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1 Introduction

Automorphic forms are generalizations of periodic functions; they are functions on a group that
are invariant under a discrete subgroup. A natural way to arrange this invariance is by averaging.
Eisenstein series are an important class of functions obtained in this way. It is possible to give
explicit formulas for their Fourier coefficients. Such formulas can provide clues to deep connections
with other fields. As an example, Langlands’ computation of the constant Fourier coefficients of
Eisenstein series inspired his far-reaching conjectures that dictate the role of automorphic forms in
modern number theory.

In this article, we present two combinatorial models for the Fourier coefficients of (certain)
Eisenstein series: crystal graphs and square ice models. Crystal graphs combinatorially encode
important data associated to Lie group representations while ice models arise in the study of
statistical mechanics. Both will be described from scratch in subsequent sections.

We were led to these surprising combinatorial connections by studying Eisenstein series not just
on a group, but more generally on a family of arithmetic covers of the group. We will present
formulas for their Fourier coefficients which hold even in this generality. In the simplest case, the
Fourier coefficients of Eisenstein series are described in terms of symmetric functions known as
Schur polynomials, so that is where our story begins.

2 Schur polynomials

The symmetric group Sn acts on the ring of polynomials in n variables Z[x1, . . . , xn] by permuting
the variables. A polynomial is symmetric if it is invariant under this action. Classical examples are
the familiar elementary symmetric functions

ej =
∑

1≤i1<...<ij≤n

xi1 . . . xij .

Since the property of being symmetric is preserved by sums and products, the symmetric polyno-
mials make up a subring Λn of Z[x1, . . . , xn]. The ej , 1 ≤ j ≤ n, generate the ring Λn.

Since Λn is also an abelian group under polynomial addition, it is natural to seek a set that
generates Λn as an abelian group. One such set is given by the Schur polynomials (first considered
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by Jacobi), which are attached to partitions. A partition of a positive integer k is a non-increasing
sequence of non-negative integers λ = (λ1, λ2, . . .) such that k =

∑
λi; necessarily only a finite

number of terms in the sequence are nonzero. Partitions are added componentwise. If λ = (λi) is
a partition with λi = 0 for i > n, let ρ = (n− 1, n− 2, . . . , 0, . . .), and let

aλ+ρ = det(xλj+n−ji )1≤i,j≤n.

Then aρ divides aλ+ρ in Λn and the quotient is the Schur polynomial sλ: sλ = aλ+ρ/aρ. This
polynomial is in Λn and is homogenous of degree k. For example, we have

s(k,0)(x1, x2) = xk1 + xk−1
1 x2 + · · ·+ x1x

k−1
2 + xk2 (1)

s(2,1,1)(x1, x2, x3) = x1x2x3(x1 + x2 + x3). (2)

Then the sλ, with λ as above, form a basis for Λn. Schur showed that these polynomials describe
the characters of representations of the symmetric and general linear groups. See Macdonald [16]
for more details.

3 Eisenstein series on SL(2)

Let H = {z = x+ iy ∈ C | y > 0} denote the complex upper half plane. The group SL2(R) acts on
H by linear fractional transformation:

γ(z) =
az + b

cz + d
, where γ =

(
a b
c d

)
∈ SL2(R).

It is of interest to find functions that are automorphic—invariant under the action of a discrete
subgroup of SL(2,R). The modular group Γ = SL2(Z) is of particular importance. One may create
a family of automorphic functions on Γ by averaging. To this end for each s ∈ C with Re(s) > 1,
define the unnormalized Eisenstein series

E(z, s) =
∑

γ∈Γ∞\Γ

Im(γ(z))s, where Γ∞ =
{(

1 n
0 1

) ∣∣∣∣ n ∈ Z
}
.

