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Preface

Why publish a new book on invertebrate stem cells—and particularly one with
a focus on aquatic invertebrates? The answer lies in a rapidly evolving stem cell
discipline, driven by ever-advancing molecular tools and imaging techniques, today
being one of the most dynamic areas in biology and biomedicine. This inevitably
influences the research on invertebrates, with a noteworthy reference to aquatic
organisms. Indeed, aquatic invertebrates represent the greatest majority of animal
biodiversity. They exhibit various biological features that are of vast interest to
stem cell researchers and biologists in general. These include the high regenerative
power displayed by a broad range of taxa, the lack of early germ cell sequestering,
and a widespread presence of asexual reproduction, dormancy, postponed aging
and rejuvenation. All of these phenomena are associated with the action of pools of
adult stem cells throughout the animals’ life cycles (Ballarin et al. 2018).

Current research on aquatic invertebrate stem cells takes advantage from new
experimental approaches and an increasing number of sequenced animal genomes
and transcriptomes available in databases. The accumulated results reveal that
aquatic invertebrate stem cells have unique features not recorded in the vertebrates
and model terrestrial invertebrates, such as their high abundance (up to 40% of the
entire body cells in some taxa) and their often indeterminate capacity for growth.
They further express typical stemness genes, previously considered an attribute of
germ cells, including piwi, vasa, nanos, and more (Rinkevich et al. 2022), and they
are directly involved in the control and modulation of innate immune responses
(Ballarin et al. 2021). Finally, aquatic invertebrate stem cells challenge the concept of
the stem cell niche as defined in vertebrates and ecdysozoans (Martinez et al. 2022).
The following chapters elaborate on several of these aspects.

This book stems from the activities within the COST Action 16203
MARISTEM Stem cells of marine/aquatic invertebrates: from basic research to
innovative applications, which will end on 1 April 2022. It represents one of the
final deliverables of four years of interaction and collects the contributions of a
relevant part of its members. It holds 11 chapters dealing with sponges, cnidarians,
flatworms, echinoderms and tunicates, highlighting the best-studied adult stem
cell lineages among aquatic invertebrates. Four chapters review stem cell dynamics
in regeneration, development, tissue homeostasis, and symbiosis. Another four
chapters discuss profiles of stem cell-specific gene expression and the action of
glycoproteins and fatty acids. Three chapters describe efforts to approach the long-
term goal of establishing invertebrate stem cell cultures.

We thank all the contributors to this volume and Oliva Andereggen and Jelena
Milojevic for their friendly support and for cautiously handling all editorial issues.
Our hope is that this book can stimulate researchers to pay closer attention to

xiii



organisms from aquatic environments, as those—due to their simple Bauplan and
to the high potentialities of their stem cells—will advance our knowledge in basic
biological processes.
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From Primary Cell and Tissue Cultures to
Aquatic Invertebrate Cell Lines: An
Updated Overview

Isabelle Domart-Coulon and Simon Blanchoud

Abstract: The stem cells discipline represents one of the most dynamic areas
in biology and biomedicine. The vast majority of research on stem cells is
being conducted in vertebrate models. Currently, over 98% of all cell lines
are of mammalian origin, which represent only 0.4% of the extant identified
metazoan evolution. In particular, aquatic invertebrates as a whole show the
largest biodiversity and the widest phylogenetic radiation on Earth but have not yet
significantly contributed to cell lines. Yet, with over 500 publications since the 1960s,
the current lack of cell lines does not result from a lack of attempts at cultivating these
cells but rather from fragmented research efforts in highly taxonomically diverse
model species, a paucity in reports of negative results and persistent knowledge
gaps in their in vitro metabolic requirements. To promote the establishment of
aquatic invertebrate cell lines, there is thus a need for comprehensive knowledge
mapping across taxa to identify adequate, possibly cell type-specific, protocols.
Here, we review strategies for preparing an optimal inoculum, for optimizing
culture conditions and for cell lineage authentication to monitor the quality of cell
cultures. Finally, we conclude with our view on promising research perspectives
towards establishing aquatic invertebrate cell lines.

1. Introduction

Currently, the origins of in vitro cell lines are highly biased towards humans.
Around 75% of the total number of established cell lines are from Hominidae origin
(96,862/128,799) and over 97% are of mammalian origin (126,033/128,799) (Bairoch
2018) (Figure 1). However, mammals represent only 0.4% (1.3% when excluding the
Insecta taxon) of the extant identified metazoan evolution (Zhang 2013; Wilson and
Reeder 2011; Chapman 2009) (Figure 1). In addition to the scientific interest relative
to their sheer diversity, non-mammalian cells have multiple potential applications,
including as a source for bio-active molecules or as assays for eco-toxicological
tests (e.g., Ribeiro et al. 2018; Rosner et al. 2021). Yet, with over 500 publications
on aquatic invertebrate cell culture alone (Figure 1), the current limited number of
invertebrate cell lines does not result from a lack of attempts at cultivating these cells
but most likely from inappropriate techniques to cultivate these cells (reviewed in



Rinkevich 2005; Yoshino et al. 2013; Cai and Zhang 2014). As exemplified in insects, a
breakthrough in culturing conditions (Grace 1962) initiated the emergence of a huge
variety of cell lines (Bairoch 2018) (895 cell lines from 104 genera in around 50 years).
There is thus a need for a sustained research effort in non-insect invertebrate cell
culture to identify adequate culturing conditions and promote the establishment of
cell lines. In particular, aquatic invertebrates as a whole show the largest biodiversity
and the widest phylogenetic radiation on Earth but have currently contributed to
only six cell lines (Figure 1).
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Figure 1. Comparison of the diversity between metazoan taxa. Depicted is the
phylogenetic relation between metazoan taxa and their characteristics with respect
to evolutionary radiation, regenerative capacity, lifespan and in vitro cell culture
(see Appendix A Table Al for exact values). Dashed lines represent branchings for
which speciation timings have not yet been determined. Colored taxa highlight
those whose publication timelines are detailed in Figure 2. Regeneration capacity of
the taxa is depicted as follows: + tissue regeneration, ++ appendage regeneration,
+++ whole-body regeneration, ++++ from cell aggregates. Longevity is given
in years from the maximum reported characteristic of the taxon in the AnAge
database (Magalhaes et al. 2007). Phylogenetic tree based on Halanych (2004),
species numbers on Zhang (2013), regeneration potential on Bely and Nyberg (2010),
publications on manually curated online searches (Appendix B Table A2) and cell
line numbers on Bairoch (2018). Source: Graphic by authors.
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Figure 2. Five decades of research on isolation and primary culture of cells from
aquatic invertebrates. The figure shows the number of publications for the phyla
cnidaria (66 in total), ctenophora (1 in total), and tunicata (44 in total). Publications
are grouped by classes of the species used for cell isolation, color-coded as indicated.
Publications were manually curated from online searches, and detailed references
are available in the Appendix B Table A2. Source: Graphic by authors.

Cell lines have been established through two main strategies (Cai and Zhang
2014; Rinkevich 2011): either by the isolation of proliferating and self-renewing cells,
typically from an embryonic (Hansen 1979) or cancerous origin (Scherer 1953), or by
immortalizing proliferating cells, typically through mutagenesis (Earle et al. 1943) or
transfection (Russell et al. 1977). Both strategies thus require, at least transiently, a
proliferating primary cell culture. The long-term culture (up to 22 months) of cells
from various aquatic invertebrate phyla has been achieved by using a variety of
culturing environments (Rinkevich and Rabinowitz 1993; Daugavet and Blinova 2015;
Chen and Wang 1999; Kingsley et al. 1987). However, most of these in vitro primary
cultures show an apparently ubiquitous cellular quiescence within three days that
leads to an absence of proliferation within 1-4 weeks of primary culture (Rinkevich
2011; Cai and Zhang 2014). Yet, transient proliferation events, limited to a subset
of acclimated cells, are persistently recorded across most marine invertebrate taxa
~2-4 weeks after the establishment of primary cultures at high seeding density from
larval or regenerating adult tissue. For instance, DNA synthesis and mitosis have
been observed both in primary cultures of explanted ectodermal tissue monolayers of



regenerating Nematostella vectensis (Rabinowitz et al. 2016), as well as in dissociated
cell culture from regenerating tentacles of Anemonia viridis (Ventura et al. 2018),
and dividing cells have been reported in primary culture of regenerating tissues of
Apostichopus japonicus (Odintsova et al. 2005). The only established mollusc cell line,
Bge, was initiated from the long-term culture of embryonic tissue of the freshwater
snail Biomphalaria glabrata (Hansen 1979). Taken together, these results suggest that
a key to setting efficient primary cultures are to use tissue with high proliferation
capacity, potentially due to the presence of stem-like cells. Conveniently, aquatic
invertebrates display a variety of asexual reproduction, aging and regeneration
phenomena (Figure 1) that indicate high cellular plasticity, cellular proliferation and
a likely involvement of stem-like cells (Bely and Nyberg 2010; Slack 2017; Bodnar
2009; Tomczyk et al. 2015; Rinkevich et al. 2022). However, established guidelines
for the isolation and identification of stem-like cells are currently only available for
very few species (Hayashi et al. 2006; Sun et al. 2007; Hemmrich et al. 2012; Kassmer
et al. 2020). The recent improvements in next-generation sequencing techniques, and
in single cell transcriptomics in particular, are enabling researchers to characterize
stem-like cells in an increasing number of taxa (Hayashi et al. 2010; Siebert et al. 2019;
Rinkevich et al. 2022), a first important step for their isolation and in vitro culture.

There is an ample body of work that provides numerous quantitative assessments
of culturing conditions (e.g., Toullec 1999; Khalesi 2008; Dessai 2012; Maselli et al.
2018), without highlighting one ideal consensus. Given that aquatic invertebrates are
phylogenetically very distant, the development of a ubiquitous culturing environment
appears rather unlikely. Nevertheless, each phylum could benefit from the advances
in primary cell culture made in other phyla. However, a significant fraction of
the relevant research data remains unpublished in conventional peer-reviewed
journals, being only accessible as chapters in master’s or doctoral dissertations,
conference proceedings and specialized books. Consequently, in the last five decades,
the publication of research efforts has been uneven across phyla, and temporally
fragmented, as illustrated for the cnidaria and tunicata phyla (Figure 2).

Here, we review three major drawbacks and limitations of this field of
research and their most promising work-around (Rinkevich 2005; Cai and Zhang
2014; Rinkevich 2011; Yoshino et al. 2013): (1) seeding the cell culture with a
population enriched in proliferating and potentially stem-like cells; (2) devising
marine invertebrate specific in vitro culturing environment, including management of
oxidative stress and cell adhesion requirements; (3) preventing culture contamination
with other cell types and microbes. This review is intended to be accessible both to
the non-experts and newcomers to the field of primary cell culture, while providing
an updated and curated list of references on the primary cell culture of aquatic
invertebrates compiled for the experienced reader.



Given the huge scope of this review (>360,000 species, >60 years of research,
>510 publications), we set out to illustrate previous work on aquatic invertebrate
cell culture with three summarizing tables (Tables 1-3), filled with a selection of
representative publications in each taxon and focusing on stem cell cultures whenever
these have been described. This review is, by nature, not exhaustive and omits, by
necessity, many publications, which thus limits generalizations. We conclude this
review by providing perspectives on how to solve this limitation, mainly through
dramatically extending the present effort in the data mining and metacoding of
published work to build an exhaustive knowledge database on aquatic invertebrate
cell culture. We also highlight abiotic factors that should be further investigated.
We hope that the provided perspectives will help researchers to develop robust and
reproducible approaches for culturing dividing aquatic invertebrate cells, a first step
towards the possible establishment of cell lines.



(L10¢ SHdHH Pm
Te e mEmv%E auou auou uonnios S11%> PooIq
Surysem [eorureau SOIUO[0d ey
patapng m:memLE soprojjhigog  ° PRV
(r102) jnpe
YOIASYURY SHJIH Yim
pue ouen auod MMHMMWW JOUENS 1199 rerpysda 1128S0]1{0S
ZjImourqey ; ‘Tedrueydaw HSLEL spnq [eafed Ha ooo
pamspng snjjhazoq CIpSY
(6002) e 1 o mmﬂmmmhm\s
Z)IMOUIqe auou - Iaurens [[9d
aed Surysem \Euﬁcasuﬁm_ﬁ rereyids spnq 143550105
pazagng puespiooz  smphizog ooV
(¥002)
oAUy Suou sdnoiquue
pue suou ue 19
ZyImourqey Wow Ewww\, e o - i o
! pue sprooz snpjhigog EDEIPSY
w002) 1232 auou wmntpauwr
©ASSSIOI auou : ToUurens [[2d  S[[9D SLISIP spn
(266 SO ‘TeoTreIU 1190 dno’ vzmw X HISEIDS paney
1) prooz snjihigoq IpRsy
Zyimourqe
v:m.@ d suou  oseusferoo  MpOUW SUOREROSSIP
yoraour uoneqnour onewizus rereyde spnq 149550]1/9S
: o ‘Tedrueydaw pue sp1ooz snjjhigog BOIRIPDSY
(v661)
ZyImourqey mmﬂwmm ym
pue auou auou onnjos [eoTurayd
YPIANURY Surysem ‘[edTuRyDW sad4y qpo e of1quua 14asso]ios
: pazanq snjifisgog LDRIPIOSY
7 mﬁmmmé SHATH WM Poor
e suou Suou uonnos TeIUO[0D
u:_wm e Gunysem jrede SI19° pooiq n 142550]1{05
yPrauRy parogng Suiseay Sunemon ympe salio® eaverppsy (eyeoruny)
‘Tedrueydaw ejepIoyD
ASayeng u g
doURIRJRY  JUSUNPLIUY uchm« 'a umipaAl anbruyday STI3D 2d4
adAL-112D zud uone[osy uone[osy 1081e] - sapad
wmnoouy Pads sse[d wnjhyg
"7V @1qeL g xipuaddy

Ul pajsI] SadUaIafaI 9} Juowre
I B}
Po109[9s a1om safduwrexs aanyedIpu] “exe} SsoIde sonbruda) uone[ost [[90
I I I paystqeisy ‘T 1qeL



WNIdS dUIA0q
uIogmau

0,9 “I9)eM BIS (o3e3s
(ge61) T2 3 b UOTJRIDOSSIP sad£y uonerdiu SISUAUNIUD
uonednyLIued auou Pparayy-unesAu LIPIOIDISY
osouey (@) 94T ytan [edrueyPaw [eoe  swAypussour) SULIdISY
pajuawoarddns ofsquia
QUAIS N T'T
(z861) uoneSngLnue> Tur/Sw (MS-AND) UOT}RID0SSIP sad4y S snyvindind
19491\ pue DAISS200NS . s MS 221 L3N e[nyse[q) s eapIourydy
soumyuaddo omy 1°0 ursd£n pue oo [edTueyPIU o0 e okaqui SN30.431200]A8110135
G
s[> & (a8eys
. (zz61) papuadsns Suou 1) (MS ”:z%v UORIOSSIP sod£y eryselq) vuidsissvio eaprounpy
Te 30 ening 30 [eacurot MS 921 SN snoduejuods 11o0 e okaqud SLIPIOYIUT
snutLiayornd
SEM« Lonnos SNJOLJUIINUIE]
Teye wcm%%ﬂ uod auou o M © UOHEROSSIP SI> s335 ‘snssaidap eapIouTyD (eLeDPNqUIY)
(0961) retes rent (N T0) IOeN eorueyPaWw  xa3100 999 SNJOLJUIIOPNIS ] PIOUIRH g ewwrapounyog
Aq oruojodAy I o 4 pouy
UOTRJUSWIPIS . ‘oidsissio
Heuop SLIPIOOYIUY
PIoj
reamardejow asuanvi8uisy
(6002) UORIOOSSIP sod£y pue )
. auou auou auou e, 14910129 predoyde]
Te 3o Suep [estueyOIW 1190 [1e ma 8 ‘Trey
A, DU0§SOIOUDLY
LIID [e00Nq
‘impe
Areurrads X
pue . E\EQ o
aseuade[[od ‘Arewzods asauvdp,
. MMWO_MV auou 12d4y MSI MHMMHMMMW mwwrmm ‘m8 3 14910109 npredoyde AEmEMMumﬂsmwuv
[e31eD Tw/N 00T : pue [211 ‘sturroprde  vuiojsonyouvLg PIoUO
[edrueyPaW mpv
A3aens uonsady wnipa anbruypos S[I2 adA
PDuareyay  judwyPLIUg hsastd tPOIN tHRL 1120 L saadg sse[D) um Ay g
od \m.—l.luu awzuyg uorjeosy uorjeosy jaSre], wnndouy :

Ju0D "I d[qeL



I

w01 0z auoz voUvLIIIPILLL
(2107) 'Te 19 (paureis-yNQ) suou os ML %S0 UOTJRIDO0SSIP JE— rea8ukreydaxd SWES:um, CHE[PINL  SOUIURTYAIE]
Aoeurg  Sunos-gOvq TN T [esTwayd Sunerousgax 13035
HMINTO jnpe vIpAvAID)
ppe oI e
(1100) auou aseuord o dnewizud St s33s suvSajo ')  eaIOpRWOIYD) (vozospog)
‘Te 30 Sueyy S1-1 JI RIS E TR A Teaxe| epojewaN
(9661) auou aseuader[od dnewszud sodfy anuaan( JOUIDBIDE — p nsooere
‘e 39 23[[noy, T MSY /[edTueydaN oo e it : snavuag HSOORTEN
(€100) U0 RJUSWIIPIS auou I91eM BIS [edTueyPaW uesio sympe SISUI "\ BIRIISOORTRIA!
‘Te 30 uef] : : : proydwAf :
anssiy SHUVILIIUD
(6861) .
Que Suou aseuaderod Whips UONEIOSSIp  IR[NOSd) JR SHADUIOH o (eozosApoy)
1o zad&y 61 WIPON [estueydIw pue imp ‘SNINISNIUI] ASOORTEN epodorpry
pue Apoig :
onarodojewray URIFEIRI
. MSV
(6002) "Te 30 auou utsdin 2/ paydLIuD UOREROSSIP sod4y sympe vappnd epody  eydiowoppooeusy
IDPMIA (1 %T/IND : onewizus o0 Tre DAJIUUDIPOS]
-JuaLyNU
(S000) T3 auo aseuaderod d1eM ©Is dpewAzu sing npe snoniodv] BOPIOINJO[O
BAOSIUTPO Hou bl o /[edTUeYOIN } Hp sndoypysodyy PIOIOIOH
(uAwoydons
Tw/Sw o1
pue
. ugouad
R i A R Ly R
PO %ST0 B ——— t P2 11 104120081041
+ MS
%1, 8N
pue ;D
A3ajeng uo13sagrt wnipa anbruypos S[I2 adA
PDUARJRY  JudwyPLIUY c ta PO tHoaL 1120 L saadg sserD) um Ay g
odAL-T19D awkzug uorjejosy uorje[osy 1a8xe], wnyndouy

Ju0D "I d[qeL



(Buned

KAyxardwod
(6102) ~_u:a wN_w auou MMWM\HVW UORELOSSIp MMQ\M :MM Te} Jnpe DOUDLIORPIUL s
Tej ‘VNA-I'S i Hnq [eoTuRYA o p! [rey3mp vorpIIIfOG Le[eqrmy,
2Ap 2a13-3]N-€D) sjse[qoau
reata) Sunos
SOVd
uonnyos
(1002) (uorpeid oruojodAy UOTJRIOOSSIP voayhjod
pueloy pue AJIsuap-[[0d13]) auou : 3 AR syse[qoau jnpe eLIR[[OqIN],
uuewInNyYdg  uoneSnyLud UPINEASOSIA [ERIeRow VAPHEOS
n ! ! ol
Topquyur
(ST ursdAn
(9002) ‘Te 30 OATISUIS %SC0 %HH\M‘;:OU UOREROSSIP ) 1qoau npe vopuodvf eLre[pgIn
ysedep] Aex-x) ursdAn omcoﬁ.ﬂihm [esruayd Iselq mp vISaSN(] HelPaInL
Buni0s-53vd s, 102117101
8/s
Toyrqryur
ursd£n
o) o Tu/3n
oty oot ity ofSumuos EERE e pewimpe T eweogny
: : : uonnyos : :
S, I9}9IJ}[OF]
8/q
UU0d :ooWHM (surezs
(1661) Te 12 (uoy L %l UOTJRIDOSSIP BpPNU [enxose vorody/
VNQ) auou UM uonn[os : : eLre[PgIN],
ourysoyy q i [eoTuEYPIW 11e0 e pue [enxas) visaSncy
UI0S-GOV: dIuOj0dAY
mpe
sad ¢/t
A3aens uonsadr wnipa anbruypos S[[2 adA
dUINY JuLuIYyPLIUY A a PPN 2L 1120 L saadg sser) wmAyg
odAL-T195 awkzug uotje[osy uorje[osy 1a8re], umynoouy

Ju0D "I d[qeL



S[[od
(£861) sonjorquue UOTRIOSSIP vppndie
Te 39 AapsSury W%“M@%WMM auou M MST [eonEYaw S)Se[qoIa[ds ynpe nSi080yda rOZOUIUY
anssi (uru
apsnw (4 8-9) Tw/n ST) MSV UOTJIDOSSIP  S[[3D d[dsnux e[[RIqUIN vaUIYI
(@661) Pruyes pajerns jo 05T aseuade[od a1y L3N [edTuRYPaW yjoows Jnpe 21A1000p0] eozotpAH
UOT}OSSIPOIDTUL pue D
S[[ed
(6861) 102uads o umtacs (46-9) Tw/n momw\, mME UOBEROSSID suomau s3uL snvjjiad vOZOIPAH  emepru)
pue yeruzaisAzi pau 00T aseuaSer[od +C onewAzZUd QAU J[Npe suyoiohjod P Hept
JO [eAOWIx pue ,eD
(F661) Te 32 asedsip wnrpaut UOTJRID0SSIP S[[ed SIVUILPIL
emedeyeN-epnsejn ouou -aseuader[od G1-1 RJSETINCATE) rerjSomru impe opnIE CIIPHID
(0661) Suou asedsip wnrpaur UOHRIOSSIp o er[dued sy -
NI pue uewyoog -aseuader[od S1-1 onewdzus 1t ; 4mpe opniy et
(6000) auou auou eOTURLDIW SI[2 NMMME_ SHU2LPOUL ©e[[aIT (ereatds)
‘Te 39 Ip[ewtr Wana feored [er[eYOpuL0Aw ﬁ:.:wﬁwz opniH 1IN eprpuuy
v
(S661) opHg asedsip UOT}RID0SSIP S[[od vstadsy X110
pue ISTUUOIA ouou -aseuader[od Séd RJSETINCATE) [epeuod impe ‘vsiadsy epodoxsen
vsiadsy x1jop]
(2002) T30 wnrpaw uoneOSSIp .
KrowoSiuop auou aseuade[jod a1 SnewAZD erjSued jmnpe voniofijpo 'y epodonsen
(£861) wnrpawt UOTRIDOSSIP arruaan(
Axsueysorg duou aseuoxd : AP erdued : § vouiofiwo 'y epodoxjsen)
pue sayPePg G1-1 orewfzus pue jnpe
I9jeMEdS edues
(866T) 'Te 32 1pag auou auou E«C@En AT ETRETS suoImau reanapd vouiofijpo 'y epodoxjsesy  edSN[ON
oyt Jmpe
ABayens uonsadr wnipa anbruyds, adA£
ERENEIEN | JuduIydLIUY Tk ta PO PURL 15 jo8irer, L saadg sserD) wnAyg
2dA1-11 awAzug uorjefosy uorje[osy umynoouy

Ju0D) *L d[qeL

10



Je[[aYIuLX00Z

(2661) 2unedsny Y$¢) MSY  uondnisip SBurureyuod SIULLODIUDD
pue sayen) uou suou 991y 8D [edrueyPaw e Hnpe viodo]j10g rozomuy
[ewraponsed
CIRLAICH MSY uay}
(8102) Sumno-ysod (urw og) 1 duA[8 Nw —— S[[@2 JpejuUd} sipae
. pg woxy odAy aseuaderjod T yiIm pMASY A T pajenuarepp  Sunerouadar S eOZOYIUY
[e 30 eInjuap : onewizus vruowauy
erpyide %GT°0 1 SN [euaponsed Jnpe
PR129SSTPOIDTUL pue D
opReIue) (4 Msv sad Ay 190 opoeIuR}
(£102) Te 3@ Sumno-jsod udy} MSY  UOLRIDOSSIP sipri
: 1) [ @seuageod A : punoz qewrs  Sunerouagor S eOZOYIUY
I91pIaA -Aeureg pg woy . a1 L8N orpewfzus vruowIUY
%S00 jusIaype impe
syuowSery pue €D
uonedNyLIud S[[@
1219 o1d juarperd (e mmw\Sm/w rennsI UL JpeIUL) vpoIns vozoL
(9661) Te 30 v snonunuod  Tuwy/n O ureded cwm +NM§ pue Jnpe DILOWAUT v
1102194 e rerpyids
Juole <
Gumonpax aures ( 3
(9100) © £q s1okef auou -1opnq 0L 105 OVN SIULIDPOIOD juoureety sisuapo0 rOZOYJUY
“Te 39 ZyImourqey %) yuade ; [e10 jnpe 1]13S0IVUIN
reryaids jo -oyeydsoyd oy
uornjeredas AT
A3arens uonsadiq wWNIpajA anbruyday, adAy
dUAIFIY fltclintalatic | - : - S[[eD 1281e], saadg sse[D) wnAyg
odAL-T195 awkzug uorje[osy uorjefosy wnndouy

Ju0D "I d[qeL

11



(467) MSY

UOTJRIDO0SSTP

(8002) %S1°0
[ 30 UeWpaL auou aseuageroo o01] 40 newAzus sad 4y [1e0 e jnpe vjpduoo ViU ~ BOZOUIUY
(8002) %S1°0 (WS MSY  uonemossip vwSIp
‘Te 39 uewdR] suou aseuader[od 91y 8D onewAzud sodAy oo 1re impe viodiuopy rozomay
(#002) Te ¥ Suou Suou (qe) MSY  uonepossip o £ 1790 [[e Jmpe SHLI0DIUDP eozoguy
UOTNOD)-}IeWo(] 991y ;8D  snoaurjuods paodoji0g
Tese uopesnjLU) o mMMWH OT}RIO0SST SILI0D1LLY)|
(1002) e 3 juarperd suou MSV (008 uonet P sdg oo 1e jnpe HuL0o1Dp eOZOYIUY
uomodprewoq  qo +ZSINPuR)  snoauejuods vaodojjio0J
A8 T01od 321 D
vppSIp
viodijuop
(6661) 2puensO (U%-70) MSY  uonerossip ‘siuioonuvp
pue Axpadoy suou suou 291§ 8D snoauejuods sod4y oo e mpe viodojjio0g rozopuy
‘vuipvyydoonus
vi0dosoy
DIL0J0YI1p
viodajiN
~ds vanvxa)g
‘saprouriqn.i
. i)
uone3nyLud 7o) o\oANo .”w uonejuawdery “90Ud95208 M
( ) "Te 39 Yuex, juorpe:d 9 %HMWDMHMA mmp>> °% [EOIIBUOWE o4 £ 100 e BALE] DHiax01010H rOZOYJU
peol) IR o niguos Y ovo : /(1 :WJ&NE 10 BICERI| pueympe  ‘wnagnf wnajnf iy
110219 ¥) %500 PUE 42O snoauejuods wngpodoayfiaaviv g
aseuader[od -
njoraduary
vhygydoospuag
‘Dajn| $ajrioq
‘vpjpsid
vaoydojhiyg
A8ajeng uo13sadt wnipa anbruyps adA
dUAIFIY JuRuIYPdLIUY T a PN UL 19 3e81e] L saadg sse[D) wnAyg
odAL-T19 awkzug uorje[osy uorjefosy wnndouy

