Higher-order intersections in low-dimensional topology

Freedman Fest June 2011

J Conant, R Schneiderman and P Teichner

Linking number as an order 0 intersection invariant:

Moving into B^{4} from left to right.

$\mathscr{W}:=D_{1} \cup D_{2} \subset B^{4}$ is an order 0 Whitney tower with intersection invariant

$$
\tau_{0}(\mathscr{W})=\ell k(\partial \mathscr{W}) \in \mathbb{Z}
$$

Vanishing order 0 intersections \rightsquigarrow Order 1 Whitney tower \mathscr{W}

$\mathscr{W}=D_{1} \cup D_{2} \cup D_{3} \cup W_{(1,2)} \subset B^{4}$ is an order 1 Whitney tower.
$p \in W_{(1,2)} \cap D_{3}$ is an order 1 intersection point.

The order 1 intersection invariant τ_{1}.

Order 1 trees are associated to order 1 intersections.

$$
\tau_{1}(\mathscr{W})=t_{p}=3<{ }_{1}^{2} \in \mathscr{T}_{1}(3)=\frac{\text { order } 1 \text { trees }}{\text { relations }}
$$

Vanishing order ≤ 1 intersections \rightsquigarrow Order 2 Whitney tower

The order 2 intersection invariant τ_{2}.

$$
\tau_{2}(\mathscr{W})=t_{p}={ }_{4}^{3}><{ }_{1}^{2} \in \mathscr{T}_{2}(4):=\frac{\text { order } 2 \text { trees }}{\text { relations }}
$$

Order n twisted Whitney towers in B^{4}.

- Construction Theorem: If $L \subset S^{3}$ bounds $\mathscr{W} \subset B^{4}$ with $\tau_{n}^{c \infty}(\mathscr{W})=0$ then L bounds an order $n+1$ twisted Whitney tower.
- Detection Theorem: The first non-vanishing (length $n+2$) Milnor invariants of $L=\partial \mathscr{W}$ can be computed from $\tau_{n}^{\infty}(\mathscr{W})$.

Order n twisted Whitney towers in B^{4}.

Classification Theorem: The sets W_{n}^{∞} of links bounding order n twisted Whitney towers modulo order $n+1$ twisted Whitney tower concordance are finitely generated abelian groups which are classified by Milnor invariants and higher-order Arf invariants.

Specifically,

$$
W_{n}^{\infty} \cong \mathbb{Z}^{N_{n}} \quad \text { for } \quad n \equiv 0,1,3 \quad \bmod 4
$$

where N_{n} is the number of independent Milnor invariants;

$$
W_{4 k-2}^{\infty} \cong \mathbb{Z}^{N_{4 k-2}} \oplus\left(\mathbb{Z}_{2} \otimes \mathscr{L}_{k}\right) / ?
$$

where the torsion quotient is detected by higher-order Arf invariants.

Unitrivalent trees for Whitney disks and intersections

Whitney disks \rightsquigarrow rooted trees. Transverse intersections \rightsquigarrow un-rooted trees.

$(I, J) \longleftrightarrow<\jmath_{I} \quad$ and $\quad t_{p}=K<J=:\langle K,(I, J)\rangle$

Grading by order $=$ number of trivalent vertices

- The order of a unitrivalent tree is the number of trivalent vertices.
- The order of a Whitney disk W_{J} is the order of its (rooted) tree J.
- The order of an intersection point p is the order of its (un-rooted) tree t_{p}.

Order n Whitney towers in B^{4}

Definition

- A Whitney tower of order zero is a collection of properly immersed disks in B^{4} bounding a framed link in S^{3}.
- For $n \geq 1$, a Whitney tower of order n is an order $n-1$ Whitney tower \mathscr{W} together with Whitney disks pairing all order $n-1$ intersections in \mathscr{W}.

