Higher-order intersections in low-dimensional topology
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Linking number as an order O intersection invariant:

Moving into B* from left to right.

2

W = D1 UD, C B*is an order 0 Whitney tower with intersection invariant

(W) =tk(dW) € L
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Vanishing order 0 intersections ~» Order 1 Whitney tower #

@

W =D1UDUD3U Wy ) C B* is an order 1 Whitney tower.
p € W(1,2)N D3 is an order 1 intersection point.
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The order 1 intersection invariant 3.

Order 1 trees are associated to order 1 intersections.

order 1 trees
relations

w(#)=t,=3<%€ AB)=
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Vanishing order < 1 intersections ~~» Order 2 Whitney tower

W =D1UDyUD3UDyU W(172) U |/V((172)73) c B*
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The order 2 intersection invariant 7.

order 2 trees
relations
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Order n twisted Whitney towers in B%.

e Construction Theorem: If L C S3 bounds # C B* with t2(#') =0
then L bounds an order n+1 twisted Whitney tower.

@ Detection Theorem: The first non-vanishing (length n+2) Milnor
invariants of L = 9% can be computed from 77 (%).
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Order n twisted Whitney towers in B%.

Classification Theorem: The sets W5, of links bounding order n twisted
Whitney towers modulo order n+ 1 twisted Whitney tower concordance are
finitely generated abelian groups which are classified by Milnor invariants
and higher-order Arf invariants.

Specifically,

Wc,’,’%ZN" for n=0,1,3 mod4

where N, is the number of independent Milnor invariants;

T2 2 N2 @ (Zo 0 %) /)7

where the torsion quotient is detected by higher-order Arf invariants.
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Unitrivalent trees for Whitney disks and intersections

Whitney disks ~~ rooted trees. Transverse intersections ~» un-rooted trees.

78 P -
WI,J) £ \
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Grading by order = number of trivalent vertices

@ The order of a unitrivalent tree is the number of trivalent vertices.

@ The order of a Whitney disk W/ is the order of its
(rooted) tree J.

@ The order of an intersection point p is the order of its
(un-rooted) tree t,.
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Order n Whitney towers in B*

Definition
@ A Whitney tower of order zero is a collection of properly immersed
disks in B* bounding a framed link in S3.

@ For n>1, a Whitney tower of order n is
an order n—1 Whitney tower #  together with
Whitney disks pairing all order n— 1 intersections in 7 .

w/)/\\iw//\)

/\
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The target .7, for higher-order intersection invariants

Definition

T, is the abelian group generated by order n trees modulo the following
antisymmetry and IHX (local) relations:

AS: Y+F/—0
IHX: I_ >_< + ><=0
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The intersection invariant 7,(#') € 7,

The order n intersection tree of an order n Whitney tower # is defined by

Tw(#) =) &ty €I

The sum is over all order n intersections p,

Theorem (order-raising)

If L bounds W with t©,(#)=0¢€ I,
then L bounds an order n+1 Whitney tower.
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Splitting a Whitney tower.




A successful Whitney move
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depends on a framed Whitney disk

The Whitney section over d W extends over W.

18 /34



Twisted Whitney disks

W — (W) € Z (relative Euler number) via orientation conventions.

N\ |-
77) A /\>L )

N\ |-
77) INC /\>L )

A framed Whitney disk is O-twisted.
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Twisted trees

For any rooted tree J, define the e-tree by labeling the root with the

symbol o:
JPi=m—J

o-trees will be assigned to twisted Whitney disks, with the symbol «
representing a “twist’.
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Twisted Whitney towers in B*

A twisted Whitney tower is allowed to have twisted Whitney disks.

It turns out that twisted order n Whitney disks “behave like" order 2n
obstructions in the Whitney tower obstruction theory.
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The target .7, for twisted intersection invariants

Definition
The abelian group Z57_; is the quotient of %,_1 by boundary-twist
relations:

i—<4=0

Here J ranges over all order n— 1 rooted trees .
The abelian group 757 is gotten from %, by including order n o-trees as
new generators and introducing (in addition to antisymmetry and IHX

relations on non-c trees) new symmetry, twisted IHX, and interior-twist
relations :

JP=(=0)  IP=HT4 X —(HX)  2-J°=(J,J)

Iy is the universal quadratic refinement of the Z5,-valued Whitney disk
intersection form.
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The twisted intersection invariant T°

(W)=Y e tp+ Y O(W))-J” € T

If L bounds # with t°(#) =0 ¢€ 7y, then L bounds an order n+ 1
twisted Whitney tower.
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The twisted Whitney tower filtration

W := {framed links L C S bounding order n twisted % C B*}.