Note that we must quotient out by the subgroup Γ∞ since this is an infinite group that stabilizes
the imaginary part of z. The definition makes clear that the Eisenstein series is automorphic –
E(γ(z), s) = E(z, s) for all γ ∈ Γ. Using the identity Im(γz) = y/|cz + d|2, we may reparametrize
the sum in terms of integer pairs (c, d). Indeed each pair of relatively prime integers (c, d) is the
bottom row of a matrix in Γ and two matrices γ1 and γ2 ∈ Γ have the same bottom row if and only
if γ1γ

−1
2 ∈ Γ∞. Thus the Eisenstein series may be expressed in the form

E(z, s) =
∑

(c,d)∈Z2

gcd(c,d)=1

ys

|cz + d|2s
, (3)

from which one may deduce that the series converges absolutely for Re(s) > 1.
The series E(z, s) has many spectacular analytic properties. To describe them, define the

normalized Eisenstein series,

E∗(z, s) = 1
2π
−sΓ(s)ζ(2s)E(z, s),
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where ζ(s) is the Riemann zeta function and Γ(s) is the Gamma function. One can show that
E∗(z, s) has analytic continuation to a meromorphic function for s ∈ C and satisfies the functional
equation E∗(z, s) = E∗(z, 1 − s). This may be proved by spectral methods, as E(z, s) is an
eigenfunction of the Laplace-Beltrami operator on H.

This fact has far reaching consequences for the theory of automorphic forms. As an illustration
in our present case, observe that since E∗(z+1, s) = E∗(z, s), the Eisenstein series admits a Fourier
series with respect to the real variable x as follows:

E∗(z, s) =
∞∑

r=−∞
a(r, y, s)e2πinx, where a(r, y, s) =

∫ 1

0

E∗(x+ iy, s)e−2πirx dx.

In the special case r = 0, one can show that

a(0, y, s) = ysξ(2s) + y1−sξ(2− 2s),

where ξ(s) = π−sΓ(s)ζ(2s). Because a(0, y, s) inherits the analytic properties of the Fourier series,
the analytic continuation and functional equation of the Riemann zeta function follow.

What about the remaining Fourier coefficients? A calculation (see for example [6], Section 1.6)
shows that if r 6= 0 then

a(r, y, s) = 2|r|s−1/2σ1−2s(|r|)y1/2Ks−1/2(2π|r|y)

where K denotes a K-Bessel function and σ is the divisor function

σ1−2s(r) =
∑
m|r

m1−2s.

Let us shift s to s + 1
2 and examine the arithmetic parts a(r) def= |r|sσ−2s(|r|) of the non-

constant Fourier coefficients of E∗(z, s + 1
2 ). They are multiplicative. That is, if gcd(r1, r2) = 1,

then a(r1r2) = a(r1)a(r2). Thus they are completely determined by their values at prime powers
r = pk. These values are easy to describe:

a(pk) = pks + p(k−2)s + . . .+ p−ks.

A fundamental theme of automorphic forms identifies these coefficients with values of characters of
a representation. Let V denote the standard representation of SL(2,C) and let ∨k−1V denote the
(k− 1)-st symmetric power. Thus if A ∈ SL(2,C) has eigenvalues α, β then ∨k−1A has eigenvalues
αk, αk−1β, . . . , αβk−1, βk. The character χk of the representation ∨k−1V is given by

χk(A) = tr(∨k−1(A)) =
∑

k1+k2=k

αk1βk2 .

Comparing with our earlier expression for the arithmetic piece a(pk), we find

a(pk) = χk

((
ps

p−s

))
. (4)

Notice that a(pk) is thus the Schur polynomial in (1) evaluated at (x1, x2) = (ps, p−s):

a(pk) = s(k,0)(ps, p−s).
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This identity has substantial generalizations. Indeed, one can define Eisenstein series analogous
to E(z, s) for any reductive group G. In this generality, the notion of Fourier coefficient is re-
placed by that of Whittaker coefficient. The Casselman-Shalika formula [7], first proved for GL(n)
by Shintani [17], states that the values on prime powers of these coefficients may be captured by
characters of a representation. For GL(n), these characters are expressed in terms of Schur poly-
nomials. For more general groups, the representation is not of the complex points of G, but rather
a representation of the Langlands dual group of G.1

These generalizations are usually stated in a different language. The coefficients a(pk) above
are expressible as integrals on groups over p-adic fields known as p-adic Whittaker functions. The
local version of the Eisenstein series is an induced representation, and the Whittaker function is
a p-adic integral evaluated on a canonical vector in the representation space. Similarly, one may
study the Whittaker functions attached to more general Eisenstein series, corresponding to more
general induced representations. These may be shown to be products of Langlands L-functions,
and this observation is important in the study of those L-functions.