Ju0D "I d[qeL

12



(s1exTRW

onyy ¥4
oyads-aypuedio Hd ‘sadoyg
. (£102) ‘a0udsaIoN(y Suou NWQZ ‘SO UOREROSSIp g 10 e Jmpe SILI0I1UDP eozoguy
1€ 13 [LIUSSOY PILAL}IL-SWAZUD %Z ‘SN pue  [edrueydaux viodo]j10g
‘ddusdsazonfjone €D oYM
2715) Sdd X'
3un10s-5Ovq
(6002) 21NN pue suou suou UOTJRIOSSIP  UOTJRIDOSSIP S[[od (enuerd) viodajpiun eozOYUY
ZIPNULIDG-SIAY snoauejuods  snoauejuods | renmsIour,, eATR[ vi0dosoy
TW/NST0H
aseprsodL[3opua
suorednyIruLd "TW/N S0 q
Juorpeis mmmEmwauﬂm Se[[PYULX00Z
(0102) : qTw/N €0 UOTero0ssIp noym stui0ouvp
‘Te 39 sumo(] MM«MHWW@% aseprsoon|3 e MsV onewzus sadfy mpe vaodojjio0J eozomuy
! m T/ g asejAure 1[92 [e100
omy ’
e/
¢ QWAZosA|
‘Tu/n g asedsip
sproroyds
(6002) o UOT}RIDO0SSIP ppoLpalp
S{SPIE] PUe SN uone3ardde auou MSI Eu.E.msumz.c sodAy 110 [1e Jmpe \EEENQ eOZOYIUY
: 1192 : u1gvsh
snoauejuods
unAwoydons
1S9e auou %S00 |.EEAEE:mm MN_MMMMM_% sodAy 110 [re npe suiqrealf rOZOUJU
(8002) tsareu vIag-oursddn ol B P2 11 imp vLBIG iy
/reatueydauwn :
WM MSY
A3ajeng uo13sagr wnipa anbruyos adA
ERIEREIEN | JuLuILIUY Tk ta PO FuPaL, S[[3D) 1381e], L sapadg sse[) wmpAyg
odAL-T1> awkzug uorjefosy uone[osy wmpnoouy

Ju0D "I d[qeL

13



wInros

(£102) viad/usdin aqof Sureay 1hp1a]
[e 30 Sedopuep auou 00670 hwwﬂwwmw“u snoauejuods  sadAj [[ed [re Jmpe sisdomuaupy ejenoejual  eroydous))
(Bunyprearq
(1202) ‘T2 % @ msy O s[od viafinSip
ZOpNULIdG-SIAdY] ouou suou 9 LD QOMMN MWm% jusjodrmd impe viodosoy cozomuy
snoauejuods
S[[od
rewroprda
pue ‘s[[ad
(T207) Te @ U1 UOT}RIDOSSTP [euomou S1nua}
auou aseuager[od + MST AN ‘S92 enuerd - rOZOYJUY
eInwemey v1qg-uisdin onewAzua pojenURIBIPUN vi0dosoy
‘S[[@d
A10391098
[eurraporsed
(sxo3TRW ONYY .
oyads-apuedio hd M wm dor
(£107) ﬁm«meMWwHMMW@ auou W 0T 'SOd  UOREROSSIp sad4y 1190 Tre npe SHLOOMDD BOZOYJU
‘[e 39 [RIURSOY duzwwmwhosmot,_m 0,7 ‘SN pue  [edrueydouwt el mp viodojjro0g v
o715 ©D oM
SunI0s-5HV Sdd X€'€
Aquo sep ¢
10§ (u/3ri (uojoras
UOI}eULIO) 0S y30q) (se[eYpuEX00Z 330 paread)
. (100) proxoyds auou unAweuey UOREDOSSIP pue [e10d) anssy psonu.§ rOZOYJUY
Te 39 Taupaen) : JERIILET RN : n8ung
snoauejuods pue sadfyqeo e Sunersuadar :
uruejusd Jnpe
Pm MSH
A8
dUAIYIY Emnw_«.—muﬂwm— uonsasiq WnipIN anbruypay, S[[3D) 1981¢, 2dAL d £
od %P-:.wu awzuyg uorjefosy uorjefosy 1120 335181 umpnoouy Sods SSE wnIAld

Ju0D "I d[qeL

14



urpAoenay pnounuiop
“urIso[A} Sa1149GNS
(1002) ‘upAweuey  UOIRIOSSIP ‘vivov
[ 30 es0y o] auou auou pAweied  [eoreypew sad£j a0 [1e jnpe vopish aerduodsowa(|
‘urrordure ‘wnaposnut
‘MSIND vudAg
(unAwoydons OLIBIS0SS
(¥000) auou auou ‘urqotuad) UOREDOSSIP o4 1o 11 Jnpe bpoumiop aerduodsowa(]
‘Te 19 Sueyy M [edTuey AW S :
4v/d-MSAND
urpoued
‘uneysk
(9002) ‘URTWejUsg  UOTeIDOSSIP Q1D
‘Te 3 oypewre)) auou auou S AN sad£y a0 e Jnpe aerduodsowa(]
19)eMEedS JCRIEEITREIS quinLD)
eIRD)
duronpodAy
wmnrpos
saprodhijod
(1102) UONeOSSIP 'V ‘vivay
[ 30 ssoddips auou auou MSI " sad A3 110 [T Jnpe - vuax g aerduodsowaq
‘vipInao ‘H
(S102) UORIOSSIP PHOPHYH
osuIqoy UOTJRJUSWIPIS auou MSVAIND Eu._cwsuoﬂ.b sad£j a0 [1e Jnpe ‘vijaifiypour))  serduodsoway
‘saj140808110dS
nupavlnp
(9100) UOT)RIO0SST ‘s Driponn wI
et p snjonpavnby
UDIASOY auou auou MSA sad£j a0 e Jnpe . aerduodsowa(|
pue AoxAeT [eoruEow H
‘vaoruvd "[f
v1idaid
(1200) + MSV UOLRII0SSIP .
(e 30 Suiog auou auou soy-wnIsoUSew  [eorueypaL sad A3 110 [T Jmpe ds pjjourxy  serduodsowaq BISJLIOJ
[~umired
A3ajeng uo13sagr wnipa anbruypos adA
dUIJIY JuLuILIUY st tPOIN TURL 195 3081e] L sapadg sse[) wnjAyg
od %.-l-:mu awAzug uorjejosy uotje[osy wnnoouy :

Ju0D "I d[qeL

15



(8661)

auou auou - UOBEROSSID o544 1100 e npe PIUIIOP S pi3uodsows,
Te 1 o1pO}SNY H-MSIND [eorureaUT S RICERI| mp g I a
:o_u.sm_wom £ vInounop
(8661) 102194 sursn viad UOTJRID0SSTP S[[ed TOAC saj142qng
‘[e 39 [01Z0 uoReSnjLuR) suou ‘MS- eoIIRYPAW snoniayds [EOH109 “wnopho serduodsowaq
[e 12 01203 Juerped MS-VSdd TedTueLy; oy 1IN0 4MpY o omt
Aysuap P02
(6661) auou auou vidag UOREROSSIP o544 1190 11 Jnpe vpouniiop aerduodsowaq
‘Te 39 DM MSIND JCRITETRET sajLiaqng
AS8areng
dUIFIY JuLuILIUY :%MM@NM_D M”«MMMA owwm—“:%wh S[[aD 1981e], EMAWM‘E sapadg sse[) wnjAyg
odAL-T1> cl Bejos] Bejos] [noouy

Ju0D "I d[qeL

16



surnueniS-

(6002) uppjoydure . spn. 112850[1{08
e umowun 0,02 are Siep opseid  ‘upAwojdans syfes auou MWMWQW S1-1 Juaraype  wnipyyds ?,W:MM - 115 BADRIPSY
Zyrmourqey ‘unproruad ;
12 1e39§
1-INDDA
aursA[-[-Ajod o1 ‘S, A0DS]
“unpauo. DAweyuad Chl
;umwmmwm g K190 ) c\__umu%r_”%—w EMFE,MMMWE a3 ’s, umﬁ_ahru_um papuadsns spnq
. - pooejdax ° e Sep ) P syes ‘SHAIH P wnrpyyida LAORIPLSY
pue Apaed €761 : PSey  ‘unfwoydans Pt S, IOUPSL] Jyuaraype B Teaqred g
ZjImourqey L ‘uage[[od “uroruad NVH
P o J1e0 [e39) P
onse[] INIINA
‘0PI L-INY
(+000) g £1ar0 wnias wmrpaw aseastp spndq
R paoerdax D, 02 e Srep onserd upAureyusd syes . papuadsns . ‘sprooz BADRIPISY
; Je0 [e39) s, 18YSL{ 119> dnd
BAJISION Apred Jmpe
Aep
(2661) ek
ZHmoutqRd .MMMM D, 0T are Yrep onserd \Eu%rm_ﬁmwﬂm ao8n auou m:mwﬂw_m_w - popuadsns umrpayyrda spnq BDRIPIS
o ! & ! Tl 0F9T-INYT " eyt TPRSY
pue B 0SSN Jiusraype [eTuo[0>
paoerdax urporuad J1e0 [e39)
PRLAUT Apred
penXe
ofiquia
(7661) uaBerjod ; P qres
ZyImourqey 5 N ‘wsA-[-Afod >::EM\A: TSN ‘sapro[[£10g Z?w%%? papuadsns sady £ uassopyps
o Pleam D, 02 e Sprep nmereg UiPAwoydans g auou pajuswaddns of1quia h BADRIPISY
pue uneo . d 0SSN woxy Jiuaraype 1192 [1e snjjigog
P USRS HNa
YPIADUR onserd ydwAjoway
‘uoynjos
sururen(g
(e661) ugeyshu o8 SIes yim d SIP>
Amoumnqey Appam Do 6L are Siep opseid  ‘upAwoydans w_ N auou ORNIOY pajyuswarddns popuadsns poojq sprooz BIDRIPISY (eyeoruny)
pue - -~ “YTos8n surweng Jiuaraype Jnpe : ejepioyD)
uroruad TNA Kz032mdID
PraUR[
sururejp amyny
auey) pue e[nuLIo ] [iEe) SIRD adAy
dUIYY wnipagy amjeradway, araydsouny S8 2jensqng S[EIqODIWHUY suowarg PUEPHOBUY Juawa[ddng leseq popuadsng 1oS1ep wnmoouy sapadg sseD wmyAyg
eI, Juardypy

“WINIPIIA UeLIeue]J eAyor,

29 130ITYSA, : L] “WNIPIJN UeLIRUR[J JTUO0JOST AT ‘XX JINLY ‘GT-T WNIPaW ZIIAOCIdT G- “WNIPAW J09SUT PAYTPOW S,908I0)
TATALD ‘WINTPaW J098UI 8,989 TTD ‘661 WNIPIW 66 TIN ‘WNIPSI 2[Seq PIYIPOIA JNHIN ‘WNIPSN S[Seq PIPIPOA 8,000
NN “(MSV) 191eMe3S [EDYIIE 10 (MS) [eINJeU Pa1a)[y Ul UONNIP S23edIPUl o “(INIIAD PUe INID 10§ 1deoxa) sijes [ersunu
Jo uonIppe oY} £q IO I9JeMEIS Ul B[NUWLIOJ PAJLIIUIOU0D JO UOTNTIP Aq AJLTR]OWSO I9jemeds 0} pajsnipe sem e[nuiioy [epIouruod

[esegq "a[qe) ayj ur pajsy| st [od0301d pazrwundo pajosras ayy A[uo “paredwod a1om SPOIa JUSIJJIP USYAM TV d[qeL g Xipuaddy

UT P3)ST[ SIOUSIDJAI 9} SUOuTe Pajda[as a1am sa[durexa 9ATIedIPU] "BXe) SSOIDE SUOTITPUOD SINJND pUe LIPIW PaysI[qeisy ‘g d[qeL

17



(6861) A anssy SHUDILIDULY.
Sueud Appam e umowyun onserd upAwioydozs € g suou urA0 661 apuadsns TeIonSe} synpe STHUMOH 0 sovere (v07034pog)
pue Dt D002 : Mo Hsel “urporuad OOHEN o m..= 1 wmnipapy pop pue HnP ‘snjnosniual SO epodoryiry
Apoig 1639} %601 onparodojeway snonsufiovg
uoney
(6007)  -uowmadxo
R 0 umowjun umMow[uUN  uMowun auou auou suou auou auou apuadsns soddy synpe vappd B[P0 eydious
PpMN Apoamp L i T h h h h © Msv papuadsns JicEhic SHAp! Do OS] Uaidd -0[P0dRURY
aa pasn
s[>
(<002) skep N E&EE:mm uinsut snoodpl
eR D, S UMOWUN  usmouun onserd  ‘upAwoydans q duou SO %T SI-1 Juasaype s;ng Jnpe S eaploMYIo[OH
¢ A ° sndoyorysody
BAOSJUIPO “urproiuad e :
A.mSNV o S0 sadfs SMIpauLIdjUL
e umowjun Dol umow[un  uMowUN sseld auou auou auou e ESINNES Jaraupe e of1qua S1J04jUII0]  BIPIOUNPH
BAOSIUIPO 6840 OIOUP! T2 -A8uons
(u/8r
05) arey[ns
unAwoydans/ ununqpe
(c661) I9)eMeds N
- . (Juw/syun auraoq S[[e sad£y L SisuaAnIuY (eLreRQUY)
IGEE) auou D081 e JuaIquue onserd suou duou pazayy d . o LIpIOIANSY
oxpouey 05) wogmau —atodiiiy papuadsns 192 (e dwAypuasauwr) suLL)Sy RJRULIDPOUTYDH
0 wnissejod (a/0) %% o ofiquia
o]
urpouad
PIoj
remajdejour
(6002) skep pue asuanv)Suisy
4558 sadfy .
TeR ST-0T Dot e umowyun onserd auou auou auou 49 %0z gl JuaIdype e m8 s Layojaq npresoydary
Suepm Jece) PueSI-1 et ‘[Te} “LLID DUI0JSOIUDAG
[e2onq
[npe
ﬁﬂm\w m wnpow Kreao
(€100) upidurey qdd %1 mw.u . sody cmEEwo% asouvdv| (eyepoyd
. umowyun o4 UMOWUN  uMOUUn umowyun o i suou ouou + (sg:) 3 8 Liaydjaq npresoyday -oreydaD)
e 1) (Tw/n sz1a0q]  popuadsns e, 5
00D %0T X stuapida viojsonyoUvLg ejepIoy)
upfwoydans IMpY
Aﬂh wwv Apppam Do 6l are Saep onserd ‘:G\WMWMM\MMm Lo auou OHRIO8 nﬂ:wﬁﬂm_m_wﬂw juataype sl m:MMﬁwﬁw_ Hioval BARIPISY
° ! r ! ¥, T r . 1p!
suredyy ‘unoed 0SSN aurweyn|§ ana poojq 4mpe sapiojjfiiog
proeh upioydue T P ——
1 o ! umowjun D, 0T e Saep ogserd :J\M_f_i_w””wﬁ sifes s SI-1 juaraype  wmipyyide [eonred . mihsiog BIDRIPDSY
Zyumourqey S B0 Te39§
SurweA >
a8uey) o o pue e[nuLIog Ch) S[PD adAyL
dudIJY PO it v W8 3je1}sqng S[eIqONIWHUY Susworg juepixonuy  juawa(ddng leseq popuadsng JSieL wnmoouy sapadg sse[) wnAyg
eIy, Juaiaypy

JU0D) *T dqeL

18



(e861)

Spsueysorg skep e 1] aursAr-1-Arod auou sururengs auou 9 uaTaype erSued mmcwmi wniofin epodonse!
pue Sy i) ! Hep Pt ‘5s0mx0p Sdd %1 €171 Jua1ayp! nues P v podonsen
Jnpe
YRS
. erjSues
(8661) umowyun D, 8L umowyun S1ep onserd auou auou auou pououdddns S1-1 Juaraype S22 remard vopuicfige epodonsen eIST[O]A
“Te 39 1pag. ° o ydwAjoway TeuoImau Jmpe v ”
wnrpaw
(are onserd S008I
. pampp
(emymd G111 pajeod .
(6102) 10§) aTR 1] (w8 auou umowyun auou %S SI-1 STe> sise[qoau reyympe  PHIHHPIE g aqm,
e 1019 P Dot «N. rep 1 ul oS S panpp Juasaype 1se[q [re} npt vorpiuiips Le[[pqm,
9) auou %S6-¢0D 05) . ’
%S aursA-(J-Ajod NFNa
E}PouY
AL
sunuein|d
‘oyeanidd
. wmrpos
XLgeur ‘osomEpEn
snoSojowoy \
as0on[3
(1002) uetreuerd ‘(Tenuassa-uou (pazapnq
Hyserd 1/8w suTure)IA - N
Puelod Aep pig e 1] ue apeymns auou pue -sador) Ste2 s)se[qoau npe vouphjod BLIR[[2qIN,
pue A1ond D081 1 rep P! 00T %37 WHN [enuassa) aures Juasoype 1se[q mp v Le[PqmL
sse[8 unAwoau “unoig-p .
uwewImnyg spoe on0wsost
Ppajeod
ourure
uauoIqLy WAN
uagefjod -
/oot SN,
vsd
pue SO
8661
. ‘efyor
(2002) (oamym> sseld pue
h Ppajeod-ururue] S[[d S[[d peay vouiodo/ sayjuTwy
R P D, 0T e Srep auou umowyun umowyun umowyun 18omysay, 5 eLIR[PqINL 9"
10 ; JuRIdYpR Teuomau Jmpe msancy -ayAyerq
nuesy ) auou ‘wmipawt
ugauoIqYy aiL
payrpow
(1102) z . .
ey 0D ., . upfwoydons o S[[@2 w8ajo " (eozosApog)
m_:rmﬂwN umowyun D, 0T Jnotm S1ep sse[8 p—— auou auou Sg %ST S1-1 JuaIaype [eare] s38a A BIIOPRWIOIYD) epojeuoN
W umonm  umoomm  umowum weowum  opmd  UPASOGES oo SN g Ry R
, m_:_uﬁ wy P mowy 2l nse| ‘unoruad %01 S 10611 Juasayp! oo 1 TruoAn( snapiiag PHISOVRIEN
(€100) umowyun (2% Te] onserd upfwoidans EODHPN auou 2soany3 - uaTaype uesio sympe SIS eoenSOdR[E
e uen wy D092 0D %€ ep nse| ‘unoIag N ‘SaT o%ST 11 WORYPY i Amp Sisua J eoenSode[e
sunweyp )
aguey) pue B[nuLIog 1D EiiCe) adAy,
dudIJY wnipaiy amjeraduay, araydsouny W8 Jjensqng s[erqonIuRuy spuswarg juepixonuy  juswaddng leseq popuadsng e wnmoou; sapadg sse|) wmpAyg
adery, frusiaypy

JU0D) *T dqeL

19



aupAwoydans

Bich

. [0 [enysIRuL JpoejuR) oIS
(9661) Te 12 3dy auou D91 e JuarquIe onserd o auou suou auou MSV popuadsns pue mpe ooy 2020V
reraynda
wmipaw a .
©100) e e 1] uptojoyduse auou auou %€ -19 S22 SIUIAPOOd jnpe SISIOIIL o
e 1o ZmouIqEy x:u\s 2,02 1 rep ‘upwoydons SO %€ ST-1%0C Juoroype  STUHOP mp! J— yuy
IS “unpoied
(s>yoam
2Is1y)
shep g supeneq
(use) 41929 e dct ongserd wEu\mﬂt_ 00 auou auou M_h%m s> SJSeIqOIRS npe i L
e 10 fopsBury oy 2, 1T 1 o1 nse] i 1 g\omr_ 661DL Juorgpe SISEI90I9 mp wSi080idor] uy
P o
Aprep upfwoydans
+
urouad
earosowt Bics ST22 e[RIqUN vowiwo £
(2661) PrUyPS suou Dol e Juarquie aaneu jo UMOUUN  UMOWUN  UMOW[UN  umowWun MSY Jusioupe spsnw e suhiosopog POPOPAH
SsjueUwRT yroows
6861) 100uadg eajSosaw unAwejusd stasnp s8uu snypjpouad
S 2 I 1!
o yoruzorskze Aprep ° e Juarquie - N auou auou auou MSV pue s[[ad suomau aAzU stoiofio vOZOIPAH  ewepu)
pue syeruzarsAzig ST-0T 1 %L Juosoype mpe siyoiofijod
(re6L) ‘[e3 umowyun umowyun UMOWUN  UMOW{UN onserd unAurejuad auou suou ason(3 <11 Juazaype T Jnpe SHuspaut BR[PH]D
emESeyeN-epnseiy He t ‘Surureinio S [enSonnu opnaE !
(066D 01 umowyun umowpun  umowyun PSATAOD o auou suou 9 o uaIaype St ensued SHuspams eyef[ay]
pue teunjoog il 2,02 il Moy nserd DAurejusd % Sad el JuR1ayp snmor mmpe opar] 1e[PID
(6000 — wwoonn uwownm  omswd  owow  owmmng owew e o i U (eends)
e 10 1pretuzn o 2,02 o mowy nse ey %01 S WANA JuIRYp! .w e _J_.: w W opnatEy RIPID oy
v
vsiadsy
CODPUT o wwownn uwownm wwownn opsnd UPAEOMms TR e o weee T e P podonge
pue IO o “anpotuad e o wnipajy [epeuos “vssadsy i
458 vsiadsy
x1joH
(2002) T3 voLiofip
fiowoBiuop auou D,81 UMOWUN  UMOW{UN ssefd auou auou Juou sgd <11 JuaIdpE erSued ympe v epodonsen
surweyp )
28ueyy pue emuog o) SIPD 2dAL
svusIaFOY g meRdwRL dr2ydsowsy Wi owensang spqonmunny (PR queppopuy juoworddng oo popusdens oo wmmaour sopadg sse wnpfyg
aoery, huardypy

JU0D) *T dqeL

20



SapI[s Je[PYIULX00Z
u:A_NMuﬂw auou e pateoy auou auou auou auou oremeas Sl Suureuod npe : rOZOYJU
e oo ' ot ! VN %10 ‘ ‘ : poryy  popuadsns it e wiodogpog eV
P eD aursA[£jod [euwLapoxnses

(ewiSis)
sonodAwmuy
-sonoquuy
%L
(8100 Aqm_.w_m_z T pornusiogp  @Iou)
e 0 eantuoA Apppam 0,02 e Sep oyserd R, auou auou %1 by papuadsns oo cbmm,w Sunessustor eOZOYUY
! e ‘S %S [euHop
%L “ auowue npe
‘(Tw/Sri
00L)
unAureues
%l
(uoneyuawr
-orddns
Tenrur X[
TIDI02AN
, P sadKy
L€ 19)¥)
(€100) e (i WENA S[[d jo jic) ApejuLy
g Aeueg Apeam 0,02 ae Saep onserd P auou auou Sgd %S umww_%wc:h «Wwwz_um GM_HM w::m“mnwmm\_ oowany rozoyuy
upuaoydury o P u mp
suowaue
%L
(/3
001)
upAuwreues
%l
sururejip amymn)
aguey> pue e[nuIoy 112D S[IPD adAy,
dUIYIY wnipaiy amjeraduay, araydsouny S 2jensqng S[EIqODIWHUY suswarg  UEPOBUY juawarddng leseq popuadsng JoSiey wnmoouy sapadg sse) wmjkyg
ERL21 Juardypy

JU0D) *T dqeL

21



W -0

asooni8
+ Tuy/8n
(pre 0z proe
J1qI00sE onaedse sayedargse vjw8uoja
(8002) Aep - h.E onserd I SuTwejA JE\MMA N ‘INwg iER) sadKy n uax ozouL
Te 32 wew[aR] 1230 D09 e NﬂE PLIRWIL] -onoquuy WIN upwmu_wu mﬂ S8 %e surureyn(d pue s[> 1190 e mpe ‘vjopSip BOZOHIY
£1o09) 4 %L ' W 0T JuIBYpE viodruopy
Appoam surme; +
spoeourwe
AN
+MSV
au sse[3onserd 2D /3w oy saje[osI
F002) ‘121 . onodfwmuy SOd aurmey sadAy 1LL001UDP
Appoam Do LT are 11y payeod-apndad +7'S auou - Te[nyEdRNU Jnpe rOZOYIUY
uonoD-rewoc a1 Ao -onoiquuy %STT + NINA araype 1199 Tre waodojpood
%L %gTL
S9ye[OST
X EEEIN e . U /3w oy TenEdnW .
(1002) '1e 30 JecYE] %86-C s ouserd RO AT 1S auou 9 eurme; uLIa PR soddy npe SHLOGP g o
UO[MOD)-}rewoC] Nmu:o o2 cmm: nOU 574 RLIRWLL ] -spoiquuy +T St %01 + NHINA «v:m m___wU 1190 e mp wvaodojjioog v
oS o
%L %05 popuadsns
0qr uN
(6661) Lo w8y opserd  oposAwpuy e ) WaWa Soelost sadiy :
1puensSO auou Do ¥ %686-C0D , - nowanu +7 auou Sed %01 o cc,  tempEanmw e jmpe wiodonoy  BO7OMUY
pue fpadoy . 172 1wty BoIquuY , W0S-ST " Dapuadsns 12211 /1190d
o3 %L +ON ‘vupopydosonu
viodoroy
puiojoi1p
vanvxal g
‘saproutiqn.
[ere)
— “20U59051f
, - DIUIX012]OH]
‘upppajoydure /8w 0¥ st L eae] wnagnf
(r661) Appoam o e onserd uphuioidors auou auou 9 outine) + - papuadsns soddy ue wnajnf ROZOYT
[e10 yues ot €z ' VN Hsel ‘uypyuad SH I wwawarer-1 pue 1190 11e e . e
‘upAwreyuad %0T JuaIAype P! i
N -oafiiavavg
ol ‘upraduiay
vhygyda
-uoapuag
‘vayn]
Sa1LI0]
‘vpopysid
vioydojhis
sururejip amymn)
aguey> pue e[nuIoy 112D S[IPD adAy,
dUIYIY wnipaiy amjeraduay, araydsouny S 2jensqng S[EIqODIWHUY suswarg  UEPOBUY juawarddng leseq popuadsng JoSieL wnmoouy sapadg sse) wmjkyg
ERL21 Juardypy

Ju0D

"7 AIqEL

22



_s
Lo (uoopNs
X - JuowSery onoqnue 5o
(S107) Kep pig ! suojoyd souid o suou o a[oym N v.n._«\s sprorayds sadfy pajaad) vsopnuvss Szoun
‘[e 30 1oUpIeD) K100 Do 5T e fowt SSeL ouou ou ouou sede ot papuadsns 199 e onssny vSung BOZOHEY
ooray aurpeod Msd Sunerouagar
PIIY Jmpe
[
(6002) euwisls Ew\w_mv
SyPam N sonodAumuy e INFNA s[[od s[> (enuerd) vaodappiu
Ol pue 7 K1ono Do €T e Hep dnserd “soporquuy  TPWRHUS suou 58d %S %01 popuadsns , jensiojus eAe] Y
zopnutsag-sakay noL supew nasIoL
i %
18520
sunuen(d
AW S0
auruonyjou
AW S0
auraysho
. 81
18 900 urunqry
ajeumdNs
o auiaog
nL By de[EYIUEX00Z
(0100) fep prg . wopaL, 1000 W GZ0 ) s[> moym stodvp
‘e 32 sumo A1an0 Do 9T e ausy 10 onyserd suou aje[0J-eN ajequoose uou SCOPRE 1 buadsns sadfy npe viodogog OOV
- snef-eN
W T00 8t 1190 [e10>
urue[eqod L
Zfxoapy asopered
“1/8¢
asoon(3
‘W
ayeAnIAgeN
N
198D
+ INdY
w1
[oyruuewr
/N sire vjpoLvIp
(6000) ©XePIH P w8 05t 1ed saddy vuoang
i Tep Do ST e : onserd auou auou auou I9)eMEDS Jmpe d vozoyjuy
pue esaN y¥z asefered 199 [1e s
papuadsns
+ T niSung
e1 pe
1q10058
upAwoydans uontppe s121snp
£ et ad 4 %L e o> sodfy stqualf
(8002) 1591eY> pPam RIS 4 (560D Nwws omsed o crerued auou auou auou «wﬂﬁw\, puv s 19 11e ympe spinpnug S0PV
o= 9 opuadsns
%l WO pop
surueyp amymn)
aguey> pue e[nuIoy 112D S[IPD adAy,
ERTIESEIENG wnipapy amjerndway,  aroydsouny 81 2jex1sqng s[eIqonIWHRUY Suowepg MEPPOBUY juswa[ddng leseq popuadsng 1oSiep wnaouy sapadg sse[y wmpAyg
ERL21 Juardypy