The target \mathscr{T}_{n} for higher-order intersection invariants

Definition

\mathscr{T}_{n} is the abelian group generated by order n trees modulo the following antisymmetry and IHX (local) relations:

The intersection invariant $\tau_{n}(\mathscr{W}) \in \mathscr{T}_{n}$

Definition

The order n intersection tree of an order n Whitney tower \mathscr{W} is defined by

$$
\tau_{n}(\mathscr{W}):=\sum \varepsilon_{p} \cdot t_{p} \in \mathscr{T}_{n}
$$

The sum is over all order n intersections p,

Theorem (order-raising)
If L bounds \mathscr{W} with $\tau_{n}(\mathscr{W})=0 \in \mathscr{T}_{n}$, then L bounds an order $n+1$ Whitney tower.

Splitting a Whitney tower.

A successful Whitney move

depends on a framed Whitney disk

The Whitney section over ∂W extends over W.

Twisted Whitney disks

$W \mapsto \omega(W) \in \mathbb{Z}$ (relative Euler number) via orientation conventions.

A framed Whitney disk is 0-twisted.

Twisted trees

For any rooted tree J, define the ∞-tree by labeling the root with the symbol cs:

$$
J^{\infty}:=\infty-J
$$

cs-trees will be assigned to twisted Whitney disks, with the symbol cs representing a "twist".

Twisted Whitney towers in B^{4}

A twisted Whitney tower is allowed to have twisted Whitney disks.

It turns out that twisted order n Whitney disks "behave like" order $2 n$ obstructions in the Whitney tower obstruction theory.

The target \mathscr{T}_{n}^{∞} for twisted intersection invariants

Definition

The abelian group $\mathscr{T}_{2 n-1}^{\infty}$ is the quotient of $\mathscr{T}_{2 n-1}$ by boundary-twist relations:

$$
i<{ }_{J}^{J}=0
$$

Here J ranges over all order $n-1$ rooted trees .

The abelian group $\mathscr{T}_{2 n}^{\infty}$ is gotten from $\mathscr{T}_{2 n}$ by including order n cs-trees as new generators and introducing (in addition to antisymmetry and IHX relations on non-cs trees) new symmetry, twisted IHX, and interior-twist relations :

$$
J^{\infty}=(-J)^{\infty} \quad I^{\infty}=H^{\infty}+X^{\infty}-\langle H, X\rangle \quad 2 \cdot J^{\infty}=\langle J, J\rangle
$$

$\mathscr{T}_{2 n}^{\infty}$ is the universal quadratic refinement of the $\mathscr{T}_{2 n}$-valued Whitney disk intersection form.

The twisted intersection invariant τ^{∞}

$$
\tau_{n}^{\infty}(\mathscr{W}):=\sum \varepsilon_{p} \cdot t_{p}+\sum \omega\left(W_{J}\right) \cdot J^{\infty} \in \mathscr{T}_{n}^{\infty}
$$

Theorem

If L bounds \mathscr{W} with $\tau_{n}^{\infty}(\mathscr{W})=0 \in \mathscr{T}_{n}^{\infty}$, then L bounds an order $n+1$ twisted Whitney tower.

The twisted Whitney tower filtration

$\mathbb{W}_{n}^{\infty}:=\left\{\right.$ framed links $L \subset S^{3}$ bounding order n twisted $\left.\mathscr{W} \subset B^{4}\right\}$.
Get filtration: $\cdots \subseteq \mathbb{W}_{3}^{\infty} \subseteq \mathbb{W}_{2}^{\infty} \subseteq \mathbb{W}_{1}^{\infty} \subseteq \mathbb{W}_{0}^{\infty}$ (which factors through concordance).
$W_{n}^{\infty}:=\mathbb{W}_{n}^{\infty}$ modulo order $(n+1)$ twisted Whitney tower concordance.

Proposition

$\mathrm{W}_{n}^{\text {cs }}$ is a finitely generated group under band sum.

Will compute W_{n}^{∞} by relating τ_{n}^{∞} to Milnor and higher-order Arf invariants.

Rooted trees and the free Lie algebra \mathscr{L}

$\mathscr{L}=\oplus \mathscr{L}_{n}$ is the free \mathbb{Z}-Lie algebra on $\left\{X_{1}, \ldots, X_{m}\right\}$.

