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b Instituto de Biociências, Departamento de Biociências, Laboratório de Análise e Síntese em Biodiversidade, Universidade Estadual Paulista (UNESP), Av. 24-A, 1515, 
Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil 
c Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16, No. 114, e/ 1ra y 3ra, Miramar, La Habana, CP 11300, Cuba 
d Pennine Water Group, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield, S1 3JD, United Kingdom 
e Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz (Campus Universitario de Puerto Real, Puerto Real, Cádiz, 11510, Spain   

A R T I C L E  I N F O   

Keywords: 
Ecological modelling 
Marine variables 
Algae-algae interactions 
Niche breadth 
Niche overlap 
Generalist species 

A B S T R A C T   

Ecological Niche Modelling (ENM) is a tool widely used in ecology to determine environmental conditions and 
the potential distribution of species. In this article we assess the potential distribution, tolerance limits and 
similarity niche of macroalgae epiphytes and hosts from the Cuba marine shelf. Using different methods (BIO
CLIM, Gower, Maxent and SVM) we have modelled the niche for each species. The final prediction map of 
distribution was made using the ensemble prediction technique. The similarity of ENMs was quantified by 
Schoener D and Hellinger I distance. The predictive power of all models was reasonable, since the values of the 
area under the curve (AUC) were greater than 0.9. The host macroalgae most closely related to the spatial 
distribution pattern of potential abundance of epiphytic macroalgae are Stypopodium zonale (Kendall correlation, 
r2 

= 0.886) and Digenea simplex (Kendall correlation, r2 
= 0.777). Environmental variables that contributed 

mostly (30 %) to the ecological niche models were: the average maximum salinity per year (35.5− 36 PSU); the 
average minimum flow velocity per year (0.2 m⋅s− 1) and the average minimum light at ground level per year 
(10− 60 E⋅m− 2⋅yr− 1). The results show that epiphytic macroalgae and their most common hosts are generalist 
species (niche width 0.8) with high overlap in their niche (Schoener D > 0.7; Hellinger I distance = I > 0.6).   

1. Introduction 

Epiphytic marine macroalgae are multicellular algae (encrusted, 
leaf-like or branched forms) that live on another photosynthetic or
ganism (Hurd et al., 2014; Taylor, 2019). Epiphyticism is common in 
marine benthic communities where macroalgae adhere to the surface of 
host algae (Gauna et al., 2015; Zheng et al., 2015), seagrasses (Karsten 
et al., 2000; Borowitzka et al., 2006), or mangrove roots (Hogarth, 
2015). These primary basic species (algae, mangroves) provide habitat 
for the macro-algae epiphytes and increase the richness and diversity of 
the ecosystem (Thomsen et al., 2018; Gribben et al., 2019). 

Epiphytes are important for understanding the structure, composi
tion and functioning of marine ecosystems. For example, they can 
reduce water movement within seagrass meadows (Borowitzka et al., 
2006) and minimize damage from desiccation stress (Penhale and 

Smith, 1977; Bruno et al., 2003). In addition, the specific composition of 
epiphytes can become a source of nutrients for the growth of seagrasses 
when the biomass of the epiphyte becomes higher than that of its host 
(Penhale and Smith, 1977; Mazzella and Alberte, 1986). Epiphytes 
contribute significantly to the productivity of this ecosystem, both 
vertically (as part of the trophic structure) and horizontally (abundance 
and heterogeneity within the trophic levels) (Borowitzka et al., 2006). 
Additionally, they alter conditions and resources at the micro-scale 
level, which provide food and shelter (Álvarez-Álvarez et al., 2020), 
and protect other algae under acidifying marine conditions (Guy-Haim 
et al., 2020). 

The taxonomic composition and diversity of epiphytic macroalgae 
depend largely on the properties of host macroalgae such as longevity, 
surface area, size and morphological architecture (Creed, 2000; 
Álvarez-Álvarez et al., 2020). In tropical habitats, the richness and 
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abundance of epiphytes are related to a larger surface area (and 
biomass) to be colonized (Ortuño-Aguirre and Riosmena-Rodríguez, 
2007). In addition, the secondary metabolism of host macroalgae is also 
important for epiphyte-host interactions (Leonardi et al., 2006), 
although there is a rather low specificity of such interactions in marine 
environments (Diez et al., 2013; Harder, 2014). 

Ecological niche models (ENMs) relate species occurrence data to 
environmental variables to predict areas that favor the potential 
occurrence of these species (Guisan and Zimmermann, 2000; Roloff and 
Haufler, 2002; Guisan and Thuiller, 2005). Such models are used to 
predict potential areas of current occurrence or the impact of climate 
change on the distribution of species (Tognelli et al., 2009). Overall, 
predictive models are a useful tool for studies of ecology and biogeog
raphy (Anderson and Martínez-Meyer, 2004; Coudun et al., 2006). 

Currently, various tools and methods are available to preserve 
ecological niche models and the potential distribution of species 
(Diniz-Filho et al., 2009; Guisan and Rahbek, 2011; Lessin et al., 2018). 
The method most commonly used in the scientific literature is MaxEnt, 
despite criticism of its misuse and the production of outdated models 
(Kaky et al., 2020). One of the methods used to avoid the problems 
indicated is ensemble modeling methods, in which individual models 
are combined to produce a predictive output (Thuiller et al., 2004; 
Marmion et al., 2009). Ensemble modeling (also known as consensus 
modeling or ensemble prediction) has gained momentum in ENMs over 
the last ten years and involves combining predictions from individual 
ENM models into a binary prediction map. Usually, they are based on 
average model predictions weighted by an evaluation metric (Kaky 
et al., 2020). 

These modeling methods predict the ecological suitability for a 
species according to its ecological niche (Phillips et al., 2006). There are 
two assumptions about ecological environmental variables that are used 
to build these models: 1) there must be a temporal correspondence be
tween the location/sites of occurrence of a species and the value of the 
environmental variables (Anderson and Martínez-Meyer, 2004) and; 2) 
the variables should influence the distribution of the species on a rele
vant scale determined by the geographical extent and size of the loca
tion/site (Pearson et al., 2004). The appropriate choice of 
environmental variables for modeling niches also influences the degree 
to which the model can be generalized to other regions outside the study 
area or other periods (Phillips et al., 2006). Another factor that de
termines the precision of the models is the accuracy of the coverage of 
species occurrence (Anderson et al., 2003). 