JU0D) *T dqeL

23



(S102)

e

vuUoIUH

auou umouun umouun onserd auou auou auou auou Sl soddy npe  ‘vjjaihyoouy; autduod
uosurqoy i paonpar Mot Hsel MSVAND  pabuadsns 1199 [re P 10RO -sowa(]
‘sajri0s0810ds
nupavling
(9102) H
o14950y ) D, 01-8 e umowun onserd auou auou auou auou MSH ST soddy jmpe ‘spanpaviiby seiduod
N S SCIC) ° : - papuadsns 1122 [[e H -sowa(]
pue Ao1Ae] ,
‘vooruvd
‘H
(1oreMm s12)8N[
(1202) skep -1 . upeiURSd 998 1> sadfy -ds oerduod eI19)
‘e 30 Suog K100 o7 e umowrum onserd 7/8w 00F auou ouou ouou [eanjeu) pue s[> 1189 e impe oIy -sowa (| -0
MSN papuadsns
S[[>
[ewIapopud
2AnsaBip
JR—— (12jemeas  papuadsns
unfwoydons (SID) ) s 2401 N
(£102) Kep pag Do sse[g - ajeussowoy apsnw sadfy Burpeay 1hp1ay eroyd
. e Sprep , Jurpporuad auou auou wnias gt eenORIUIY,
Te 32 sedapuep K1an0 911 onserd . o800 TeajSosaw yroows 1199 e -punom  sisdonuauy -ousy)
ol [eo12 aroydouay Juer Jmpe
aroydouayd
%05-0T Juazaype
/ste2
[PULIDPO}OD
punox
auozi3uny
(tzog) e N o xewenio wawa s[> viafiyisip
o %09 D, €T e Sprep onserd  ‘ounAwojdons o auou 44 %01 " 1P s Jnpe A roZOYIUY
zopnuiiag-sakay usym ° fam— %L W0E popusdsns Juajodund viodosoy
%l
m:mua
euoprda
(Tw/34 fon
. pue
ST0) ‘81730
gupuajoydure (aseajord (poyuswiSid N p_m 5
(1209 "2 3 Aep pig are 1] onserd T3 Jempou) auou SAd %S NING -umoiq) _r“ \_m:u : enuerd smual eozoyjur
eInuwemey| Krano o002 . AP HSel 001 Ju/8r ¢ S %8l %01 sojedar8se m__m- el viodosoy v
upAwoydons upwserd ICR) poen
P “uaIdIpUN
T/ 001 Py
urporuad < SII9
H 10321008
[ewaponysed
sunweyp amym)
aguey) pue e[nuLIO [iCe} S[PD adAy
dUIIIY ——— amjeradwyy, axaydsouny S 3Jen)SqNG S[EIqODIWHUY spuswog juepixonuy  jududjddng [eseq papuadsng JoSaey wnmoouy saadg sse) umpAyg
avery hudtaypy

JU0D) *T dqeL

24



Yoam

pug
(8661) ay 1ay5e . unAwoydans o s[> sad£y poUnIOp B
232 o1potsny oom 0,91 umouwyun  umouun onserd p— auou auou auou I-MSIND papuadsns PO Te Jnpe I serduodsowa(]
e 20uU0
“Arep
1akep pnounop
(8661) N s[pd s[> [eonI00 sajuaqng
o35 [o120Y] auou Do 41 umouyUn  umouun onserd auou auou auou auou MS-VSad popuadsns  snojnisyds om0 ‘unopho aerduodsowac]
mpy ipoad
(6661) N unAwoydans viad Bty sadfy vpnounop
{30 1M Arep 0,91 UMOWUN  umowyun onserd p—— auou auou auou MSTND papuadsns e Jmpe sonaaqng serduodsowacy
. ppounop
urpAoenay
e Syoom sajLIaqNs
(1002) skep b) 1St 10 utsoly NN pag 1oye s[[eo sadfy “Davaw
A o umouyun - onserd ‘unAureuey auou auou Jnpe - serduodsowa(]
‘[e 32 eSOy 3] ¢ K1aag 1081 e Py a—— ur sjoIays WHNA papuadsns 1199 e vapisc
\r::u_aém ‘MSIND wnAvIsL
D]
wog
suLe
091
JIAEE ]
($002) upAwoydons ‘ayearis S[d sadfy ppounop
e10 Bueyy auou 0,91 umow[un  UmMowyun onserd pe—— mrpos suou auou av-ms popuadsns g jmpe 5 serduodsowa
‘aenn
LRy
‘ayeantAd
‘sunuenis-
spoe
(9002) oM 5 a,ﬂEm %0Ts 0F9T s[pd sadfy aquivi>
‘e 39 oyprwE) ° oD% umowjun onserd auou e suou ERENY v v jmpe serduodsowag
sd -1 61-L1 - sy[es snd TN popuadsns 1190 e aquii) -
eIRY sndopo
oruegiour
saprodfijod
viad et
(1102) MSV 225 S[Pd sadfy ‘vavar *q aerduod
. umowyun Iz umow[Un  umouun onserd suou suou auou suou  -umseuSewr 1mpe oy
Te 30 szaddnyog ° papuadsns 1190 e Vuax [ -sowa(]
pue )
—wnopes vyppnI0
1 H
surweyA amymy
auey) pue B[nULIO 1R S[PD adAy
OUIFNY —— amjeradwday,  ardydsouny S 3jenSqNg S[EIqODIUHUY suswog juepixoguy  judurdjddng [eseq papuadsng JoSep wnmoouy sapadg sse[) wnAyg
avery, hudtaypy

710D *g dqeL

25



/£"DD0LVIID

sasepisoony3-eydye Aydonouwso syuosyostd
(90202) ‘T 1@ VVIAL PISOMISPUCI® g1 qop pue spoo HUOAOWSIEO S9)RIqRIIdAUL
DVVVIL N4S81 d[qerres ‘sose[Awry-eydye ueozopy
AONUSUOUYI], 9)eI(O}IdAUL oienbe e
DIOLL oymwads TenyEON
uo uonepard
JDILV-.S
/£-DDDDVD
LIVOV
-qe
VOOOIV A¥00C-981
VOVID-.&
(12102 JO snonw
woxy so1uedIo
£-DVOVOLODOOV pue) 191eMeds .
(0102) 99OVOV poryy  (SepnmAyPOsneIYL) [e100
‘[e 30 uoqrIg 99DDLL d06%-9¥'1 00ST VN S8T ur pajnyip soidousweng URIUIORIIOG
DODLL-S e[nuLIoy g1-7
ZJTIAOQID] WOy
N @ DJjoasn
£ DDMIVD
DLIOVML T1vasd
VODIdD-.S
(oumA[3
pue ayewren(g)
/£-DDAVODL SpoeoUTUIE pue (eyerooary
(g002) VNLAHIVOVY 9yvasd 000T~ vasd  sapureydoesip/ouow ‘eprvwon|D) 1o
“Te 39 SI00IA! : : r URTULORISOG
JVOUVD-S papraord-wnipauw v1joa ULISUO0LYD
jo asn
:Aydonoxrux
ERIEICIEN | sauanbag sIreJ IOWILIJ d9 ID[TRTA] UDD) MHMW\MH—N 305”“””:—?32 OXeL
apnoapnuosi O : : az1g uodrdury uzmmﬁ.—to ddo woummuomm<. ueoZeRA ISOH

*S[[90 WS 93LIGRHIDAUL dijenbe dyeprpued painind Wiia}-Suof JO aInjeu [eIqoIIw [ejusiod oy Yoayd 03 saseqeiep aprodpnu
(I9DN) A3o10uda301g SULIRIA] 10§ I9)U)) [euoTjeN] Jsurede pajse[q are szowrid ajoAresmna asayy yiim pagrdure sponpoid YD J
Ppauo WOy saduaNbag “sjpueUTIIE}U0d 9)0AIEINIOIIW IE[N[DIUN PIpI0da: Ajjusnbaij jsouwr ay) 30939p 0} S[00} IL[NIS[OIA € d[qEL

26



/£-OVOLLOD

VOOA DLIDD 6CCH
IVOL-.9
£-DOVI DDLDD (sprndyd
(9002) N % D douesio SOYRIqR}ISAUL
e 39 1oddnyy IVOLLD 8TCH 0081 VNQT S8T paunuIejepun Surpnpur) onenbe (e
DLODV-.& sajohresnyg
/£-D999DD
VOLLOVVL
1051V IvIDL sl
VOID-.4
/£-0D1D AZw q
(661) DVVOLODVL 2 DOIURSIOUL  Je[[dyjueX00Z/oes[e SojeIgalIDAUL
Te 39 Uewa|o)) 9DDOLLIODDL °SLI 002 VNQ*SL pue 31y asn) UBIDEIOATOA onenbe yre
VOOD-.4 Aydonojoyd
/£-DDVLODV
JLLOOV 1'8SN
D004
£ LOVIODOL (stagap
(8002) (sprdyd SaYRIqR}SAUL
. D01VD 119D ATIS 000z VNI S8T Ie[N{[3D U0 pady)
[ 39 eA0OI3aI] OOV fydonoides Gurpnpur) 18unyg onenbe yre
/£"DDVLLOLL
JDDVVV
DDDOVMD IS8T
JVOLL
DOMD-.8
saduanbag dq) BMo19 UoXEL uoxey,
dUdIAJIY oprospnuofie SRR o osndury ID[IEJA] JUID) OX}IA U 310ATEdNIOIIA] uvozEIDI 1SOH
PHOST 1 : fl snstunjzoddQ pajenossy

JU0D) *€ d[qeL

27



2. Isolating Stem-like Cell Types Suitable for In Vitro Culture

Inoculum type is highly diverse, depending on targeted aquatic invertebrate
taxon, tissue and life cycle stage. At the same time, selecting the proper inoculum for
a given in vitro culture is certainly the most important decision towards establishing
a suitable cell culture.

2.1. Selecting Suitable Sources of Cells

Based on the number of publications on primary cultures and the number
of reported cell lines across aquatic invertebrate taxa (Figure 1), most research
has focused on cell culture establishment from mollusks (mostly bivalves, and
comparatively fewer gastropods and cephalopods), followed by porifera (mostly
demosponges), cnidaria (historically hydrozoans and currently anthozoans, Figure 2),
crustacea (pennaeid shrimps, crabs and crayfish), echinoderms and tunicates.
Episodic attempts have also been made for one or two species representatives of
ctenophores (Mnemiopsis), annelids (Lumbricidae; Nereidae), nematodes (Caenorhabditis),
chelicerates (Limulus) and cephalochordates (Amphioxus). These differences in
research efforts illustrate differences in the attractivity of specific taxa for cell culture,
which stem from three complementary considerations, detailed below, that every
researcher has to take into account when selecting the origin of the cells to be cultured
in vitro.

The first pertinent consideration is whether to work on tissue isolated from
established experimental models maintained in controlled aquarium or laboratory
facilities. These animals, in contrast to wild animal sampling, provide both
access to early life stages, as well as increased reproducibility for cell culturing
experiments. Their use also meets the biodiversity protection regulations and
traceability requirements of the Nagoya protocol. More and more clonal lineages of
genotyped animals are becoming available across taxa, and establishing cell cultures
from this traceable material is an additional source of reproducibility that reduces
complexity and facilitates comparisons between intervention protocols. Ultimately,
these biological models will help the optimization of the culturing conditions, for
guidelines specific to a few model species. In this context, two attractive taxa for
fundamental research are cnidaria (e.g., Hydra vulgaris, Hydractinia echinata, Exaiptasia
pallida) and platyhelminthes (e.g., Schmidtea mediterranea) with well-established
strains of animals. Mollusks or crustaceans of commercial importance, and with
a complete life cycle obtained in captivity and traceable across generations, also
represent important taxa to develop stem cell cultures.

A second important consideration when selecting a model species for cell
culturing experiments is the wealth of genomic, transcriptomic and metabolomic
information available for that species. In addition to allowing the identification of
cell-type-specific markers, post-genomic information gained on metabolic pathways
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and cellular adhesion systems can be used to formulate working hypotheses on
taxon-specific in vitro cellular requirements of media components and substrates.
Similarly, knowledge acquired on in vivo tissue homeostasis, dynamics of cell
proliferation, and somatic stem cell niches (Martinez et al. 2022) could help in
selecting a seed tissue of high proliferative potential. In this respect, the continuous
decrease in sequencing costs, as well as in other omics techniques, is allowing more
and more research groups working with marine aquatic invertebrates to characterize
their favorite species, suggesting that omics information will fast become available
for almost all taxa.

The third point to consider is the desired approach for obtaining immortalized
cells. Similar to mammalian cell culture, potential sources for immortalized cell lines
are artificially reprogrammed cells and spontaneously tumor-like tissue. However,
immortalization methodologies are currently limited in aquatic invertebrate cells
by low yields and poor stability, as observed in sponges (Pomponi et al. 2013;
Revilla-I-Domingo et al. 2018), bivalve mollusks (Hetrick et al. 1981; Boulo et al.
1996), and crustaceans (Claydon and Owens 2008; Xu et al. 2018). As suggested
by Odintsova et al. 2011, natural tumor-like tissue, characterized by increased
(hyperplasia) or altered (neoplasia) cell proliferation patterns, is thus a promising
inoculum to initiate primary cultures. However, tumor-like lesions in wild or captive
aquatic invertebrate taxa have low registered frequencies (Peters 2006; Tascedda and
Ottaviani 2014), and there has been repeated unexpected failures at maintaining the
hyperproliferation of successfully isolated cancerous cells in vitro. For instance, in
transmissible soft-shell clam (Mya arenaria) leukemia, cancerous hemocytes rapidly
undergo in vitro apoptosis, triggered by the release of mortalin-based cytoplasmic
sequestration of p53 (Walker et al. 2006). Other attempts at primary culture initiation
from artificially induced tumors of carcinogen-exposed bivalves (Crassostrea virginica)
also failed to maintain persistent in vitro cell division (Hetrick et al. 1981).

Consequently, the use of stem-like cells for seeding in vitro cultures appears
key to setting dividing primary cultures. Marine invertebrates display a wide
variety of intriguing cellular phenomenon, such as asexual reproduction, striking
regenerative capacity, reduced aging and dormant stages, which upon arousal restore
fully functional individuals (Figure 1). These mechanisms indicate high cellular
plasticity, proliferation and a likely involvement of stem-like cells. Although the
potency of these cells remains largely uncharacterized in most species, and the
orthology between these stem-like cells remains to be assessed (Rinkevich et al. 2022),
they represent a promising source of proliferating and self-renewable cell types.
However, the identification, isolation and characterization of aquatic invertebrate
stem cells remains a major, typically species-specific, technical challenge. With few
species having established protocols for the isolation of identified stem-like cells
(Hayashi et al. 2006; Sun et al. 2007, Hemmrich et al. 2012; Kassmer et al. 2020;
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Reyes-Bermudez et al. 2021), their generalization and transfer by taking advantage
of the vast diversity of specific approaches explored in other taxa (Table 1) appear
particularly promising.

2.2. Selecting a Suitable Type of Inoculum

Aquatic invertebrates have indirect development cycles, with widespread
asexual propagation strategies, including colonial budding and the generation
of dormant stages, as well as high regenerative abilities, including whole-body
regeneration. These developmental properties are suggestive of the presence of
proliferative cells, including potential stem-like cells, which are of particular interest
to establish proliferating cell cultures. Hence, they provide the following range of
theoretically ideal inoculum material: embryonic/larval tissue, regenerating tissue,
asexually propagating tissue and dormant stages.

Dissociated tissue from whole embryo/larva consistently yields primary cell
cultures dividing over 2-3 weeks, allowing a few rounds of successive subcultures.
For example, when applied to cnidarian models, whole dissociated Acropora planula
larvae yielded subsets of dividing coral cells that could undergo several successive
subcultures (see Reyes-Bermudez and Miller (2009) for A. millepora, and Kawamura
et al. (2021) for A. tenuis).

Dissociated somatic adult tissue sampled from regenerating tissue has also
been observed to yield dividing cell cultures that could be subcultured for several
weeks. Among other examples, cultures based on regenerating tentacle tips of the sea
anemone Anemonia viridis (Barnay-Verdier et al. 2013) could be subcultured for 2—4
weeks, and primary cultures from regenerating intestinal tissue of the holothurian
Apostichopus japonicus displayed limited but active in vitro proliferation at ~2 weeks
after evisceration (Odintsova et al. 2005).

The dissociation of asexually growing tissue similarly gave rise to cell cultures
with observable proliferative activity for a few weeks. For instance, using fast-growing
branch tip fragments of the Acropora millepora coral (Reyes-Bermudez et al. 2021),
cells could be subcultured for 2—4 weeks, and delayed senescence was reported in
primary cultures from extracted buds of tunicates (Rabinowitz and Rinkevich 2004).

As implied in the “live slow, grow old” adage, cold adapted hibernating
freshwater sponge species from lake Baikal yielded primary cell reaggregate (termed
primmorph) cultures with record (max 8 months) longevity (Chernogor et al.
2011). Sponge gemmules also represent dormant hibernation/aestivation stages
rich in multipotent stem cells (Simpson 1984) that, upon hatching, regenerate a
functional adult. Activated gemmules could thus constitute a promising inoculum
for primary cultures. Similarly, in the colonial tunicate Botrylloides leachii, arousal
from a cold-induced dormancy (Burighel et al. 1976) leads to the restoration of
multiple adults by proliferating piwi*/pl10+ cells, two markers suggestive of stem-like
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properties (Hyams et al. 2017). In both cases, investigating the mechanisms regulating
arousal from dormancy may yield cues to stimulate the tissues established in vitro to
switch from quiescence to active cell cycling.

In conclusion, despite their initial abundance in cells with proliferative
stemness-like properties, the shared in vitro fate of all four above-cited inoculum
categories is terminal cell cycle arrest and the gradual accumulation of senescent,
necrotic cells in primary culture and subsequent subcultures.

2.3. Selecting Suitable Cell Isolation Techniques

Inoculum type is highly diverse, depending on targeted aquatic invertebrate
taxon, tissue and life cycle stage. Although no cell culture has yet been observed to
sustain its proliferative activity for long, short-term functional primary cultures are
routinely established from terminally differentiated cell types of aquatic invertebrates.
Differentiated cells being arrested in Gy can survive in vitro for a limited time
with intact function, and hence are best used within hours to ~3 days of isolation.
Nevertheless, comparing their tissue-isolation protocols offers opportunities to survey
tissue sampling and dissociation methods (Table 1), as well as the cellular interactions
and defense mechanisms that may support their in vitro viability, even for short
periods of time. Emblematic examples of short-term invertebrate primary culture
from quiescent cells include neuron-like cells and circulating hemocytes.

Giant neuronal cells from gastropod mollusks, such as the sensory and motor
neurons from the sea hare Aplysia californica, are used to study growth cone motility
and synapse plasticity (Kaczmarek et al. 1979; Lee et al. 2008; Zhao et al. 2009; Ren
et al. 2019; Suter 2011). Cultured neurons from the pond snail Lymnea stagnalis are
also routinely used for studies on synapse formation, neuronal aging and memory
(Magoski et al. 1994; Prinz and Fromherz 2000; Walcourt and Winlow 2019). The
in vitro establishment of nerve cells from jellyfish bell tissue (Przysiezniak and Spencer
1989; Schmid 1992) or from the solitary tunicate Ciona intestinalis (Zanetti et al. 2007)
have also been reported. These neuronal cell types are usually micro-dissected from
their ganglion, enzyme digested with protease, immobilized on positively charged
polylysine-coated coverslips and then used for short-term electrophysiology assays,
providing non-conventional in vitro models in neuroscience.

Circulating cells sampled from internal fluids, are another major category of
cultured aquatic invertebrate cells. When seeded at high density (>10° cells/mL),
cultured adherent hemocytes can form partly complete confluent monolayers, with
clusters forming in suspension above the monolayer that may then be detached and
transferred to new culture dishes. Such cultures have been routinely established
since the late 1960s from a wide range of species, including mollusks, crustaceans,
tunicates and echinoderms, typically for in vitro cell/microbe interactions and
immunopathology assays. Such cultures display short-term conserved functionality,
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as shown by phagocytosis or immunomodulatory assays. Proliferation may be
induced by stimulation with bacterial antigens, as shown for the bivalve Mytilus
galloprovincialis (Cao et al. 2003), the tunicate Styela (Raftos and Cooper 1991) and
the earthworm Lombricus (Bilej et al. 1994). These differentiated cell types are drawn
directly from internal cavities, lacunae and sinuses using a syringe. To counter
their spontaneous self-aggregation (clotting) behavior, hemocytes are collected in
syringes half-filled with species-specific anti-clotting saline solution, such as artificial
seawater without calcium or magnesium, artificial seawater with a calcium chelator,
or Na-citrate based “Alsever” saline solutions. Indeed, hemocytes secrete their own
set of taxon-specific lectins (e.g., Matsumoto et al. 2001) and extracellular-matrix
components (ECM) (e.g., a fibronectin-like ECM in bivalve hemocytes (Dyachuk
et al. 2015)) that support rapid adherence, within hours of sampling, to glass or
poly-lysine-coated coverslips.

Aside from the two isolation techniques described above, the quantitative
evaluation of various approaches for cell extraction in different species suggests
that, for the rapid obtention of single-dissociated cells from soft tissues for RNAseq
cell phenotyping, and thus to obtain cells as close as possible to their wild-type
state, mechanical isolation is the most efficient method (Khalesi 2008; Dessai 2012;
Daugavet and Blinova 2015; Maselli et al. 2018). For example, cnidarian larval
tissue or demosponge and calcisponge adult tissue fragments are dissociated within
minutes via shearing in calcium-free seawater and passage through a 40-70 um
nylon mesh. However, species with tough cuticles (e.g., Lombricidae), important
extracellular matrices (e.g., Styelidae) or abundant surface mucus (e.g., Dugesiidae)
necessitate treatments with specific enzymes to liberate the cells. For instance, in
the stony coral Pocillopora damicornis, chemical treatment with a divalent cation
chelator followed by a mix of glycosidases and collagenase was reported to help
dissolve the mucus and improve the yield of released cells (Downs et al. 2010).
Proteolytic treatments (trypsine, dispase and other protease mixes) are routinely
used to dissociate cells from solid tissues dissected from mollusks and crustaceans.
Interestingly, protease treatment may induce cellular reprogramming, as shown by
the collagenase-induced transdifferentiation of in vitro explanted striated muscle of
jellyfish (Alder and Schmid 1987; Schmid and Alder 1984; Schmid and Reber-Miiller
1995).

2.4. Selecting Suitable Cell-Type Enrichment Strategies

Cells of interest are typically mixed with other cell types after the dissociation
of the inoculum. The enrichment of specific cell types, typically proliferative
or multipotent ones, relies on the prior development of taxon-specific and
custom-designed cell separation methods. For instance, in Stylophora pistillata,
stem cells were not identified in the cell atlas established from both larval and adult
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tissues, following either enzymatic or mechanical dissociation methods (Levy et al.
2021), which severely limits the development of stem cell-enriched primary cultures.

Sorting methods for enriching inoculum suspensions in proliferative or
multipotent cell types are thus required. Initial methods were based on differential
sedimentation on density gradients, including sucrose, Percoll, or mixtures of
Ficoll and polyethylene glycol. To further discriminate between morphologically
similar cell types, and thus target specific cell types, Fluorescence Activated Cell
Sorting (FACS) methods have recently been developed and have become highly
prominent. For instance, FACS has been used to separate vital-stained coral cells
(Rosental et al. 2017), and to isolate cell-type subpopulations for their single-cell
gene expression characterization in hydrozoan (Siebert et al. 2019), as well as in
anthozoan species (Levy et al. 2021; Sebé-Pedros et al. 2018). In these diblastic
animals, which lack a circulatory system, FACS is necessary to enrich dissociated
tissue suspensions in hexacorallian putative immune cells, the amoebocytes recovered
from the inter-epithelial mesogleal layer typical of cnidarian, for short-term functional
phagocytosis characterization (Snyder et al. 2021). In triploblastic animals, FACS
has also been refined to sort tunicate cell subpopulations to study the hematopoietic
system (Rosental et al. 2018). Echinoderm coelomocyte subpopulations have
been further separated by FACS into distinct cell types, such as the red pigment
autofluorescent spherulocytes (Hira et al. 2020).

Consequently, there is a need for stem cell markers suitable for non-invasive
stemness tracing in live cells to enable their enrichment. One promising perspective
comes from the few aquatic invertebrate experimental models that can be genetically
manipulated for which transgenic reporters of stemness properties can be engineered
(e.g., in Hydra (Juliano et al. 2014)). Another direction of interest is the usage
of fluorescent markers conjugated with antibodies specifically labeling stem cells.
However, the identification of such markers remains extremely rare for aquatic
invertebrates, with the recent notable exception of the colonial tunicate Botrylloides
diegensis for which integrin-alpha-6 was shown to specifically label pluripotent cells
(Kassmer et al. 2020). Whether this specific marker can be used in other species of
aquatic invertebrates to label stem cells will be important to assess.

2.5. Selecting Cleansing Techniques to Minimize Contamination

There is a wide consensus across the scientific community that the highest
obstacle to continuous marine/freshwater invertebrate cell culture propagation is
overgrowth by aquatic microbial contaminants (Rinkevich 2005). This problem is
critical in marine invertebrate primary cell cultures for two main reasons. First,
it is because the tissues sampled to initiate the primary cultures come typically
from areas directly or semi-directly exposed to environmental microbes, such
as the thin epithelial structures at the interface with water (e.g., in porifera and
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cnidaria), tissues irrigated by a semi-open circulatory system (e.g., in mollusks,
echinoderms and tunicates) or digestive and other internal tissues hosting their
own microbiota (e.g., gills and hepatopancreas of mollusks). Second, commercial
antibiotics/antimycotics/antiparasitic drugs have been designed against microbes
isolated from terrestrial animals and mostly from humans and are thus largely
ineffective against the mostly underexplored diversity of environmental aquatic
microbes. To control the contamination of cell cultures by these aquatic microbes,
three main strategies can be attempted.

First, microbial load can be reduced before cell isolation. The inoculum can be
sampled from starved animals depurated in oxygenated sterile-filtered seawater to
limit environmental microbial contaminants (e.g., for abalone mantle cell culture
(Suja et al. 2014)). Microdissecting internal tissues that naturally protect from
seawater by epithelial envelopes (e.g., molluscan heart tissue), and thus from
aquatic microbes, would also reduce the initial microbial load of the inoculum.
Collecting cells that possess natural antiseptic defenses, such as innate immune
hemocytes (e.g., from mollusks, crustaceans, tunicates or echinoderms), would also
have a positive impact on reducing the contamination of the culture. Alternative
strategies include using short-term ubiquitous surface sterilization methods on the
surface-exposed tissue, such as dipping for up to 1 hour in 10-70% ethanol (e.g.,
for molluscan abalone mantle, see Suja et al. (2014), and for oyster tissue, see
Stephens and Hetrick (1979)) or a few seconds in KmnOy (e.g., in sea anemone tissue
(Doumenc personal communication)) and treating the dissected tissue for up to days
in sterile-filtered seawater enriched with a mixture of concentrated large-spectra
commercial antibiotics/antimycotics/antiprotist compounds (e.g., molluscan mantle,
gill or hepatopancreas tissue).

