Higher-order intersections in low-dimensional topology Freedman Fest June 2011

J Conant, R Schneiderman and P Teichner

Linking number as an order 0 intersection invariant:

Moving into B^4 from left to right.

 $\mathscr{W} := D_1 \cup D_2 \subset B^4$ is an order 0 Whitney tower with intersection invariant $\tau_0(\mathscr{W}) = \ell k(\partial \mathscr{W}) \in \mathbb{Z}$

4/34

Vanishing order 0 intersections \rightsquigarrow Order 1 Whitney tower \mathscr{W}

 $\mathscr{W} = D_1 \cup D_2 \cup D_3 \cup W_{(1,2)} \subset B^4$ is an order 1 Whitney tower. $p \in W_{(1,2)} \cap D_3$ is an order 1 intersection point.

The order 1 intersection invariant au_1 .

Order 1 trees are associated to order 1 intersections.

$$\tau_1(\mathscr{W}) = t_p = 3 - <\frac{2}{1} \in \mathscr{T}_1(3) = \frac{\text{order } 1 \text{ trees}}{\text{relations}}$$

Vanishing order ≤ 1 intersections \rightsquigarrow Order 2 Whitney tower

$\mathscr{W} = D_1 \cup D_2 \cup D_3 \cup D_4 \cup W_{(1,2)} \cup W_{((1,2),3)} \subset B^4$

The order 2 intersection invariant τ_2 .

$$au_2(\mathscr{W}) = t_p = \frac{3}{4} > -< \frac{2}{1} \in \mathscr{T}_2(4) := \frac{\text{order } 2 \text{ trees}}{\text{relations}}$$

- <u>Construction Theorem</u>: If $L \subset S^3$ bounds $\mathcal{W} \subset B^4$ with $\tau_n^{\infty}(\mathcal{W}) = 0$ then L bounds an order n+1 twisted Whitney tower.
- <u>Detection Theorem</u>: The first non-vanishing (length n+2) Milnor invariants of L = ∂ W can be computed from τ_n[∞](W).

<u>Classification Theorem</u>: The sets W_n^{∞} of links bounding order *n* twisted Whitney towers modulo order n+1 twisted Whitney tower concordance are finitely generated abelian groups which are classified by Milnor invariants and higher-order Arf invariants.

Specifically,

$$W_n^{\infty} \cong \mathbb{Z}^{N_n}$$
 for $n \equiv 0, 1, 3 \mod 4$

where N_n is the number of independent Milnor invariants;

$$\mathsf{W}^{\infty}_{4k-2} \cong \mathbb{Z}^{N_{4k-2}} \oplus (\mathbb{Z}_2 \otimes \mathscr{L}_k)/?$$

where the torsion quotient is detected by higher-order Arf invariants.

Unitrivalent trees for Whitney disks and intersections

Whitney disks \rightsquigarrow rooted trees. Transverse intersections \rightsquigarrow un-rooted trees.

$$(I,J) \longleftrightarrow \neg J$$
 and $t_p = K \neg J =: \langle K, (I,J) \rangle$

- The order of a unitrivalent tree is the number of trivalent vertices.
- The order of a Whitney disk *W_J* is the order of its (rooted) tree *J*.
- The order of an intersection point *p* is the order of its (un-rooted) tree *t_p*.

Order *n* Whitney towers in B^4

Definition

- A Whitney tower of order zero is a collection of properly immersed disks in *B*⁴ bounding a framed link in *S*³.
- For n ≥ 1, a Whitney tower of order n is an order n-1 Whitney tower W together with Whitney disks pairing all order n-1 intersections in W.

The target \mathscr{T}_n for higher-order intersection invariants

Definition

 \mathcal{T}_n is the abelian group generated by order *n* trees modulo the following antisymmetry and IHX (local) relations:

Definition

The order *n* intersection tree of an order *n* Whitney tower \mathcal{W} is defined by

$$au_n(\mathscr{W}) := \sum \varepsilon_p \cdot t_p \in \mathscr{T}_n$$

The sum is over all order n intersections p,

Theorem (order-raising)

If L bounds \mathscr{W} with $\tau_n(\mathscr{W}) = 0 \in \mathscr{T}_n$, then L bounds an order n+1 Whitney tower.

Splitting a Whitney tower.

A successful Whitney move

depends on a framed Whitney disk

The Whitney section over ∂W extends over W.

Twisted Whitney disks

 $W \mapsto \omega(W) \in \mathbb{Z}$ (relative Euler number) via orientation conventions.

A framed Whitney disk is 0-twisted.

For any rooted tree J, define the ∞ -tree by labeling the root with the symbol ∞ :

$$J^{\infty} := \infty - J$$

 ∞ -trees will be assigned to twisted Whitney disks, with the symbol ∞ representing a "twist".

A twisted Whitney tower is allowed to have twisted Whitney disks.