Regarding ENMs, we use in our study a so-called Grinnellian niche 
interpretation (Jackson and Overpeck, 2000). According to Soberón 
(2019) “Grinnellian niches” essentially imply two things. Firstly, niche 
spaces are composed of scenopoetic variables (Hutchinson, 1978). Sce
nopoetic variables are ecological variables that do not interact with 
others, and change very slowly. Secondly, they are naturally aimed at 
analyzing biogeographical questions, using realistic geographical re
gions that are explicitly defined and subdivided by a discrete grid of 
expansion (Shmida and Wilson, 1985). These ideas imply different 
concepts of ecological niches, which are summarized in Jiménez et al. 
(2019). The fundamental niche (NF) is the totality of environmental 
conditions in which values of fitness (without interactions or immigra
tion subsidies) can sustain populations. The existing niche (N*F) is the 
subset of the conditions of the NF that are actually available to a species 
when it occurs within its dispersal range (the accessible area M) at a 
given time (Jackson and Overpeck, 2000; Peterson et al., 2011). Finally, 
the realized niche (NR) is that part of N*F not affected by negative 
interactors, such as competitors. 

Modeling niches in aquatic systems are limited because environ
mentally relevant variables are very rare or even non-existent in raster 
format for most regions of the world (Wiley et al., 2003; McNyset, 2005; 
Chen et al., 2007). Groundbreaking studies in aquatic systems “bor
rowed” environmental variables from terrestrial measurements, e.g. 
surface temperature and precipitation (Iguchi et al., 2004; 

Domínguez-Domínguez et al., 2006). In 2011, the first set of ocean 
surface environmental variables was became available at the global 
level (Tyberghein et al., 2012). These variables are currently being 
validated through research on different temporal and spatial scales and 
then correlated with the surface and benthic environment for possible 
different future climate scenarios (Assis et al., 2018b). 

In marine ecosystems, studies on ENM and Species Distribution 
Models (SDMs) on local scales are only available for the North Atlantic 
Ocean (Robinson et al., 2017; Melo-Merino et al., 2020). According to 
these authors, most research focuses on correlative studies, and the most 
studied groups were fish, mollusks and marine mammals. In this review, 
macroalgae represent the fourth most studied group and it highlights the 
work on habitat-forming species (Assis et al., 2018a, 2018b; Buonomo 
et al., 2018). These studies are limited to the coasts of Western Europe. 
For algae, the studies refer to the current distribution patterns of the 
species (Verbruggen et al., 2009; Yesson et al., 2015; Martínez et al., 
2018), invasive species (Marcelino and Verbruggen, 2015; Murphy 
et al., 2016; Veazey et al., 2019) and the effects of climate change 
(Jueterbock et al., 2016; de la Hoz et al., 2019; Westmeijer et al., 2019). 

In the Caribbean Sea, knowledge about the composition, abundance 
and distribution of epiphytic macroalgae is rare and limited to specific 
studies (la Rosa and Suárez, 1990; Fricke et al., 2011; Ramírez et al., 
2011; Diez et al., 2013). One solution to this information deficit is to 
estimate the distribution of epiphytic macroalgae using ranges of 
tolerance to environmental variables. ENMs can be used to quantify 
environmental preferences that allow the establishment of areas with 
suitable environments for the species (Yesson et al., 2015). At low lati
tudes, such as the Caribbean Sea, the distribution of macroalgae is 
limited by a number of factors including environmental tolerance (Keith 
et al., 2014). We hypothesized that both the epiphytic as well as the host 
macroalgae on the Cuban marine platform would be expected to be 
generalist species with similar environmental tolerance ranges and 
niches. Therefore, the overall objective of this study is to estimate the 
potential distribution of the most common macroalgae epiphytic and 
host species in the Cuban marine Shelf (CMS) using correlated ecological 
niche models and niche overlap. 

2. Material and methods 

2.1. Selection of presence data 

The georeferenced data of the epiphytic and host macroalgae are 
from a review of the scientific literature published up to December 2018. 
Scopus and Google Scholar were used to perform the systematic anal
ysis. In this review, the Boolean operators were restricted to AND OR. 
The search strings were: (1) (“Seaweed” OR “Algae*” OR “Macro
algae*”) AND (“Epiphyte*” OR “Epibiont*”); (2) (“Seaweed” OR 
“Algae*” OR “Macroalgae*”) AND (“Host” OR “Basibiont*”). The basi
biont is considered a substrate organism (Harder, 2008), so this term 
was included as a keyword in the search for the systematic overview. In 
the systematic review, proof of presence was obtained from 35 journal 
articles, a book section and a book. The searching and selection pro
cedure of the bibliographic sources from which the data were taken is 
explained in Jover et al. (2020c). In addition, epiphyte data were added 
that are available in the collections of the Centro de Investigaciones 
Marinas (Universidad de La Habana) and Ficoteca Cubana y Antillana 
(Universidad de Oriente). 

Where macroalgae with epiphytic life forms or host life forms have 
been reported, only occurrence data have been taken from the literature 
or collection. Once the epiphytes and hosts were identified, those that 
were more frequently recorded in the literature (with 20 or more re
cords) were selected. A total of 552 records were used in the models after 
eliminating multiple records of the same species in the same coordinate 
and eliminating duplicate records by pixel. A total of 404 data sets were 
obtained for 10 epiphytic macroalgae and 148 data sets for three hosts. 
The locations for each species (coordinates) were projected onto the 
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corresponding maps using the program QGIS 2.18.11, and using the 
geographic coordinate system. All data sets used in this study are 
available in FigShare (Jover et al., 2020a). 

2.2. Selection of the predictor variables 

We obtained 74 oceanographic variables from the online platforms 
Bio- ORACLE (Tyberghein et al., 2012) and MARSPEC (Sbrocco and 
Barber, 2013). The variables represent minimum and maximum values 
and mean values of minimum and maximum values per year in the 
period 2000− 2014. The data of the environmental variables were pro
cessed at a spatial resolution of 30 arc-seconds (about 0.86 km2 in 
Ecuador) on Geographic Coordinates. 