Second, if specific invertebrate cell types need to be recovered from contaminated
primary cultures, the cell-type enrichment strategies established for preparing a
suitable inoculum (see Section 2.4) could be reused. For instance, this approach
successfully retrieved accessory nidamental gland cells pelleted from native bacteria
through a 2% sucrose layer (Figure 3). In addition, the selective rinsing of adherent
invertebrate cell types could help to remove cellular debris, toxins and suspended
microbes.
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Figure 3. Primary co-culture of squid gland cells with native bacteria. (A) Accessory
nidamental gland tissue (white arrows) from Sepiola rondeletti is enzymatically
dissociated by trypsine (0.2% 30 min at 25 °C). (B) Gland cells are enriched via
centrifugation through a sucrose cushion (2% in seawater), and their seeding
density is controlled by Malassez hemocytometer numeration. (C) Glandular cell
types visualized via Fluorescence In Situ Hybridization (EUK, universal eukaryote
probe, fluorescein, green) are covered with surface-associated symbiotic bacteria
(EUB, universal bacterial probe, Cy3, red). (D) Four-week-old primary culture
(without antibiotics) showing high bacterial density around the cultured glandular
cell types, (E) which can be re-enriched via sucrose cushion centrifugation. (F)
Gland cell viability (mitochondrial enzyme activity assessed by MTT reduction
assay, DO 580/630) is higher in the absence than in the presence of antibiotics (AB)
and increases in primary co-culture with native bacteria, along with cell density,
indicating the beneficial effect of native bacteria on the survival of cell cultures.
Times are given as days post-inoculation (dpi). Source: Graphic by authors.

Third, contamination can be controlled during the primary culture itself.
The main strategy for this step to reduce the unwanted mixotrophic growth of
contaminants is to use a nutrient-poor basal medium formula, hence limiting the
provision of carbon and nitrogen sources that typically exceeds the in vitro energy
requirements of the target cells. The culture medium can also be supplemented with
antibiotics/antimycotics/antiprotist drugs and changed frequently until the culture
appears clean. Proliferating cultures should be closely monitored, and the primary
cell cultures containing visible ciliates, bacteria, or clusters of cells with characteristic
chytrid-like rhizoid morphology should be discarded.

However, these methods may rescue a subset of the targeted cell-type populations
from contaminant overgrowth but carry a high cost in terms of time-consumption
and cell yield reduction, for overall limited efficiency.
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3. Defining Optimal Culture Conditions

While obtaining a high-quality inoculum is essential for establishing healthy
cell cultures, the culturing conditions used are equally crucial. Indeed, even highly
proliferative tissue will undergo terminal cell cycle arrest, typically within weeks
after inoculation. Moreover, a breakthrough in the culturing conditions used for the
Bge cell line was at the origin of a large expansion in cell lines.

3.1. Selecting Suitable Culture Media Composition

Media formulation should strive to provide adequate levels of carbon and
nitrogen sources to meet the nutritional needs of each isolated aquatic invertebrate
cell-type population. However, the metabolism of stem cells and their nutrient
requirements are poorly documented across aquatic invertebrate taxa. Consequently,
a large variety of culture media have been tested for their in vitro culture (Table 2).
Based on the hypothesis of the conservation of major metabolic pathways across
animal phyla, a widespread approach is to use commercial basal formulas originally
designed for vertebrate cells, typically MEM, DMEM or Leibovitz L-15, supplemented
with salts to adjust to the targeted osmolarity of the specimen’s original environment
and generally diluted to 10-50% (Maramorosch and Mitsuhashi 1997; Mothersill
et al. 2000). An even simpler option is to provide a minimal medium composed of
seawater with pyruvate as a carbon source, and glutamic acid as a nitrogen source.
This approach has been used with sponge primmorph spontaneously aggregated
from dissociated cells. These media have, however, persistently failed to sustain the
in vitro division of cells of aquatic invertebrates. Another much more complex option
is to entirely custom design the media’s formula based on an extensive biochemical
characterization of internal tissue or fluid composition from the targeted animal
species (e.g., molluscan hemolymph). However, these taxon-specific media have not
yet demonstrated sufficient benefits to justify their development cost.

A more integrated and personalized approach is to adapt the media formulations
to meet the needs of the targeted invertebrate cell subpopulations. To check nutrient
consumption in vitro, individual uptake experiments of targeted organic carbon
(glucose, lipids, etc.) or nitrogen (amino-acid) substrates (see Apte et al. (1996)
for amino-acid transport into sea anemone cells, and Heude-Berthelin et al. (2003)
for glucose uptake and glycogen metabolism in oyster cells) may now be updated
to metabolomics-based global approaches. Indeed, the search for changes in the
metabolite profiles of media sampled at various timepoints in cultured mammalian
CHO-CKI1 cell lines has helped identify factors that sustain growth and affect in vitro
behavior (Mohmad-Saberi et al. 2013). A recent breakthrough was reached using
this approach to develop an amino-acid-enriched sponge cell culture medium that
sustains cell division in primary cultures (Conkling et al. 2019). The team used
a genetic algorithm to identify suitable amino acid components to supplement a
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commercial basal formula (M199) for improving the in vitro metabolic activity of
Dysidea avara sponge cells (Munroe et al. 2019).

A striking feature of successful insect culture media that support proliferating
primary cultures and cell lines is the addition of lipid-rich supplements, with a
trophic role and potential protection against oxidative stress. Lipid addition has
been shown to transiently increase metabolic activity (mitochondrial MTT reduction)
in cultured oyster heart cells (Domart-Coulon et al. 1994). The lipid-rich “Grace”
commercial formula was shown in cnidarian primary cultures to increase octocoral
cell numbers (Khalesi 2008), and is used to obtain a subset of dividing cells and a
few rounds of subcultures from cultured sea anemone tentacle (Barnay-Verdier et al.
2013). However, a more global picture of the impact of lipids on culture media for
aquatic invertebrate cells is currently lacking.

Medium renewal strategy should be aimed at striking a balance between a
conditioned medium supply of undefined trophic factors and cytokines and the
removal of senescent cells, debris and toxins from the aging primary cultures.
Manipulating inoculum cell densities is an efficient way to facilitate confluence
and thus maintain cell-to-cell contacts necessary for the secretion of cytokines that,
although currently undefined, are certainly necessary for sustaining cell survival.
Old-time tissue explantation methods that rely on the slow outward migration
of mixed cell types from a dissected tissue fragment adherent to a culture dish
yield the successive outgrowth of distinct morphotypes characterized at minima
by their in vitro shape and behavior. These cells can broadly be classified by the
following three categories: fibroblast-like, epithelial-like and amoeboid-like cell
types (Vago 2012), and can be selected for their ability to survive in vitro on residual
native extra-cellular-matrix components. Insect cell lines have emerged from such
long-term maintained explant cultures of lepidopteran imaginal discs (Echalier 1997).
More recently, the explantation of ectodermal monolayers of regenerating starlet sea
anemone yielded mitotically active, mixed cell types, primary cultures (Rabinowitz
et al. 2016).

In addition, culture medium can be complemented with a number of factors to
promote cell proliferation: C-type lectins have been shown to have cytostatic effects
on the hemocytes of the tunicate Polyandrocarpa misakiensis (Matsumoto et al. 2001);
lectins from another tunicate, Didemnum ternatanum, promote the adhesion of a range
of marine invertebrate cells (Odintsova et al. 1999); insulin and insulin growth factor,
as well as other vertebrate growth factors, were shown to have a positive impact
on the transient proliferation of molluscan bivalve cells (Domart-Coulon et al. 1994;
Giard et al. 1998); and retinoic acid-related molecules are known to be involved in
the dedifferentiation process of multipotent cells as reported for tunicate hemocyte
cultures (Polyandrocarpa misakiensis) (Kawamura and Fujiwara 1995).
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3.2. The Oxidative Stress Problem

Very few and exclusively freshwater taxa among the large diversity of aquatic
invertebrates have given rise to cell lines, including the snail Biomphalaria (Gastropoda).
Salinity is thus a major difference between the primary culture systems that have
given rise to cell lines and the unsuccessful attempts based on aquatic invertebrate
species. One possible cause for this difference is that higher salinity correlates
with lower dissolved oxygen. Consequently, dissolved oxygen levels in the cell
cultures might be an important yet overlooked physico-chemical parameter of culture
conditions. To date, primary cultures of aquatic invertebrate cells are indeed mostly
conducted under standard atmospheric conditions (i.e., ~20% O;), with the cells
covered by a thin layer of culture medium where dissolved oxygen is equilibrated by
diffusion with the surrounding air. Except for a few cases of full-strength Modified
Eagle Medium (or derivatives, osmotically adjusted by salt addition), which requires
a bicarbonate/5% CO, buffer system, the gaseous atmosphere of most cell cultures
is thus composed of air (Table 2). The widely used, amino-acid rich, Leibovitz
L-15-based media do not require a 5% CO, atmosphere. Seawater/freshwater diluted
commercial or custom-made media rely on the addition of Hepes (~20 mM) for pH
buffering at 7.4-7.6, depending on species (Tris-HCl is used for sponge cells grown
at pH ~8.0). Hence, under typical laboratory conditions (air and 15-25 °C), in vitro
aquatic invertebrate cells are exposed to ~20% O,, which is largely more than in
their natural aquatic environment, and could likely expose them to in vitro oxidative
stress.

To circumvent this potential problem, the first step will be to monitor invertebrate
intracellular oxidative stress, for instance, via a fluorescent general oxidative stress
indicator, such as CM-H,; DCFDA, which has been used on the spheroid tissue of
Fungia coral exposed to short-term acute thermal stress (Gardner et al. 2017). Upon the
confirmation of oxidative stress, the second step could be medium supplementation
with exogenous antioxidants (for example, ascorbic acid (Helman et al. 2008), catalase
enzyme (Domart-Coulon et al. 1994)) or native pigments with high antioxidant
properties (e.g., sea urchin spinochrome (Ageenko et al. 2014) and shrimp astaxanthin
(Lee etal. 2021)). Both approaches have reproducibly led to the increased maintenance
of the primary cell cultures. An alternative when establishing cultures of tissues
containing photosynthetic endosymbionts (e.g., Cyanobacteria-containing sponges,
and Symbiodiniaceae-containing sea anemones, corals and octocorals) is to maintain
the cultures in the dark to inhibit the photosynthetic processes that generate oxygen
and thus increase oxidative stress (Table 2).
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3.3. Understanding Adhesion and Cell-to-Cell Contact Requirements of Aquatic Invertebrate
Stem Cells

To optimize the proliferation of culture cells, transferring genomic knowledge
obtained in each aquatic invertebrate taxon on cell-to-cell and cell-to-ECM adhesion
systems will be particularly useful for selecting suitable ECM-coatings of culture
dishes.

Shifting from classical 2D monolayer culture to 3D “spheroid” culture systems
offers opportunities to facilitate the maintenance of cell-to-cell interactions and of
native secretions within the cell cluster. Cells from the earliest branching aquatic
metazoans, such as poriferans and cnidarians, display spontaneous aggregation
properties after tissue dissociation into single cells, sometimes leading to whole-body
regeneration (see Simpson (1984) for sponge, Gierer et al. (1972) for hydra and Vizel
et al. (2011) for coral). This re-aggregation property is being harnessed for spheroid
formation (coral “tissue balls”, sponge primmorphs) and their establishment for
primary culture (Figure 4A-C). Hemocytes drawn from mollusks, crustaceans,
tunicates or echinoderms also self-aggregate into clusters, through sequential
migrations of adherent cells on the culture substrate followed by the putative
secretion of self-recognition lectins (Figure 4D-F). A recent breakthrough using
3D cultures of sponge cells in ultra-low-gel agarose hydrogel microdroplets has
been reported to support cell-ECM interactions and to facilitate the survival of
differentiated Geodia neptuni demosponge cells (Urban-Gedamke et al. 2021).

Similarly, improving the in vitro microenvironment of isolated stem cells could
potentially sustain their proliferation. Adapting the cellular microenvironment to
mimic stem cell niches of a target organism should be pursued in each model taxon,
as such information becomes available. In addition, primary cultures that gave
rise to cell lines (e.g., insect imaginal disc cells) can provide mechanistic insights
into the cellular microenvironment needed to maintain stem cell self-renewal. As
shown in mammalian systems, multidirectional signaling by co-culturing stromal
“feeder” cells with the target cells (e.g., neurons from the gastropod Aplysia californica
(Montgomery et al. 2002); stem-like cells on a monolayer of confluent cephalopod
hemocytes (Figure 4E)) might help to generate a microenvironment suitable for
stem cell maintenance, proliferation and differentiation, typically by providing cell
adhesion molecules, growth factors, hormones and other secreted proteins (see Girard
et al. (2021) for hematopoietic stem cell niche, and Ootani et al. (2009) for intestinal
stem cell niche). Furthermore, supplementing the culture media with specific growth
factors (e.g., Wnt fusion proteins for ISC (Ootani et al. 2009)) can lead to the expansion
of stem cells with sustained proliferation and multilineage differentiation. As in vivo
information on the regulation of aquatic invertebrate stemness becomes available,
transferring such information will be particularly important to design optimized cell
culture media.

39



Figure 4. Aggregate vs. dissociated primary tissue and cell culture, on plastic
dish-culture substrates. The figure shows micrographs of individual cells
or multicellular aggregates at the indicated days post-inoculation (dpi). (A)
Scleractinian coral cell types and their Symbiodiniaceae endosymbionts (within coral

gastrodermal host cell, or free-living in the culture medium). (B) Suspended
coral multicellular aggregates spontaneously formed in explant culture of
colonies of Pocillopora damicornis. (C) Spontaneous dissociation into multilayered,
mixed-cell-type culture, containing translucent coral cells and brown-pigmented
microalgal symbionts (Symbiodiniaceae). (D) Cephalopod hemocytes from Nautilus
pompilius aggregate in cell culture when seeded at high seeding density (>10°
cells/mL, 2 dpi). (E) Confluent primary culture 8 dpi, showing networks of adherent
hemocytes and proliferating cell clusters (300-500 um in diameter), which can
be detached and transferred (passaged) to new culture dishes. (F) Subcultured
hemocytes (14 days post transfer from cells detached from clusters in 8 days
post-inoculation-primary culture) remain quiescent and do not grow to confluence.
Source: Graphic by authors.

To further mimic the in vivo microenvironment of the isolated cells, and their
interactions with their environment in particular, new “physiomimetic” approaches
should be developed using, for instance, versatile hydrogels to concentrate cells in
a 3D microenvironment (see Otero et al. (2021) for a review on such experimental
approaches for vertebrate cell systems). The ongoing development of commercial
hydrogels (synthetic or derived from jellyfish, i.e., “Jellagel”) provides new 3D
substrates to test on aquatic invertebrate cells. To determine whether these cells
behave in vitro similarly to in vivo, live-cell or live-tissue observations based on the
micropropagation of tissue in microfluidic devices should be further established
(Januszyk et al. 2015).
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4. Controlling the Purity and Quality of Cultured Cells

Upon isolation from their initial tissue microenvironment for establishment in
culture dishes, aquatic invertebrate cells change morphology and are notoriously
difficult to identify by their in vitro shape and behavior (Rinkevich 2011; 2005;
Cai and Zhang 2014). Moreover, cultured cells are morphologically highly plastic,
changing shape, granularity and sometimes pigmentation with culture age and
substratum composition (i.e., with or without surface coating with positive charges
or ECM compounds). For cell lineage authentication, checking phenotype and
genetic identity is imperative, not only upon culture initiation but also throughout
the primary culture and derived subcultures, at least at the time of use for functional
assays and before/after cryopreservation.

4.1. Proliferation

The monitoring of in vitro cell proliferation is traditionally based on monitoring
cell densities (via subsampling a fraction of the culture followed by cell numeration
on Malassez- or Neubauer-type hemocytometers, or time-lapse image analysis of
microscopy fields of view) and attentive changes in the total protein content or
DNA content extracted from cell pellets or monolayers. These methods overestimate
live cell densities as they integrate dying cells to the viable cells. Another widely
used method relies on the miniaturized high-throughput colorimetric quantification
of mitochondrial oxidative phosphorylation (MTT or XTT reduction assays) by
the cultured cells. First adapted for screening medium nutritional factors and
physico-chemical parameters for molluscan cells (bivalve oyster Crassostrea gigas
(Domart-Coulon et al. 1994)), it has also been adapted to sponge cell mitochondrial
activity evaluation in primary culture (Zhang et al. 2004) and to the monitoring of
coral larval cell density in primary cultures (Kawamura et al. 2021). However, this
type of MTT test detects not only oxidative phosphorylations of the animal cells but
also that of bacterial associates in primary culture (e.g., of cephalopod holobiont)
tissue (Pichon et al. 2007). The fluorescence monitoring of cellular esterase activity
is also a common method to quantify viable cells in cultures. However, their use
for aquatic invertebrate taxa can be limited by the widespread co-occurrence of
autofluorescent cell types with fluorescence spectra overlapping those of the enzyme
substrates.

By quantifying the proportions of cells in each phase of the cell cycle, flow
cytometry allows us to check the proliferative status of the collected tissue sample
before culture establishment, and to monitor cell cycling in the derived primary
cultures and potential sub-cultures. Applied, for example, in the early 2010s to
primary cell cultures from five demosponge species, this flow-cytometry-based
approach revealed rapid changes in the cell cycle distribution of a mixed-cell-type
suspension over time in primary culture (over a short-term 2-10-day timescale)
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(Schippers et al. 2011). The rapid accumulation of cells with low DNA content
together with a drop in the proportion of quiescent (G1/Gp) and cycling cells (S &
G2/M) could be visualized, supported by the parallel detection of activated (caspase3)
apoptosis pathways. This evidence supported the hypothesis of the rapid senescence
of cultured sponge cells, with the accumulation of cellular debris (demonstrated
by widely scattered cell size distribution), despite stable or slowly declining cell
counts, by only minus ~20% over the 10-day culture period. This observation calls
to cautious interpretations of stable or slightly growing cell densities, counted from
image analyses of microscopic fields or enumerated on Malassez-type slides, as
round empty cell bodies cannot be unambiguously discriminated from living cells
based on morphology only, even when using vital stains assays (e.g., neutral red or
trypan-blue). Another point of caution when using this approach is the ploidy of the
studied samples, and in particular, the presence of mixoploid cell populations that
could bias their cell-cycle profile (Ermakov et al. 2012).

4.2. Phenotyping

Autofluorescent markers (e.g., Green Fluorescent Protein-rich intracellular
granules of cnidarian cells,) or chromophore/pigments of specific cell types (e.g.,
red “echinochrome” pigments of echinoderm coelomocytes) can be used to sort cell
types among a mixed cell suspension. However, care should be taken to minimize
irradiance energy during fluorescence microscopy examination as it may damage
the living cells by DNA photodamage or lipid peroxidation, and thus limit their
subsequent in vitro survival. Enzyme activity assays (e.g., phenoloxidase of mollusk
and crustacean immune cells), biochemical phenotyping and phagocytosis assays
have also been used to characterize the in vitro functionality of hemocytes from
molluscan hemolymph, tunicate hemolymph and echinoderm coelomic fluid.

Immunophenotyping requires the prior development and validation of
polyclonal or monoclonal antibodies against epitopes of cell-type-specific proteins
or membrane preparations. Although labor-intensive and time consuming, this
strategy provides the advantage of the unambiguous localization of immuno-positive
phenotypes in initial tissue and in primary tissue or mixed cell culture. For instance,
low abundant small round coral skeletogenic (calicoblast) cell types were labeled with
a polyclonal antibody raised against the biomineral organic matrix (Puverel et al. 2005)
and antibodies were raised against the Botrylloides piwi sequence to label a specific
population of hemocytes (Rinkevich et al. 2010). This antibody-based approach has
been successfully used to trace self-sorting processes during cell-to-cell aggregation
from mixed-cell-type dissociated tissue suspensions (Schmid et al. 1999) and for cell
fusion experiments (Pomponi et al. 2013). This has an interesting yet still overlooked
potential for cell-type enrichment via the antibody panning of immuno-positive cell
types (Auzoux-Bordenave and Domart-Coulon 2010).
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Novel phenotyping methods have recently been developed from cutting-edge
single-cell RNA sequencing methods, which are applied to cultured cells. However,
these techniques currently have the three following drawbacks: (1) the prior definition
of cell-type-specific markers is needed, through the data-mining of single-cell RN Aseq
libraries obtained from dissociated tissue suspensions, which is still available for
a limited number of species of established model organisms (e.g., for the starlet
sea anemone (Sebé-Pedros et al. 2018), for planarians (Hayashi et al. 2010) or for
the scleractinian coral (Levy et al. 2021)); (2) molecular markers should be specific
to metabolic pathways restricted to the targeted invertebrate taxon and exclude
pathways that are also active in potential contaminating protists/microeucaryotes; (3)
assessing the polyclonality (mixture of cell types) versus clonality (single cell line) of
the culture requires the quantification of the percentage of reads obtained for each
claimed phenotypic marker, relative to the total number of reads.

4.3. Genotyping

Despite the proper isolation and cleansing of cells, cultures can easily be
overgrown by undesired cells. An undetermined fraction of these aquatic microbes
survives the tissue aseptization treatments prior to dissociation or explantation and
co-occurs along with metazoan cells in the mixed-cell-type suspensions obtained
from soft tissue dissociation or hemolymph syringe-drawings. This large diversity of
aquatic microbes is hard to monitor as it requires taxa-specific specialist microbiology
knowledge and molecular tools for accurate identification. It is especially difficult
to recognize their morphological traits in a mixed-cell-type primary culture that
combines the morphological and behavioral plasticities of both the microbe and
microbial life stage, and the targeted invertebrate cell types.

To address this problem, genetic markers specific to a species (e.g., Axinella
corrugata demosponge, (Lopez et al. 2002)) or to a genus (e.g., Acropora scleractinian
coral (Shinzato et al. 2014)) have been developed and validated for identifying cells
from the targeted taxon in the initial tissue and over time in primary cultures and
subcultures. Marker development is based on molecular genetics methods, such as
DNA fingerprinting, amplified fragment length polymorphism (AFLP), single-locus
DNA sequence analyses and microsatellites markers designed by next-generation
sequencing population genetics methods.

As microbes tend to proliferate more actively than the cells of primary interest
of the in vitro culture, it is crucial to check the potential microbial nature of long-term
cultured candidate aquatic invertebrate stem cells.

4.4. Microbial Contaminants Authentication

Detecting genetic markers specific to the invertebrate taxa of interest does not
exclude the potential co-occurrence of microbial contaminants. In fact, because
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molecular detections are highly sensitive, the detected invertebrate cells could even
represent a very small fraction of the cell culture. Thus, it is highly recommended to
also systematically use molecular probes for microbial taxa to detect potential culture
contaminants (Table 3).

Culture contamination is a major obstacle to the development of aquatic
invertebrate in vitro models. Indeed, it is widely acknowledged that microbes
persistently take over the cultured aquatic invertebrate cell types (Rinkevich 2005),
putatively as a result of antagonistic interactions (predation and competition for
nutrients) or metabolic plasticity and better adaptation to the in vitro growth
conditions. Culture media are commercially designed for vertebrates (e.g., DMEM,
Leibovitz L-15) or insects (e.g., Grace Insect Medium) and partly diluted in seawater
(or freshwater) or formula custom-prepared to mimic the microenvironment of the
sampled tissue, and they are nutrient-rich. Although they may not adequately
meet the largely unknown growth requirements of the cultured invertebrate cell
types, they provide abundant organic carbon and nitrogen sources that facilitate
the overgrowth of opportunistic resident microbial associates. Indeed, epibiotic
or endobiotic microbiota (especially unicellular microeukaryotes that are hard to
discriminate from animal cells) have repeatedly been shown to take advantage of the
medium-derived nutritional resources to fuel their fast heterotrophic growth; see,
for example, the consumption of mono and disaccharides, glycerol, glutamate and
glycine by the opportunistic unicellular Alveolate Chromera velia (Foster et al. 2014).
Predatory opisthokonts, ubiquitous in aquatic environments, have a highly plastic
morphology, with in vitro growth alternating between a unicellular ‘spindle-shape’
stage and aggregative or clonal (partly fused) multicellular stages, and they are
known to feed on metazoan tissue or derived cells (Tikhonenkov et al. 2020a).

Such eukaryotic microbes, collectively defined as protists, may feed on cellular
debris from senescent or dead host/aquatic invertebrate cells, taking over the initial
host cell population in long-term primary cultures or their successive subcultures.

5. Perspectives

While marine invertebrates as a whole show the largest biodiversity and the
widest phylogenetic radiation on Earth, they have contributed very little to the
in vitro cell lines discipline. The culture of marine invertebrate stem cells and/or their
progenitors could thus create new perspectives for fundamental research as well as
for biomedical applications. To reach this objective, we thus recommend two main
actions.

First, a systematic map of knowledge, built in the form of a database of
publications with metacoded information on taxon population, intervention strategies
(e.g., cell isolation methods, culture media and physico-chemical conditions) and
outcomes (e.g., cell viability, proliferation and differentiation) would be an important
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tool for increasing the visibility of protocols and know-how in the fragmented scientific
community. Furthermore, it would help to incorporate typically unpublished
results, including negative results, a scientific status that is rarely highlighted in
the refereed literature (Grasela et al. 2012). Such database would help to build
a comprehensive knowledge map to identify optimized culturing conditions for
each aquatic invertebrate taxon and cell type, adapted to the expected timescale
of utilization. The multiple usage of primary cell and tissue cultures from aquatic
invertebrates ranges from short-term use (within hours to <7 days for physiology
and cytotoxicity testing) to the long-term (bi-weekly to monthly) selection of
subpopulations of dividing cells for serial sub-culturing attempts. Each type of
inoculum implies distinct culture media and condition strategies to balance cellular
yield, functional stability and proliferation potential. The curated list of 511 relevant
publications compiled in Appendix B Table A2 provides a start to this database,
allowing us to assess by taxon the extent of research efforts to initiate or develop cell
cultures. It should be maintained and completed by the scientific community, for
more exhaustive listing and optimized visibility.

Second, best practices would be to develop and adopt robust cell-type
authentication protocols applicable to insect or vertebrate cell lines and primary
cultures (Lynn 2001; Dominici et al. 2006), and to systematically deposit live or
cryopreserved vouchers of “cell lines” in cell repositories. This could lead to the
identification of more general stem cell markers for aquatic invertebrates, which
would be crucial for obtaining a robust inoculum for in vitro cell cultures. Most
recurrent past claims of successfully established aquatic invertebrate cell lines have
turned out in fine to be cultures overgrown by microeukaryote contaminants, with
examples in each taxon (porifera, colonial cnidarians, crustaceans and others).

Overall, these two actions taken together could help to standardize aquatic
invertebrate cell culture to facilitates comparisons between intervention protocols and
thus help to optimize the standardized protocols. Given that aquatic invertebrates are
phylogenetically very distant, the development of a ubiquitous culturing environment
appears rather unlikely. Nevertheless, each phylum could benefit from the scientific
and technological advances in primary cell culture made in other phyla.

In particular, the assessment of whether the list of three identification criteria,
defined for vertebrate stem cells, are conserved in aquatic invertebrate stem cells,
would be of particular interest. The first criterion is whether the stem cells adhere to
plastic, and more generally if a specific culture method, such as 3D Matrigel, could
lead to decisive improvements (Urban-Gedamke et al. 2021). The second criterion
explores the expression of specific surface markers that would allow the robust
isolation and enrichment of stem cells/progenitors, as has been attempted by using a
single marker in a colonial tunicate (Kassmer et al. 2020). The third criterion aims to
define protocols for assessing stem cells’ potency differentiation potential, typically
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by using predefined induction cocktails combined with markers for differentiated
cell types, both of which require a precise characterization of gene expression profiles
specific to each cell-type for every species of interest (Sebé-Pedros et al. 2018).