\mathscr{L}_{n} is isomorphic to order $n-1$ rooted trees, modulo IHX and self-annihilation:

$$
<_{J}^{J}=0
$$

From unrooted to rooted trees

The map $\eta_{n}^{\infty}: \mathscr{T}_{n}^{\infty} \rightarrow \mathscr{L}_{1} \otimes \mathscr{L}_{n+1}$ sums over all choices of root on non-cs trees:

$$
\begin{gathered}
\eta_{1}^{\infty}\left(1 \ll_{2}^{3}\right)=X_{1} \otimes<_{2}^{3}+X_{2} \otimes 1<^{3}+X_{3} \otimes 1 \ll_{2} \\
=\quad x_{1} \otimes\left[X_{2}, X_{3}\right]+X_{2} \otimes\left[X_{3}, X_{1}\right]+X_{3} \otimes\left[X_{1}, X_{2}\right]
\end{gathered}
$$

or

$$
\begin{aligned}
& \eta_{2}^{\infty}\left(\begin{array}{l}
1 \\
2
\end{array}>{ }_{1}^{2}\right)=2\left(X_{1} \otimes 2><{ }_{1}^{2}+X_{2} \otimes{ }^{1}><_{1}^{2}\right) \\
& \quad=2\left(X_{1} \otimes\left[X_{2},\left[X_{1}, X_{2}\right]\right]+X_{2} \otimes\left[\left[X_{1}, X_{2}\right], X_{1}\right]\right),
\end{aligned}
$$

and is defined on co-trees J of order $n / 2$ by

$$
\eta_{n}^{\infty}\left(J^{\infty}\right):=\frac{1}{2} \eta_{n}^{\infty}(\langle J, J\rangle)
$$

Twisted Whitney towers and Milnor's μ_{n} invariants

Both η_{n}^{∞} and μ_{n} map onto $\mathrm{D}_{n}:=\operatorname{Ker}\left(\mathscr{L}_{1} \otimes \mathscr{L}_{n+1} \xrightarrow{[,]} \mathscr{L}_{n+2}\right) \cong \mathbb{Z}^{N_{n}}$.

Theorem

The first non-vanishing order n Milnor invariant defines a surjection $\mu_{n}: \mathrm{W}_{n}^{\infty} \rightarrow \mathrm{D}_{n}$, and

$$
\mu_{n}(\partial \mathscr{W})=\eta_{n}^{\infty} \circ \tau_{n}^{\infty}(\mathscr{W})
$$

Proof uses (twisted) Whitney tower-grope correspondence, and (twisted) grope duality:

Computing W_{n}^{∞}.

Computation of $W_{n}^{c s}$ in " $3 / 4$ " of the cases follows from the following theorem:

Theorem

$\eta_{n}^{\infty}: \mathscr{T}_{n}^{\infty} \rightarrow \mathrm{D}_{n}$ are isomorphisms for $n \equiv 0,1,3 \bmod 4$.
Proof uses discrete Morse theory on chain complexes. (Inspired by J. Levine's extension of the Hall basis algorithm to free quasi-Lie algebras.)

Corollary

$W_{n}^{\infty} \cong \mathscr{T}_{n}^{\infty} \cong D_{n}$ for $n \equiv 0,1,3 \bmod 4$.
For the remaining cases $n=4 k-2$, will define higher-order Arf invariants on the kernel of $\mu_{4 k-2} \ldots$

Higher-order Arf invariants.

Theorem

There is an exact sequence (which is short exact for $k=1$):

$$
\mathbb{Z}_{2} \otimes \mathrm{~L}_{k} \xrightarrow{\alpha_{k}} \mathrm{~W}_{4 k-2}^{\infty} \xrightarrow{\mu_{4 k-2}} \mathrm{D}_{4 k-2} \rightarrow 0 .
$$

So for links in $\operatorname{Ker}\left(\mu_{4 k-2}\right)$ the only remaining obstructions to lying in $\mathrm{W}_{4 k-1}^{\infty}$ are the following higher-order Arf invariants:

Definition

Define the higher-order Arf invariants Arf $_{k}$ by

$$
\operatorname{Arf}_{k}: \operatorname{Ker}\left(\mu_{4 k-2}\right) \rightarrow\left(\mathbb{Z}_{2} \otimes L_{k}\right) / \operatorname{Ker}\left(\alpha_{k}\right)
$$

Corollary

The groups W_{n}^{∞} are classified by Milnor invariants μ_{n} and the above Arf invariants Arf_{k} for $n=4 k-2$.