A reduction of the variables used in the final models was performed, 
eliminating those variables that showed a high degree of Spearman 
correlation (greater than 0.75 or less than − 0.75) (Fig. S1). This analysis 
was performed to eliminate redundant environment variables. The 
correlations were performed with the Hmisc package (Harrell, 2019) of 
the R program (R Core Team, 2019). To select the variables that pro
vided the most information, the threshold was set at 0.75 (Fig. S1). 
Variance Inflation Factor (VIF) was determined to exclude bioclimatic 
multicollinearity among the variables. It is assumed that if the VIF is 
greater than 5.0, these climatic variables will unsettle the model and 
make it difficult to identify an optimal set of explanatory variables 
(Mateo et al., 2011). To obtain a set with an adequate VIF (Table S1), all 
variables were analyzed with the “HH” package of R (Heiberger, 2018). 
The resulting variables were used in the distribution models of host 
macroalgae. For the models of epiphyte species, the potential distribu
tion of host macroalgae was included as variables. 

2.3. Modeling process 

A model was generated for each host and epiphytic macroalgae using 
the ensemble prediction method. In this method, the results obtained 
with different algorithms are combined to obtain a single algorithmic 
consensus model per species (Araújo and New, 2007; Diniz-Filho et al., 
2009). According to these authors, the combined use of different algo
rithms allows the creation of more robust and reliable distribution 
models, considering the uncertainty between methods. The following 
algorithms were used in the construction of the modeling ensemble: 
Bioclimatic Evelope (BIOCLIM) (Busby, 1991), Generalized Linear 
Models (GLM) (Lee et al., 2018), Maximum Entropy (MAXENT) (Phillips 
et al., 2006; Phillips and Dudík, 2008), and Support Vector Machines 
(SVM) (Tax and Duin, 2004). 

Firstly, for the assessment of ENMs, the species occurrence data were 
randomly divided into calibration and assessment sets comprising 75 % 
and 25 % of the data sets respectively. Secondly, 40 models (10 repli
cates x 4 methods) were generated for each species of epiphytic mac
roalgae and each host. Then, the results of the model were transformed 
into binary maps using the maximum sensitivity and specificity as 
threshold values (Liu et al., 2013). Using the "maximum sensitivity and 
specificity" as a threshold leads to similar results when using data sets 
with presence / absence or only with presence (Liu et al., 2016). Finally, 
a consensus map for each macroalgal species was constructed by aver
aging the prediction ensemble (Araújo and New, 2007). 

Each model was statistically evaluated using the AUC (Area Under 
the Curve) statistics and True Skill Statistic (TSS). The AUC values vary 
from 0 to 1, although the closer to 1, the better the prediction of 
occurrence (Mateo et al., 2011). The values of TSS vary from − 1 to 1. 
Negative and near-zero values are typical for models that are no 
different from randomly generated models; values close to 1 indicate 
good models, while values above 0.5 are assumed to indicate suitable 
models (Allouche et al., 2006). The models were generated using the 
raster, rgdal, USDM, dismo, kernlab, rJava, viridis and tidyverse pack
ages of the program R (R Core Team, 2019). 

The modeling processes were performed using two types of models. 

The first type we call abiotic models (AV models) and the second type 
biotic models (AV + BV models). In the abiotic models, six environ
mental variables for host and epiphyte macroalgae were used. In the 
biotic models, six environmental variables and the habitat suitability of 
the three host macroalgae for ENMs of epiphytes were used. 

2.4. Maps of potential species richness 

The method of Stacked Species Distribution Models (SSDM) was also 
used to study the spatial distribution pattern of potential epiphytic and 
host macroalgae richness (Guisan and Rahbek, 2011). The Lowest 
Presence Threshold (LPT) was used as the cut-off threshold to transform 
each continuous frequency into binary maps (0 for absence and 1 for 
presence) (Pearson et al., 2007). We obtained the predicted number of 
species occurrence (richness) of hosts and epiphytic macroalgae in each 
pixel summing all species binary maps. The main limitation of this 
method is that it tends to overestimate species richness by ignoring bi
otic constraints (Calabrese et al., 2014; Gavish et al., 2017). It is, how
ever, the simplest method to produce maps of species richness 
(Trotta-Moreu and Lobo, 2010). 

In addition, Kendall correlation analyses were carried out between 
the habitat suitability values of the host macroalgae, the potential 
richness of the host macroalgae and the potential richness values of the 
epiphytic macroalgae. The aim of these correlations was to determine 
the relationship between the distribution of host macroalgae and the 
potential wealth of epiphytic macroalgae. The correlation was per
formed with the "Corrplot" package of R v3.6.3 (Wei and Simko, 2017). 

2.5. Environmental tolerance range, breadth and niche overlap 

The ecological requirements for epiphytic and host macroalgae were 
examined based on three analyses. The first was to extract the tolerance 
values of each environmental variable using the reaction curves gener
ated in MAXENT (Phillips and Dudík, 2008). The reaction curves show 
the quantitative relationship between the logistic probability of pres
ence and the environmental variables (Ma and Sun, 2018). 

The second analysis was used to know whether the epiphytic mac
roalgae are generalists or specialists, relative to niches. This analysis was 
determined by niche breadth and LOESS regressions. The niche breadth 
of each species was estimated using the habitat distribution models 
established for the epiphytic and host macroalgae studied. The niche 
breadths were determined using the standardized Levins index from the 
ENMTools package in R (Warren et al., 2010). The niche breadth is a 
means of calculating the range of suitable environmental variables for a 
species and provides a value between 0 and 1, with larger values for 
more general species with wider environmental tolerances and smaller 
values for more specialized species with narrower environmental tol
erances (Levins, 1968). The regression scatterplot of LOESS was con
structed using the ade4 package in R (Dray and Dufour, 2007). 

The third analysis was performed to determine the niche overlap of 
host and epiphytic macroalgae by Schoener D and Hellinger I index. The 
range Schoener D (Schoener, 1968) can vary from 0 (niche models have 
no overlap) to 1 (identical niche models), and the Hellinger I distance 
derivative (Van der Vaart, 1998) can vary from 0 (no overlap) to 1 
(identical niche models). These indices were calculated with the ENM
Tools package in R (Warren et al., 2010). They ("Levins", "D" and "I") do 
not use cut-off criteria, but instead use continuous values of habitat 
suitability estimated by the models. 