It turns out that twisted order n Whitney disks "behave like" order 2n obstructions in the Whitney tower obstruction theory.

The target \mathscr{T}_n^{∞} for twisted intersection invariants

Definition

The abelian group $\mathscr{T}_{2n-1}^{\infty}$ is the quotient of \mathscr{T}_{2n-1} by boundary-twist relations:

$$i \rightarrow J = 0$$

Here J ranges over all order n-1 rooted trees .

The abelian group $\mathscr{T}_{2n}^{\infty}$ is gotten from \mathscr{T}_{2n} by including order $n \infty$ -trees as new generators and introducing (in addition to antisymmetry and IHX relations on non- ∞ trees) new symmetry, twisted IHX, and interior-twist relations :

$$J^{\infty} = (-J)^{\infty}$$
 $I^{\infty} = H^{\infty} + X^{\infty} - \langle H, X \rangle$ $2 \cdot J^{\infty} = \langle J, J \rangle$

 $\mathscr{T}_{2n}^{\infty}$ is the universal quadratic refinement of the \mathscr{T}_{2n} -valued Whitney disk intersection form.

$$\tau_n^{\infty}(\mathscr{W}) := \sum \varepsilon_p \cdot t_p + \sum \omega(W_J) \cdot J^{\infty} \in \mathscr{T}_n^{\infty}$$

Theorem

If L bounds \mathscr{W} with $\tau_n^{\infty}(\mathscr{W}) = 0 \in \mathscr{T}_n^{\infty}$, then L bounds an order n+1 twisted Whitney tower.

 $\mathbb{W}_n^{\infty} := \{ \text{framed links } L \subset S^3 \text{ bounding order } n \text{ twisted } \mathscr{W} \subset B^4 \}.$

Get filtration: $\dots \subseteq \mathbb{W}_3^{\infty} \subseteq \mathbb{W}_2^{\infty} \subseteq \mathbb{W}_1^{\infty} \subseteq \mathbb{W}_0^{\infty}$ (which factors through concordance).

 $W_n^{\infty} := \mathbb{W}_n^{\infty}$ modulo order (n+1) twisted Whitney tower concordance.

Proposition

 W_n^{∞} is a finitely generated group under band sum.

Will compute W_n^{∞} by relating τ_n^{∞} to Milnor and higher-order Arf invariants.

Rooted trees and the free Lie algebra ${\mathscr L}$

 $\mathscr{L} = \oplus \mathscr{L}_n$ is the free \mathbb{Z} -Lie algebra on $\{X_1, \ldots, X_m\}$.

$$-<_{i}^{j} \longleftrightarrow [X_{i}, X_{j}]$$

 \mathcal{L}_n is isomorphic to order n-1 rooted trees, modulo IHX and self-annihilation:

From unrooted to rooted trees

The map $\eta_n^{\infty}: \mathscr{T}_n^{\infty} \to \mathscr{L}_1 \otimes \mathscr{L}_{n+1}$ sums over all choices of root on non- ∞ trees:

$$\begin{split} \eta_1^{\infty} \big(1 - <^3_2 \big) &= X_1 \otimes - <^3_2 + X_2 \otimes 1 - <^3 + X_3 \otimes 1 - <_2 \\ &= X_1 \otimes [X_2, X_3] + X_2 \otimes [X_3, X_1] + X_3 \otimes [X_1, X_2], \end{split}$$

or

$$\eta_2^{\infty}(\frac{1}{2} > - <\frac{2}{1}) = 2(X_1 \otimes _2 > - <\frac{2}{1} + X_2 \otimes ^1 > - <\frac{2}{1})$$

= 2(X_1 \otimes [X_2, [X_1, X_2]] + X_2 \otimes [[X_1, X_2], X_1]),

and is defined on ∞ -trees J of order n/2 by

$$\eta_n^{\infty}(J^{\infty}) := \frac{1}{2}\eta_n^{\infty}(\langle J, J \rangle).$$

Twisted Whitney towers and Milnor's μ_n invariants

Both η_n^{∞} and μ_n map onto $\mathsf{D}_n := \mathsf{Ker}(\mathscr{L}_1 \otimes \mathscr{L}_{n+1} \xrightarrow{[\,\,,\,]} \mathscr{L}_{n+2}) \cong \mathbb{Z}^{N_n}$.

Theorem

The first non-vanishing order n Milnor invariant defines a surjection $\mu_n: W^{o}_n \to \mathsf{D}_n,$ and

$$\mu_n(\partial \mathscr{W}) = \eta_n^{\infty} \circ \tau_n^{\infty}(\mathscr{W})$$

Proof uses (twisted) Whitney tower-grope correspondence, and (twisted) grope duality:

Computation of W_n^{∞} in "3/4" of the cases follows from the following theorem:

Theorem $\eta_n^{\infty}: \mathscr{T}_n^{\infty} \to \mathsf{D}_n \text{ are isomorphisms for } n \equiv 0, 1, 3 \mod 4.$

Proof uses discrete Morse theory on chain complexes. (Inspired by J. Levine's extension of the Hall basis algorithm to free quasi-Lie algebras.)