An alternative to identifying suitable stem cells is to immortalize cells of interest
in a reproducible manner. One suggested approach is to manipulate adult stem
cells of aquatic invertebrates similarly to the approach implemented in mammalian
induced pluripotent stem (iPS) cells (Rinkevich 2011). The second route, probably
the most promising and reliable approach, is to control the process of tumorigenesis
in aquatic invertebrates, as already suggested (Odintsova et al. 2011). Research on
this topic is currently very scarce (Gardner 1993; Robert 2010) primarily due to the
facts that tumorigenesis in aquatic invertebrates is not as commonly observed as
in vertebrates (Vogt 2008; Tascedda and Ottaviani 2014), that tumor-like lesions in
aquatic invertebrates possess a low mitotic index (Odintsova et al. 2011) and that
the definitions of tumors and tumor cells in aquatic invertebrates are less familiar
to pathologists (Tascedda and Ottaviani 2014). Yet, the tool of tumorigenesis may
constitute a very important route for future research, and a potential approach is
to use the trait of the vertebrates” cancer cells (Vincent 2012) as a guiding list for
tumors in aquatic invertebrates. A third concept proposes the use of regeneration
processes as the source of tumor development (Oviedo and Beane 2009), which is
particularly interesting given the broad involvement of aquatic invertebrates” stem
cells in regeneration processes, including whole-body regeneration (Rinkevich et al.
2022). For each one of these three approaches, the development of suitable tools for
the controlled editing of genetic material of cells, typically through viral transfection,
could enable the knockdown of suppressor genes, similar to standard approaches
in mammalian cells (Yang et al. 2007). One such advance is the successful induced
stem cell neoplasia in the marine hydrozoan Hydractinia echinata by the ectopic
expression of a POU domain transcription factor (Millane et al. 2011). However,
even immortalized tumor-like cells will need appropriate culturing conditions to
proliferate properly. Lessons may be drawn from the failure to sustain in vitro the
neoplastic hemocyte proliferation observed in vivo in spontaneously occurring clam
leukemia, with research pointing to a role for the stress protein mortalin in the
induction of apoptosis in cancerous hemocytes (Walker et al. 2013). The RNA-seq
approach may be applied to compare gene expression patterns in cultured cells and
initial tissue, with a focus on essential cell proliferation and cell cycle arrest regulator
genes, in order to develop future strategies for immortalization, as recently explored
for developing shrimp cell lines (Thammasorn et al. 2020).

As a supplementary approach to support the development of cell lines from
aquatic invertebrate stem cells, studies on metabolomes of cultured cells, and
their secretomes in particular, could be considered. Such an approach may
provide important insights into the requirements in media composition that support
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proliferative activities. Ample information has been gained on this issue in
mammalian cell cultures (Cuperlovié-Culf et al. 2010; Mohmad-Saberi et al. 2013).
Yet, the study of the secretome of aquatic invertebrates has seldomly been undertaken
(Kocot et al. 2016), but data on the metabolome of whole organisms in the context
of marine natural product discoveries are becoming quite common (Reverter et al.
2020). Furthermore, high-precision tool development specific to seawater are now
available (Sogin et al. 2019).

Finally, future research should also address the still largely overlooked abiotic
factors, such as testing hypoxia and pressure stimuli, on primary cultures.

Regarding hypoxia, parallel research in cultured mammalian cell models
has highlighted the better survival and proliferation of stem cells in low oxygen
environments (Zhu et al. 2005; Hung et al. 2012; Ramirez et al. 2011). A shift from
oxidative phosphorylation to aerobic glycolysis, known as the Warburg effect, has
been documented in the context of proliferating cancer cells: the glucose consumed
in high amounts to fuel the growing biomass of cancer cells is fermented to lactate
rather than oxidized, even when there is sufficient oxygen to convert glucose to
CO,, although the process is less efficient in terms of ATP synthesis (reviewed by
DeBerardinis and Chandel 2020). Hyperactive glycolysis involving lactate supports
the tumor energy metabolism of cancer stem cells in mostly hypoxic environments,
and similar pathways might support the metabolism of aquatic invertebrate stem cells.
A similar Warburg effect has indeed been documented in Crassostrea gigas oyster tissue.
First discovered during the response to viral infection with ostreid herpesvirus-1
(Corporeau et al. 2014), it is thought to be a mechanism to adapt the oyster metabolism
to extreme (salinity and oxygen) changes in the intertidal environment (Corporeau
et al. 2019). In agreement with this finding, preliminary data obtained on oyster
heart primary cell cultures showed transient increased proliferation between 2 and
4 weeks post-inoculation in a 2% O, atmosphere (obtained by incubation in a 95%
N>/5% air incubator), compared with 20% O, atmosphere (air) (Domart-Coulon,
unpublished), when medium was supplemented with growth factors, lipids and
antioxidants (Domart-Coulon et al. 1994).

Regarding pressure, research on the primary cultures of vertebrate (Wharton
Jelly’s) mesenchymal stem cells has shown the combined positive effects of pressure
and hypoxia (Park et al. 2020). In response to pressure stimuli, cell proliferation
was increased, and stemness was maintained. Cellular adhesion and confluency
were higher in 5% O, hypoxia with 2.0 PSI pressure conditions relative to standard
5% CO,-95% air conditions, and hypoxia alone yielded a mild increase in stem cell
adhesion and confluency. Thus, we propose the inclusion of these abiotic parameters
in future invertebrate stem cell culture optimization efforts.
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Appendix A
Table A1. All the detailed values used for building Figure 1.

Taxon Species Regeneration Longevity Publications Cell Lines
Hominidae 7 organ 122 16,851 96,862
Mammalia 5480 organ 211 7238 29,171
Vertebrata 56,508 appendage 392 884 1394

Tunicata 2760 WBR - 44 0
Cephalochordata 33 organ - 3 0
Ambulacraria 7111 WBR 200 42 0
Xenacoelomorpha 401 WBR - 1 0

Insecta 1,015,897 appendage 28 351 895

Ecdysozoa 202,423 appendage 100 110 94
Nemertea 1200 WBR - 0 0
Platyhelminthes 20,000 WBR - 16 1
Mollusca 85,000 appendage 507 121 5
Spiralia 26,099 WBR - 14 0
Cnidaria 9795 aggregates 4265 66 0
Placozoa 1 aggregates - 0 0
Ctenophora 166 WBR - 1 0
Porifera 6000 aggregates 15,000 58 0
Appendix B

Table A2. The full curated list of 511 references, sorted per taxa. (This table
was not included in the print version of this book, to view the table please visit
https://www.mdpi.com/books/pdfview/edition/5071).
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Adult Stem Cells Host Intracellular
Symbionts: The Poriferan Archetype

Alexander Ereskovsky, Baruch Rinkevich and Ildiko M. L. Somorjai

Abstract: Unlike vertebrates, adult stem cells (ASC) in a wide range of aquatic
invertebrate phyla are morphologically diverse, exhibiting a wide range of
differentiation states as well as somatic and germline physiognomies. They
may arise de novo by trans-differentiation from somatic cells and above all
represent phenotypes of specialized cells with multifunctionality. One unexpected
phenomenon is the presence of intracellular symbionts in the ASCs of some
invertebrates. Overviewing the literature on intracellular symbionts in sponge
(Porifera) ASCs and in other aquatic invertebrates, we reveal that ASC intracellular
prokaryotic and eukaryotic symbionts are restrictive to a single sponge class, the
Demospongiae. The eukaryotic symbionts in sponges are exclusively unicellular
photosynthetic algae, and are found only in pluripotent stem cells, most frequently
in the archaeocytes; they are documented in five orders of Demospongiae.
Bacteriocyte-like cells have been reported in sponges and three other phyla,
indicative of their independent evolutionary origins. The results of this study
add considerable insight into the establishment and maintenance of intracellular
symbioses in ASCs of aquatic invertebrates, and provide new a understanding of
the diversity of symbiotic associations across the tree of life.

1. Introduction

According to the prevailing dogma in cell biology, adult stem cells (ASC)
in animals are committed lineage-specific cells, with tissue-/organ-restricted fates,
and which are moreover capable of regeneration and repair of tissues and organs
(Clevers and Watt 2018). Ordinarily, ASCs are undifferentiated cells that give rise
to either daughter stem cells, non-self-renewing progenitors, or to lineage-specific
differentiated cells (Clevers and Watt 2018; Raff2003). Model ASCs (in vertebrates and
insects) typically possess high nucleo-cytoplasmic ratios, are small in size compared
to lineage-differentiated progenies, and are often rare. However, ASCs in many
aquatic invertebrates are not only very common (up to one third of all animal
cells), but are also morphologically highly diverse, and exhibit a wide range of
differentiation states as well as somatic and germline characteristics, just to name
some key biological properties (summarized in Rinkevich et al. 2022). Moreover,
ASCs in aquatic invertebrates may arise de novo by trans-differentiation from somatic
cells (Borisenko et al. 2015; Ferrario et al. 2020) and above all represent phenotypes
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of specialized cells with multifunctionality. Examples include the ecto-/fendodermal
epitheliomuscular cells in polyps of Cnidaria (Bosch et al. 2010; Hobmayer et al. 2012)
or the archaeocytes and choanocytes in Porifera (Funayama 2018).

One unexpected and, as yet, little-explored phenomenon is the presence of
intracellular symbionts in the ASCs of some invertebrates (for example, Bright and
Giere 2005; Masuda 1990; Pflugfelder et al. 2009; Saller 1989), and the evidence
that ASCs manipulate symbiont maintenance (Bosch et al. 2010; Dirks et al. 2012;
Kovacevic 2012). Below, we review the literature on ASCs and their symbionts in
sponges (Phylum: Porifera), which represent the best-known model case, as well as
the few examples from other systems. We place this within the context of intracellular
symbionts more generally, concluding with a discussion of how the application of
modern methodologies in sponges to this problem may improve our understanding
of this unusual symbiosis.

2. Symbiosis

2.1. What Is Endosymbiosis?

Symbiosis, an inter-dependent relationship between two species, is an important
factor for ecological diversity and evolutionary novelty (Sitte and Eschbach 1992;
Wernegreen 2012). The most comprehensive definition of symbiosis includes the full
range of interaction modes, from harmful (parasitic) to beneficial (mutualistic). It
applies not only to organisms living anywhere within the host body—such as within
tissues (extracellular) or within cells (intracellular)—but also to cytosymbiosis, the
intimate and long-lasting association of cells belonging to different taxa, and often
considered as the most intricate partnership among living entities (Sitte and Eschbach
1992; Wernegreen 2012). Both parasitic and mutualistic symbiotic interactions can
evolve into a state where there is a stable and permanent association between
symbionts and hosts. In the case of intracellular mutualists, evolutionary processes
may lead to cytosymbiosis through both morphological alterations as well as via
physiological/molecular incorporation of the symbionts into the hosts’ cellular
environments, to the point where endosymbionts are no longer easily recognizable as
foreign intrusions. Following such integrations, endosymbionts enhance the ability
of hosts to succeed in diverse contexts, from unbalanced diets and nitrogen-poor
soils, to hydrothermal vents and oligotrophic aquatic environments (Hinzke et al.
2021; Wernegreen 2012). Key functions performed by mutualistic, intracellular
endosymbionts include harvesting energy from chemicals or light, to converting
nitrogen into a usable form, and synthesizing nutrients that supplement the host’s
diet, to name just a few (Wernegreen 2012).

Cytosymbiotic associations can be organized within a graded series of cumulative
morphological integrations, including the development of arrays of mechanisms
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targeting the interactions between host and symbiont (Bandi et al. 1995; Melo-Clavijo
et al. 2018; Song et al. 2017). They can also be exposed to partner switching and rapid
compensatory evolution (Serensen et al. 2021). In cytosymbiosis, the interrelations
between the partners of each specific symbiosis can be commensalic, parasitic, or
mutualistic; but in every case, cytosymbiotic partnership leads to adaptive interaction
of the partners or even to strict co-evolution (Sitte and Eschbach 1992). Intracellular
symbiotic microorganisms commonly reside in specialized or non-specialized host
cells, but not in ASCs; the property of “stemness” could be regarded as mutually
exclusive to a highly differentiated and specialized cytosymbiotic state. The
appearance of such an association, therefore, should be studied not only from
functional but also from host/symbiont co-evolutionary perspectives, as unicellular
symbionts have been associated with sponges (and their ASCs) since their initial
evolution as multicellular animals (Ereskovsky 2010; Wilkinson 1983).

2.2. Porifera as Model Systems for ASC Cytosymbiosis

2.2.1. Overview of Characteristics of Organization and Cellular Plasticity

Sponges branch off basally in the metazoan phylogenetic tree and comprise four
distinct classes: Demospongiae, Hexactinellida, Calcarea and Homoscleromorpha.
Living sponges are found in all aquatic environments at all depths. A sponge is
traditionally defined as “a sedentary; filter-feeding metazoan”, and has no nerves,
muscles, specialised digestive system or gonads (Borchiellini et al. 2021).

Sponges have two cell layers, the choanoderm and the pinacoderm (Figure 1),
formed by choanocytes and pinacocytes, respectively. Choanocytes are flagellated
collar cells lining the filtering cavities of the aquiferous system, the choanocyte
chambers. Pinacocytes are flattened cells covering the outer parts of the body and
lining the canals of the aquiferous system. The space between the external pinacocyte
layer and the aquiferous system is filled by the mesohyl, a loose layer composed of
collagen fibrils, skeletal elements, and up to ten cell types with different degrees of
motility (Ereskovsky and Lavrov 2021; Harrison and De Vos 1991).

The tissues in sponges are simpler, both structurally and functionally, than in
other Metazoa. In particular, sponge tissues tend to be highly multifunctional when
compared to counterparts in more recent branching animal lineages, permitting
a higher rate of cell migration and thus an almost constant reorganization of
tissues. Moreover, the cells of sponge tissues possess a very high capacity for
transdifferentiation into other cell types (Gaino et al. 1995; Nakanishi et al. 2014).
In addition, sponges possess very high regenerative and reconstitutive abilities,
culminating in the re-building of a functional body from dissociated cells (reviewed
in Ereskovsky et al. 2015, 2020, 2021; Lavrov and Kosevich 2014; Simpson 1984).
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Figure 1. TEM images of principal pluripotent cells in sponges. (A)—archaeocyte of
Halisarca dujardinii (Demospongiae); (B)—choanocytes of Leucosolenia variabilis
(Calcarea); (C)—archaeocyte of the freshwater sponge Lubomirskia baicalensis
(Demospongiae) with intra-cellular algal symbionts; (D,E)—archaeocytes of the
marine sponge Haliclona sp. (Demospongiae) with intra-cellular dinoflagellate
symbionts (showing fibrillar material between algae and archaeocyte (arrowed)
(Modified from Garson et al. 1998). as—algal symbionts, ch—choanocyte,
d—dinoflagellate, f—flagellum, n—nucleus, ph—phagosome. Source: Graphic by
authors.

2.2.2. Sponge ASC Characteristics

As one of the most basal metazoan groups (Redmond and McLysaght 2021;
Simion et al. 2017), sponges hold a key position to address stem cell origins.

Most research on stem cells in sponges has been conducted in demosponges,
and until recently, consisted almost entirely of microscopic studies. However, in the
past few years, molecular studies have provided new insights. According to the
most recent investigations in Porifera, there are not only two (Funayama 2018), but
rather at least four types of pluripotent ASC: the archaeocytes and choanocytes, as
well as pinacocytes and particular amoeboid vacuolar cells (Ereskovsky et al. 2015;
Fierro-Constain et al. 2017; Lavrov et al. 2018).

Three main criteria are generally accepted as defining a stem cell: (1) the
capacity for self-renewal, (2) differentiation (or transdifferentiation) of this cell type
into others, and (3) contribution of this cell to the processes of homeostasis and
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regeneration (Melton 2014). The molecular evidence of their stemness includes
the expression of genes encoding GMP (germline multipotency program) proteins
(piwi, vasa, bruno, pl-10, and all the genes encoding Tudor domains, ddx6, and
mago-nashi); the observation that genes encoding RNA helicase and proteins involved
in mRNA splicing are elevated in the archaeocytes of the freshwater demosponge
Ephydatia fluviatilis (Alié et al. 2015); and expression of the EfPiwiA and EfPiwiB
genes detected in choanocytes (Funayama et al. 2010). GMP genes (piwi, argonaute,
vasa, nanos, pl10, tudor, pumillo, boule) are expressed in the choanocytes of adult
Oscarella lobularis (Homoscleromorpha) (Fierro-Constain et al. 2017). VasaB and
SciPL10B are also strongly expressed in the choanocytes of Sycon ciliatum (Calcarea)
(Leininger et al. 2014).

Choanocytes are specialized epithelial cells responsible for water movement
inside the sponge aquiferous system and food particle capture. These cells are
characterized by apical-basal polarity and the presence of a flagellum surrounded by
the collar of microvilli at the apical pole (Simpson 1984) (Figure 1B).

Archaeocytes are amoeboid cells of the mesohyl devoid of any polarity or
specialized features, and are typical in Demospongiae. These cells manifest
high polymorphism and multifunctionality. Up to now, no generally accepted
characteristics of archaeocytes have been defined. Only general features exist, which
are present in all archaeocyte descriptions: an amoeboid shape, a large nucleolated
nucleus and the absence of specialized inclusions in the cytoplasm (Ereskovsky
and Lavrov 2021; Simpson 1984), (Figure 1A,C). As for the function of demosponge
archaeocytes, their role has been described in: (1) the transport of food particles and
elimination of digestive products (Godefroy et al. 2019; Willenz and Van de Vyver
1984); (2) outgoing particulate organic matter (Maldonado 2016); (3) the burrowing
processes in excavating sponges (Riitzler and Rieger 1973); (4) spicules secretion
(Funayama et al. 2005; Rozenfeld 1980); (5) immunity role (Fernandez-Busquets 2008;
Smith and Hildemann 1986); (6) gametogenesis (Ereskovsky 2010; Simpson 1984);
(7) asexual reproduction (budding, gemmulogenesis, reduction body formation)
(Ereskovsky et al. 2017; Harrison et al. 1975; Simpson 1984); (8) regeneration, somatic
embryogenesis and growth (Buscema et al. 1980; Ereskovsky et al. 2020, 2021; Lavrov
and Kosevich 2014). Thus, this sponge archaeocyte multifunctionality is unusual for
the stem cells of Metazoa.

Notably, there is another unusual feature of archaeocytes in Demospongiae—the
presence of intracellular photosynthetic algal symbionts. Freshwater sponges
(order Spongillida) harbour Chlorophyta from the classes Trebouxiophyceae and
Chlorophyceae (zoochlorella), and Ochrophyta from the class Eustigmatophytacea.
Some marine demosponges (orders Haplosclerida and Clionaida) also harbour
Dinoflagellata Symbiodinium spp (zooxanthella) (Table 1).
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Table 1. Distribution of symbiotic intracellular unicellular algae in demosponge

adult stem cells.

Demosponge

Adult Sponge

Species Cell Type Gemmule Buds Algal Species Method References
Order Spongillida
Family Spongillidae
Phylum .
- Archaeocytes, Thesocytes (Masuda 1990; Gilbert
I Sp ong illa choanocytes of green No Chloljop hyta TEM and Allen 1973;
acustris (geen) RO Trebouxiophyceae, e
(Williamson) gemmules Williamson 1979)
zoochlorellae
Sponeilla Archaeocytes, Trebouxiophyceae, In vivo
15 i ssz:ris choanocytes, Thesocytes No Chlorella sp. microscopy (Saller 1989, 1991)
pinacocytes Germany LM, TEM
Sponeilla Trebouxiophyceae,
IP 81 ? Thesocytes No Choricystis minor - LM, (Handa et al. 2006)
acustris K
Japon
Trebouxiophyceae,
Spongilla ? ? No Lewiniosphacra MB (Proschold et al. 2010)
acustris symbiontica
UsA
Nudospongilla (Brien and
pong Amoebocytes ? ? Zoochlorella LM Govaert-Mallebranche
moorei
1958)
Radiosponcilla Thesocytes Trebouxiophyceae, (Masuda 1990; Handa
sen dabip( éqen) Archaeocytes of green No (zoochlorellae) TEM et al. 2006; Okuda
s 8 gemmules Choricystis minor etal. 2002)
. . Trebouxiophyceae,
Rajzlrisbillllr(lzéf;”ﬂ Archaeocytes TI;?S‘;Z{;ES No (zoochlorellae) TEM (Handa et al. 2006;
( eén) Y! emgmules Choricystis minor Masuda 1985, 1990)
8 8 and Chlorella
Archaeocytes, Archaeocytes,
Radiospongilla amoebocytes, 5 amoebocytes,  Trebouxiophyceae,
cerebellata choanocytes, : choanocytes, Chlorella LM, TEM (Saller 1990)
pinacocytes pinacocytes
Eunapius ? Thesocytes No Trebouxiophyceae, LM, In vivo (Handa et al. 2006)
fragilis Choricystis minor microscopy
Heteromeyenia
slepanowii Archaeocytes No No Zoochlorellae TEM (Masuda 1990)
(geen)
Ephydatia . .

. Trebouxiophyceae, (Wilkinson 1980;
ﬂzg::ii;zs Archaeocytes Thesocytes No Chlorella sp LM, TEM Gaino et al. 2003)
Ephydatia
fluviatilis Archaeocytes No No No algae LM, TEM (Gaino et al. 2003)

(brown)
Ephydatia Archaeocytes Thesocytes No Chlorella sp. LM, cell (Hall et al. 2021)
muelleri fractioning
. Trebouxiophyceae (Masuda 1990; Gilbert
Er’:' }’Z Zg:;ﬂ Archaeocytes No No Choricystis, M.?]’EI\CAM’ and Allen 1973;
Chlorella sp. Williamson 1979)
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Table 1. Cont.

Demosponge Adult Sponge

Species Cell Type Gemmule Buds Algal Species Method References
Family Lubomirskiidae
Lubomirskia Chlorophyceae LM, TEM, (Chernogor et al.
baicalensis Archaeocytes No No Mychonastes jurisii SEM, MB 2013)
- Trebouxiophyceae
Lubormirskia Archaeocytes No No Chlorophyceae TEM (Ereskovsky et al.
baicalensis N 2016)
Mychonastes sp.
L.ubomn'skla Archaeocytes No No Trebpuﬂxmphycgqe LM (Kulakova et al. 2014)
incrustans Choricystis parasitica
Lubo.mz'rskm Archaeocytes No No Trebp ux19 P h.y ceac. LM (Kulakova et al. 2020)
abietina Choricystis krienitzii
Bmkﬂlqsp ongia Archaeocytes No No Trek{OUX}ophycgqe LM (Kulakova et al. 2014)
bacillifera Choricystis parasitica
Ba‘zkalosp ongia Archaeocytes No No Trebg uxio phy ceac. LM (Kulakova et al. 2020)
intermedia Choricystis krienitzii
Family Metaniidae
Corvomeyenia Phylum
1eye Archaeocytes No No Ochrophyta TEM (Frost et al. 1997)
everetti .
Eustigmatophytacea
Order Haplosclerida
Dinoflagellata,
Haliclona sp. Archaeocytes No No Symbiodinium LM, TEM (Garson et al. 1998)
microadriaticum
Order Clionaida
Cliona viridis Archaeocytes ? Archaeocytes ]glnoﬂagel} ata LM, TEM (Rosell 1993)
ymbiodinium
Cliona
inconstans, C. Archaeocytes ? ? Zooxantellae LM, TEM (Vacelet 1981)
orientalis
Cliona caribbaea, Dinoflagellata
. . Archaeocytes ? ? Gymnodinium LM, TEM (Riitzler 1990)
C. varians ; L.
microadriaticum
. . . Dinoflagellata . .
Cer‘m_cu_rnm Amoeboid No No Symbiodinium M (Riitzler and Rieger
cuspidifera cells ; L 1973)
microadriaticum
Order Suberitida
5“””.’ tes ) Archaeocytes No No Zooxantella LM (Cheng et al. 1968)
aurantiacus
Order Tetractinellida
Dinoflagellata
Cinachyra Amoeboid Zooxantella (Scalera-Liaci et al.
tarentina cells No No Symbiodinium LM, TEM 1999)

microadriaticum

CM—confocal microscopy; LM—Iight microscopy; MB—molecular biological data;
no—absence; SEM—scanning electron microscopy; TEM—transmission electron microscopy;
?—no data.

2.2.3. Diversity of Intracellular Algal Symbionts

Intracellular algal symbionts were described for the first time by Brandt (1881,
1882—see Krueger 2016) in mesohylar cells of the freshwater demosponge Spongilla
sp. Subsequently, thanks to progress in light and electron microscopy, intracellular
algal symbionts were found in a number of different sponge species, but exclusively
from the class Demospongiae (Riitzler 1990; Sara and Vacelet 1973; Sara et al. 1998;
Simpson 1984; Vacelet 1981; Wilkinson 1987). These symbionts include different
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species of the phylum Chlorophyta, the classes Trebouxiophyceae (genera Chlorella,
Zoochlorella, Choricystis, Lewiniosphaera), Chlorophyceae (Mychonastes) (Masuda
1985, 1990; Proschold and Darienko 2020; Saller 1990; Simpson 1984; Williamson
1979), dinoflagellates (Zooxanthellae) of the genera Symbiodinium and Gymnodinium
(Annenkova et al. 2011; Garson et al. 1998; Hill 1996; Pang 1973; Rosell and Uriz 1992;
Riitzler 1990; Sara and Liaci 1964; Scalera-Liaci et al. 1999; Vacelet 1981), cryptophytes,
cryptomonads (Wilkinson 1992), diatoms (Cox and Larkum 1983), coccoid red algae
(Lemloh et al. 2009) eustigmatophytes (Frost et al. 1997), and macroscopic algae (Price
et al. 1984; Riitzler 1990) (Table 1).

2.2.4. Distribution of Archaeocytes with/without Symbionts in the Sponge

Archaeocytes are the principal cells acing as hosts (Table 1), and the same
archaeocyte can contain from one to several algal symbionts (Gaino et al. 2003;
Masuda 1990; Saller 1989). In some freshwater sponges, green algal symbionts can
also be found inside choanocytes and pinacocytes (Gilbert and Allen 1973; Saller
1990, 1991). This is also true for some marine demosponges. In Haliclona sp., algal
cells of Symbiodinium microadriaticum are grouped together in clusters of 6 + 10 cells
and enclosed by sponge cells, rather than being randomly distributed throughout
the mesohyl (Garson et al. 1998). In the boring sponges Cliona inconstans and C.
orientalis, the Zooxanthellae are always intracellular and occur in individual vacuoles
of archaeocytes (Figure 1D,E). Each cell contains several algae (Vacelet 1981). In Cliona
caribbaea and C. varians, the symbiotic dinoflagellates Gymnodinium microadriaticum
are intracellular, either fully embedded in a host archaeocyte vacuole or encircled by
host cell filopodia (Riitzler 1990).

The spatial distribution of cells harboring symbionts in the sponge body is
not homogeneous. In Cinachyra tarentina, the majority of the zoochlorellae are
concentrated in the cortical zone of the sponge (Scalera-Liaci et al. 1999). Archaeocytes
of Ephydatia fluviatilis harbour Chlorella concentrated mainly in the uppermost
regions of the sponge body; in the inner parts of the sponge body, cells do not host
zoochlorellae (Gaino et al. 2003).

The intracellular position of algal cells occurs in the host cytoplasm within
vacuoles. At least in more thoroughly studied systems such as protists, the cnidarian
Hydra viridis and the sponge Spongilla lacustris, two types of vacuole are observed
(Reisser and Wiessner 1984). The first, the perialgal vacuole, always harbours only
one algal cell. The wall of this type of vacuole is attached to the vacuolar membrane
of the host. A perialgal vacuole divides simultaneously with the enclosed alga and
apparently protects it from host lytic enzyme action (Reisser and Wiessner 1984). The
chlorellae are able to divide inside the perialgal vacuole of sponge cells in Spongilla
lacustris (Saller 1990). The second, the food vacuole, contains algae in various stages
of digestion and other material (Simpson 1984). This may allow the host cell to absorb
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nutrients from damaged or dying algae, or under particularly adverse conditions in
which the symbiont can no longer be maintained.