3. Results 

3.1. Ecological niche models and contribution of environmental variables 

A review of the scientific literature yielded more than 20 valid 
presence records for modeling the species distribution of 13 macroalgae 
in the CMS (Table 1). Epiphytic species with the highest number of 
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presence records (50) were Anadyomene stellata, Herposiphonia secunda 
and Laurencia caraibica. Stypopodium zonale was the host macroalga with 
the highest number of proven occurrences. The potential distribution of 
epiphytic and host macroalgae was accurately predicted, as the values of 
the area under the curve (AUC) were greater than 0.9 and the true ability 
statistics (TSS) were greater than 0.8 (Table 2). 

The predictive maps were generated by a logistic output by assigning 
each pixel a potential of occurrence in areas of habitat incompatibility 
(p = 0) and habitat suitability (p = 1). The maps showed the 
geographical area where each cell is 30 arcseconds and has a habitat 
suitability value between 0 and 1, for distribution models of epiphytes 
based on abiotic variables (AV models) (Fig. S2), and models with 
biotic + abiotic variables (AV + BV models) (Fig. S3). In all maps, 
probability values of 0.50 were used to define the specificity threshold as 
a “suitable” habitat. 

Distribution models showed values for the probability of occurrence 
of more than 60 % for nine epiphyte species on the north and south-east 
coast of Cuba (Fig. S2). Only Hydrolithon farinosum showed a more 
restricted potential distribution on the north-west and southeast coast. 
Except for the epiphyte Canistrocarpus cervicornis, all models showed 
habitat suitability in the coastlines around the islands and cays. Both 
models, AV and BV + AV, showed a similar probability distribution 

pattern (Fig. S3). In general, the probability of occurrence of epiphytic 
macroalgae is reduced when biotic variables are included into the 
models. This phenomenon can be observed both in widespread epiphytic 
macroalgae such as Amphiroa fragilissima (Fig. 1A and C) and in more 
narrowly defined epiphytes such as H. farinosum (Fig. 1B and D). 

Maps for host macroalgae also show the geographical area where 
each cell is 30 arcseconds with a habitat suitability value between 0 and 
1 (Fig. 2). In the CMS, the host macroalgae Stypopodium zonale was the 
macroalga with the largest distribution area, followed by Hypnea mus
ciformis. Like the epiphytic macroalgae, the host species showed habitat 
suitability in the coastlines around the islands and cays. 

In AV models the percentage contribution of environmental variables 
was different for epiphytic and host macroalgae (Table 2). The abiotic 
variables with the highest contribution in the models were: 1) the 
average records for maximum salinity per year (n = 13: 10 epiphytes 
and three hosts); 2) the average records for maximum current velocity 
per year (n = 11: nine epiphytes and two hosts); and 3) the average 
records for maximum light (bottom) per year (n = 9: seven epiphytes 
and two hosts). The percentage contribution of the previous variable to 
the models was greater than 10 %. 

In BV + AV models for distribution models of the epiphytic macro
algae, the hosts Stypopodium zonale and Digenea simplex were the most 
important biotic variables in ten and four models respectively (Table 2). 
Hypnea musciformis contributed only with values greater than 25 % in 
the distribution models of Caulerpa sertulariodes and Canistrocarpus cer
vicornis. In models that combined both types of variables, the percentage 
contribution of the biological variables was greater than that of the 
abiotic variables. 

3.2. Maps of potential species richness 

The potential species richness of the host macroalgae (Fig. 3A) 
showed a different distribution pattern between the areas of the CMS. In 
the littoral areas of cays and islands they represent suitable habitats for 
the three macroalgal hosts studied. However, the areas with the highest 
probability for coexistence of two of the macroalgal hosts are limited to 
the Gulf of Guacanayabo (20◦ 28’ 00" N, 77◦ 30’ 00" W) and the Gulf of 
Ana María (21◦ 24’ 46" N, 78◦ 49’ 02" W) on the south coast of Cuba. The 
potential areas on the north coast for two hosts are only recorded to the 
west of the Cuban archipelago, while only one species of host macro
algae is recorded in the Gulf of Batabanó (22◦ 15’ 00" N, 82◦ 30’ 00" W) 
on the southwest coast of Cuba. 

Table 1 
Number of presence occurrences used in the model of potential distribution of 
macroalgal epiphytes and hosts in the Cuban marine shelf.  

Macroalgae Number of presence 
records 

Epiphytes  
Amphiroa fragilissima (Linnaeus) J.V.Lamouroux 45 
Hydrolithon farinosum (J.V.Lamouroux) Penrose & Y.M. 

Chamberlain 
40 

Jania adhaerens J.V.Lamouroux 33 
Gelidium pusillum (Stackhouse) Le Jolis 25 
Herposiphonia secunda (C.Agardh) Ambronn 58 
Laurencia caraibica P.C.Silva 53 
Canistrocarpus cervicornis (Kützing) De Paula & De Clerck 28 
Caulerpa cupressoides (Vahl) C.Agardh 22 
Caulerpa sertularioides (S.G.Gmelin) M.Howe 24 
Anadyomene stellata (Wulfen) C.Agardh 76 
Hosts  
Hypnea musciformis (Wulfen) J.V.Lamouroux 27 
Digenea simplex (Wulfen) C.Agardh 38 
Stypopodium zonale (J.V.Lamouroux) Papenfuss 83  

Table 2 
Percentage of relative contribution of the environmental variables that most contribute the ecological niche models, Area under the Curve (AUC), and True Skill 
Statistic (TSS) of the epiphytic and host macroalgae models in the Cuban marine shelf.  

