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Abstract
Fungal Epichloë endophytes form symbiotic associations with many temperate grasses, such as Lolium and Festuca, giving their host grasses an

ecological advantage. The importance of specific Epichloë endophytes in providing varying levels of protection against invertebrate pests has

been well documented. Similarly, but with fewer studies, the benefits of Epichloë to host grasses in drought events has been shown. Endophyte-

infected grasses show an improved persistence against herbivore insect attack as well as resilience under drought. However, there are relatively

few  studies  that  investigate  the  interaction  between  drought  and  insect  pressure,  and  yet  it  is  these  combined  pressures  that  can  prove

detrimental for a ryegrass or fescue crop. This review examines the current state of knowledge on the effects of Epichloë on the interactions of

insects and drought in temperate grasses.
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Introduction

Worldwide,  around  26%  of  the  world  land  area  is  domi-
nated  by  forage  grass  species  for  animal  production
systems[1].  Poaceae  grasses  (subfamily  Pooidea),  such  as
Lolium and Festuca,  are  often  used  in  managed  pasture
systems  throughout  temperate  zones[2,3].  Along  with  other
cool-season grasses, they are capable of forming both sexual
and  asexual  associations  with  fungal Epichloë endophytes
that  range  from  mutualistic  to  antagonistic.  The  mutalistic
outcomes  of  the  relationship  for  their Lolium and Festuca
hosts are considered to be a major factor in the evolution of
maternal transmission of the endophyte[4]. These endophytes
are critical constitutents of agricultural ecosystems and likely
have an important  role  in  regulating communities  in  natural
grasslands although these have been less well studied. Living
only  in  the  above-ground  tissues,  endophyte  infection  in
these  temperate  grasses  can  increase  the  plants'  ability  to
tolerate  herbivory  attack  through  the  production  of  a  large
range of secondary metabolites such as alkaloids[5]. Four main
classes  of  alkaloids  are  recognised  as  being  produced  by
Epichloë endophytes;  peramine,  indole  diterpenes,  ergot
alkaloid,  and  lolines[6].  All  of  these  alkaloid  classes  are
involved  in  invertebrate  deterrence  and/or  toxicity[7],  while
ergot  alkaloids  as  well  as  indole  diterpenes  can  also  impair
grazing  animal  performance[8].  Removal  of  the  fungal
endophyte from the host grass to counter the toxic effect on
grazing  livestock  is  a  logical  approach.  However,  such
endophyte-free  plants  were  not  viable  in  New  Zealand  and
other  countries  that  suffer  from  high  invertebrate  pest
pressure[9].  The  economic  loss  and  reduced  animal

performance of  livestock grazing pastures  containing a  toxic
endophyte led to the identification of endophyte strains that
retain insect-active alkaloids while minimising the production
of  the  mammalian  active  toxins[10,11].  The  anti-herbivory
properties  have  been  utilised  and  commercialised  in
agriculturally  managed  agroecosystems  that  use  perennial
ryegrass  (Lolium  perenne L.)  and  tall  fescue  (Festuca
arundinacea Schreb.),  two  dominant  plant  species  sown  for
ruminant  livestock  production[12−15] (Table  1 and Table  2).  In
addition  to  the  invertebrates  affected  by  endophyte,  in  the
USA, mammalian-toxic E. coenophiala also affects grazing and
reproduction of the prairie vole (Microtus orchrogaster) which
in  turn  modifies  community  structure[16].  Fungal Epichloë
endophytes  have  become  a  fundamental  and  essential
management  tool  in  integrated  pest  management  in  New
Zealand,  Australia,  and  the  USA  to  maintain  and/or  increase
pasture production and persistence[17−19].

Farmers  are  facing  an  increasingly  complex  operating
environment through changes in climate as well as increased
global  demand  for  more  sustainable  farming  systems.
Resource  limitations,  such  as  drought,  can  significantly
impact  managed  grassland  productivity.  Numerous  studies
have  investigated  if Epichloë endophyte  infection  improves
the ability of the grass host to withstand abiotic stress factors
and resource limitations such as drought[7,41]. Although there
is evidence that E. coenophiala promotes drought tolerance in
its  tall  fescue  host,  the  information  for  this  occurring  in
ryegrass is more equivocal. In addition, there is the likelihood
of  interactions  occurring  between  invertebrates  and  abiotic
stress  which  we  do  not  yet  fully  understand.  For  example,
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Table 2.    The impact of Epichloë endophyte on the drought tolerance of a range of cultivated and native temperate grasses.