2.2.5. Intracellular Symbiosis Is Facultative

Three lines of evidence indicate that intracellular symbiosis of algal and sponge
cells is facultative: (1) geographic, (2) ecological and (3) ontogenetic. The best
geographic evidence comes from Spongilla lacustris. These sponges are able to host
different algae species in their archaeocytes, depending on the geographic region
they inhabit: Chlorella sp. in Germany (Saller 1989), Choricystis minor in Japan (Handa
et al. 2006), Choricystis parasitica and Lewiniosphaera symbiontica in Massachusetts
(USA) (Proschold et al. 2010). (2) Ecological evidence. With respect to ecological
evidence, many populations of the same freshwater sponge species contain green,
brownish, and white individuals as a result of temporal and/or spatial variation in
light availability. Electron microscopy investigation revealed that green sponges
harbour zoochlorellae, which absent in the brownish ones (Gaino et al. 2003). Sponges
that have green colour with zoochlorellae will quickly turn white when shaded (Frost
and Williamson 1980), as zoochlorellae were digested by their host (Williamson 1979).
Other examples are fresh-water sponge species that live in dark habitats, such as
underground caves (Eunapius subterraneus in Croatia (Bilandija et al. 2007); Racekiela
cavernicola in Brasil (Volkmer-Ribeiro et al. 2010)), or at great depths in lakes that
completely lack symbiotic eukaryotic algae (e.g., Baikalospongia abyssalis in Baikal
(Itskovich et al. 2017)).

There is also experimental evidence. For example, Hall et al. (2021) infected
young aposymbiotic sponges of Ephydatia muelleri that had hatched from gemmules
with sponge-derived algae. Evidence of the establishment of intracellular position by
the algae was manifested within 4 h of infection. At the 24-hour time point, many
sponge host archaeocytes harboured multiple or single algae within a single cell.

In adult sponges the algae are transmitted among the sponge cells in a very
particular way. After the donor and the recipient cell getting closer each another,
the vacuole includes Chlorella inside bulges out, surrounded by cell processes of the
recipient cell. The vacuole opens, while the donor cell retracts and the recipient
cell closes around the alga. Finally, the alga is incorporated into the recipient cell
(Masuda 1990; Saller 1991). No release of the algae into the intercellular mesenchyme
was detected. Then, the chlorella cells divide inside the sponge cells.

2.2.6. Horizontal and Vertical Transmission of Intracellular Algal Symbionts

As we showed above, the sponge-algal symbiosis is facultative. Accordingly,
the transmission of algal symbionts occurs horizontally during sexual reproduction.
In any event, not a single study has so far shown the presence of algal symbionts in
sponge larvae. As for asexual reproduction, the situation there is more complicated.
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In sponges there are three types of asexual reproduction: fragmentation, budding
and gemmule formation (Ereskovsky 2010).

During fragmentation, the sponge is divided into two or more parts, each
consisting of all tissue types and the symbionts. In contrast, during the
budding process, the vertical transmission of intracellular symbiotic algae has
been documented for two species: in the fresh-water sponge Radiospongilla cerebellata,
where bud cell archaeocytes, amoebocytes, choanocytes and pinacocytes included
Chlorella sp. (Saller 1990); and in the marine boring sponge Cliona viridis, in which the
archaeocytes of the buds harbour intracellular dinoflagellate symbionts (Rosell 1993).

Gemmules of demosponges are special dormant structures that are capable,
under suitable conditions, of developing asexually into new adult animals (Simpson
1984). Gemmules develop from the pluripotent archaeocytes. Gemmule thesocytes
(resulting from archaeocyte differentiation) of many freshwater sponges include four
or five functional algal endosymbionts per cell (Gilbert and Allen 1973; Masuda 1990;
Okuda et al. 2002; Williamson 1979). The ultrastructure of zoochlorellae inside of
gemmules differs from the ultrastructure of active symbionts in adult, green sponges:
the gemmular symbionts contain loosely packed membranes of the chloroplasts, they
generally lack lipid granules, and they lack chloroplast starch grains (Masuda 1990;
Williamson 1979). This modification in structure could be a result of the relative
inactivity of the symbionts inside gemmules. However, it has been shown that the
symbionts within thesocytes are photosynthetically active, and could pass some of
their photosynthate to the sponge cells (Gilbert and Allen 1973).

Before hatching, symbiotic algae could be phagocyted, and thus the young
sponges that develop from such gemmules would be aposymbiotic (Rasmont 1970),
without signs of symbiotic algal propagation (Simpson 1984; Williamson 1979).
Yet, under dark conditions, brown gemmules do not host symbiotic algae, or only
possess them in very low numbers (Gilbert and Allen 1973; Jorgensen 1947; Simpson
1984). Therefore, the vertical transmission of intracellular algal symbionts during
gemmulogenesis in sponges is facultative.

2.3. Cytosymbiosis in ASCs-Beyond Poriferans

In contrast to the demosponges, cytosymbiosis in ASCs is a rare situation in
other multicellular organisms in general, and in marine invertebrates in particular
(Figure 2). Nevertheless, several well documented cases attest to the importance of
ASCs in coordinating and maintaining intracellular symbiosis. Examples include
the deep-sea vestimentiferan tubeworms (Polychaeta; best known are Lamellibrachia
luymesi and Riftia pachyptila), which live in symbiosis with intracellular bacteria housed
in bacteriocyte host cells (considered to be “tissue-specific unipotent bacteriocyte
stem cells”; (Pflugfelder et al. 2009)), located within a special organ, the trophosome
(Bright and Giere 2005). These stem cells continuously proliferate to produce new
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bacteriocytes, a process leading to self-renewal of bacteriocyte and to a complex
control of the symbiont population in these host cells. Similarly, the free-living
symbiotic flatworm Paracatenula galateia possesses intracellular, sulphur-oxidizing
bacteria (also called bacteriocytes): as for all other somatic cells in adult worms, the
bacteriocytes originate solely from the pool of aposymbiotic neoblasts, the ASCs of
flatworms (Dirks et al. 2012). In addition, in Hydra, the epithelial stem cells lineages,
but not the interstitial cells, actively shape the microbial intracellular communities
of epithelial cells (Fraune et al. 2009). However, the elimination of nerve cells and
secretory gland cells, two important cell types derived from interstitial cells, had
a significant influence on the structure of symbiotic microbiota. Further, in the
branching coral species Stylophora pistillata, algal containing cells in the endodermal
layer express “stemness” genes such as Nanos and Tudor, as well as Tubulins and
genes involved in the cell cycle (Levy et al. 2021), indicating that these cells may
carry stem cell properties. There is also some preliminary evidence for ASC-related
cytosymbiosis in hibernating colonies of botryllid ascidians (Hyams et al. 2017).
About 15% of the blood cell population in the vasculature of hibernating colonies
was first identified as phagocytes. However, transmission electron microscope
studies revealed specific facultative symbionts—Endozoicomonas bacteria—inside
their phagosomes. This novel case of cytosymbiosis develops de novo and only
during stress conditions, a phenomenon most probably controlled by circulating
ASCs (B.R., unpublished data).

There are additional unique examples of the involvement of ASCs of terrestrial
invertebrates in maintaining or controlling intracellular symbionts. In early
developmental stages of the aphids Acyrthosiphon pisum and Megoura viciae
and in the cockroach Periplaneta americana, studies revealed de novo bacteriocyte
formation from aposymbiotic ASCs, followed in the cockroaches by postembryonic
divisions of the bacteriocytes (Braendle et al. 2003; Chevalier et al. 2011; Lambiase
et al. 1997; Maire et al. 2020; Miura et al. 2003), suggesting that insect and tubeworm
bacteriocytes proliferate (Dirks et al. 2012). The same applies to haemocytes of
the isopod Armadillidium vulgare, which host endosymbiotic Wolbachia cells,
intracellular o-proteobacteria (Chevalier et al. 2011) that are considered parasites in
many insects such as Drosophila, in which they colonize female germline stem cells
(Ote and Yamamoto 2020). However, some strains also appear to confer protection
against RNA viruses in flies and mosquitoes in the laboratory, indicating a mutualism,
although itis still unclear if this antiviral effect exists in the wild (reviewed in (Pimentel
etal. 2021)). Intracellular Wolbachia symbionts are not only the cytosymbiotic bacteria
in insect stem cells, as germline cells can also be colonized by other microorganisms,
such as the Gram-positive bacterium Spiroplasma in Drosophila (Hackett et al. 1986),
or the Gram-negative bacterium Arsenophonus, which infects the Sulcia symbiont of
the leafhopper Macrosteles laevis (Kobiatka et al. 2016). The aforementioned means
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of ASC control is further illustrated by bacteria from larval bacteriocytes in uninfected
nuclei of putative stem cells, as assessed over the course of metamorphosis (Maire
et al. 2020).
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Figure 2. Distribution of algal, cyanobacterial and bacterial endosymbionts in
metazoan phyla. To the left, a cladogram illustrates phylogenetic relationships
among phyla; branch lengths are not proportional to evolutionary divergence. The
position of sponges (Porifera) is highlighted in red. Coloured boxes indicate
bilaterian lineages belonging to the Ecdysozoa (yellow), Gnathifera (green)
Lophotrochozoa (blue), and Deuterostomia (pink). The positions of Acoelomorpha
and Xenoturbellida are still debated and are indicated by dotted lines. To the right
of each phylum, absence of endosymbionts (red symbols) as well as presence of
algal (green symbols), cyanobacterial (blue symbols) and bacterial (orange symbols)
endosymbionts are shown. Note that for many lineages, examples of both (mixed
circles) intracellular (filled circles) and extracellular (empty circles) symbionts
exist and where endosymbiosis is uncertain, dotted circles are used. Groups in
which bacteriocytes have been reported are indicated by a “B” next to the bacterial
endosymbiont column. An asterisk (*) denotes cases in which ASCs have been
reported in the literature to contain endosymbionts. Sources: Acoelomorpha:

76



(Melo-Clavijo et al. 2018; Hikosaka-Katayama et al. 2012; Venn et al. 2008);
Nemertea: (McDermott 2006); Platyhelminthes: (Dirks et al. 2012; Dubilier et al.
2008; Gruber-Vodicka et al. 2011; Melo-Clavijo et al. 2018; Venn et al. 2008); Annelida:
(Dubilier et al. 2008); Ectoprocta: (Karagodina et al. 2018; Saffo 1992; Sharp et al.
2007); Gastrotricha: (Todaro et al. 2017); Mollusca: (Dubilier et al. 2008; Duperron
et al. 2006; Melo-Clavijo et al. 2018; Venn et al. 2008); Chaetognatha: (Thuesen and
Kogure 1989); Rotifera: (Selmi 2001); Arthropoda: (Dubilier et al. 2008; Lindquist
et al. 2005); Tardigrada: (Vecchi et al. 2016); Nematoda: (Dubilier et al. 2008);
Priapulida: (Kroer et al. 2016); Vertebrata: (Baker et al. 2019; Kerney et al. 2011;
Melo-Clavijo et al. 2018); Urochordata: (Melo-Clavijo et al. 2018; Mutalipassi
et al. 2021; Saffo 1992); Echinodermata: (Carrier and Reitzel 2020; Saffo 1992);
Xenoturbellida: (Kjeldsen et al. 2010); Cnidaria: (Melo-Clavijo et al. 2018; Venn
et al. 2008); Porifera: (Riitzler 1990; Saller 1991; Sara et al. 1998; Williamson 1979);
Ctenophora: (Daniels and Breitbart 2012; Hernandez and Ryan 2018); Placozoa:
(Gruber-Vodicka et al. 2019). Please see text for details.

The important interplay between ASCs and their intracellular symbionts has
also been recorded in vertebrates. For instance, the intracellular bacterial pathogen
Mycobacterium leprae has the capacity to alter the developmental reprogramming
of lineage committed host glial cells to progenitor/stem cell-like cells in mammals
(Hess and Rambukkana 2015). In addition, the host—pathogen symbiosis commonly
recorded between bacteria and stem cells of the intestine, where microbial products
can stimulate stem cell survival, trigger regeneration and provide protection against
stress (Nigro et al. 2014), or the ways in which Escherichia coli cells can mobilize
functional hematopoietic stem cells (Burberry et al. 2014), are but two of many
examples of what may be a widespread but poorly understood phenomenon in
animals.

3. Discussion and Future Perspectives

Here, we showed that the intracellular symbionts (either prokaryotic or
eukaryotic) of sponges are found only in representative species of Demospongiae,
one of the four Porifera classes (Demospongiae, Hexactinellida, Homoscleromorpha
and Calcarea; Table 2). Prokaryotic organisms are found in specialized
cells—bacteriocytes—in representatives of different orders of Demospongiae (Table 2).
Bacteriocyte-like cells have been reported in four phyla, indicative of their
independent evolutionary origins (Figure 2). Eukaryotic symbionts are exclusively
unicellular photosynthetic algae in sponges, and are found in pluripotent stem cells,
most frequently in the archaeocytes; they are documented in five orders: Spongillida,
Haplosclerida, Clionaida, Suberitida, and Tetractinellida (Table 1). It is interesting to
note that the representatives of the green algae from the phylum Chlorophyta were
found only in freshwater sponges of the order Spongillida.
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Table 2. Distribution of bacteriocytes harboring intracellular symbiotic bacteria

within Porifera.

Order Species Bactefloc.y te Stem-Cell References
Localization
Class Demospongiae
Biemnida Biemna ehrenbergi Mesohyl No (Ilan and Abelson 1995)
Neofibularia irata Mesohyl No (Wilkinson 1978)
Axinellida Cy mbustglla Mesohyl No (Nguyen et al. 2014)
concentrica
Verongiida Aplysina cavernicola Mesohyl No (Vacelet 1975)
Aplysina aerophoba Mesohyl No (Vacelet 1975)
Aplysina cauliformis Mesohyl No (Gochfeld et al. 2019)
Aplysina fistularis Mesohyl No (Negandhi et al. 2010)
Haplosclerida Petrosia ficiformis Mesohyl No (Vacelet i;%?onaday
Haliclona tubifera Larva No (Woollacott 1993)
Haliclona cnidata Mesohyl No (Schellenberg et al. 2020)
Haliclona sp. Mesohyl No (Tianero et al. 2019)
Oceanapia sagittaria Mesohyl No (Salomon et al. 2001)
Cribochalina Mesohyl No (Riitzler 1990)
Chondrosida Chondrosia reniformis Mesohyl No (Lévi and Lévi 1976)
- . L (Ereskovsky
Chondrillida Halisarca dujardinii Mesohyl No unpublished)
Halisarca restingaensis Mesohyl No (Alvizu et al. 2013)
Chondrilla australiensis Mesohyl and No (Usher and Ereskovsky
Larva 2004)
Suberitida Suberites domuncula Mesohyl No (Bohm et al. 2001)
Tetractinellida Thoosa SI;" Alectona Mesohyl No (Garrone 1974)
Jaspis stellifera Mesohyl No (Wilkinson 1978)
Tethyida Tethya stolonifera Mesohyl No (Taylor et al. 2021)
. . . (Vacelet and
Poecilosclerida Lycopodina hypogea Mesohyl No Boury-Esnault 1996)
Cladorhiza sp. Mesohyl No (Vacelet et al. 1996)
Crambe crambe Mesohyl No (Maldonado 2007)
Hymedesmia .
methanophila Mesohyl No (Rubin-Blum et al. 2019)
Scopalinida Svenzea zeae Mesﬁ);{}:nd No (Riitzler et al. 2003)
Scopalina ruetzleri Mesohyl No (Ritzler et al. 2003)
Agelasida Astrosclera willeyana Mesohyl No (Worheide 1998)
Demospongiae Myceliospongia Mesohyl No (Vacelet and Perez 1998)

incertae sedis

araneosa

It is generally accepted that all multicellular organisms actively coordinate
somatic maintenance properties, including growth (in organisms with indeterminate
growth -such as sponges, corals, and the immortal Hydra- throughout the organism’s
life span; (Vogt 2012)); cell proliferation and cell death for tissue homeostasis; and for
phenomena such as regeneration, with ASCs in some of these organisms acting as the
building blocks for all needs (Biteau et al. 2011; Merrell and Stanger 2016; Rinkevich
et al. 2022). The additional cellular homeostasis required for the management

and coordination of intracellular symbiosis clearly presents a scenario in which
non-traditional functions were imposed on ASC performance during evolution. In
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contrast to the sponge examples, most other ASC types do not possess intracellular
symbionts and yet directly or indirectly influence cytosymbiosis in a wide range
of marine and terrestrial taxa (but see Wolbachia infections in isopods that harbour
these intracellular parasites not only inside haemocytes but also within ASCs of the
hematopoietic system, or the Wolbachia that highjack the female germline of insects
(Chevalier et al. 2011; Ote and Yamamoto 2020). Indeed, intracellular symbionts
are rarely associated with ASCs, and to our knowledge—with the exception of
sponges—only in the case of bacterial symbionts (Figure 2).

It is, therefore, of great interest to illuminate the mechanisms driving the
highly coordinated behaviours of ASCs in specific symbioses, such as the unipotent
bacteriocyte stem cells that continuously proliferate to produce new bacteriocytes
in some annelids (Bright and Giere 2005); the maintenance of symbiosis during
the continuous bacteriocyte formation from aposymbiotic neoblasts in adult
paracatenulid flatworms (Dirks et al. 2012); the epithelial stem cells that actively
shape the microbial intracellular communities in Hydra (Fraune et al. 2009); or
the larval bacteriocytes that develop from uninfected putative stem cells in the
rice weevil Sitophilus oryzae (Alvizu et al. 2013). Thus, cytosymbiosis-borne ASC
phenomena are either established (in sponges) or supported (directly and indirectly;
at least in Cnidaria, Platyhelminthes, Annelida, Arthropoda [insects and crustacean
alike], Urochordata and Vertebrata). However, the most prominent examples of
endosymbiotic ASCs come from the sponges.

Many challenges remain in studying symbioses at the mechanistic level. First,
it should be possible to isolate and culture host and symbiont separately; this
is rarely possible. Many symbioses have arisen in inhospitable environments
(e.g., deep sea Bathymodiolus mussels and their sulphide- and methane-oxidizing
bacterial symbionts, (Duperron et al. 2006), which cannot be easily recreated in the
laboratory. Marine algae are particularly difficult to culture, and yet are the basis
for many photosymbiotic associations. In addition, many symbioses are obligate, or
transmitted vertically, making them near impossible to manipulate without killing
host or symbiont, or affecting embryonic survival. It should be possible to generate
aposymbiotic and symbiotic hosts at will to understand the metabolic and genetic
changes directly caused by symbiosis. Such studies on sponges have recently been
initiated (Geraghty et al. 2021; Hall et al. 2021). Finally, from a technical perspective, it
is often difficult to separate host and symbiont genomes in intracellular symbioses. In
particular, RNA sequencing of endosymbiotic host tissues en masse fails to adequately
define transcriptional profiles at the fine resolution necessary to assess changes at the
cellular level.

In spite of these many limitations, metagenomic approaches are now giving
new insight into host-symbiont interactions. For instance, dual RN A-seq combined
with imaging has allowed the time course of endosymbiont-embryonic host cellular
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interactions to be mapped during cereal weevil metamorphosis (Maire et al. 2020).
RNAseq of aposymbiotic and symbiotic bobtail squid tissues as well as Vibrio both
before and after venting from the light organ (Thompson et al. 2017) and hybridization
chain reaction-fluoresencent in situ hybridization of both partners at the onset of
symbiosis maps transcriptional changes in situ (Nikolakakis et al. 2015). A recent
RNASeq analysis, combined with electron and confocal microscopy of fresh-water
demosponge model Ephydatia muelleri, has revealed some of the genetic pathways
involved in intracellular host/photosymbiont interactions, identifying putative
genetic pathways involved with endosymbiosis establishment (Hall et al. 2021).
RNASeq analysis and comparative analyses of the transcriptomes of aposymbiotic
and symbiotic sponges have identified a suite of genes that are regulated at the early
establishment stages of the stable symbiosis between E. muelleri and its native green
algal symbionts (Geraghty et al. 2021). Authors have also begun to differentiate these
genes from those involved in generalized phagocytosis events related to feeding
and/or immunity. Single cell analyses are providing new avenues for understanding
that might be well suited to tackling the ASC/endosymbiont-poriferan mutualism. As
a case in point, recent work on the cnidarian coral Xenia has identified the cell lineage
containing the Symbiodinium algal symbiont as originating as a pre-endosymbiotic
progenitor pool (Hu et al. 2020). Similarly, Levy et al. (2021) simultaneously queried
the transcriptomes of Symbiodinium-containing host cells and their symbionts, and
compared with “free" Symbiodinium and non-symbiotic gastrodermal cells and in the
stony coral Stylophora pistillata. They identified shared lipid metabolism pathways
in algal hosting cells with those of Xenia (Hu et al. 2020) and Exaiptasia pallida
(Hambleton et al. 2019), a symbiotic anemone, suggesting cnidarian-dinoflagellate
photosymbioses may generate very particular constraints on physiologies despite
their independent evolutionary origins. Similar efforts in sponges would thus add
considerable insight into the establishment and maintenance of photosymbioses, and
provide new insight into the diversity of symbiotic associations seen across the tree
of life.
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Somatic Expression of Stemness Genes in
Aquatic Invertebrates

Loriano Ballarin, Bert Hobmayer, Amalia Rosner and Baruch Rinkevich

Abstract: Adult stem cells (ASCs) of aquatic invertebrates are involved in important
biological processes such as regeneration and asexual reproduction. Unlike in
vertebrates, they share pluripotency and even totipotency, and do not reside in
permanent niches. Aquatic invertebrates represent the widest phylogenetic animal
radiation on earth, but until now, limited research data have been available on
their ASCs. Although less studied than their vertebrate counterparts, aquatic
invertebrate ASCs express orthologues of many vertebrate genes usually associated
with stemness. With this review, we aim at providing a database for current and
future studies on ASC properties through a comprehensive literature analysis of
intra- and inter-phylum comparisons of gene expressions and their functions in
aquatic invertebrate ASCs. We concentrate on major gene families where sufficient
data are available; gaps in our results will be filled by future studies on ASCs of
aquatic invertebrates.

1. Introduction

Aquatic invertebrates present the widest metazoan radiation, and by virtue of
their intraphylum diversity, they form large assemblages of multicellular animals
and represent many model species in a wide range of biological disciplines
(Ballarin et al. 2018). They include sponges (phylum Porifera), diploblastic
jellyfish, anemones and corals (phylum Cnidaria), and triploblastic animals, the
latter further divided into protostomes and deuterostomes. Protostomes include
Spiralia (e.g., phyla Platyhelminthes, Annelida, Mollusca) and Ecdysozoa (e.g., phyla
Nematoda and Arthropoda), whereas deuterostomes have Echinodermata and the
subphyla Cephalochordata and Tunicata of the phylum Chordata as the prominent
representatives (Figure 1). However, only limited research data are available on
adult stem cells (ASCs) in general and ASC characteristics in particular in aquatic
invertebrates (Rinkevich and Matranga 2009; Ballarin et al. 2021; Rinkevich et al. 2022).
This is in clear contrast to the fact that ASCs in aquatic invertebrates are key players
in many biological processes, such as regeneration, asexual reproduction/budding,
torpor phenomena and more (Rinkevich et al. 2022).
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Figure 1. Phylogenetic relationship among the main invertebrate phyla. Graphic
by authors.

The vertebrates possess ASCs homed to defined niches that are known to
hold multipotency at best, representing lineage-specific self-renewing cells with
tissue/organ-specific activities that generate limited numbers of daughter cell types
(self-renewing progenitors and differentiated cells; Wagers and Weissman 2004;
Clevers and Watt 2018). A careful examination of the animal phylogenetic tree
(Rinkevich et al. 2022) reveals that ASCs have been studied only in a few metazoan
phyla outside of the vertebrates, mostly taxa with high capabilities for asexual
reproduction and regeneration (including whole-body regeneration) such as sponges,
cnidarians, platyhelminthes, tunicates and echinoderms. These ASCs reveal dramatic
disparities from vertebrate ASCs. Many of them are pluripotent and even totipotent,
they do not follow the germline-sequestering model of the vertebrates, many exhibit
morphologies of highly differentiated cells, they may generate the entire repertoire
of cell types in adult animals, and some of them do not reside in stem cell niches
(Rinkevich et al. 2022; Martinez et al. 2022).

It is thus of obvious importance to evaluate the properties of aquatic invertebrate
ASCs using inter- and intra-phylum comparative and mechanistic analyses focusing
on biological processes or specific properties. Indeed, aquatic invertebrate ASCs
express orthologues of many vertebrate “stemness” genes (associated or disparate
from the biological phenomena studied in the vertebrates), even though the molecular
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machinery by which these organisms hold sustainable ASC stocks along their lifespan
is still unsolved (Conte et al. 2009; Rinkevich et al. 2022).

In the following sections, we provide a comprehensive literature analysis of
intra- and inter-phylum comparisons of gene expressions and their functions in
aquatic invertebrate ASCs. We concentrated on major gene families where sufficient
data are available, and we aim at providing a database for current and future studies
on ASC properties and at deducing general aspects of ASC gene-regulatory programs
across the metazoan tree of life. The most important current models for the study
of aquatic invertebrate ASCs are represented by sponges, cnidarians, flatworms,
annelids, echinoderms and colonial ascidians, but limited data are available also for
ctenophores (comb jellies), xenacelomorphs (acoel flatworms), hemichordates (acorn
worms) and cephalochordates (lancelets). It must be noted that since most of the cited
studies were not performed using the most cutting-edge methodological approaches
and techniques (including using well-annotated genome assemblies and in-depth,
single-cell-transcriptome data), there may be gaps in our results, for which future
studies are required to resolve the presence or absence of stem cell gene expression.

2. RNA-Binding Proteins (RBPs)

One main commonality that characterizes the pluripotent ASCs of aquatic
invertebrates is the abundance of expressed RBPs. They are represented by several
families of proteins situated in the cytoplasm and/or the nucleus, and account for
the major differences between transcribed mRNA and protein levels eventually
synthesized by the cells. RBPs have a role in every aspect of mRNA post-transcriptional
regulation (mRNAs biogenesis, stability, function, transport, structure and interactions
with other RNAs and proteins). Specific RBPs and mRNA combinations in stem
cells (ribonucleoprotein, RNPs) lead to mRNA alternative splicing, 3" UTR cleavage
and polyadenylation, mRNA sequence alteration at control regions, and altogether
impact the specific function or stability of mRNAs in stems cells (Shigunov and
Dallagiovanna 2015). Germ stem cells and early differentiating cells of a germline
lineage contain condensed protein-mRNA complexes called nuage/pole plasm/germ
plasm/germ granule/chromatoid bodies, similar in content to complexes found in some
pluri/multipotent somatic cells (Juliano et al. 2010). The RBP families listed below are all
part of the nuage-like structures and function in post-transcriptional regulation and in
curtailing the activity of transposable elements (TEs) in order to assure genome integrity.
These proteins are believed to be part of the “germline multi-potency program” (GMP),
but are also expressed in adult somatic stem cells.

2.1. Argonaute (Ago)/Piwi Family

The ago/piwi family is composed of three subfamilies, two of which—ago and
piwi—have vital functions in all multicellular organisms. Ago/piwi proteins form
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complexes with small noncoding RNAs. These complexes silence transposons and
specific genes at various stages of RNA metabolism, perform chromatin modifications
or inhibit mRNA translation. Piwi proteins associate with piwi-interacting RNAs
(piRNAs) and are restricted to the germ lineage and pluripotent stem cells. Piwi
proteins not only pair with piRNA, but also participate in piRNA biogenesis through
the so-called “ping-pong” amplification that occurs in the nuage-like regions (Czech
et al. 2018). The ago proteins are involved in the formation of the RNA-induced
silencing complex (RISC), which specifically targets mRNA or DNA sequences in
the genome and silences them. They bind to micro RNAs (miRNAs) and silence
complementary transcripts by either destroying them or preventing their correct
translation (Hock and Meister 2008; Meister 2013).

Expression of ago genes in ASCs has been reported in choanocytes, pinacocytes
and type 1 vacuolar cells of the homoscleromorph sponge Oscarella lobularis
(Fierro-Constain et al. 2017). ago genes are also present in placozoan and cnidarian
genomes (Grimson et al. 2008), although their expression was not studied in detail.
An ago2 gene is transcribed by neoblasts of the planarian Dugesia japonica (Rouhana
et al. 2010), as well as by some somatic cells. Another ago protein is present in
neoblasts of the fluke Schistosoma mansoni (Collins et al. 2013). No data on the presence
of ago proteins in ASCs of coelomate metazoans are present in the literature.