Macroalgae 
Predictor variables 

AUC TSS 
Current D.O. Light NO3 Salinity SiO4 Hmusc Dsimp Szona 

Epiphytes  
Amphiroa fragilissima 13.5 22.1 9 4.5 50.7 0.2 1.3 22.4 75.5 0.95 0.86 
Hydrolithon farinosum 13.3 2.5 12.3 27.7 41.5 2.6 1.6 3.1 89 0.96 0.86 
Jania adhaerens 12.3 3.1 15.6 16.6 52.3 0 3.1 54.1 40.6 0.95 0.82 
Gelidium pusillum 37.2 3.7 10.4 10.5 38 0.2 0.6 5.5 91.4 0.94 0.82 
Herposiphonia secunda 13.9 15.1 13.4 4.4 51.7 1.5 3.3 69.6 24.4 0.93 0.8 
Laurencia caraibica 3.1 4.7 11.1 5 75.9 0.2 0.8 8.5 88.4 0.94 0.8 
Canistrocarpus cervicornis 61.4 0.6 9 7.6 17.5 3.9 25.9 9.4 63.1 0.94 0.8 
Caulerpa cupressoides 11.7 5.8 9.1 18.1 55.2 0 2.2 2 92.9 0.95 0.83 
Caulerpa sertularioides 56 0.3 12.7 7.7 21.6 1.4 35.8 4.3 57.5 0.94 0.81 
Anadyomene stellata 10.8 13.7 10.4 3.2 61.6 0.2 0.8 19.9 76.9 0.96 0.85 
Hosts    
Hypnea musciformis 65 0.6 8.8 7.2 16.5 1.9 – – – 0.92 0.83 
Digenea simplex 7.5 22.2 15.8 9.9 43 1.6 – – – 0.91 0.81 
Stypopodium zonale 11.3 13.9 10.9 3.9 59.6 0.3 – – – 0.91 0,8 

Values of greater contribution in bold. Hmusc = distribution of Hypnea musciformis, Dsimp = distribution of Digenea simplex, Szona = distribution of Stypopodium 
zonale. Where: Current: Minimum records average of currents speed per year, D.O.: Minimum records average of dissolved oxygen per year, Light: Minimum records 
average of light in the bottom per year, NO3: Maximum nitrate concentration, Salinity: Maximum records average of Salinity per year, SiO4: Maximum silicate 
concentration. 
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Fig. 1. Potential distribution of habitat suitability above 0.5 of the epiphytic macroalgae in Cuban marine shelf using abiotic variables (A-B) and biotic variables (C- 
D) in ecological niche modelling. Black points indicate occurrences used to train and test the models. 
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In AV models, the areas of the Cuban shelf with the highest potential 
species richness of epiphytic macroalgae (8–10 species) are located in 
the regions where the three host macroalgae species coexisted (Fig. 3B). 
Areas with a potential abundance of two host species coincide with areas 
with a potential abundance of between five and eight epiphytic species. 
In the Gulf of Batabanó the lowest values of potential epiphytic mac
roalgae richness are recorded. However, in the models BV + AV 
(Fig. 3C), the areas with the greatest potential wealth of epiphytic 
macroalgae are shrinking, while the areas with the least wealth of 
epiphytic macroalgae are increasing, especially on the southern coast of 
the archipelago. 

Finally, Kendall correlation analysis confirmed that the potential 
richness of host macroalgae in the AV models (Kendall’s correlation, 
r2 = 0.899) and in the AV + BV models (Kendall correlation, r2 = 0.869) 
is positively related to the potential richness of epiphytic macroalgae in 

the Cuban marine shelf. Furthermore, the habitat suitability values of 
Stypopodium zonale also showed a positive relationship with the poten
tial richness of epiphytic macroalgae, while Hypnea musciformis was the 
least related. These relationships presented the same behavior in AV 
models and AV + BV models (Table 3). 

3.3. Environmental tolerance range, breadth and niche overlap 

All epiphytes and hosts had a tolerance range between 35.5− 36 UPS 
for the annual average maximum salinity values (Table 4). The annual 
average maximum values of both flow velocity and light in the lower 
range showed the highest variability of the tolerance range. The toler
ance of flow velocity was 0.1 m⋅s− 1 in the models of the macroalgal host 
Hypnea musciformis and the epiphytes Jania adhaerens, Herposiphonia 
secunda and Canistrocarpus cervicornis. The lower light intensity showed 

Fig. 2. Potential distribution of habitat suitability above 0.5 of the hosts macroalgae in Cuban marine shelf. Black points indicate occurrences used to train and test 
the models. 
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tolerance values of more than 10 E⋅m− 2⋅yr− 1 for J. adhaerens, H. secunda 
and Caulerpa sertularioides. For the other models the current velocity was 
between 0.1− 0.8 m⋅s− 1 and the light values at the bottom were between 

10− 60 E⋅m− 2⋅yr− 1. 
Distribution models of macroalgal epiphytes and hosts showed niche 

amplitude values of more than 0.8 (Table 5). The niche amplitude values 
were lower in the models that included biotic variables. Hydrolithon 
farinosum showed the smallest niche amplitude values both in the AV 
model (0.82) and in the AV + BV models (0.76). Macroalgal hosts and 
epiphytes showed a high overlap of their potential distribution models 
(D ≥ 0.82 and I ≥ 0.52) (Table 6). In the models AV + BV the overlap 
values were lower. The low overlap was found for H. farinosum and its 
macroalgal host Hypnea musciformis, Digenea simplex, Stypopodium 
zonale. 

Scatter plots of habitat suitability values between macroalgal hosts 
and their epiphytes confirm the general character of epiphyticism in the 
CMS. All models show a positive interaction for the hosts Hypnea mus
ciformis (Fig. 4), Digenea simplex (Fig. 5) and Stypopodium zonale (Fig. 6). 
In these figures it can be seen that in the AV models (pink line and dots) 
there was a greater dependence between the suitability habitat values of 
macroalgal hosts and epiphytes. However, in the AV + BV models (green 

Fig. 3. Potential Species Richness (PSR) of the hosts (A) and epiphytes using abiotic variables (B) and biotic variables (C).  

Table 3 
Epiphytic macroalgae potential richness correlations (Kendall rK) between the 
habitat suitability values of the host macroalgae and the host potential richness 
in the Cuban marine shelf.  

Macroalgal Hosts 

Epiphytic macroalgae potential richness 

Abiotic variables model 
(AV) 

Abiotic + biotic 
variables model 
(AV + BV) 

Hypnea musciformis 0.679 0.616 
Digenea simplex 0.777 0.787 
Stypopodium zonale 0.886 0.885 
Hosts macroalgae potential 

richness 
0.899 0.869  
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line and dots) a non-linear relationship was found between the suit
ability values of macroalgal hosts and epiphytes. In the scatter plot, 
values between 0.4 and 0.6 of the habitat suitability of macroalgae hosts 
are associated with the habitat suitability of epiphytic macroalgae. 