Species of grass and
endophyte Impact of endophyte Physiological and/or structural changes to host

plant and endophyte in response to drought Reference

Cultivated grasses
Perennial ryegrass
(L. perenne)
E. festucae var. lolii

Increased tiller number and shoot weight 15% higher osmotic potential [64]
Leaf water content not affected [65]

Reduced leaf dehydration in moderately
droughted plants

[66]

Variable effect related to original habitat of
collection

Increased root dry weight and root/shoot ratio [67]

Lower dry weight, but less wilting Lower water use efficiency [68]

In 4 of 6 Mediterranean populations
endophyte improved drought tolerance

Increased tiller number and yield [69]

Beneficial for combined stresses of drought
and Bipolaris sorokiniana

Increased growth, and photosynthetic parameter,
but decreased proline content

[70]

Provides physiological protection against
drought

Drought increased ergovaline and lolitrem B
levels but endophyte had no effect on proline
levels improved water use efficiency, relative
water content and osmotic potential

[71]

No effect No effect on osmotic potential [72]
No effect on stomatal conductance [62,73,74]
No involvement to withstand or recover from
drought

[75−78]

Higher seedling survival when released
from drought

No effect on reactive oxygen species [79]

Tall fescue
(F. arundinacea)
E. coenophiala

Endophyte responses vary with genotype Pseudostem, root and dead leaf yield increased
with endophyte in some cases; no effect on non-
structural carbohydrates

[80]

No consistent endophyte effect on dry weight per
tiller, stomatal conductance; endophyte reduced
leaf rolling in drought, but increased water
content and delayed desiccation

[81]

No effect on leaf osmotic potential and minimal
effect on plant water-soluble mineral and sugar
concentrations

[82]

Improved plant survival under severe soil
moisture deficit

Leaf rolling under drought stress greater for
endophytic plants; regrowth greater for
endophytic plants when re-watered

[83]

Increased alkaloid levels [80,84,85]
Increased soluble carbohydrates in leaves [63,86,87]
Shedding of older leaves and rolling of younger
leaves; low stomatal conductance; increased
cellular turgor pressure

[63,88]

No effect on leaf rolling [89]
Enhanced tiller density and plant survival [90]
Maintained water use efficiency and
photosynthetic rate better under drought

[91]

Enhanced osmotic adjustment in meristem;
reduced stomatal conductance and transpiration

[92,93]

Reduced stomatal conductance; maintained
higher water content of tiller bases

[93]

Root nematode inhibition by endophyte
enhances drought tolerance

[90,94]

Increased plant available water [95]
Reduced reactive oxygen species [96]

Improved recovery after drought Improved tiller and whole plant survival [62,87,90,97−99]
Improved root growth [100]

Meadow fescue
(F. pratensis)
E. uncinatum

Improved growth in drought Reduced stomatal conductance [101,102]
Increased water uptake capacity [103]
Production of larger but fewer tillers [104]

Strong creeping red fescue
(F. rubra ssp. rubra) –
turf type E. festucae

No improvement under drought [105]

Native grasses
Drunken horse grass
(Achnatherum inebrians)
E. gansuense

Improved tolerance to drought and
recovery from drought

Increased leaf proline, root/leaf growth, tiller
number

[106]

(to be continued)
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moderate  drought  events  can  promote  insect  herbivory
driven  by  elevated  nutrient  levels  in  plant  tissues[42,43] and
lowered  plant  defences[42,44].  There  is,  however,  a  major  gap
in  our  understanding  of  the  role  of Epichloë endophytes
under combined effects of both drought and insect pressure.

The questions to be examined in this review are:
I.  Many Epichloë endophyte  strains  improve  plant  persis-

tence in  the presence of  some insect  pests  and when plants
are  drought-stressed,  but  is  this  a  three-way interaction that
needs to be better understood?