These constructions have been known for many years. The goal of this article is to put them
in a new context, by considering a group together with its covers. When we do this, we find that
the formula (4) and its generalizations may be reinterpreted in terms of crystal graphs, which are
combinatorial structures introduced by Kashiwara in the context of representations of quantum
groups. We begin by illustrating this for covers of SL(2) before discussing higher rank.

4 Eisenstein series on covers of SL(2)

The classical metaplectic group is a two-sheeted cover of a symplectic group over either the reals
or a p-adic field. This group was introduced by Weil and explains the transformation formulas for
theta functions. More generally, Kubota and Matsumoto defined a family of n-sheeted covers of
SL(2) (or any simply connected group) for each n > 1. This is most conveniently described in
terms of the adèles AL of a number field L, defined as an appropriately restricted product over all
completions of L. For L containing a full set µn of n-th roots of unity, the n-fold metaplectic group
is a central extension of SL2(AL) by µn:

1 −→ µn −→ G̃ −→ SL2(AL) −→ 1.

This extension is described by means of a two-cocycle which is constructed using the arithmetic of
L. (It is not the adelic points of an algebraic group). See [3] for details.

Informally, we may think of G̃ as follows: it is an n-sheeted cover, where the sheets are indexed
by the n-th roots of unity. The group law requires moving between the sheets, and the n-th root
of unity that arises in taking the product of two group elements is computed using number theory.

For these groups, one may define an Eisenstein series En(z, s) as an average, similar to (3). The
definition is modified by adding an extra factor in the average that keeps track of the sheets of the
cover. The Fourier coefficients of En(z, s) turn out to be of great interest: they are Dirichlet series
made with Gauss sums.

A Gauss sum is a discrete analogue of the Gamma integral Γ(s) =
∫∞

0
yse−y dy

y – a product
of multiplicative and additive characters summed over the invertible elements of a finite ring. For
example if the cover degree is n = 3, we may take L = Q(e2πi/3) with ring of integers oL = Z[e2πi/3].

1In fact, the dual group enters subtly into the computation above. The Eisenstein series E(z, s) may be regarded
as a function on PGL2 and the Langlands dual of this group is SL2(C).

4



Let e(·) be an additive character of L which is trivial on oL but no larger fractional ideal. Then for
integers m, c ∈ oL with c 6= 0, let

g3(m, c) =
∑

a(mod c)
gcd(a,c)=1

(a
c

)
3
e(ma/c), (5)

where the sum is over a ∈ oL that are invertible mod c and (−)3 is the cubic residue symbol. For
general n and L, we may define a Gauss sum gn(m, c) made with n-th power residue symbols. To
do so, we must pass from the ring of integers oL to a localization oL,S where denominators are
allowed at a finite set of places S, and some additional technicalities result.

Kubota computed the Fourier expansion of En(z, s), whose m-th coefficient is a K-Bessel func-
tion times an arithmetic part a(m). In the special case n = 3,

a(m) =
∑
c∈oL

c≡1 (mod 3)

g3(m, c)
Nc2s , (6)

where Nc denotes the absolute norm of c. The form for general n is much the same with an
arithmetic part involving gn(m, c) in place of g3. The series is easily seen to converge absolute
for <(s) > 3/4, and since E(z, s) has analytic continuation and functional equation, a(m) inherits
these properties as well. This series (and its generalizations) are basic objects of interest.

Let us recall two properties of Gauss sums valid for any n ≥ 1. By the Chinese Remainder
Theorem, if gcd(c1, c2) = 1, then

gn(m, c1c2) =
(
c1
c2

)
n

(
c2
c1

)
n

gn(m, c1)gn(m, c2) (7)

and if gcd(m1, c) = 1 then an easy change of variables shows that for any integer m2

gn(m1m2, c) =
(m1

c

)−1

n
gn(m2, c).

In particular, (7) shows that the Dirichlet series in (6) is not expressible as an Euler product – a
product over primes – when n > 2. This is quite different from the situation for n = 1, 2 and, more
generally, for Langlands L-functions. Instead, we see that to combine contributions from relatively
prime c1 and c2, we must introduce n-th roots of unity depending on arithmetic. For these reasons,
we call series with such a property twisted Euler products. See [11] for more information and further
examples.