As far as piwi proteins are concerned, they are expressed in ASCs of almost
all the metazoans characterized by high regenerative power. Two piwi genes have
been described in sponges, active in choanocytes and archeocytes of the demosponge
Ephydatia fluviatilis (Funayama et al. 2010; Alié et al. 2015) and in choanocytes,
pinacocytes and mesohyl type 1 vacuolar cells of the homoschleromorph sponge
O. lobularis (Fierro-Constain et al. 2017). No piwi genes are present in Placozoans
(Grimson et al. 2008), whereas a piwi gene is present in the comb jelly Pleurobrachia
pileus, expressed in progenitors of colloblasts, muscle cell, cells of the forming combs
and of the aboral sense organ (Alié et al. 2011). In Cnidaria, two piwi orthologues
(hywy and hyli) are actively transcribed by i-cells and epidermal cells of Hydra vulgaris
and Hydra magnipapillata: in the former species, their mRNAs are also located in
nematoblasts, the precursors of stinging cells (Juliano et al. 2014). A single piwi gene
is transcribed in the i-cells of the hydroid Hydractinia echinata (Plickert et al. 2012)
and the siphonophoran Nanomia bijuga (Siebert et al. 2015), in transdifferentiating
epitheliomuscular cells of Podocoryne carnea medusae (Seipel et al. 2004), and in
nematoblasts of the Clytia hemisferica medusae (Denker et al. 2008). Among bilateria,
piwi expression has been demonstrated in the neoblasts of the acoelomorph worm
Isodiametra pulchra (Egger et al. 2009) and of the planarians Macrostomum lignano
(two piwi proteins; Pfister et al. 2007; Zhou et al. 2015), Schmidtea mediterranea (three
active piwi genes; Reddien et al. 2005a, 2005b; Palakodeti et al. 2008; Rouhana et al.
2014) and D. japonica (six piwi genes; Rossi et al. 2006, 2007; Rouhana et al. 2010;
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Shibata et al. 2016). Two piwi proteins are located in cells of the posterior growth
zone and of the regeneration blastema of the polychaete annelids Platynereis dumerilii
(Rebscher et al. 2007; Gazave et al. 2013; Planques et al. 2019), Alitta virens (Kozin
and Kostyuchenko 2015) and Capitella teleta (Giani et al. 2011), whereas a piwi gene is
transcribed by proliferating, undifferentiated cells of the growth zone and fission zone
of the oligochaete worm Pristina leidyi undergoing asexual reproduction by paratomy
(Ozpolat and Bely 2015). Two expressed piwi genes have also been reported in the
gastropod mollusk Lymnaea stagnalis and the bivalve Crassostrea gigas; in addition
to the reproductive tract, their mRNAs are located in cells of the gills and lung,
musculature, brain and labial palps (Jehn et al. 2018). In the sea slug Aplysia californica,
a piwi protein is present in the central nervous system (CNS), where it is involved in
the epigenetic control of memory-related synaptic plasticity (Rajasethupathy et al.
2012). Among nonchordate deuterostomes, piwi expression has been demonstrated
in a series of somatic tissues, including coelomocytes, esophagus and tube feet
epithelium, the epithelium of the spines, and the musculature of the sea urchins
Lytechinus variegatus, Strongylocentrotus purpuratus and Mesocentrotus franciscanus
(Reinardy et al. 2015; Bodnar and Coffman 2016). Anti-piwi-positive cells were also
observed in the coelomic cells, the coelomic epithelium and the connective tissue
of the sea cucumber Eupentacta fraudatrix (Dolmatov et al. 2021): these cells reach a
maximum number within 4 h after evisceration and contribute to the regeneration of
the intestine (Dolmatov 2021). In addition, piwi transcripts were also found in the
adult nerve cord of the holothurian Holothuria glaberrima (Mashanov et al. 2015a). As
for invertebrate chordates, data are limited to ascidians. In the solitary species Ciona
intestinalis, two piwi orthologues are actively transcribed in cells inside the vessels of
the branchial basket, where the lymph nodes, representing hematopoietic organs, are
located. They are also expressed in the endostyle, gut epithelium, cells of the basal
stalk, cell clusters of the siphon walls, and cells of the atrial epithelium. They assure
the growth and the continuous turnover of cells of the body (Jeffery 2014). In colonial
botryllid ascidians, one piwi gene is present in Botryllus schlosseri, Botryllus primigenus,
Botrylloides leachii and Botrylloides violaceus. The protein is located in phagocytes near
the endostyle, in tunic cells and in cells of the stomach of zooids of B. schlosseri along
the ontogeny (Rosner et al. 2009; Rinkevich et al. 2010). The gene is also expressed
by the epithelial monolayers developed from extirpated palleal buds and isolated
floating buds in vitro (Rabinowitz and Rinkevich 2011). In B. schlosseri and B. leachii,
the piwi gene is also transcribed by activated dormant cells lining the vasculature
epithelium during whole-body regeneration (Rinkevich et al. 2010). At the onset
of hibernation, in B. leachii, Hyams et al. (2017) observed high expression levels of
piwi within the cell islands, the stem cell niches at both sides of the endostyle; in
the advanced hibernation state, piwi was expressed in the multinucleated cells, the
probable reservoir cells for the generation of new zooids at the end of the torpor. In B.
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primigenus, piwi is expressed in coelomic cells (Kawamura and Sunanaga 2011). In B.
violaceus, piwi-positive cells are found in the endostyle and hemocytes of adult zooids
and in hemocytes and a few cells of the peribranchial epithelium of the developing
bud (Brown et al. 2009).

2.2. Tudor Domain-Containing Proteins

The tudor proteins allow for the reading of protein methylations and
include methylarginine- and methyllysine-binding proteins. Piwi proteins contain
symmetrically dimethylated arginine (SDMA) in their N-termini and form tudor—piwi
interactions that are required for the proper function of the piwi-piRNA pathway.
Tudor proteins also participate in the proper assembly of the nuage and control of
gametogenesis (Pek et al. 2012).

tudor genes, which are part of the piwi machinery, show high expression in
archeocytes of the sponge E. fluviatilis (Alié et al. 2015). oltudorl is expressed
in choanocytes, pinacocytes and type 1 vacuolar cells of the sponge O. lobularis
(Fierro-Constain et al. 2017). tdrd9 of the cnidarian H. magnipapillata is associated
with both piwi orthologues, hywi and hyli, at nuage perinuclear granules of i-cells,
and contribute to piRNA biogenesis (Lim et al. 2014); tdrd5 of H. vulgaris is also
expressed in i-cells (Alié et al. 2015). In the flatworm Schmidtea polychroa, the
Tudor domain-containing protein, Spoltud-1, was identified as a chromatoid body
component of neoblasts, essential for proliferation and differentiation; it is also
expressed in cells of the CNS (Solana et al. 2009); smtdrd5 of the planarian S.
mediterranea is expressed in neoblasts (Alié et al. 2015). In the annelid Platynereis
dumerilii there are three tudor genes expressed in a very similar way in cells situated
in the segment addition zone and in germ cells (Gazave et al. 2013).

2.3. DEAD and “DEAH-Box"-Containing Helicases

The “DEAD-box” helicases form a family of proteins present in all eukaryotic
cells, and are characterized by the existence of a domain of 400 amino acids that can
be further divided into 12 characteristic motifs, one of which—the Asp-Glu-Ala-Asp
(DEAD) motif—confers the name to the family (Cordin et al. 2006; Rosner and
Rinkevich 2007). The conserved domain serves as a binding site for ATP and RNA to
facilitate helicase activities. The motifs participate in various interactions, endowing
the proteins with multifunctionality in many aspects of RNA metabolism, from
transcription to decay. Despite the high conservation between “DEAD-box” proteins,
they participate in different processes, some of which having very specific roles.
“DEAD-box” proteins often function within large multiprotein complexes such as the
exon junction complex, and are involved in processes such as the export of mRNA
and translation initiation (Gilman et al. 2017; Perc¢ulija and Ouyang 2019). This is a
large family of proteins and an individual genome may contain dozens of members
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of genes encoding for proteins of this family. vasa (ddx4) and pl10 (ddx3) are among
the most prominent and well-studied members of this family.

The vasa proteins were considered for many years as specific markers of the
germline lineage; vasa proteins are among the most important components of the
nuage localized at the nuclear envelope, transporting piRNA transcripts to the
cytoplasmic piRNA machinery. Additionally, they function as translational initiating
factors involved in the translation of several stem cell-specific mRNAs (Poon et al.
2006; Liu et al. 2009; Xiol et al. 2014).

PI10 (ddx3) has been extensively studied in many organisms and has been
shown to participate in transcription and translation regulation, mRNA maturation
and mRNA export. Additionally, it may be associated with stress responses and
stress granules, innate immune response, and regulation of apoptosis (Chang and
Liu 2010). ddx3 is the closest paralogue of vasa, both of them being highly expressed
in germ cells and indispensable for their integrity. However, vasa is more restricted
to germ lineages and pluripotent stem cells.

Ddx6, also known as me31b (in Drosophila) and dhh1 (in yeast), is one of the
GMP proteins found in P-bodies and in stress granules that function in both gene
translation inhibition and deadenylation-dependent mRNA degradation, by forming
complexes with other proteins (Chang and Liu 2010).

In the sponge E. fluviatilis, all the three “DEAD box” genes, efvasa, efpl10, and
efddx6, are continuously expressed in archeocytes (Alié et al. 2015). In the calcarean
sponge Sycon ciliatum, there are two vasa and two pl10 orthologues. In mature animals,
only one vasa (scivasab) and one pl10 (scipl10b) genes are expressed in choanocytes
(Leininger et al. 2014). In the homoscleromorph sponge O. lobularis, olvasa and
0lpl10 are both expressed in choanocytes, pinacocytes and mesohyl type 1 vacuolar
cells (Fierro-Constain et al. 2017). The hydrozoan H. magnipapillata has two vasa
orthologues (cnvasl and cnvas2) that are actively transcribed in i-cells and epidermal
cells (Mochizuki et al. 2001). The pl10 of this animal (cnpl10) is expressed in i-cells
and epidermal cells as well as in nematoblasts (Mochizuki et al. 2001). In the medusa
of the hydrozoan P. carnea, vasa in transcribed in nematoblasts of the tentacle bulbs
and manubrium (Plickert et al. 2012). In the siphonophoran N. bijuga, vasa and
pl10 are expressed in the i-cells of both the epidermis and the gastrodermis (Siebert
et al. 2015). In the ctenophoran P. pileus, one vasa and one pl10 gene have been
reported, and they are transcribed in progenitors of colloblasts and muscle cells, cells
of the forming combs and cells of the aboral sense organ (Alié et al. 2011). In the
flatworm M. lignano, the vasa homologue, macvasa, is expressed in neoblasts: macvasa
knockdown does not affect ASCs population but dramatically reduces the quantity of
piRNAs, suggesting that macvasa functions in piRNA biogenesis (Pfister et al. 2008).
In the planarian D. japonica, djvasl is transcribed in neoblasts and is required for
regeneration and differentiation, but not for neoblast maintenance. D. japonica djviga

101



is expressed in neoblasts and the CNS, while djvigh is detected in a limited fraction
of neoblasts (Shibata et al. 1999; Rouhana et al. 2010; Wagner et al. 2012). In the
same species, the djcbcl gene, the orthologue of ddx6, similarly to djvlga, is expressed
in neoblasts and cells of the CNS (Rouhana et al. 2010; Juliano et al. 2014) and is
abundant in chromatoid bodies, different from those in which the piwi orthologue
djpiwic is detected (Kashima et al. 2016). In the planarian S. mediterranea, smedvasal
and smedvasa2 proteins are upregulated in neoblasts; smedvasal is essential for
proliferation and for promoting differentiation (Shibata et al. 1999; Wagner et al.
2012). The vasa orthologues of D. japonica (phylum Platyhelminthes) are involved
in regeneration but not in cell proliferation (Shibata et al. 1999; Rossi et al. 2007;
Rouhana et al. 2010; Wagner et al. 2012). In the polychaete worms P. dumerilii and
A. virens, vasa and pl10 are actively transcribed in the proliferating, undifferentiated
cells of the growth (via posterior elongation) zone in metamorphosing larvae and
in growing adults, as well as in the blastema of regenerating animals (Rebscher
et al. 2007; Gazave et al. 2013; Planques et al. 2019). A similar location was reported
for the vasa mRNA of C. teleta (Dill and Seaver 2008). In the oligochaete worm P.
leidy, in addition to the posterior growth zone of metamorphosing larvae and adults,
vasa is expressed in the fission zone of animals undergoing asexual reproduction
by fragmentation (Ozpolat and Bely 2015). Analogously, in the oligochaete annelid
Enchytraeus japonensis, ejlg2 mRNA is located in undifferentiated cells of mesodermal
origin in the posterior surface of the septa during asexual reproduction by autotomy
(Sugio et al. 2012).

Arthropods are animals with low regenerative power and no asexual
reproduction. Usually in this taxon, genes of the nuage proteins are expressed
only in the germ line. However, in the crab Eriocheir sinensis, esddx6 has low
expression in some somatic tissues, such as heart, stomach, muscle, hemocytes, and
cells of the thorax and intestine (Li et al. 2015). Moreover, in the rhizocephalan
cirripede Polyascus polygenea, ppvlg and ppdrhl are expressed in cells of the stolons
and buds of interna that will give rise to both the germline and the soma (Shukalyuk
et al. 2007).

As for deuterostomes, one vasa gene was reported in the echinoids L. variegatus,
S. purpuratus and M. franciscanus—it is expressed in muscles, epithelium of the gut,
tube feet and spines, CNS and coelomocytes (Bodnar and Coffman 2016), and its
protein product is located in the epithelium of tube feet, spines and esophagus, as
well as in neurons and a fraction of coelomocytes (Reinardy et al. 2015).

In the colonial ascidian B. schlosseri, bsvasa is expressed in germ cells (Rosner
and Rinkevich 2011) and two additional cell populations: (i) cells, resembling the
PGCs, that aggregate exterior to the developing gonads or in hemolymphatic vessels;
(if) phagocytes in the cell island adjacent to the endostyle. Anti-vasa antibodies also
stain the epithelium of the stomach and the intestine. Bspl10 protein is present in
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PGCs, many germ-cell types and somatic cells of the epithelium of the digestive
tract. In addition, pl10 is upregulated in differentiating bud and budlet tissues, and
in a fraction of hemocytes, and has low expression in mature tissue. Knockdown of
pl10, in addition to reducing the number of germ cells, causes malformation in the
developing buds and the alteration of the morphology of adult zooid tissues; however,
high expression of pl10 can be detected even in malformed tissues (Rosner et al. 2006,
2009). In the same species, bsddx1 is expressed in hemocytes of the cell islands along
ontogeny and astogeny (Rosner et al. 2013). In the ascidian B. violaceus, 3-6% of
circulating hemocytes and some tunic cells closely associated with the vasculature
stain positively with the vasa antisense probe (Brown and Swalla 2007).

2.4. Nanos Family Proteins

Nanos is a zinc finger protein with two C2HC zinc finger motifs and represents
an additional component of the nuage-like structures. Nanos acts as a translational
repressor of specific nRNAs by forming a complex with pum2 proteins. The complex
associates with the 3'-UTR of mRNA targets and inhibits their translation (De
Keuckelaere et al. 2018). Nanos is mainly a regulator of the germ lineage in embryos
and adults. In adult tissues, nanos is mainly expressed in the spermatogonia and
other early differentiating germ cells, and in some invertebrates (sponges, cnidarians,
flatworms, annelids, echinoderms, lancelet and ascidians) it is expressed in ASCs.

The nanos mRNA in O. lobularis (phylum Porifera) is located in choanocytes,
pinacocytes and mesohyl type 1 vacuolar cells (Fierro-Constain et al. 2017). The cnidarian
H. magnipapillata contains two nanos genes: cnnos1, expressed in the multipotent i-cells
and cells of the germline, and cnnos2, expressed in the gastrodermal cells and a subset
of germ cells (Mochizuki et al. 2000). In the hydroid H. echinata, in addition to the i-cells,
the nanos-2 gene is actively transcribed in nematoblasts and maturing nematocytes
(Kanska and Frank 2013). Two nanos genes, nanos1 and nanos2, are transcribed in
the i-cells located in the siphonosomal buds and young zooids of the siphonophoran
N. bijuga (Siebert et al. 2015). In the planarian D. japonica, djnos is expressed in a
subset of germline-committed neoblasts, and in the early differentiating oogonia and
spermatogonia (Sato et al. 2006). Furthermore, in the planarian S. mediterranea, smednos
is expressed in eye precursor cells during regeneration (Handberg-Thorsager and
Sal6 2007), whereas smnanos2 mRNA of the fluke S. mansoni is located in neoblasts
(Collins et al. 2013). In the annelid P. dumerilii, pdunos is expressed in the posterior zone
of segmental growth and cells of the CNS, and is upregulated during regeneration
(Rebscher et al. 2007; Gazave et al. 2013; Planques et al. 2019). A similar location was
reported for the capinanos mRNA of the worm C. teleta (Dill and Seaver 2008). The
bpnos of the colonial tunicate Botryllus primigenus is strongly expressed in immature
and mature male germ cells, and to a lesser extent, in the multipotent epithelia of the
buds and in a fraction of blood cells. Knockdown of bpnos strongly interferes with
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male germ-cell differentiation, but does not affect the formation of female germ cells
(Sunanaga et al. 2008).

2.5. PUF Family Proteins

The PUF family proteins associate with nanos and regulate the translation of
specific genes by binding to a specific Pumilio Response Element situated at their 3’
UTR (De Keuckelaere et al. 2018).

In the sponge O. lobularis, pumilio is expressed in choanocytes, pinacocytes and
mesohyl type 1 vacuolar cells (Fierro-Constain et al. 2017). The djpum orthologue of
the flatworm D. japonica is predominantly expressed in neoblasts, and RNAi-mediated
gene silencing of it causes loss of nematoblasts and reduced regeneration (Salvetti
et al. 2005; Rouhana et al. 2010). Similar expression was reported for smedpumilio of
the planarian S. mediterranea (Solana et al. 2009). pumilio, and its related genes pufa
and pufb, are expressed both in soma (posterior growth zone) and germ stem cells
in P. dumerilii (phylum Annelida); however, the pumilio genes are not upregulated
during posterior elongation, and they are also expressed in the gut of untreated
animals (Gazave et al. 2013).

2.6. Mago-Nashi (or Mago)

Originally identified in Drosophila, Mago-nashi has emerged as essential for
germ plasm assembly. It is characterized by a specific domain localized at the 5" end
of the molecule, and it is an integral part of a protein complex that forms the exon
junction complex (Kataoka et al. 2001). In Drosophila, Mago-nashi acts during germ
stem cell differentiation and is required for the polarization of the oocyte and the
formation of perpendicular axes (Micklem et al. 1997; Parma et al. 2007).

The mago-nashi orthologue of the demosponge E. fluviatilis, efmago-nashi, is
transcribed to a higher extent in the totipotent archeocytes than in other cells,
however, its functions in these cells has not yet been defined (Alié et al. 2015). In the
freshwater sponge Lubomirskia baicalensis, a mago-nashi orthologue is expressed at the
top of the branches that characterize the deep-water morphs (Wiens et al. 2006).

3. RNA Recognition Motif (RRM) Containing Proteins

RRM is a 90 amino acid domain consisting of three aromatic side chains located
between two conserved motives: RNP1 (octamer) and RNP2 (hexamer). RRMs
usually binds a variable number of nucleotides, ranging from two to eight, within
a single-strand RNA (ssRNA), but it can interact with single-strand DNA (ssDNA)
as well. The number of RRMs varies among different subfamilies of proteins. For
example, Bruno has three RRMs and Bruli has two domains. Both function in
pre-mRNA alternative splicing, mRNA translation and stability (Maris et al. 2005).
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3.1. Mbnl, Bruli and Bruno

Alternative splicing occurs with the involvement of highly regulated RBPs that
bind pre-mRNA at specific sequences and regions and modulate the inclusion or
exclusion of exons. In stem cells and their descendants, this regulation is an interplay
between two kinds of RBPs with opposing functions in controlling splicing: Mbml
(muscleblind-like splicing regulator), Bruli and Bruno. The former is a CCCH zinc
finger protein that represses gene isoforms active in stem cells and is upregulated in
differentiating cells, while Bruli and Bruno assist in the expression of gene isoforms
that are active and upregulated in stem cells.

The sponge O. lobularis contains two copies of bruno genes: bruno and brunob.
Both are continuously expressed in choanocytes, pinacocytes and mesohyl type 1
vacuolar cells. Similar expression was reported for the boule gene (Fierro-Constain
et al. 2017), acting as regulator of the translation of specific mRNAs and required
for meiotic entry and germline differentiation at the transition between G2 and M
phases of meiosis I (Shah et al. 2010). The sponge E. fluviatilis also shows high
expressions of bruno in archeocytes and low expression in other cells, while mbnl has
exactly the opposite expression: low in archeocytes and high in other somatic cells
(Alié et al. 2015). In the ctenophoran P. pileus, ppibruno is expressed in progenitors
of various somatic cell lineages (Alié et al. 2011). In the planarian S. mediterranea,
neoblasts contain smedbruli mRNA; depletion of bruli results in neoblast loss and
lack of regeneration. smedbruli is also expressed in cells of the CNS; loss of mbnl
function results in slower regeneration (Guo et al. 2006; Solana et al. 2016). In the
same species, smedmbnll and three smedmbnl-like genes are present: smedmbnll mRNA
is present in differentiated cells of the body parenchyma, whereas smedmbnl-likel and
smedmbnl-like2? are transcribed in differentiated cells of the epidermis and gut tissues;
no data on smedmbnl-like3 expression are present in the literature (Solana et al. 2016).
djbruli of the planarian D. japonica is actively transcribed in neoblasts and cells of
the CNS (Rouhana et al. 2010). pdubruno of P. dumerilii is expressed in proliferating,
undifferentiated cells of the of the posterior growth zone (Gazave et al. 2013).

3.2. Musashi

The Musashi proteins contain two RRMs and are expressed in stem and in neural
lineage cells, including neural stem cells. Musashi proteins are involved in stem cell
self-renewal. They function through binding of the 3'UTR of target mRNAs that
prevent their translation, and by inhibiting 80 S ribosome assembly (Park et al. 2014).

In the sponge E. fluviatilis, eflmsia, the musashi orthologue is transcribed in
archeocytes and the protein product is localized in their nucleus. Based on
eflmsia expression at M-phase, archeocytes can be divided into a group undergoing
self-renewal and expressing high quantities of the eflmsia, and another one expressing
30-60% of the quantity of mRNA of the previous group and protein and committed to
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differentiation (Okamoto et al. 2012). In the starlet sea anemone Nematostella vectensis,
nomsi is expressed in precursor cells of the CNS (Marlow et al. 2009). In the flatworm
D. japonica, musashi-like genes -a, -b, -c are expressed in differentiated neural cells, and
therefore are not markers of stem cells, whereas djdmlg (DAZAP-like/musashi-like
gene) is expressed in stem cells and additional types of soma cells (Higuchi et al.
2008). In the polychaete worm P. dumerilii, the musashi gene is upregulated in the
posterior zone of segment formation and in cells of the nervous system, but it is not
transcribed in germ cells nor upregulated during regeneration (Gazave et al. 2013).
In the holothurian H. glaberrima, msil/2 mRNA is located in the outermost part of the
adult radial nerve cord (Mashanov et al. 2015a). In the colonial ascidian B. schlosseri,
dazapl is transcribed in buds and in differentiating tissues of both, germ line and
soma (Gasparini et al. 2011). Two additional genes were described in ascidians, hrmsi
from Halocynthia roretzi and cimsi from C. intestinalis; however, their expressions were
only tested in embryos (Kawashima et al. 2000).

4. Signal Transduction Factors

4.1. Wnt

Wnts represent a family of secreted, lipid-modified signaling glycoproteins that
are 350400 amino acids in length. The lipid modification of Wnts is required to bind
its carrier protein Wntless (WLS) and to be transported to the plasma membrane
for secretion and binding to the receptor Frizzled. Three Wnt signaling pathways
have been characterized: (i) the canonical Wnt pathway leading to regulation of gene
transcription by nuclear localization of 3-Catenin; (ii) the noncanonical planar cell
polarity pathway that regulates the cytoskeleton and thereby modulates cell shape
and migration; (iii) the noncanonical Wnt/calcium pathway that regulates intracellular
calcium. All three pathways are activated by the binding of an Wnt-protein ligand to a
Frizzled family receptor, which passes the biological signal to the Dishevelled protein
inside the cell (Zhan et al. 2017). In the hydrozoan H. magnipapillata, wnt mRNA is
located in the epidermis and gastrodermis of the hypostome, the oral end of the buds
and the apical tip of regenerating animals (Hobmayer et al. 2000; Lengfeld et al. 2009).
In embryos of the anthozoan N. vectensis, it is present around the blastopore and later
in the oral end of growing polyps (Kusserow et al. 2005). Both the oral hypostome of
hydrozoan polyps and the blastoporal region in anthozoan embryos represent the
main inductive organizers for patterning the entire cnidarian oral-aboral body axis.
Moreover, the canonical Wnt/3-Catenin pathway represents a core element of these
inductive signaling centers. There is also accumulating evidence that Wnt/(3-Catenin
signaling is involved in self renewal in cnidarian and vertebrate ASCs. In fact, recent
data show that global activation of Wnt/B-Catenin signaling along the major body
axis in H. vulgaris enhances self-renewal in i-cells, strongly activates neurogenesis
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and inhibits the differentiation of nematocytes (stinging cells) (Khalturin et al. 2007;
Hartl et al. 2019). Enhanced i-cell maintenance in Hydra is most likely mediated
by B-Catenin regulating the activity of myc transcription factors (see below; see
also the accompanying chapter in this book by Lechable et al. 2022). In the related
colonial hydrozoan H. echinata, wnt3a is expressed in i-cells of the epidermis and
gastrodermis, as well as in nematoblasts along the body column of the polyps (Miiller
et al. 2007). Furthermore, action of Wnt/3-Catenin signaling in global patterning and
ASC decision making is reported in several bilaterians, particularly in flatworms,
cephalochordates and tunicates. wntA, wnt4, wnt6, wnt16, frizzled1/2/7, frizzled4
and frizzled5/8 are overexpressed in somatic tissues of the holothurian E. fraudatrix
during the regeneration of the internal organs after the induction of evisceration
(Girich et al. 2017). A wnt orthologue is transcribed in cells of the tail-regenerating
blastema of the lancelet Branchiostoma lanceolatum (Somorjai 2017), whereas two
wnt orthologues, wnt2b and wnt5a, have been identified in the ascidian B. schlosseri:
they are actively transcribed in all the tissues of the early buds (Di Maio et al.
2015). In the regular blastogenetic cycle of B. schlosseri, Wnt is an important signal
transduction pathway, and the administration of both Wnt agonist and antagonist
imposed significant alterations in the prosecution of the cycle and bud development
(Rosner et al. 2014). In whole-body regeneration of the colonial ascidian B. leachii,
differential gene expression analysis of the transcriptome revealed upregulation of
genes involved in developmental signaling pathways including wnt (Blanchoud
et al. 2018). In the congeneric species Botrylloides diegensis, frizzled5/8, p-catenin and
disheveled increase their transcription during whole-body regeneration (Kassmer et al.
2020).

4.2. TGF-p/BMP

The transforming growth factor-beta (TGE-{3)/bone morphogenetic protein (BMP)
signaling pathway plays a fundamental role ni regulating cell development and
growth through the activation of receptor serine/threonine kinases (Guo and Wang
2009). Smad (small mother against decapentaplegic) is the main signal transducer
for receptors of the transforming growth factor beta (TGF-3) superfamily, which are
critically important in cell proliferation and differentiation (Blobe et al. 2000).

Choanocytes of the calcarean sponge S. ciliatum weakly express two smad
orthologues: smadl/5 and smad4 (Leininger et al. 2014). The same cell type in
the demosponge Chondrosia reniformis expresses tgf6 mRNA (Pozzolini et al. 2019).
The gene orthologue smed-smad-6/7 is expressed by neoblasts of S. mediterranea
(Van Wolfswinkel et al. 2014), whereas bssmad1/5/8 is expressed by a fraction of
circulating phagocytes of the colonial ascidian B. schlosseri (Rosner et al. 2013). In the
cephalochordate B. lanceolatum, chordin and bmp2/4 increase their transcription in the
regenerating tail (Somorjai et al. 2012; Somorjai 2017; Liang et al. 2019; Ferrario et al.
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2020). TGF-3, together with Wnt/f3-catenin and MAPK/ERK, emerged as important
signal transduction pathways in organizing the colony of the ascidian B. schlosseri
(Rosner et al. 2014).