Of the three macroalgal hosts, Stypopodium zonale had the highest 
number of regression models with good adaptation (Table S2). In the 
models of potential distribution with abiotic variables, regression 
models with the best adaptation were established for S. zonale with the 
epiphytes Amphiroa fragilissima, Herposiphonia secunda, Laurencia car
aibica and Anadyomene stellata (Fig. 6). However, in the models AV + BV 
for the potential distribution the best agreement was found with the 
epiphytes A. fragilissima, Jania adhaerens, L. caraibica, Canistrocarpus 
cervicornis, Caulerpa cupressoides and C. sertularoides. 

The second host with the highest number of regression models with 
good adaptation was Digenea simplex, and the host with the lowest 
number was Hypnea musciformis (Table S2). In the models of potential 
distribution with abiotic variables, the regression models with better 
adaptations were found for D. simplex with the epiphytes Amphiroa 
fragillisima, Jania adhaerens, Herposiphonia secunda and Anadyomene 
stellata (Fig. 5). The best agreement in distribution models with the 
AV + BV models for D. simplex was found with the epiphytes A. 

fragilissima, Hydrolithon farinosum and Gelidium pusillum. However, for 
H. musciformis (Fig. 4) the regression models with the best agreement 
have Canistrocarpus cervicornis and Caulerpa sertularoides for the distri
bution models with abiotic variables, and with C. cupressoides and A. 
stellata for the potential distribution models with the AV + BV models. 

4. Discussion 

Distribution models for macroalgal epiphytes and hosts provide an 
approximation on the ecological requirements’ habitat of these taxa on 

Table 4 
Tolerance range of the environmental variables that most contribute to the ecological niche models of the epiphytic and host macroalgae in the Cuban marine shelf.  

Macroalgae 
Range of environmental tolerances in potential distribution models 

Current (m⋅s− 1) D.O. (mol⋅m− 3) Light (E⋅m− 2⋅yr− 1) NO3 (mol⋅m− 3) Salinity Hmusc Dsimp Szona 

Epiphytes 
Amphiroa fragilissima 0.1− 1 160− 190   35.5− 36  0.3− 0.7 0.6− 0.8 
Hydrolithon farinosum 0.1− 1  10− 60 – 35.5− 36   0.5− 0.8 
Jania adhaerens ≥0.1  ≤10 0− 0.5 35.5− 36  0.3− 0.7 0.5− 0.8 
Gelidium pusillum 0.2− 1  40− 60 0− 1 35.5− 36   0.1− 0.7 
Herposiphonia secunda ≥0.1 160− 210 ≤10  35.5− 36  0.2− 0.7 0.6− 0.8 
Laurencia caraibica   20− 60  35.5− 36   ≥0.1 
Canistrocarpus cervicornis ≥0.1    35.5− 36 ≥0.1  ≥0.1 
Caulerpa cupressoides 0.1− 1   0− 0.5 35.5− 36   0.2− 0.7 
Caulerpa sertularioides 0.1− 0.4  ≤10  35.5− 36 ≥0.3  0.2− 0.7 
Anadyomene stellata 0.1− 0.7 160− 200 20− 60  35.5− 36  0.1− 0.2 0.1− 0.7 
Hosts 
Hypnea musciformis ≥0.1    35.5− 36    
Digenea simplex  160− 200 ≤10  35.5− 36    
Stypopodium zonale 0.1− 0.8 160− 240 20− 60  35.5− 36    

Hmusc = habitat suitability values of the distribution of Hypnea musciformis, Dsimp = habitat suitability values of the distribution of Digenea simplex, Szona = habitat 
suitability values of the distribution of Stypopodium zonale. 

Table 5 
Niche breadth, based on Levins (1968), of the epiphytic and host macroalgae in 
the Cuban marine shelf.  

Macroalgae 

Niche breadth 

Abiotic variables 
model (AV) 

Abiotic + biotic variables model 
(AV + BV) 

Epiphytes 
Amphiroa fragilissima 0.90 0.85 
Hydrolithon 

farinosum 
0.82 0.76 

Jania adhaerens 0.86 0.81 
Gelidium pusillum 0.88 0.84 
Herposiphonia 

secunda 
0.87 0.82 

Laurencia caraibica 0.88 0.83 
Canistrocarpus 

cervicornis 
0.87 0.82 

Caulerpa cupressoides 0.88 0.83 
Caulerpa 

sertularioides 
0.86 0.82 

Anadyomene stellata 0.88 0.83 
Hosts 
Hypnea musciformis 0.87 – 
Digenea simplex 0.89 – 
Stypopodium zonale 0.88 –  

Table 6 
Niche overlap for the epiphytic and host macroalgae, where I = distance from 
Hellinger and D = overlap from the Schoener D niche.  

Macroalgae Abiotic 
variables 

model 
(AV) 

Abiotic + biotic 
variables model 

(AV + BV) 

Hosts Epiphytes I D I D 

Hypnea musciformis 

Amphiroa fragilissima 0.94 0.79 0.91 0.75 
Hydrolithon farinosum 0.89 0.65 0.82 0.52 
Jania adhaerens 0.95 0.82 0.91 0.68 
Gelidium pusillum 0.96 0.84 0.94 0.78 
Herposiphonia secunda 0.97 0.85 0.90 0.70 
Laurencia caraibica 0.96 0.79 0.91 0.74 
Canistrocarpus cervicornis 0.99 0.92 0.94 0.75 
Caulerpa cupressoides 0.95 0.80 0.91 0.71 
Caulerpa sertularioides 0.98 0.89 0.94 0.74 
Anadyomene stellata 0.96 0.84 0.90 0.72 

Digenea simplex 

Amphiroa fragilissima 0.97 0.84 0.96 0.82 
Hydrolithon farinosum 0.90 0.64 0.82 0.55 
Jania adhaerens 0.94 0.77 0.92 0.72 
Gelidium pusillum 0.93 0.86 0.93 0.77 
Herposiphonia secunda 0.98 0.85 0.93 0.75 
Laurencia caraibica 0.93 0.88 0.92 0.75 
Canistrocarpus cervicornis 0.92 0.74 0.91 0.70 
Caulerpa cupressoides 0.93 0.80 0.92 0.74 
Caulerpa sertularioides 0.93 0.76 0.91 0.69 
Anadyomene stellata 0.97 0.83 0.93 0.76 