Though not strictly multiplicative, these two properties allow one to reconstruct gn(m, c) from
its values at prime powers gn(pa, pb) for non-negative integers a, b. Thus we may restrict to these
simpler cases in describing the Fourier coefficients.

Let us consider the coefficients gn(pa, pb) at a given prime p. Here a is fixed (it is the order of m
at p) and b is varying. These coefficients come in three flavors. First, there is the case b = 0, where
the coefficient is simply 1 = pb. Second, there are the coefficients for 1 ≤ b ≤ a. The inequality
b ≤ a makes the additive character in (5) trivial, and so this coefficient is the function

hn(b) =
{
φ(pb) if n|b,
0 otherwise,
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where φ(pb) = |(oL,S/pboL,S)×| is the Euler phi function for oL,S . Finally, there is the case b = a+1.
In this case, the Gauss sum is always nonzero and it is not possible to evaluate it in closed form
(unless b ≡ 0 mod n or n = 2). We write this sum simply gn(a + 1) for short. For b ≥ a + 2,
the sum can be shown to be zero (one is summing a nontrivial character over a group). Hence the
entire contribution can be summarized in the following diagram.

b = 0 1 2 a a+ 1

· · ·

g = 1 hn(1) hn(2) hn(a) gn(a+ 1)

We have circled the location b = 0 and boxed the location b = a + 1 since the contributions are
special at these locations, while at b such that 1 ≤ b ≤ a, the contribution is hn(b). This is the
most common situation. Notice that the diagram is the same for any n, it is only the functions gn
and hn that depend on n.

For the non-metaplectic Eisenstein series (the special case n = 1), the coefficients at p could
be described as values of a character. In fact, the picture above also is related to representation
theory. This is the picture of a crystal graph associated to a representation of the quantum group
Uq(sl2); each vertex represents a canonical basis element, and the lines between successive vertices
are given by Kashiwara operators. The vertices at b = 0 and b = a+1 have special properties. And
it is this description that applies to SLr+1 for any r and any cover degree n!

The attentive reader may be concerned: for n > 1 we have been working with the unnormalized
coefficients, while in the classical case we used normalized coefficients. We will account for this
disparity below. Even when n = 1 the formula above is not the classical formula in terms of Schur
polynomials, but rather obtainable from it as a deformation, using a theorem of Tokuyama.

5 Eisenstein series on covers of SLr+1 and crystal graphs

One can define the n-fold cover of SLr+1(AL) for any r, and a corresponding Eisenstein series En
for this group. It is an average of a suitable function, this time a function of r complex variables
s1, . . . , sr, over a discrete subgroup.2

Fourier coefficients generalize to Whittaker coefficients. These are defined by integrating En
against a character of U , the subgroup of upper triangular unipotent matrices of SLr+1(AL). The
characters of U are indexed by r-tuples m = (m1, . . . ,mr) of elements of oL. Indeed, a character of
U depends only on the r locations just above the main diagonal since everything else is in [U,U ].
Then the Whittaker coefficients are defined by integration against this character.

The main theorem of [3] expresses the arithmetic part a(m) of these Whittaker coefficients as
multiple Dirichlet series

a(m) =
∑ Hn(m; c1, . . . , cr)

Nc2s11 . . . Nc2srr
. (8)

This is a generalization of (6). The coefficients Hn are once again twisted multiplicative, and this
allows one to reduce to their study to that of the coefficients Hn(p`1 , . . . , p`r ; pk1 , . . . , pkr ) attached
to a given prime p of oL. Here the `i and ki are non-negative integers. The coefficients H turn out

2There are more general Eisenstein series built from automorphic forms on lower rank groups, but we do not
consider them here.
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to be built out of the functions gn, hn, and powers of Np, that already appeared in the previous
section for the n-fold cover of SL(2). However, the exact description is considerably more subtle.
It involves the theory of crystal graphs.

