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Linking number as an order 0 intersection invariant:

Moving into B4 from left to right.
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W := D1∪D2 ⊂ B4 is an order 0 Whitney tower with intersection invariant

τ0(W ) = `k(∂W ) ∈ Z
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Vanishing order 0 intersections Order 1 Whitney tower W
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W = D1∪D2∪D3∪W(1,2) ⊂ B4 is an order 1 Whitney tower.
p ∈W(1,2)∩D3 is an order 1 intersection point.
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The order 1 intersection invariant τ1.

Order 1 trees are associated to order 1 intersections.
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τ1(W ) = tp = 3−< 2
1 ∈T1(3) =

order 1 trees
relations
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Vanishing order ≤ 1 intersections  Order 2 Whitney tower
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W = D1∪D2∪D3∪D4∪W(1,2)∪W((1,2),3) ⊂ B4
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The order 2 intersection invariant τ2.
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τ2(W ) = tp = 3
4 >−−< 2

1 ∈T2(4) :=
order 2 trees
relations
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Order n twisted Whitney towers in B4.

Construction Theorem: If L⊂ S3 bounds W ⊂ B4 with τn (W ) = 0
then L bounds an order n+1 twisted Whitney tower.

Detection Theorem: The first non-vanishing (length n+2) Milnor
invariants of L = ∂W can be computed from τn (W ).
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Order n twisted Whitney towers in B4.

Classification Theorem: The sets Wn of links bounding order n twisted
Whitney towers modulo order n+1 twisted Whitney tower concordance are
finitely generated abelian groups which are classified by Milnor invariants
and higher-order Arf invariants.

Specifically,

Wn
∼= ZNn for n ≡ 0,1,3 mod 4

where Nn is the number of independent Milnor invariants;

W4k−2
∼= ZN4k−2⊕ (Z2⊗Lk)/?

where the torsion quotient is detected by higher-order Arf invariants.
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Unitrivalent trees for Whitney disks and intersections

Whitney disks  rooted trees. Transverse intersections  un-rooted trees.
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(I ,J) ←→ −< J
I and tp = K−< J

I =: 〈K , (I ,J)〉
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Grading by order = number of trivalent vertices

The order of a unitrivalent tree is the number of trivalent vertices.

The order of a Whitney disk WJ is the order of its
(rooted) tree J.

The order of an intersection point p is the order of its
(un-rooted) tree tp.
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Order n Whitney towers in B4

Definition
A Whitney tower of order zero is a collection of properly immersed
disks in B4 bounding a framed link in S3.

For n ≥ 1, a Whitney tower of order n is
an order n−1 Whitney tower W together with
Whitney disks pairing all order n−1 intersections in W .
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The target Tn for higher-order intersection invariants

Definition
Tn is the abelian group generated by order n trees modulo the following
antisymmetry and IHX (local) relations:

IHX:

AS:
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The intersection invariant τn(W ) ∈Tn

Definition
The order n intersection tree of an order n Whitney tower W is defined by

τn(W ) := ∑εp · tp ∈Tn

The sum is over all order n intersections p,

Theorem (order-raising)
If L bounds W with τn(W ) = 0 ∈Tn,
then L bounds an order n+1 Whitney tower.
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Splitting a Whitney tower.

16 / 34



A successful Whitney move

17 / 34



depends on a framed Whitney disk

The Whitney section over ∂W extends over W .
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Twisted Whitney disks

W 7→ ω(W ) ∈ Z (relative Euler number) via orientation conventions.

W

W

A framed Whitney disk is 0-twisted.
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Twisted trees

For any rooted tree J, define the -tree by labeling the root with the
symbol :

J := −−J

-trees will be assigned to twisted Whitney disks, with the symbol
representing a “twist”.
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Twisted Whitney towers in B4

A twisted Whitney tower is allowed to have twisted Whitney disks.

It turns out that twisted order n Whitney disks “behave like” order 2n
obstructions in the Whitney tower obstruction theory.

21 / 34



The target Tn for twisted intersection invariants

Definition
The abelian group T2n−1 is the quotient of T2n−1 by boundary-twist
relations:

i −−<J
J = 0

Here J ranges over all order n−1 rooted trees .

The abelian group T2n is gotten from T2n by including order n -trees as
new generators and introducing (in addition to antisymmetry and IHX
relations on non- trees) new symmetry, twisted IHX, and interior-twist
relations :

J = (−J) I = H +X −〈H,X 〉 2 ·J = 〈J,J〉

T2n is the universal quadratic refinement of the T2n-valued Whitney disk
intersection form.
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The twisted intersection invariant τ

τn (W ) := ∑εp · tp +∑ω(WJ) ·J ∈Tn

Theorem
If L bounds W with τn (W ) = 0 ∈Tn , then L bounds an order n+1
twisted Whitney tower.
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The twisted Whitney tower filtration

Wn := {framed links L⊂ S3 bounding order n twisted W ⊂ B4}.

Get filtration: · · · ⊆W3 ⊆W2 ⊆W1 ⊆W0 (which factors through
concordance).

Wn := Wn modulo order (n+1) twisted Whitney tower concordance.