II. Can endophyte-infected plants survive a combination of
insect pest pressure and drought stress or is  their  protection
only effective when plants are challenged by one or other of
these  stresses?  Are  there  likely  to  be  differences  depending
on the Epichloë endophyte strains used? Is there a cost to the
plant from hosting Epichloë endophytes when challenged by
drought and other stress factors? 

Impact of drought

Water  is  essential  for  herbaceous  plants,  giving  the  plant
the  ability  to  take  up  nutrients  while  maintaining  turgor
pressure. When water supply reduces or ceases for a period of
time  plants  are  subjected  to  unsuitable  growing  conditions
resulting  in  a  significant  impact  on  plant  production[45].
Climate change has shifted the frequency of drought in some
agricultural  regions[46,47].  While  the  predictions  are  highly

variable  between  countries  and  regions,  in  temperate  grass-
producing  regions  of  countries  like  New  Zealand,  Australia,
and  the  USA,  the  overall  trend  is  for  increased  likelihood  of
soil  moisture  depletion,  increases  in  temperature,  and  more
frequent extreme weather events[48−50]. These changes are of
particular  significance  to  the  agricultural  sector.  With  such
changes  in  temperature  and  precipitation,  pastures  are
projected to have an earlier growth start  in late winter while
drying out  more  quickly  in  late  spring[51].  Perennial  ryegrass,
the mainstay of the New Zealand agricultural industry, fails to
produce and thrive under a hot-dry climate[52], due at least in
part to having a shallow root system[53] and therefore relying
on constant water availability in the topsoil. Thus, drought in
New Zealand reduces perennial ryegrass production, causing
feed  shortages  for  livestock  requiring  additional  cost  as
alternative  feed  needs  to  be  purchased[54,55].  Selecting  for
improved  drought  tolerance  to  maintain  sustainable
production is  a  priority  plant  breeding target[56].  Plants  have
evolved  mechanisms  to  maintain  function  and/or  survival
under  reduced  soil  moisture  conditions[57],  such  as  stomatal
closure, reduction in leaf growth, as well as leaf abscission to
reduce water loss via transpiration[58].  The plant accumulates
solutes,  such  as  carbohydrates,  amino  acids,  sugars,  and
proline,  to  thereby  draw  water  into  the  cells  to  re-establish
turgor pressure.  Even though this effect enables the plant to
overcome  short-term  drought,  it  cannot  be  sustained  for
longer drought periods[59]. 

Table 2.    (continued)
 

Species of grass and
endophyte Impact of endophyte Physiological and/or structural changes to host

plant and endophyte in response to drought Reference

Improved photosynthetic efficiency and nutrient
absorption

[107]

Increased ergovaline and ergine alkaloid
concentrations

[108]

Reduced disease incidence of Blumeria graminis [109]

Achnatherum sibiricum
Epichloë spp.

Endophyte benefit greatest when well-
watered and fertilised

Higher root: shoot ratio and photosynthetic rate
under drought and fertiliation

[110]

Hordelymus europaeus
E. hordelymi

Improved recovery from drought Increased tiller number and plant dry weight [111]

Grove bluegrass
(Poa alsodes)
Epichloë spp.

Improved the negative effects of drought
stress

Endophytic plants under drought had 24% more
root biomass, 14% more shoot biomass; 29%
more leaf senescence in non-endophytic plants

[112]

Arizona fescue
(Festuca arizonica)
Epichloë spp.

Endophyte infection beneficial in drought Increased growth rates; low net photosynthesis
and stomatal conductance

[113]

Bromus auleticus
E. pampeanum and
E. tembladerae

Improved survival in summer Higher regrowth rate [114]

Roegneria kamoji
E. sinica

Improved seedling establishment in
drought

Improved germination and seedling growth [115]

Elymus dahuricus
Epichloë spp.

Improved yield and tiller numbers under
drought

Endophyte caused anti-oxidative enzyme
activities and contents of proline and chlorophyll
a + b increased under drought

[116]

Increased germination at moderate osmotic
potentials

[117]

Elymus virginicus
E. elymi

Improved drought tolerance, but also
benefited well-watered plants

No effect on root: shoot ratio; improved tiller
number

[118]

Leymus chinensis
E. bromicola

Improved yield under drought Increased photosynthetic rate [119]

Festuca sinensis
Epichloë spp.

