U always denotes a connected open set in $\mathbb{C}.$ We recall the definition:

A subharmonic function is an uppersemicontinuous function $f: U \to [-\infty, +\infty)$ such that $f \not\equiv -\infty$ and for all disks $\overline{D(P, r)} \subset U$ and for all harmonic h on a neighborhood of $\overline{D(P, r)}$,

 $f \leq h$ on $\partial D(P,r) \implies f \leq h$ on D(P,r).

Theorem

Let $f: U \to [-\infty, +\infty)$ be uppersemicontinuous. Then f is subharmonic $\iff \forall P \in U, \exists \varepsilon_P > 0$ such that $\overline{D(P, \varepsilon_P)} \subset U$ and

$$f(P) \leq rac{1}{2\pi} \int_{0}^{2\pi} f(P + arepsilon \, e^{i heta}) \, d heta \,, \quad orall \, arepsilon \in (0, arepsilon_P) \,.$$

We could call this the *small circle sub-mean value property* (SCsMV).

We begin the proof with a technical lemma (to deal with the semicontinuity):

Lemma

Let $\varphi : \partial D \to [-\infty, +\infty)$ be uppersemicontinuous. Then there exists a sequence of continuous functions $\varphi_n : \partial D \to \mathbb{R}$ such that $\varphi_n \searrow \varphi$ pointwise.

Proof : Assume that $\varphi \not\equiv -\infty$. Let $\varphi_n(e^{i\theta}) = \sup_{t\in\mathbb{R}} \{\varphi(e^{i(\theta+t)}) - n|t|\} \in \mathbb{R}.$ Clearly $\varphi_n > \varphi_{n+1} > \varphi$. Claim 1: φ_n is continuous. (Exercise) Claim 2: $\varphi_n \to \varphi$. *Proof of Claim 2:* Let θ_0 be fixed. Let $g_n(t) = \varphi(e^{i(\theta_0+t)}) - n|t|$ so that $\varphi_n(e^{i\theta_0}) = \sup g_n$. Let $c > \varphi(e^{i\theta_0})$ be arbitrary. Since φ is uppersemicontinuous, we can choose $\delta > 0$ so that

$$arphi(e^{i(heta_0+t)}) < c \ , \ orall t \in (-\delta,\delta).$$

$$g_n(t) = \varphi(e^{i(\theta_0+t)}) - n|t|$$

Let $A = \sup \varphi < +\infty$. Therefore

$$g_n(t) \leq \left\{ egin{array}{cc} A-n\,\delta & ext{ for } |t| \geq \delta \ c & ext{ for } |t| < \delta \end{array}
ight.$$

Therefore there exists $n_0 \in \mathbb{Z}^+$ such that

$$\varphi_n(e^{i\theta_0}) = \sup g_n \leq c \quad \text{for} \quad n \geq n_0.$$

Since $c > \varphi(e^{i\theta_0})$ is arbitrary, it follows that $\varphi_n(e^{i\theta_0}) \to \varphi(e^{i\theta_0})$, verifying Claim 2 and completing the proof of the lemma.

Theorem

Let $f: U \to [-\infty, +\infty)$ be uppersemicontinuous. Then f is subharmonic \iff SCsMV.

Proof: (\Longrightarrow): Let $\overline{D} := D(P, \varepsilon) \subset U$ be arbitrary. Suppose that $f(P) > \frac{1}{2\pi} \int_{\partial D} f \, d\theta$. Let $\varphi_n \in \mathcal{C}(\partial D)$ such that $\varphi_n(P + \varepsilon e^{i\theta}) \searrow f(P + \varepsilon e^{i\theta})$. By Lebesgue monotone convergence, $\int_{\partial D} \varphi_n \to \int_{\partial D} f$. Therefore we can chose n_0 such that $f(P) > \frac{1}{2\pi} \int_{\partial D} \varphi_{n_0} d\theta$. Let h be the solution to the Dirichlet problem on D with $h = \varphi_{n_0}$ on ∂D . Let $\delta = f(P) - \frac{1}{2\pi} \int_{\partial D} \varphi_{n_0} d\theta > 0$. Since ∂D is compact and f - h < 0 is uppersemicontinuous on \overline{D} , $\exists s < \varepsilon$ such that $f - h < \delta/2$ on $\partial D(P, s)$. Therefore, (1) $f - \delta/2 < h$ on $\partial D(P, s)$; (2) h is harmonic on $D(P,\varepsilon)$. f subharmonic $\implies f(P) - \delta/2 \le h(P) = \frac{1}{2\pi} \int_{\partial D} h \, d\theta =$ $\frac{1}{2\pi}\int_{\partial D}\varphi_{n_0} d\theta = f(P) - \delta$. Contradiction

Lemma

Let $f : U \rightarrow [-\infty, +\infty)$ be uppersemicontinuous. If f satisfies the SCsMV property, then f satisfies the "maximum principle":

$$P_0 \in U, f(P_0) = \sup f \implies f \equiv constant.$$

The proof of the lemma is similar to the proof that SCMV \implies maximum principle.

Outline of proof that $SCsMV \implies subharmonic$: Let f satisfy SCsMV. Suppose on the contrary that h harmonic on $D = D(P, r), f \leq h$ on $\partial D, f(Q) > h(Q), Q \in D$. Let g = f - h on \overline{D} . Then g attains its maximum at a point of D and hence is constant, by the above lemma. Contradiction