Proposition
Wn is a finitely generated group under band sum.

Will compute Wn by relating τn to Milnor and higher-order Arf invariants.
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Rooted trees and the free Lie algebra L

L =⊕Ln is the free Z-Lie algebra on {X1, . . . ,Xm}.

−−< j
i ←→ [Xi ,Xj ]

−−< J
I ←→ [I ,J]

Ln is isomorphic to order n−1 rooted trees, modulo IHX and
self-annihilation:

−−< J
J = 0
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From unrooted to rooted trees

The map ηn : Tn →L1⊗Ln+1 sums over all choices of root on non-
trees:

η1
(
1−−< 3

2
)

= X1⊗ −−< 3
2 + X2⊗ 1−−< 3 + X3⊗ 1−−< 2

= X1⊗ [X2,X3] +X2⊗ [X3,X1] +X3⊗ [X1,X2],

or
η2

( 1
2 >−−< 2

1
)

= 2(X1⊗ 2 >−−< 2
1 +X2⊗ 1 >−−< 2

1)

= 2(X1⊗ [X2, [X1,X2]] +X2⊗ [[X1,X2],X1]),

and is defined on -trees J of order n/2 by

ηn (J ) :=
1
2

ηn (〈J,J〉).
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Twisted Whitney towers and Milnor’s µn invariants

Both ηn and µn map onto Dn := Ker(L1⊗Ln+1
[ , ]−→Ln+2)∼= ZNn .

Theorem
The first non-vanishing order n Milnor invariant defines a surjection
µn : Wn → Dn, and

µn(∂W ) = ηn ◦ τn (W )

Proof uses (twisted) Whitney tower–grope correspondence, and (twisted)
grope duality:

1 1

2
2

3 3

4 4
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Computing Wn.

Computation of Wn in “3/4” of the cases follows from the following
theorem:

Theorem
ηn : Tn → Dn are isomorphisms for n ≡ 0,1,3 mod 4.

Proof uses discrete Morse theory on chain complexes. (Inspired by J.
Levine’s extension of the Hall basis algorithm to free quasi-Lie algebras.)

Corollary
Wn
∼= Tn

∼= Dn for n ≡ 0,1,3 mod 4.

For the remaining cases n = 4k−2, will define higher-order Arf invariants
on the kernel of µ4k−2...
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Higher-order Arf invariants.

Theorem
There is an exact sequence (which is short exact for k = 1):

Z2⊗Lk
αk−→W4k−2

µ4k−2−→ D4k−2→ 0.

So for links in Ker(µ4k−2) the only remaining obstructions to lying in
W4k−1 are the following higher-order Arf invariants:

Definition

Define the higher-order Arf invariants Arfk by

Arfk : Ker(µ4k−2)→ (Z2⊗Lk)/Ker(αk)

Corollary
The groups Wn are classified by Milnor invariants µn and the above Arf
invariants Arfk for n = 4k−2.
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Arfk

The classical Arf invariants of the link components are
Arf1 ∈ Z2⊗L1 ∼= Zm

2 .
The map αk takes 1⊗ [J] ∈ Z2⊗Lk to a link bounding W with
τ4k−2(W ) = (J,J) .
We conjecture that αk is injective, so that Arfk takes values in Z2⊗Lk
for all k , and is determined by τ4k−2(W ) ∈ span{(J,J) }< T4k−2.
First open case is k = 2: For L = Bing double of the figure-8 knot,
L ∈ Kerµ6, and L bounds W with τ6 (W ) = ((1,2),(1,2)) , so
Arf2(L) = [X1,X2] which generates Z2⊗L2.
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The Bing double of the figure-8 knot

L = Bing(figure-8) bounds an order 6 twisted Whitney tower W :

W = D1∪D2∪W(1,2)∪W((1,2),(1,2)).

W(1,2) is the trace of a null-homotopy of the figure-8 knot on the right.
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The Bing double of the figure-8 knot

The trace of the figure-8 knot null-homotopy describing W(1,2) has a
canceling pair of self-intersections admitting an embedded twisted Whitney
disk W((1,2),(1,2)).
(The right-most picture is the unlink.)
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The Bing double of the figure-8 knot

The second and third pictures from the previous frame:

The twisting ω(W((1,2),(1,2))) = 1 corresponds to the +1-linking between
the ‘inner’ boundary component of a collar on ∂W((1,2),(1,2)) and a Whitney
section.
So τ6 (W ) = ((1,2),(1,2)) .
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Appendix 1: The first non-vanishing Milnor invariant of a
link L

Consider the link group Γ := π1(S3 \L) and assume inductively that
the longitudes `1, . . . , `m lie in Γn+1, the (n+1)-st term of the lower
central series. If F is the free group on X1, . . . ,Xm then

Γn+1

Γn+2
∼=

Fn+1

Fn+2
∼= Ln+1

The first non-vanishing order n Milnor invariant µn(L) of L is defined
inductively by

µn(L) :=
m

∑
i=1

[Xi ]⊗ [`i ] ∈L1⊗Ln+1

µn(L) actually lies in Dn := Ker(L1⊗Ln+1
[ , ]−→Ln+2)
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