$A r f_{k}$

- The classical Arf invariants of the link components are $\operatorname{Arf}_{1} \in \mathbb{Z}_{2} \otimes \mathrm{~L}_{1} \cong \mathbb{Z}_{2}^{m}$.
- The map α_{k} takes $1 \otimes[J] \in \mathbb{Z}_{2} \otimes \mathscr{L}_{k}$ to a link bounding \mathscr{W} with $\tau_{4 k-2}^{\infty}(\mathscr{W})=(J, J)^{\infty}$.
- We conjecture that α_{k} is injective, so that Arf_{k} takes values in $\mathbb{Z}_{2} \otimes \mathrm{~L}_{k}$ for all k, and is determined by $\tau_{4 k-2}^{\infty}(\mathscr{W}) \in \operatorname{span}\left\{(J, J)^{\infty}\right\}<\mathscr{T}_{4 k-2}^{\infty}$.
- First open case is $k=2$: For $L=$ Bing double of the figure- 8 knot, $L \in \operatorname{Ker} \mu_{6}$, and L bounds \mathscr{W} with $\tau_{6}^{\infty}(\mathscr{W})=((1,2),(1,2))^{\infty}$, so $\operatorname{Arf}_{2}(L)=\left[X_{1}, X_{2}\right]$ which generates $\mathbb{Z}_{2} \otimes L_{2}$.

The Bing double of the figure-8 knot

$L=\operatorname{Bing}($ figure-8) bounds an order 6 twisted Whitney tower $\mathscr{W}:$

$$
\mathscr{W}=D_{1} \cup D_{2} \cup W_{(1,2)} \cup W_{((1,2),(1,2))}
$$

$W_{(1,2)}$ is the trace of a null-homotopy of the figure-8 knot on the right.

The Bing double of the figure-8 knot

The trace of the figure-8 knot null-homotopy describing $W_{(1,2)}$ has a canceling pair of self-intersections admitting an embedded twisted Whitney disk $W_{((1,2),(1,2))}$.
(The right-most picture is the unlink.)

The Bing double of the figure-8 knot

The second and third pictures from the previous frame:

The twisting $\omega\left(W_{((1,2),(1,2))}\right)=1$ corresponds to the +1 -linking between the 'inner' boundary component of a collar on $\partial W_{((1,2),(1,2))}$ and a Whitney section.
So $\tau_{6}^{\infty}(\mathscr{W})=((1,2),(1,2))^{\infty}$.

Appendix 1: The first non-vanishing Milnor invariant of a link L

- Consider the link group $\Gamma:=\pi_{1}\left(S^{3} \backslash L\right)$ and assume inductively that the longitudes $\ell_{1}, \ldots, \ell_{m}$ lie in Γ_{n+1}, the $(n+1)$-st term of the lower central series. If F is the free group on X_{1}, \ldots, X_{m} then

$$
\frac{\Gamma_{n+1}}{\Gamma_{n+2}} \cong \frac{F_{n+1}}{F_{n+2}} \cong \mathscr{L}_{n+1}
$$

- The first non-vanishing order n Milnor invariant $\mu_{n}(L)$ of L is defined inductively by

$$
\mu_{n}(L):=\sum_{i=1}^{m}\left[X_{i}\right] \otimes\left[\ell_{i}\right] \in \mathscr{L}_{1} \otimes \mathscr{L}_{n+1}
$$

- $\mu_{n}(L)$ actually lies in $\mathrm{D}_{n}:=\operatorname{Ker}\left(\mathscr{L}_{1} \otimes \mathscr{L}_{n+1} \xrightarrow{[,]} \mathscr{L}_{n+2}\right)$