Stypopodium zonale 

Amphiroa fragilissima 0.98 0.87 0.97 0.85 
Hydrolithon farinosum 0.91 0.68 0.86 0.56 
Jania adhaerens 0.94 0.82 0.92 0.71 
Gelidium pusillum 0.97 0.85 0.97 0.84 
Herposiphonia secunda 0.98 0.92 0.94 0.76 
Laurencia caraibica 0.98 0.92 0.95 0.80 
Canistrocarpus cervicornis 0.95 0.81 0.94 0.73 
Caulerpa cupressoides 0.96 0.85 0.96 0.79 
Caulerpa sertularioides 0.96 0.82 0.94 0.74 
Anadyomene stellata 0.99 0.97 0.95 0.80  
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the Cuban marine shelf. According to Melo-Merino et al. (2020), 
throughout these models environmental factors determining the 
fundamental niche of epiphytic macroalgae in marine ecosystems can be 
identified for the first time. AUC and TSS values indicate that the models 
obtained have a good predictive capacity for the species under study 
(Allouche et al., 2006; Warren et al., 2008; Mateo et al., 2011). In 
addition, AUC values confirm that the chosen variables can explain the 
distribution of epiphytes and host macroalgae. 

These results support epiphyticism as a phenomenon of wide distri
bution in the marine shelf of Cuba (Suárez, 1989; Suárez et al., 2015). 
Moreover, the areas with the highest percentage of presence probability 
correspond with areas of the rocky substrata, mangroves, and bottoms 
with a consolidated substratum that favors the richness of epiphytic 
macroalgae and hosts. This distribution pattern corresponds to that 
found in tropical areas (Quan-Young et al., 2006; Fredericq et al., 2009; 
Ramírez et al., 2011; Lucas and de la Cruz-Francisco, 2018). 

The current knowledge of Cuban macroalgal distribution is limited 
because biotic interactions are not considered, and also because of the 
“Collector Syndrome” (Suárez et al., 2015). The collector syndrome is 
defined as the process of collecting data on the presence of species in 
well-known and/or easily accessible locations (Ballesteros-Barrera et al., 
2017). According to these authors, it limits the knowledge of species 
distribution. These two factors are also overlooked in the potential 
distribution models (Soberón and Townsend, 2005; Jiménez et al., 2019; 
Soberón, 2019). 

The use of ENMs in Ecology meets two functions: (1) to provide 
knowledge about the potential distribution of species to allow 

estimations of richness and diversity of non-sampled areas; and (2) to 
use such predictions to choose sites of particular interest as biological 
conservation areas (Meggs et al., 2004; Chen et al., 2007). The areas of 
the platform that are little-studied according to Suarez et al. (2015), 
such as the shallow waters of the northeast, southeast, and south-central 
coasts, register a high potential richness of host and epiphytic macro
algae. Future prospects in the areas identified with greater or lesser 
potential richness of epiphytic macroalgae and hosts would validate the 
results of these models (Soberón and Townsend, 2005). According to 
these authors, this is possible since ecological niche models allow us to 
fill gaps in the knowledge of the distribution of species. In addition, 
important areas for the conservation of Cuban marine biodiversity have 
high values of the potential richness of epiphytes and hosts, such as 
those found on the south-central and north-central coast according to 
Valderrama et al. (2018). 

Environmental variables such as salinity, light and nutrients modu
late the development of macroalgae in marine ecosystems (Kirst, 1990; 
Hurd et al., 2014) and can predict the distribution of epiphytes and hosts 
(Bartsch et al., 2012). The narrow response range for the annual average 
maximum records of salinity shows the low tolerance of epiphytes and 
host macroalgae to this driver. Salinity values between 30–40 PSU foster 
the growth of seagrass epiphytes (Biber et al., 2004), whereas higher 
values limit the development of epiphytes and their hosts (Harlin et al., 
1985). The average salinity for the Gulf of Mexico and the Caribbean Sea 
ranges between 32–35 PSU (Brenes et al., 2017). In the future, laoratory 
and field studies would allow us to elucidate whether an increase in 
these maximum salinity values could trigger changes in the distribution 

Fig. 4. Scatter plot of distribution modelling of Hypnea musciformis versus suitability values of macroalgal epiphytes. In scatter plots, the dotted red line represents 
the 1:1 relationship, the plain blue line represents the regression line across the cloud of points of the model with abiotic variables, and a simple green line represents 
the regression line through the point cloud of the model with abiotic + biotic variables (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article). 
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of the host macroalgae and their epiphytes. 
Water current affects the growth and morphology of macroalgae 

(Hurd, 2000; Hurd et al., 2014) as well as nutrient availability and the 
distribution of dispersal (Bergey et al., 1995; Hawes and Smith, 1995). 
Both the hydrodynamics and the epibiont load favor the flow of nutri
ents through the canopy of marine vegetation (Morris et al., 2008; Pujol 
et al., 2019). It has also been reported that in seagrasses, the top-down 
flow velocity exerts control over host/epiphyte mesograzer associations 
(Biber et al., 2004; Jiménez-Ramos et al., 2019). 

The positive relationship between the potential richness of host 
macroalgae and the potential richness of epiphytes could indicate that 
the more diverse the structure of the host macroalgae association, the 
greater the richness of epiphyticism. In marine habitats of greater 
structural complexity, it favors the establishment of host macroalgae 
and consequently of the epiphytic macroalgae (Otero-Schmitt and San
juan, 1992). The three hosts included in the distribution models are 
frequently found in the Gulf of Mexico and the Caribbean Sea 
(González-González, 1996; Fredericq et al., 2009; Suárez et al., 2015). 
Stypopodium zonale and Digenea simplex are among the tropical marine 
algae with the greatest richness of macroalgal epiphytes (Suárez et al., 
1989; Dreckmann and Sentíes, 1994). According to these authors, these 
two hosts are abundant in the rocky intertidal (including pools) and 
sublittoral habitats. 

