maps as a sum over surjective maps to subobjects).

Since one side of the identity is independent of the stability condition, we get a wallcrossing formula for different stability conditions. If appropriate conditions are satisfied (i.e. C has global dimension ≤ 1), then we can integrate to get an identity in the Hall algebra.

3.2 Triangulated categories

Definition 3.2. A stability condition on D is a pair (Z, \mathcal{A}) where

- \mathcal{A} is a heart of D,
- $Z: K_{0}(\mathcal{A}) \rightarrow \mathbb{C}$ is a stability condition on \mathcal{A} with the Harder-Narasimhan property.
$E \in D$ is semistable if $E=A[n]$ for some semistable $A \in \mathcal{A}$. We define $\phi(E)=\phi(A)+n$.
We consider only those stability conditions with nice properties:
- The "central charge" $Z: K_{0}(D) \rightarrow \mathbb{C}$ factors through ch : $K_{0}(D) \rightarrow N \cong \mathbb{Z}^{\oplus n}$.
- There is $K>0$ such that for any semistable $E \in D$,

$$
Z(E) \geq K \cdot\|\operatorname{ch}(E)\| .
$$

Theorem 3.3. Sending a stability condition to Z defines a local homeomorphism

$$
\operatorname{Stab}(D) \rightarrow \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C}) \cong \mathbb{C}^{n} .
$$

In particular, $\operatorname{Stab}(D)$ is a complex manifold.