To explain the description, we first give a brief account of some properties of crystal graphs.
A weight of GLr+1 is a rational character of the diagonal torus T of GLr+1. We may identify
the weights with the lattice Λ = Zr+1: if µ = (µ1, · · · , µr+1) ∈ Λ then tµ :=

∏
tµii is such a

character. The weight is called dominant if µ1 > µ2 > . . . > µr+1, and strictly dominant if the
above inequalities are all strict. Weights are ordered: λ > µ if λi = µi + hi − hi+1 for each i,
where the hi are non-negative (and h0 = hr+2 = 0 by definition). A weight for a representation
V of the associated Lie algebra glr+1(C) is a weight µ such that there exists a non-zero vector in
V that transforms under the torus by µ; it is highest if no larger weight satisfies this property.
Cartan’s Theorem of the Highest Weight states that every finite-dimensional irreducible complex
representation of glr+1(C) (or more generally, of any complex semisimple finite-dimensional Lie
group) has a unique highest weight vector (up to scalars) and that the highest weight classifies the
representation. There is similarly a theorem of the lowest weight.

The quantum group Uq(glr+1(C)) is a deformation of the universal enveloping algebra of glr+1(C)
that is obtained when a parameter q is introduced into the relations that describe the universal
enveloping algebra. See for example Hong and Kang [13]. Such representations are once again
classified by highest weight. Let λ be a dominant weight. Then Kashiwara [14] associated with
λ a crystal graph Bλ which is a directed graph whose vertices correspond to certain basis vectors
for the representation of Uq(glr+1(C)) with highest weight λ. The edges of this graph are colored
with one color for each simple root, and describe the action of the unipotents in the Lie algebra
on this basis as q → 0. The crystal graph Bλ comes endowed with a weight map wt to the weight
lattice Λ such that

∑
v∈Bλ twt(v) is the character of the irreducible representation of GLr+1(C) with

highest weight λ. The map wt is compatible with the graph structure: walking one step along an
edge of Bλ in the direction of the highest weight vector (resp. lowest weight vector) corresponds to
increasing (resp. decreasing) the weight of the vertex by the simple root with which it is labeled.

Here is an example, the gl3 crystal with highest weight λ = (4, 2, 0) and lowest weight w0λ =
(0, 2, 4). It is drawn so that elements of the same weight are clustered together in overlapping
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vertices.

v

w0λ

Berenstein and Zelevinsky and Littelmann associate a path to each vertex in Bλ. To associate
a path to a vertex, one must choose an order to walk the edges. To do this, choose a reduced
factorization of the long element w0 of the Weyl group into simple reflections (i.e., one of minimal
length). Walk the graph in the order that the simple reflections appear in the factorization, going
as far in a given direction as the graph will allow before using the next operator. It turns out that
such a factorization always leads to a path to the lowest weight vector if one moves in the direction
of the negative roots. The sequence BZL(v) of path lengths so obtained parametrizes the vertex v
of Bλ.

For example, in the figure above we have indicated a walk from a vertex v to the lowest weight
vector w0λ corresponding to the factorization of the long element w0 = s1s2s1 of the symmetric
group S3, the Weyl group of GL3. Thus we walk along the graph in order s1, s2, s1 (=red,blue,red).
The lengths of the corresponding paths are 1, 3, 2, so BZL(v) = (1, 3, 2).

The main theorem of [3] computes the coefficients Hn(p`1 , · · · , p`r ; pk1 , · · · , pkr ) by attaching
products of Gauss sums to BZL sequences. Let λr+1 = 0, λr = `r, and λi = `i + λi+1 when i < r,
and let λ be the dominant weight λ = (λ1, λ2, . . . , λr+1).3 Let ρ denote the Weyl vector, that is, half
the sum of the positive roots, or in coordinates (r, r − 1, . . . , 1, 0). Since our conditions guarantee
λ is dominant, λ+ ρ is strictly dominant.

Theorem 1 The coefficient Hn is given by

Hn(p`1 , · · · , p`r ; pk1 , · · · , pkr ) =
∑

v ∈ Bλ+ρ
wt(v) = µ

Gn(v), (9)

where µ is the weight related to (k1, · · · , kr) by the condition that
r∑
i=1

kiαi = µ− w0(λ+ ρ) where

αi are the simple roots and the function Gn(v) is described below.
3By fixing λr+1 = 0, we parametrize representations of SLr+1(C), the Langlands dual group of PGLr+1.
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The definition of Gn(v) depends on a recipe for walking the graph, so it depends on the choice
of a reduced expression for w0 in the symmetric group Sr+1. In terms of the standard reflections
si (recorded simply by their index i) corresponding to simple roots, let us choose