Endophytes enhanced drought tolerance Increased yield, root: shoot ratio [120]
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Epichloë and drought

Endophyte-infected  perennial  ryegrass  and  tall  fescue  are
considered  to  perform  better  in  challenging  environments
than  endophyte-free[60−62].  The  presence  of Epichloë can
induce  mechanisms  of  drought  avoidance  (morphological
adaptions), drought tolerance (biochemical and physiological
adaptations)  as  well  as  drought  recovery  for  both
domesticated  and  wild  cool-temperate  grasses  (Table  3).
However,  the  wide  natural  genetic  variability  of  tall  fescue
and  perennial  ryegrass  at  the  population  level  and  its
interaction  with  the  endophyte  strains  has  provided  some
inconsistent results on the effect of the endophyte on forage
production under variable soil water availability[63], which has
also been complicated by whether trials are undertaken using
pots in glasshouses/ growth rooms, small plots under cutting,
or large paddocks under grazing. Despite this, there is general
acceptance  that  in  the  field,  endophyte  infection  improves
plant  persistence  and  fitness  in  at  least  the  most  responsive
combinations under severe water deficit (Fig. 1)[61,63]. 

Insect responses to drought

Reduced soil moisture influences herbivorous invertebrates
as  well  as  plants.  Drought  can,  directly  and  indirectly,  affect
insects. A direct influence is seen when insects are exposed to
an environmental change. For example, reduced soil moisture
content  changes  the  physical  properties  of  soils,  influencing
the  behaviour  of  soil-dwelling  insects[121].  In  comparison,  an
indirect  influence  of  drought  affects  the  insect's  host  and  in
due  course  the  insect  itself.  Drought-stressed  plants
experience  chemical  changes  in  which  the  water  content
reduces,  subsequently  leading  to  lower  turgor  pressure,  a
more viscous phloem sap[122],  and a higher nitrogen content
in  the  plant  tissue[43,123−125],  which  is  generally  a  limiting
factor  for  herbivorous  insects[126,127].  Such  physiological
changes  in  the  plant  can  impact  the  suitability  as  a  food
source for insect pests. An increase in the presence of insects
has  been  linked  with  drought-stressed  plants[128−130].
However,  this  may  be  moderated  by  the  insect  species  and
the feeding guilds involved[123]. For example, phloem feeders

Table 3.    Impact of Epichloë on the interaction between drought and insect herbivory

Endophyte type and trial
protocol Known alkaloid expression Insect pest Drought effect Reference

Ryegrass
Italian ryegrass
(L. multiflorum)
E. occultans (presumably)
Pot trial in a glasshouse

Lolines and peramine Grass aphid
(Sipha maydis)
Cherry-oat aphid
(Rhopalosiphum padi)

Endophyte reduced aphid numbers but
only on drought stressed plants. Aphid
herbivory detrimental to endophyte
infected well-watered plants.
Interactions between drought and aphids
affected reproductive tillering in
endophyte-free plants only.

[138]

Perennial ryegrass
(L. perenne)
E. festucae var. lolii
Field trial; visual assessment
of larval damage scored

Dependent on endophyte
strain: ergovaline, peramine,
lolitrem B

Black beetle (Heteronychus
arator)

Summer/early autumn drought plus
differences in black beetle root damage
decreased plant survival and growth of
susceptible plant-endophyte combinations
compared with a resistant one.

[139]

Perennial ryegrass
(L. perenne)
E. festucae var. lolii
Field trial

Dependent on endophyte
strain: ergovaline, peramine,
lolitrem B, epoxy-janthirems

Root aphid (Aploneura lentisci)
Field measurements of
population densities and
ryegrass growth

Drought may have increased aphid
populations and likely exacerbated their
effect on plant growth. Two endophytes
strongly reduced populations. Aphid
populations correlated with plant growth.