Potential distribution models of epiphytic macroalgae showed that 
Stypopodium zonale and Digenea simplex could function as nurse plants. 
Nurse plants have a positive net effect on other plant species and on 
biotic and abiotic conditions through direct or indirect mechanisms 

(Stachowicz, 2001). In terrestrial habitats, nurse plants are typically 
perennial species such as shrubs, trees or cushion plants (Ballester
os-Barrera et al., 2017). According to these authors, the mechanisms 
that facilite interactions of macroalgae, such as nurse plants, are 1) 
improvement of the above-ground microclimate, 2) alteration of soil 
nutrient fertility, 3) protection from grazing and 4) provision of sub
stratum for the attachment of sedentary organisms. 

Kendall’s correlation values between the habitat suitability of host 
macroalgae and the potential richness of epiphytic macroalgae validate 
Stypopodium zonale and Digenea simplex as important primary baso
phytes for epiphytic macroalgae (Thomsen et al., 2018). The thallus 
morphology and aggregation pattern of these host macroalgae are at
tributes that determine their role as nurse plants (Ortuño-Aguirre and 
Riosmena-Rodríguez, 2007; Álvarez-Álvarez et al., 2020). The sociable 
distribution, upright habit, thallus shape (flabellate in S. zonale and 
bushy with branches in D. simplex) and crown structure of these two 
hosts would facilitate the settlement and development of epiphytes by 
promoting species coexistence (Bulleri, 2009; Bulleri et al., 2016) and 
improving tolerance to abiotic stress (Scrosati, 2017). These results form 
the basis for the use of species-niche models in the analysis of 
algae-algae interactions, with a focus on epibiotic algae. 

Niche breadth and overlap values as well as scatter plots of suitable 
habitats show that the most common macroalgal epiphytes and hosts on 
the Cuban shelf are generalist species. Analysis of the niche breadth 
shows that the epiphytes and host macroalgae have similar amplitudes, 
although they are lines that differ in evolutionary history. The fact that 
the species of epiphytes and host macroalgae on the CMS are generalist 

Fig. 5. Scatter plot of distribution modelling of Digenea simplex versus suitability values of macroalgal epiphytes. In scatter plots, the dotted red line represents the 
1:1 relationship, the plain blue line represents the regression line across the cloud of points of the model with abiotic variables, and a simple green line represents the 
regression line through the point cloud of the model with abiotic + biotic variables (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 
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favors coexistence and species richness. Simulation studies suggest that 
the presence of generalist species in assemblages may promote the 
coexistence of a larger number of species under constant and fluctuating 
environmental conditions (Richmond et al., 2005). 

Previous results and reports for the Gulf of Mexico and Caribbean Sea 
confirmed the generalist character of macroalgae in their relationship to 
habitat use (González-González, 1996; Fredericq et al., 2009; Suárez 
et al., 2015). In the same habitat a species can be registered both as an 
epiphyte and as a host (Suárez, 1989). Duality in habitat has been 
recorded for intertidal rocky shores (Diez et al., 2013) and shallow 
subtidal bottoms (Quan-Young et al., 2006). The specificity of epiphytes 
and hosts is a rare phenomenon among macroalgae (Pearson and Evans, 
1990; Zotz and Schultz, 2008), although it has been recorded for few 
Cuban species (Suárez, 1989). 

The potential range of Hydrolithon farinosum has the lowest niche 
amplitude and the smallest overlap of all recorded epiphytes for the 
Cuban shelf. This species is the only crust-forming calcareous algae 
strictly reported as epiphyte in Atlantic Tropical (Fredericq et al., 2009; 
Suárez et al., 2015; Cabrera et al., 2018). Light intensity, availability of 
consolidated substratum desiccation and hydrodynamics are factors that 
limit the spread of encrusting calcareous algae (Steneck, 1986; 
Vásquez-Elizondo and Enríquez, 2017). Other limiting factors are ocean 
acidification (Martin and Hall-Spencer, 2017), sedimentation (Fabricius 
and De’ath, 2001) and eutrophication (Balata et al., 2008). In addition, 
epiphytic, crust-forming calcareous algae show preferences for the 
smooth surfaces of the boots of their hosts (Mateo-Cid et al., 2014; 
Álvarez-Álvarez et al., 2020). The availability of host macroalgae with 

these characteristics is a limiting factor for the distribution of these 
calcareous epiphytes. 

In general, potential distribution models of epiphytic macroalgae 
suggest that host macroalgae represent a resource that facilitates the 
distribution of epiphytes. Potential distribution models indicated that 
bottom light intensity, nutrients and flow velocity are the abiotic vari
ables most closely associated with the distribution of epiphytic and host 
macroalgae of the CMS. In addition, areas of the marine shelf with sandy 
and muddy-sandy bottoms are less suitable for the development of 
epiphytic and host macroalgae. The generalist character of epiphytic 
macroalgae is evident in all potential distribution models. The strongest 
relationship between potential host distribution and potential epiphyte 
distribution was found for habitat suitability values between 0.4 and 
0.6. 

In future research it will be important to analyze the relationship 
between the potential distribution of main herbivores in addition to 
other hosts. Aggregation and competition have been identified as critical 
factors in the distribution of benthic macroalgae (Robinson et al., 2011). 
Another issue that should be considered is the use of the richness of 
epiphytic macroalgae and hosts as a response variable in potential dis
tribution models, as presence models tend to overestimate habitat 
suitability (Reiss et al., 2014). 

Despite the biological and methodological limitations of ENMs 
(Seoane and Bustamante, 2001), the predictions presented provide a 
basis for understanding epiphyte-host interactions in macroalgae. These 
potential distribution models provide the theoretical and methodolog
ical basis for assessing the effect of host-epiphyte interactions in future 

Fig. 6. Scatter plot of distribution modelling of Stypopodium zonale versus suitability values of macroalgal epiphytes. In scatter plots, the dotted red line represents 
the 1:1 relationship, the plain blue line represents the regression line across the cloud of points of the model with abiotic variables, and a simple green line represents 
the regression line through the point cloud of the model with abiotic + biotic variables (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article). 
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climate change scenarios. These prediction models would also be useful 
for studies related to anthropogenic activities such as eutrophication, 
sedimentation and other environmental threats affecting marine biodi
versity. Furthermore, these results can be used in the development of 
early warning systems for invasive species, in the planning of moni
toring in different places and time periods scales and in defining 
long-term strategies for ecosystem management. 
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