Get filtration: --- CWg C W C WP C Wy (which factors through
concordance).

W := W< modulo order (n+ 1) twisted Whitney tower concordance.

Proposition

WS¢ is a finitely generated group under band sum.

Will compute W5 by relating 7;” to Milnor and higher-order Arf invariants.
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Rooted trees and the free Lie algebra &

L =®.Y, is the free Z-Lie algebra on {Xi,...,Xn}.

—< X, X]

%, is isomorphic to order n— 1 rooted trees, modulo IHX and
self-annihilation:
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From unrooted to rooted trees

The map N9 : 7 — L ® L1 sums over all choices of root on non-«
trees:
ny(i—<3) = Xi©-—<3 + X%e1—<> + X301—<,

= Xi® [Xo, X3] +Xo @[ X3, X1] + X3 @ [ X1, X2],

or
N5 (3 ><13) =2(X1®2><3 + X! ><1)

=2(X1 ® [Xo, [ X1, Xo]] + X2 ® [[ X1, X2], X1]),

and is defined on c>-trees J of order n/2 by

N2(?) = ong ()
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Twisted Whitney towers and Milnor's u, invariants

Both 2 and u, map onto D, := Ker(&4 ® Zp i1 u> Lpi2) = ZNn.

The first non-vanishing order n Milnor invariant defines a surjection
Un W — Dy, and
un(9W) =y ot (W)

Proof uses (twisted) Whitney tower—grope correspondence, and (twisted)
grope duality:
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Computing W7,

Computation of W in “3/4" of the cases follows from the following
theorem:

Ny 7y — D, are isomorphisms for n=0,1,3 mod 4. l

Proof uses discrete Morse theory on chain complexes. (Inspired by J.
Levine's extension of the Hall basis algorithm to free quasi-Lie algebras.)

Wy = 7>2=D, forn=0,1,3 mod 4. l

For the remaining cases n = 4k — 2, will define higher-order Arf invariants
on the kernel of ugx_»...
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Higher-order Arf invariants.

There is an exact sequence (which is short exact for k =1):

[0 Hak—
Zo® Ly —>Wgy_o == Dygy—p — 0.

So for links in Ker(u4k—2) the only remaining obstructions to lying in
W4,_ are the following higher-order Arf invariants:

Definition

Define the higher-order Arf invariants Arf, by

Arf: Ker(Ugk—2) — (Za®Ly)/ Ker(ay)

Corollary

The groups W5, are classified by Milnor invariants [, and the above Arf
invariants Arfy for n =4k — 2.

| A,

v

29 /34




@ The classical Arf invariants of the link components are
Arfy € Zo® Ly 2 7.

@ The map oy takes 1®[J] € Zo ® % to a link bounding % with
Tak—2(7) = (4,4).

o We conjecture that oy is injective, so that Arf, takes values in Z, ® L
for all k, and is determined by 773 _,(#) € span{(J,J)”} < I3 _».

@ First open case is k =2: For L = Bing double of the figure-8 knot,
L € Kerug, and L bounds # with (%) = ((1,2),(1,2))®, so
Arfa(L) = [X1,X2] which generates Z; ® L,.
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The Bing double of the figure-8 knot

-

L = Bing(figure-8) bounds an order 6 twisted Whitney tower % :

W = D1UDyU W1 2)UW12),1.2)-

W(1,2) is the trace of a null-homotopy of the figure-8 knot on the right.
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The Bing double of the figure-8 knot

[0

The trace of the figure-8 knot null-homotopy describing W1 5y has a
canceling pair of self-intersections admitting an embedded twisted Whitney

disk Mﬁ(L2%(L2)T
(The right-most picture is the unlink.)
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The Bing double of the figure-8 knot

The second and third pictures from the previous frame:

The twisting @(W((1,2),(1,2))) = 1 corresponds to the +1-linking between
the ‘inner’ boundary component of a collar on d W1 ) (1,2)) and a Whitney
section.

So g (7)) = ((1,2),(1,2)).

33/34



Appendix 1: The first non-vanishing Milnor invariant of a

link L

o Consider the link group I := m;(S3\ L) and assume inductively that
the longitudes ¢1,...,¢p, lie in T 41, the (n+4 1)-st term of the lower
central series. If F is the free group on Xi,..., X, then

rn—l—l ~ Fn+1 ~
= = n+1
rn—|-2 Fn+2

@ The first non-vanishing order n Milnor invariant p,(L) of L is defined
inductively by

L) = Y X @[] € L0 Zapy

@ Un(L) actually lies in D, := Ker(:41 ® Lt L1 Zn+2)
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