Corollary

$$W_n^{\infty} \cong \mathscr{T}_n^{\infty} \cong \mathsf{D}_n \text{ for } n \equiv 0, 1, 3 \mod 4.$$

For the remaining cases n = 4k - 2, will define higher-order Arf invariants on the kernel of μ_{4k-2} ...

Higher-order Arf invariants.

Theorem

There is an exact sequence (which is short exact for k = 1):

$$\mathbb{Z}_2 \otimes \mathsf{L}_k \xrightarrow{\alpha_k} \mathsf{W}_{4k-2}^{\infty} \xrightarrow{\mu_{4k-2}} \mathsf{D}_{4k-2} \to 0.$$

So for links in $\text{Ker}(\mu_{4k-2})$ the only remaining obstructions to lying in W_{4k-1}° are the following higher-order Arf invariants:

Definition

Define the higher-order Arf invariants Arf_k by

$$\operatorname{Arf}_k \colon \operatorname{Ker}(\mu_{4k-2}) \to (\mathbb{Z}_2 \otimes \mathsf{L}_k) / \operatorname{Ker}(\alpha_k)$$

Corollary

The groups W_n^{∞} are classified by Milnor invariants μ_n and the above Arf invariants Arf_k for n = 4k - 2.

- The classical Arf invariants of the link components are $\operatorname{Arf}_1 \in \mathbb{Z}_2 \otimes L_1 \cong \mathbb{Z}_2^m$.
- The map α_k takes $1 \otimes [J] \in \mathbb{Z}_2 \otimes \mathscr{L}_k$ to a link bounding \mathscr{W} with $\tau^{\infty}_{4k-2}(\mathscr{W}) = (J, J)^{\infty}$.
- We conjecture that α_k is injective, so that Arf_k takes values in $\mathbb{Z}_2 \otimes L_k$ for all k, and is determined by $\tau_{4k-2}^{\infty}(\mathscr{W}) \in \operatorname{span}\{(J, J)^{\infty}\} < \mathscr{T}_{4k-2}^{\infty}$.
- First open case is k = 2: For L = Bing double of the figure-8 knot, $L \in \text{Ker}\,\mu_6$, and L bounds \mathscr{W} with $\tau_6^{\infty}(\mathscr{W}) = ((1,2),(1,2))^{\infty}$, so $\text{Arf}_2(L) = [X_1, X_2]$ which generates $\mathbb{Z}_2 \otimes L_2$.

The Bing double of the figure-8 knot

L = Bing(figure-8) bounds an order 6 twisted Whitney tower \mathscr{W} :

$$\mathscr{W} = D_1 \cup D_2 \cup W_{(1,2)} \cup W_{((1,2),(1,2))}.$$

 $W_{(1,2)}$ is the trace of a null-homotopy of the figure-8 knot on the right.

The Bing double of the figure-8 knot

The trace of the figure-8 knot null-homotopy describing $W_{(1,2)}$ has a canceling pair of self-intersections admitting an embedded twisted Whitney disk $W_{((1,2),(1,2))}$. (The right-most picture is the unlink.)

The Bing double of the figure-8 knot

The second and third pictures from the previous frame:

The twisting $\omega(W_{((1,2),(1,2))}) = 1$ corresponds to the +1-linking between the 'inner' boundary component of a collar on $\partial W_{((1,2),(1,2))}$ and a Whitney section.

So
$$au_6^{\infty}(\mathscr{W}) = ((1,2),(1,2))^{\infty}.$$

Appendix 1: The first non-vanishing Milnor invariant of a link L

• Consider the link group $\Gamma := \pi_1(S^3 \setminus L)$ and assume inductively that the longitudes ℓ_1, \ldots, ℓ_m lie in Γ_{n+1} , the (n+1)-st term of the lower central series. If F is the free group on X_1, \ldots, X_m then

$$\frac{\Gamma_{n+1}}{\Gamma_{n+2}} \cong \frac{F_{n+1}}{F_{n+2}} \cong \mathscr{L}_{n+1}$$

• The first non-vanishing order *n* Milnor invariant $\mu_n(L)$ of *L* is defined inductively by

$$\mu_n(L) := \sum_{i=1}^m [X_i] \otimes [\ell_i] \in \mathscr{L}_1 \otimes \mathscr{L}_{n+1}$$

• $\mu_n(L)$ actually lies in $D_n := \operatorname{Ker}(\mathscr{L}_1 \otimes \mathscr{L}_{n+1} \xrightarrow{[],]} \mathscr{L}_{n+2})$