Σ = Σ1 := (r, r − 1, r, r − 2, r − 1, r, · · · , 1, 2, 3, · · · , r) (10)

or
Σ = Σ2 := (1, 2, 1, 3, 2, 1, · · · , r, r − 1, · · · , 3, 2, 1) (11)

and take the associated path lengths BZL(v) = (b1, . . . , bN ) to the lowest weight vector. We decorate
the entries bi, boxing (resp. circling) bi if the i-th leg of the path to the lowest weight vector (resp.
to the highest weight vector) is maximal for the associated Kashiwara operator. Then we prove
that

Gn(v) = Gn,Σ(v) =
∏

bi∈BZL(v)


Npbi if bi is circled (but not boxed),
gn(bi) if bi is boxed (but not circled),
hn(bi) if neither,
0 if both.

(12)

The equality of the expression in (9) for Σ1 and Σ2 is not formal, and is established directly in [2]
by an elaborate blend of number-theoretic and combinatorial arguments.

It is noteworthy that the dependence on the degree of the cover n is reflected in the functions
gn and hn, but that the description in terms of crystal graphs is otherwise independent of n.

In closing this section, we mention that there are not one but two distinct generalizations of
the Casselman-Shalka formula to the metaplectic case. Chinta and Gunnells [8] and Chinta and
Offen [9] show that the p-parts of the Whittaker coefficients of metaplectic Eisenstein series on
covers of SLr+1 can also be expressed as quotients of sums over the Weyl group, directly analogous
to the Weyl character formula.

6 The case n = 1: Tokuyama’s deformation formula

When n = 1, we are concerned with the points of an algebraic group. In that case, the Whittaker
coefficients of Eisenstein series may be computed in two different ways. First, Theorem 1 provides
an answer in terms of crystal graphs. This result holds for any n ≥ 1. Second, the formula of
Shintani [17] and Casselman and Shalika [7] (which holds only for n = 1) expresses the Whittaker
coefficients of normalized Eisenstein series as the values of the characters of irreducible represen-
tations of the L-group SLr+1(C). These characters are given by Schur polynomials, as described
above.

These two expressions for the Whittaker coefficients are related by the following result (cf. [2]).

Theorem 2 Let Φ+ denote the positive roots of SLr+1. For any dominant weight λ,[ ∏
α∈Φ+

(1− q−1zα)

]
χλ(g) =

∑
v∈Bρ+λ

G1(v)q−〈wt(v)−w0(λ+ρ),ρ〉zwt(v)−w0ρ,

where the G1(v) are computed as in (12) using the reduced word Σ1.
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After taking into account the normalizing factors that appear in the Casselman-Shalika for-
mula, Theorem 2 shows that the Casselman-Shalika formula and Theorem 1 in the case n = 1 are
equivalent. In the application to the Casselman-Shalika formula, q = Np.

Theorem 2 is equivalent to an earlier result of Tokuyama [18], and may be viewed as a deforma-
tion of the Weyl character formula. Tokuyama’s formulation is expressed in terms of combinatorial
arrays called Gelfand-Tsetlin patterns. We highlight that the character with highest weight λ is
expressed as a combinatorial sum with respect to highest weight λ+ ρ.

7 Ice models for Whittaker coefficients

In this final section, we describe another combinatorial representation of the p-parts of Whittaker
coefficients. These can be described using square ice, a particular example of a two-dimensional
lattice model . We describe these in detail when n = 1; that is, when the Whittaker coefficients at
the prime p are given by the values of a Schur polynomial. An ice model description for arbitrary
covers is presented in [5].

Lattice models arise in statistical mechanics, where they can be used to represent thin sheets of
matter such as ice. Consider a rectangular array of lattice points in the plane. Add vertical and
horizontal edges from each lattice point, so the points are embedded in a rectangular array of line
segments. Label the boundary edges of this configuration by a fixed set of signs ±.

5 4 3 2 1 0

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

(13)

Signs on interior segments are assigned in all possible ways (‘states’) such that the number of plusses
at each vertex is even. Each possible configuration of signs at a given vertex is assigned a weight,
called a Boltzmann weight , and the weight attached to a given state is the product of the Boltzmann
weights at all vertices. The partition function of the configuration is the sum of the weights over
all possible states. Lattice models for which the partition function may be explicitly evaluated are
called exactly solved and are of particular interest. See Baxter [1].