[140]

Fescue
Tall fescue
(F. arundinacea)
E. coenophiala
Pot trial in a glasshouse

N-acetyl and N-formyl lolines Number of cherry-oat aphids
(Rhopalosiphum padi)

Aphid density reduced by endophyte, and
by drought stress in endophyte-free plants
only.

[141]

Development time of fall
armyworm (Spodoptera
frugiperda)

Growth and development reduced by
endophyte-infected drought stressed
herbage compared with well-watered. No
effect on larvae fed Nil herbage.

[141]

Growth of fall armyworm
(Spodoptera frugiperda)

Tall fescue
(F. arundinacea)
E. coenophiala
AR584
Excised roots from treated
plants feed to 3rd instar grass
grub

Lolines Grass grub (Costelytra given)
3rd instar larvae

Root consumption of endophyte-free plants
higher if plants droughted compared with
well-watered endophyte-free; larval weight
change reduced by endophyte fed
droughted plant roots. Loline concentration
in roots higher in droughted than in well-
watered plants.

[142]

Meadow fescue (F. pratensis)
E. uncinata
Excised roots fed to 3rd instar
grass grub

Endophyte reduced root consumption, frass
output, and larval weight change; effects
greatest for well-watered plants; loline
concentration higher in roots of well-
watered plants than droughted plants.

[142]

Red fescue
(F. rubra)
E. festucae
Field survey and common
garden experiment

Ergovaline Locusts
Locusta migratoria)

Endophyte significantly reduced weight
and survival of locusts

[143],
[144]
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(e.g.  aphids,  planthoppers)  and  cambium  feeders  (e.g.  bark
beetles)  were  predicted  to  positively  respond  to  drought-
stressed plants, in contrast to free-living chewing insects (e.g.
caterpillars)  and  gall  formers  (e.g.  gall  wasps)[131].  However,
such  effects  are  dependent  on  water  deficit  intensity  and
duration.  In  dry  soil  moisture  conditions,  populations  of  the
lucerne  weevil  (Sitona  discoideus),  a  major  pest  of  this  plant,
increased significantly  resulting in  even higher  yield  loss[132].
Foliage  feeding Spodoptera  litura increased  significantly  in
drought-stressed Piper  betel and Ricinus  communis,  which  is
believed to be linked with an increase in flavonoid and amino
acid  content[133].  Phloem-feeding  below  ground  aphid
species  have  been  found  to  reproduce  rapidly  in  dry  soil
conditions[134−136],  likely  utilising  the  drought-induced  weak-
ening of the plant in which nitrogen content is increased.

Despite  higher  nitrogen  content  in  the  plant  sap  during
times of drought,  phytophagous herbivores that feed on the
sap can be negatively affected by continued drought.  This  is
caused by reduced turgor pressure which interferes with the
insect's ability to utilise available nitrogen[123]. 

Interaction between drought, insect herbivory
and Epichloë endophyte

Despite  the  importance  of  insect-plant-endophyte
interactions,  little  research  has  focused  on  the  interaction
between  drought,  endophytes,  and  insect  herbivory.  Plant
defence  theory  predicts  that  plants  under  moisture  deficit
should  increase  their  resource  allocation  toward  the
production of plant-derived secondary metabolites that deter
herbivores[137]. This theory is also seen in endophyte-infected
plants,  which  increase  their  alkaloid  concentration  under
drought stress[71,83].  It  is  however  unclear  to what  extent  the
plant can mediate drought tolerance and herbivore pressure
simultaneously.  Insects  can  be  affected  in  different  ways  by
the  endophyte,  and  this  can  be  further  influenced  by  the
additional resource limitation of the host (Table 3).  However,
this demonstrates that there are a limited number of studies
to  definitively  conclude  that  it  is  often  the  combination  of
both insect herbivory pressure and drought, rather than each
individually that finally impacts ryegrass persistence.