Hamel and King [12] found ice models whose partition functions are Schur polynomials. In [4],
the authors gave two such choices, including the one of Hamel and King, and gave a new approach
to these results based on the Yang-Baxter equation. The fact that there are two different choices
is related to the two factorizations (10) and (11) of the long Weyl group element.

We describe one of these, called Gamma Ice. It is a six-vertex model: only six configurations
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have nonzero Boltzmann weights. In the i-th row of the lattice, the Boltzmann weights are:

Gamma
Ice

i i i i i i

Boltzmann
weights 1 zi ti zi zi(ti + 1) 1

The variables ti, zi are complex parameters. To use these Boltzmann weights to compute a Schur
polynomial, we specify boundary conditions on a finite lattice depending on the partition λ =
(λ1, λ2, . . .). Consider a rectangular lattice having at least λ1 +r+1 columns and r+1 rows. Label
the columns by non-negative integers in ascending order from right to left, beginning with zero.
To every edge of the lattice, we assign a sign ± as follows. On the left and bottom edges, we put
+; on the right edge we put −. On the top, we put − at every column labeled λi + r − i + 1,
1 ≤ i ≤ r+ 1, that is, for the columns labeled by the components of λ+ ρ, and + at the remaining
columns. For example, suppose that r = 2 and λ = (3, 2, 0), so that λ+ ρ = (5, 3, 0). Then we have
the configuration (13) above.

Denote the resulting partition functions ZΓ
λ and Z∆

λ for the two types of ice, where the super-
script corresponds to the choice of Boltzmann weights. Then, for λ a partition with at most n
non-zero parts, we prove in [4] that the partition functions are

Z(SΓ
λ) =

∏
i<j

(tizj + zi)sλ(z1, · · · , zn), Z(S∆
λ ) =

∏
i<j

(tjzj + zi)sλ(z1, · · · , zn).

To establish these evaluations of the partition function define

sΓ
λ(z1, · · · , zn; t1, · · · , tn) =

Z(SΓ
λ)∏

i<j(tizj + zi)
.

Then one seeks to show that sΓ
λ is symmetric in the sense that it is unchanged if the same permu-

tation is applied to both zi and ti. Once this is known, it is possible to show that it is a polynomial
in the zi and ti, then that it is independent of the ti; finally, taking ti = −1 one may invoke the
Weyl character formula and conclude that it is equal to the Schur polynomial.

In order to prove the symmetry property of sΓ
λ we use an instance of the Yang-Baxter equation.

This relation allows one to put a twist between two rows of ice and use it to interchange them.
Schematically, the process looks like this:

R

S

T

S

T

T

S

Here R is an additional type of vertex with its own carefully chosen Boltzmann weights. Alge-
braically, the Yang-Baxter equation is the identity

R12S13T23 = T23S13R12, (14)
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where R,S, T are endomorphisms of V ⊗ V for an abstract two-dimensional vector space V . The
nonzero coefficients in the matrices of S, T and R are the Boltzmann weights corresponding to
the two rows (red and blue) to be interchanged, and to the the new type of Boltzmann weight,
respectively. In (14), Rij is the endomorphism of V ⊗ V ⊗ V in which R is applied to the i-th
and j-th copies of V and the identity map to the k-th component, where i, j, k are 1, 2, 3 in some
order. Concretely, it means that the special vertex labeled R may be slid left or right in the lattice
without changing the partition function. Thus moving it across the entire lattice from left to right
interchanges the red and blue rows. This gives a new proof of Tokuyama’s result.

A second instance of the Yang-Baxter equation solves the same problem for the analogously
defined s∆

λ , and a third instance shows directly, without using the above evaluations, that sΓ
λ = s∆

λ .
See [4] for details. Two-dimensional lattice models may also be used to give a description of the
general metaplectic Whittaker coefficient at a prime p, though its description is more complicated
(see [5]).

The study of ice models and the Yang-Baxter equation was advanced by ideas of representation
theory and ultimately led to the discovery of quantum groups. See Faddeev [10] for a history. It is
intriguing that our earlier description in terms of crystal graphs involved quantum groups as well.
However, the two combinatorial models we have presented here lead to rather different phenomena.
In particular, their defining data are not in bijection. Exploration of the surprising relationship
between automorphic forms and quantum groups is ongoing.
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