Harbouring a systemic endophyte may represent a net cost

to  the  plant  in  the  absence  of  other  stress  factors[145].
However,  observations  of  field-grown plants  have prompted
the  opinion  that  it  is  when  pressure  on  plants  from  both
insects and drought is greatest, that endophytes provide the
greatest  advantage[139].  The  benefits  of  endophyte-grass
symbioses  may  enhance  the  plants'  ability  to  tolerate
interactions  between  biotic  and  abiotic  stressors[143,145].  In
New  Zealand,  this  effect  occurs  most  often  during  late
summer  and  autumn[21,146,147],  the  time  of  the  year  when
alkaloid  concentration  is  generally  at  its  highest[148,149].
Epichloë strain  effects  can  also  be  important  at  times  when
both insect and drought stress are threatening grass survival.
A  comparison  of  strains  AR37,  standard  endophyte  and  AR1
showed  that  during  hot  dry  summers  the  overriding  impact
of  pasture  pests,  predominantly  African  black  beetle
(Heteronychus  arator),  was  greater  on  AR1  than  AR37  and
standard endophyte[150]. The use of irrigation has been shown
to slow the loss of endophyte-free plants even though insect
pressures can still be present[151].

It  has  been  hypothesised  that  key  environmental  factors
can affect the presence and frequency of Epichloë endophytes
in  natural  populations[152].  Importantly,  they  concluded  for
biotic  factors  endophyte infection frequency in  a  population
is  negatively  associated  with  a  degree  of  insect  damage.  In
New  Zealand,  it  is  recognised  that  without  the  appropriate
endophyte  strains  in  perennial  ryegrass,  the  persistence  of
perennial  ryegrass  in  many  regions  of  the  country  would  be
poor[153], as demonstrated in Fig. 2.

In trials undertaken in Germany where endophyte-free and
infected plants were transplanted into two environments the
effect  of  endophyte  on  aphid  presence  was  dependent  on
the  region  in  which  the  trial  was  run  and  therefore  the
environment[154].  The  site  with  the  lowest  rainfall  over  the  3
months of the trial (281 mm compared with 327 mm) had the
highest  bird-cherry oat  aphid levels  and was the only region
where  endophyte  presence  had  a  significant  effect  in
reducing aphid numbers.

The  compatibility  of  an  endophyte  strain  with  the  host
plant  is  an important  consideration for  improving host  plant
fitness  against  both biotic  and abiotic  stresses[152].  The more
compatible  a  strain  is  with  a  host  plant  the  greater  the
likelihood of enhanced vegetative biomass, tiller number, and

 
Fig.  1    A  proposed  schematic  diagram  of  endophyte-infected  and  endophyte-free  plant  responses  to  increasing  soil  water  deficit.  Figure
adapted from Assuero et al.[63].
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root mass which in turn will aid tolerance of drought[116] and
insect  pest  pressures[139].  Host  plant  genotype  also  has  a
major  effect  on  the  outcomes  of  the  symbiosis  relating  to
drought stress[76]. 

Concluding comment

Fungal Epichloë endophytes  often  increase  host  plant
tolerance  to  water  deficit  as  well  as  increase  the  ability  to
withstand  herbivorous  insect  attack  thereby  making
endophytes  a  critical  component  of  temperate  grasses  in
many intensively-managed pastoral  systems.  The majority  of
studies  on  endophyte-grass  symbiosis  focus  on  insect
responses  to  endophyte  presence  or  drought  as  a  sole
environmental stress factor. Less attention has been given to
the  combined  impact  of  herbivore  and  environmental
limitations,  such  as  drought,  on  pasture  production  and
resilience,  even  though  in  natural  settings  these  biotic  and
abiotic stressors often occur concurrently. The positive effects
of  such  endophytes  on  plant  production,  host  fitness  and
resilience  will  become  increasingly  important  with  the
projected  increased  frequency  of  drought  combined  with
insect pressure due to climate change.

While in some temperate environments Epichloë symbionts
are well  established as an integrated pest management tool,
their  full  potential  for  host  plant  adaption  under  multiple
biotic  or  abiotic  stress  factors  remains  poorly  described  and
understood. Yet it is these combined pressures that can prove
terminal  for  temperate  grasses.  Understanding  these
interactions  between  resource  limitation  and  herbivorous
pressure  on  the  host  plant  is  required  to  better  manage
current Epichloë commercialised  strains  and  to  develop  new
agriculturally useful Epichloë − grass associations. 
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