5. Other Transcription Factors

Many transcription factors have been described as being expressed in ASCs
of aquatic invertebrates, and most of them derive from studies in acoel flatworms
and planarians, some from studies in sponges, cnidarians, cephalochordates and
tunicates. scibral, scibra2, scigata, smad1/5 and smad4 are expressed by choanocytes of
the calcarean sponge S. ciliatum (Leininger et al. 2014). Among cnidarians, hymycl
and hymyc2 are transcribed in proliferating i-cells and other proliferating somatic cells
and gamete precursors of H. vulgaris (Hartl et al. 2010, 2014; Hobmayer et al. 2012).
Interstitial (i-) cells of H. vulgaris also express foxo (Boehm et al. 2012). Functional
interference suggests that the action of myc genes and foxo is directed to Hydra i-cell
maintenance (Boehm et al. 2012; Hartl et al. 2019). In the stolon of the colonial
hydroid H. echinata, i-cells express the POU protein PIn (Millane et al. 2011). In
the acoel flatworm I. pulchra, ipptx, ipsix1/2, ipfox al, ipfox a2, ipfox c, ipgata4/5/6,
iptwist1, iptwist2 are transcribed in the neoblasts and the musculature (Chiodin et al.
2013). In the planarian S. mediterranea, smedprox-1, smedpbx1, smednkx2.2, smedsoxbl,
smedsoxP1, smedsoxP3, smedgata4/5/6, smedtcf15, smedjunll, smedzfmym1, smedzf2071,
smedfhll, smedzfpl, smedprogl, smedprog2 and smedegr1 are transcribed by neoblasts,
whereas smedpax3/7 is expressed in differentiating sensory neurons (Wagner et al.
2012). The annelid P. dumerilii expresses pdumyc, pduhes2, pduhes4, pduhes5, pduhes6,
pduhes8, pduid, pduap2, pdugem, pducdx, pduevx, pduhox3 in cells of its posterior growth
zone and in the regenerating blastema (Gazave et al. 2013). In the sea cucumber H.
glaberrima, myc is transcribed by progenitor cells in the adult radial nerve cord and
by scattered cells of the neural parenchyma. The same cells also host the transcripts
of a series of stem cell-associated genes, such as soxb1, foxj1, hes, kIf1/2/4 and oct1/2/11.
Most of the cells are located in the outer layer of the adult radial nerve cord and
correspond to the radial glial cells that also express a series of proneural genes
(Mashanov et al. 2015a, 2015b). In the holothurian E. fraudatrix, efsox9/10 and efsox17
are actively transcribed by cells of the epithelia of the coelom and of the gut anlage
during the regeneration of the internal organs consequent to evisceration (Dolmatov
et al. 2021). A pax3/7 orthologue is transcribed in the tail-regenerating blastema of
B. lanceolatum (Somorjai et al. 2012; Somorjai 2017). In colonial ascidians, myc is
expressed by cells of the peribranchial epithelium and fibroblast-like cells involved
in organogenesis of the developing buds of P. misakiensis (Fujiwara et al. 2011), and
by cells of the peribranchial epithelium of growing palleal and vascular buds as
well as by some circulating hemocytes of B. primigenus (Kawamura et al. 2008). In
the colonial species B. schlosseri, bspitx is transcribed by cells of the peribranchial
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epithelium of buds at early developmental stages, the inner wall of the oral siphon
and the oral tentacles, the forming cerebral ganglion and the developing gut of young
zooids (Tiozzo et al. 2005; Tiozzo and de Tomaso 2009); Bsoct4 protein is present in
the epithelial cells of the branchial sac along ontogeny and astogeny (Rosner et al.
2009). In the same species, bspou3 is expressed by few cells of the proximal side of
the bud atrial epithelium (Ricci et al. 2016). In B. schlosseri, bsgata4/5/6 is transcribed
by cells of the posterior side of the new bud (Ricci et al. 2016).

6. Chromatin Modification/Cell Cycle/Differentiation

6.1. Proliferation Markers

Proliferating Cell Nuclear Antigen (PCNA) is a protein found in the nucleus
and serves as an auxiliary protein of DNA polymerase delta. High expression levels
of this molecule correlate with high rates of division.

In the demosponges Hymeniacidon perleve and E. fluviatilis, pcna is actively
transcribed in archeocytes (Sun et al. 2007; Ali€ et al. 2015). mRNAs for HvPCNA of
H. vulgaris, and DjPCNA of the planarian D. japonica are located in the i-cells and
neoblasts, respectively (Orii et al. 2005; Ali€ et al. 2015). In addition, smedpcna of S.
mediterranea is actively transcribed in neoblasts (Eisenhoffer et al. 2008; Onal et al.
2012; Alié et al. 2015). pcna of the annelid P. dumerilii is actively transcribed in the
posterior growth zone (Gazave et al. 2013; Planques et al. 2019). In the enteropneust
hemichordate P. flava, pcna is expressed in cells of the regeneration blastema (Rychel
and Swalla 2008). In early regenerating fragments of the tunicate B. leachii, pcna
predominantly stains piwi-positive cells attached to the vascular epithelium, directly
involved in the formation of new buds, whereas later on, it also labels piwi-positive
cells within the lumen of the colonial vasculature (Rinkevich et al. 2010). In the
colonial ascidian B. leachii, at the onset of hibernation, leading to the resorption of the
colonial zooids, a high expression level of pcna was recorded within the cell islands,
the stem cell niches on both sides of the endostyle, whereas in a deep hibernation
state, pcna was expressed in the multinucleated cells, probably a reservoir of cell
types for fast regeneration of zooids from the circulation during arousal from torpor
(Hyams et al. 2017). In the colonial ascidian P. misakiensis, pcna is transcribed in
cells of the epithelia of the developing buds (Kawamura et al. 2012), whereas in the
tunicate B. violaceus, pcna is expressed by clusters of hemocytes during whole-body
regeneration (Brown et al. 2009).

Mini chromosome Maintenance Complex Component 2 (MCM?2) forms a
complex with additional proteins that function in the initiation of eukaryotic genome
replication. The gene is transcribed by archeocytes of the demosponge E. fluviatilis
(Alié et al. 2015), i-cells of the cnidarian H. vulgaris (Alié et al. 2015), and neoblasts of
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the planarians D. japonica and S. mediterranea (Salvetti et al. 2000; Rossi et al. 2007;
Onal et al. 2012).

Cyclin B1 (CCNB1) is necessary for proper control of the G2/M transition phase
of the cell cycle. The protein encoded by this gene, together with phospho-histone H3,
is considered a good marker for cell proliferation. Its mRNA is present in archeocytes
of the sponge E. fluviatilis (Alié et al. 2015), i-cells of the hydrozoan H. vulgaris
(Alié et al. 2015) and neoblasts of the flatworm S. mediterranea (Reddien et al. 2005b;
Eisenhoffer et al. 2008); in addition, two cyclin genes are expressed in proliferating,
undifferentiated cells of the growth zone and regeneration blastema of the annelid P.
dumerilii (Planques et al. 2019). A cyclin gene is over-transcribed during whole body
regeneration in the colonial ascidian B. diegensis (Kassmer et al. 2020).

6.2. Genes for Chromatin Modifications

Many genes involved in the epigenetic modification of chromatin are actively
transcribed in ASCs of aquatic invertebrates. Three transcriptional silencers are
expressed by the planarian S. mediterranea neoblasts (Eisenhoffer et al. 2008; Resch
et al. 2012; Trost et al. 2018); the same cells express various genes involved
in methylation/demethylation and acetylation/deacetylation as well as histone
modifications in the flatworms S. mediterranea (Reddien et al. 2005a, 2005b; Eisenhoffer
etal. 2008; Onal et al. 2012; Cao et al. 2019) and D. japonica (Rossi et al. 2007; Bonuccelli
et al. 2010; Cao et al. 2019).

6.3. Telomere Protection

Telomeres are guanine-rich DNA repeats (TTAGGG)n) located at the termini
of chromosomes, that stabilize and protect chromosome ends through a protein
complex called shelterin, which also serves to recruit telomerase to the telomeres.
In most mature cells, telomeres progressively shorten through each cell division
and trigger DNA damage responses that, eventually, mediate cell cycle arrest or
apoptosis. Homeostasis can be achieved via telomere lengthening by a telomerase,
a process that occurs in germline and somatic stem cells. Telomerase is a cellular
reverse transcriptase that synthesizes telomeric DNA directly onto chromosome ends.
Although the gene encoding the telomerase has been detected in many metazoans,
equivalent telomerase activity has not been demonstrated in many organisms. Other
molecules associated with telomerase activity are Potl and RTEL1. Protection
of telomeres 1 (Potl), a component of shelterin, contributes to the suppression
of unnecessary DNA damage response at the telomeres and their maintenance.
RTEL1 is an ATP-dependent DNA helicase implicated in telomere-length regulation,
DNA repair and the maintenance of genomic stability. It also regulates meiotic
recombination and crossover homeostasis (Udroiu et al. 2017).
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The archeocytes of the demosponge H. perleve, when cultured in vitro, show the
presence of mRNAs for telomerase and telomerase reverse transcriptase (Sun et al.
2007). Similarly, the archeocytes of the sponge E. fluviatilis transcribe efrtel1, and the
i-cells of the solitary cnidarian H. vulgaris contain mRNA for HvRTELL1 (Alié et al.
2015). The neoblasts of the flatworm S. mediterranea express smrtell and the telomerase
reverse transcriptase orthologue smedtert. Four different alternative splice isoforms
are encoded by the latter gene, only one of which is coding for a full active enzyme.
Following fission or regeneration, there is an increased expression of the genes for
all four smedtert isoforms in ASCs of the asexual individuals, with an increase in
the relative proportion of the full-length isoform. The combined result of about
an eight-fold increase in telomerase mRNA may contribute to indefinite somatic
telomerase activity in proliferating stem cells during regeneration or reproduction by
fission (Tan et al. 2012). In the same species, smedob1, a pot1 orthologue, is ubiquitously
expressed, however its knockdown impairs homeostasis and regeneration (Yin et al.
2016). The same phenomenon occurs in the planarian D. japonica (Yin et al. 2016). A
telomerase gene is also actively transcribed by undifferentiated cells of the posterior
surface of the septa, and during asexual reproduction by autotomy in the oligochaete
annelid E. japonensis (Sugio et al. 2012). tert is also transcribed in muscles, the
esophagus, CNS and coelomocytes of the sea urchins L. variegatus, S. purpuratus
and M. franciscanus (Bodnar and Coffman 2016). The multipotent bud epithelia
of the colonial ascidian B. schlosseri express bspot1 for telomere protection and an
orthologous of telomerase (Laird and Weissman 2004; Ricci et al. 2016).

7. Discussion and Conclusions

ASC evolution is associated with the origin of multicellular animals. Beyond
the obvious role in tissue homeostasis, ASCs in aquatic invertebrates often are key
participants in sustaining important biological processes for indeterminate growth,
regeneration, asexual reproduction (agametic cloning), torpor phenomena and more
(Skold et al. 2009; Vogt 2012; Rinkevich et al. 2022). The technologies for ASC isolation
and growth under in vitro conditions (Odintsova 2009; Rinkevich 2011; Zahiri and
Zahiri 2016), for the study of their expression repertoires, for proteomic metabolomics
and bioinformatic approaches to the biology of ASC, are advancing rapidly (Ballarin
etal. 2018). The application of the above techniques will offer the possibility to obtain,
in the near future, unprecedented insights into the biology of ASCs from aquatic
invertebrates.

A wide range of disparate characteristics have been found when comparing
vertebrate and aquatic invertebrate ASCs, including features such as morphology,
differentiation states and somatic/germ lineage characteristics. As these and numerous
other important traits in aquatic invertebrates differ significantly from those recorded
in the vertebrates” ASCs (Isaeva et al. 2009; Rinkevich et al. 2022), it is of great
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importance to find common shared characteristics, many of which are associated with
stemness gene expressions. Stem cells in various marine taxa, including members of
Porifera, Cnidaria, Ctenophora, Annelida, Acoela, Platyhelminthes, Echinodermata,
Cephalochordata and Tunicata, express stemness genes and other key genes. As they
exist throughout the lifespan of these organisms and are not rare (may contribute
>25-30% of the total animals’ cells), with high potency (pluripotency and totipotency),
a comparative analysis of their gene expression may add relevant information to
our understanding of their nature (e.g., Lai and Aboobaker 2018; Ali¢ et al. 2015;
Fierro-Constain et al. 2017). Indeed, in order to clarify the biological phenomena
evolved, there is a need to understand the nature, the biology and gene expressions
of ASCs from aquatic invertebrates (Rinkevich et al. 2022). Such an analysis is of
further importance since ASCs from aquatic invertebrates participate in biological
phenomena not found in the vertebrates, such as whole-body regeneration, asexual
budding and dormancy (Vogt 2012; Rinkevich et al. 2022).

The data collected in this report are summarized in Table 1; a detailed version
can be found in Appendix A. From these data, we propose a few general conclusions.
First, it is difficult to identify clear ASC gene-expression signatures across and even
within phyla. This is in agreement with initial in-depth single-cell-transcriptome data
sets established in cnidarians and flatworms, where it was not possible to characterize
core programs of ASC-specific gene activation within the studied species (Fincher
et al. 2018; Plass et al. 2018; Siebert et al. 2019). Based on this, it is difficult to define
conserved molecular mechanisms for maintenance of long-term ASC stocks and to
define conserved elements for communication between ASCs and their short- and
long-range environment (Martinez et al. 2022). Much larger data sets at this level of
resolution in many more species studied in the future may improve this dilemma.

Second, our analysis shows clear coexpression of somatic- and germ line-specific
genes in ASCs across and within phyla, confirming earlier reports (Juliano et al.
2010; Alié et al. 2015; Fierro-Constain et al. 2017). This indicates that an ancestral
conserved multi- or toti-potency program may coordinate ASC dynamics during
tissue homeostasis, (indefinite) asexual growth and sexual reproduction. Third, ASC
transcriptional regulation, when compared to vertebrate ASC programs, is limited
when we consider the activation of genes encoding for somatic transcription factors,
but rich if referring to RNA regulatory genes known from pan-metazoan embryonic
stem cells (Rinkevich et al. 2022).
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Table 1. Main stem cell genes expressed by ASCs of aquatic invertebrates.

<] ] « s « £
Protein Family ?é E‘ 'g _g E % :: E g '§ i 'Tgu é
=3 9 EF <=2 FE o2 E4L°
< g 4 T8
RNA-binding proteins

ago/piwi family v v v v v v Y v v

tudor domain-containing proteins v/ v v

“DEAD-box?EI;rB;iﬁ?ng helicases R A v v
nanos family proteins v v v v v
PUF family proteins v v v v
mago-nashi v
RRM-containing proteins

mbnl, bruli and bruno v v v v

musashi v v v Y v
Signal transduction factors
wnt v v v
tgf-plomp v v v v
Chromatin modification/cell cycle/differentiation
pena v v v v v v
mem2 v v

cyclin bl v v v v v
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Appendix A

On the basis of the codified proteins, genes were grouped as follows:
RNA-binding proteins, RNA recognition motif (RRM)-containing proteins, signal
transduction proteins, transcription factors, chromatin modification proteins, proteins
involved in autophagy, cell-cycle proteins, control of differentiation proteins, niche
interaction proteins and genes for miRNAs. Each category of genes (titles in boxes
with green background) can contain various subgroups (titles in boxes with blue
background). Within each subgroup, genes are listed according to the phylogenetic
position of the organisms.
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Oxylipins: Role in Stem Cell Biology

Helike Lohelaid and Tarvi Teder

Abstract: Oxylipins, oxygenated fatty acid derivatives, are well-established stress
mediators acting in auto- and paracrine manner. Eicosanoids, the most studied
branch of oxylipins, are produced from twenty carbon polyunsaturated fatty acids
(PUFAs). In vertebrates, they are synthesized mainly by lipoxygenase (LOX),
cyclooxygenase (COX) and cytochrome P450-type monooxygenases. In corals,
besides COX and LOX enzymes, the oxidation of arachidonic acid (AA) is catalyzed
by natural fusion proteins, comprised of a LOX domain and a catalase related
peroxidase domain, allene oxide synthase (AOS) or hydroperoxide lyase (HPL).
Although oxylipins are well studied in vertebrate stem cells, their role in stem cells
originating from marine invertebrates remains unexplored. Here, we present an
overview of major oxylipin pathways in vertebrates and marine invertebrates, and
discuss their potential role in invertebrate stem cells.

1. Introduction

There is a growing interest in invertebrate stem cells (SCs) due to their high
toti- and pluripotency which makes them suitable model systems to investigate
fundamental biological processes, such as cell fate, senescence, regeneration
and cell reprogramming (Ballarin et al. 2018). Due to the simplicity of marine
invertebrates, it is easier to track the expression of genes, test different compounds
on differentiation/regeneration and discover underlying mechanisms of SCs
(Manni et al. 2019). For instance, colonial ascidians are ideal organisms for the
study of tissue regeneration and development because of their diverse reproductive
strategies, relatively short lifespan, simple morphological and genomic organization,
and easy experimental use. In addition, the high diversity of invertebrates creates
an opportunity to use them as a source of novel natural products, including bioactive
lipid mediators, which can be used to treat cancer, infections, autoimmune and
inflammatory-related diseases, and can potentially be implemented in regenerative
medicine (Palanisamy et al. 2017).

A group of bioactive oxylipins derived from arachidonic acid (AA), eicosanoids,
are identified as important auto- and paracrine mediators of tissue repair and
regeneration that act by regulating the stem cell biochemistry in vertebrates. Only
a limited number of oxylipin studies have been conducted on invertebrates used
for SC research (Kassmer et al. 2020). Screening and targeting of oxylipins from
invertebrates would provide novel insights into the molecular mechanisms necessary
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for either stemness or differentiation of SCs in marine invertebrates. For instance,
profiling of oxylipins and tracking their secretion to surrounding tissues would reveal
spatio-temporal distribution of oxylipins and their regulatory role in self-renewal
and/or differentiation of SCs. This knowledge can be beneficial in the future studies
of SCs across different species.

This review summarizes the status of oxylipin studies in invertebrate SC model
systems and focuses on corals as the most studied model of oxylipin biosynthesis in
invertebrates.

2. Oxylipin Pathways in Animals

Eicosanoids are the main group of oxylipins in animals synthesized from
AA (C20: 4w6) and other C20 polyunsaturated fatty acids (PUFAs) by fatty
acid dioxygenases, e.g., lipoxygenase (LOX) and cyclooxygenase (COX), or
monooxygenases, such as cytochrome P450 epoxygenases, respectively (Figure 1)
(Brash 1999; Rouzer and Marnett 2003; Nelson et al. 2013).

In mammals, eicosanoids and other bioactive lipids are highly potent short-lived
molecules that initiate signaling cascades and gene expression by binding to their
corresponding receptors or being ligands for transcription factors. Activation of gene
expression regulates cellular events, including cell proliferation and differentiation,
and different physiological and pathological processes, e.g., inflammatory-related
diseases and cancer. In addition to AA, other PUFAs, such as eicosapentaenoic acid
(EPA, C20: 5w3) and docosahexaenoic acid (DHA, C22: 6w3), are the precursors for
important bioactive lipids, e.g., resolvins and protectins (Serhan et al. 2002, 2008),
which mediate the resolution of inflammation in animals.

The complexity of eicosanoid pathways is necessary to modulate cellular
processes in a cell type and a metabolic state manner. On the other hand, the high
variability of eicosanoids and sophisticated regulatory networks makes eicosanoid
research challenging.
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(AA) is released from cellular membranes by phospholipases in response to

a variety of stimuli and converted to eicosanoids by cyclooxygenase (COX),
lipoxygenase (LOX) and cytochrome P450 (CYP450) monooxygenase pathways.
The COX pathway gives rise to prostaglandins (PGs), the LOX pathway produces
hydroxy-eicosatetraenoic acids (HETEs), lipoxins (LXs) and leukotrienes (LTs),
and CYP450 synthesizes epoxy-eicosatetraenoic acids (EETs). CysLT—cysteinyl
leukotrienes; EET—epoxy-eicosatetraenoic acid; HETE—hydroxy-eicosatetraenoic
acid; HHT—hydroxy-heptadecatrienoic acid; LT—leukotriene; LX—lipoxin;
PG—prostaglandin; TX—thromboxane. Source: Graphic by authors.
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2.1. Lipoxygenase

LOXs (E.C. 1.13.11.-) are non-heme iron containing dioxygenases that catalyze
the regio- and stereo-specific peroxidation of PUFAs containing at least one
cis,cis-1,4-pentadiene system to form biologically active mediators (Brash 1999).
LOXs are classified in terms of their positional specificity. Animal LOXs are
arachidonate 5-, 8-, 11-, 12- and 15-LOXs that catalyze the conversion of AA into
corresponding 5-, 8-, 11-, 12- and 15-hydroperoxy-eicosatetraenoic acids (HpETEs)
(Brash 1999). Depending on the species and cell type-specific expression of
enzymes, the content and distribution of eicosanoids vary. Thus far, the LOX with
11R-specificity has been identified only in marine invertebrates, such as hydra (Di
Marzo et al. 1993), sea urchins (Hawkins and Brash 1987) and corals (Di Marzo
et al. 1996; Varvas et al. 1999; Mortimer et al. 2006). In terrestrial organisms, the
prevalent stereo-configuration of LOX products is S, while R stereospecificity is more
pronounced in marine invertebrates.

HpETEs or their reduced derivatives, hydroxy-eicosatetraenoic acids (HETEs),
are potent pro- or anti-tumorigenic agents and mediate cell migration due to their
chemotactic properties and also. For example, 5- and 12-HETEs synthesized by 5-
and 12-LOX, and 13-hydroxy-octadecadienoic acid formed by 15-LOX, respectively,
are involved in the proliferation and inhibition of apoptosis, angiogenesis, cancer
invasion and metastasis, while 15- and 8-HETE formed by 15-LOX-2 and 8-LOX
are involved in the differentiation, growth arrest and induction of apoptosis
(Pidgeon et al. 2007; Moreno 2009). In addition, lipid mediators generated in 5-LOX
pathway mediate atherosclerosis and allergic inflammation (Haeggstrém 2018). Most
importantly, HpETEs are precursors of many downstream biosynthetic routes, such
as the leukotriene and lipoxin pathways (Figure 1), which are involved in the
initiation and resolution of inflammation, respectively (Funk 2001; Serhan et al. 2002;
Haeggstrom and Funk 2011).

2.2. Cyclooxygenase

Cyclooxygenases (COXs), also known as prostaglandin endoperoxide synthases
(E.C. 1.14.99.1), are another oxygenation route converting AA to prostaglandins
(PGs). All vertebrates have two COX isozymes, a constitutively expressed COX-1
and an inducible COX-2 (Funk 2001). Both COXs catalyze the formation of PGG; via
cyclooxygenase activity and its reduction to PGHj via peroxidase activity (Rouzer
and Marnett 2003; Schneider et al. 2007). The main differences between COX-1 and
COX-2 are their genetic regulation and function (Rouzer and Marnett 2005; Blobaum
and Marnett 2007). The formation of PGH, by COXs is a rate-limiting step in its
downstream conversion to prostaglandin E, (PGE;), PGF,,, and PGD;, as well as
the conversion to prostacyclin (PGl;) and thromboxane A, (TXA;) by corresponding
isomerases or synthases (Figure 1) (Rouzer and Marnett 2009). Prostanoids are
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involved in inflammatory processes, wound healing, tissue regeneration and
cardiovascular processes. Therefore, the inhibition of COX results in reduced
inflammation, pain and fever (Flower 2006). Non-steroidal anti-inflammatory drugs
(NSAIDs) have anti-inflammatory and pro-resolving effects through the inhibition
of COX-2 (Vane and Botting 1998). In conferring their biological function, e.g.,
evoking an inflammatory response after injury, PGs have opposite effects. For
example, depending on the timing and course of inflammation, they can either
induce vasoconstriction (PGF,,, TXA,, TXB,) or vasodilation (PGE;, PGE,, PGI5),
inhibition of platelet aggregation (PGD,, TXA;, PGE;, PGI;) (Murakami 2011;
Ricciotti and FitzGerald 2011) or aggregation of platelets (PGE;) (Howie et al. 1973;
Kobzar et al. 1997).  Elevated levels of PGE, sensitize spinal neurons, which
results in an increased sense of pain (Grace et al. 2014), causing fever via the
hypothalamus-mediated manner (Coceani and Akarsu 1998), and are involved in the
complex process of labor (Kelly et al. 2009).

3. Coral Eicosanoids

Corals are invertebrate animals (Kingdom Animalia; phylum Cnidaria;
class Anthozoa) (Hyman 1940) that are divided into two major subclasses:
reef-building Hexacorallia and soft corals Octocorallia (Zhang 2011), both comprised
of azooxanthellate or zooxanthellate, the latter living in symbiosis with unicellular
algae, Symbiodinium sp. species.

Coral oxylipin research started with the detection of large quantities of PGs and
PG-esters (2-3% of dry weight) in the soft coral Plexaura homomalla (Weinheimer and
Spraggins 1969). Thereafter, a plethora of eicosanoids have been discovered, which
vary depending on the species and location (Corey et al. 1973, 1987, 1988; Varvas et al.
1993, 1999; Brash et al. 1987). In soft corals, AA is an abundant fatty acid (10-25%),
being the primary precursor of eicosanoids (Imbs et al. 2006; Imbs and Yakovleva 2011).
To a lesser degree (3—-10%), AA also contributes to the fatty acid content of stony corals
(Latyshev et al. 1991; Dunn et al. 2012; Figueiredo et al. 2012; Funk 2001). Released
AA is metabolized by COX (Varvas et al. 1994; Koljak et al. 2001; Valmsen et al. 2001)
or LOX (Mortimer et al. 2006; Brash et al. 1996) into PGs or H(p)ETEs, respectively
(Figure 2). In addition to 11R-LOX (Eek et al. 2012; Mortimer et al. 2006; Jarving
et al. 2012), corals contain catalase-related allene oxide synthase-8R-lipoxygenase
(AOS-LOX) and hydroperoxide lyase-8R-lipoxygenase (HPL-LOX) fusion protein
pathways (Koljak et al. 1997).
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In principle, the coral AOS-LOX and HPL-LOX pathways are similar to the plant
LOX pathways, except the fact that separately expressed and structurally distinct
plant LOX, P450-type AOS and HPL metabolize only C18 PUFAs, e.g., linoleic acid
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(Wasternack 2007). Initially, the cyclopentenone synthesized by coral AOS was thought
to be the precursor of coral PGs, but the cloning and characterization of functional
coral COXs indicated the existence of parallel oxygenation routes (Koljak et al. 2001;
Valmsen et al. 2001). Even though P. homomalla contains a considerable amount of PGs,
incubations with the tissue homogenate and exogenous AA do not produce PGs (Corey
et al. 1973, 1988). In contrast, homogenates of G. fruticosa give rise to optically active PGs
in vitro (Varvas et al. 1993, 1999). In addition, the soft coral Clavularia viridis converts
AA to different cyclopentenone-type compounds, such as clavulones (preclavulone
A) (Corey et al. 1987), bromovulones and iodovulones (Figure 2) (Honda et al. 1987;
Watanabe et al. 2001). Although AOS-LOXs are not involved in the biosynthesis of coral
PGs, they still might contribute to the production of clavulone-like derivatives. For
today, the AOS-LOX pathway is identified in soft corals P. homomalla, G. fruticosa, and C.
imbricata, while 11R-LOX is expressed only in G. fruticosa. In addition, no COX activity
and PGs have been detected from C. imbricata. Although the sequence data implies the
presence of AOS-LOX in soft and stony corals (Lohelaid and Samel 2018), the fusion
protein with the lyase activity is identified only in C. imbricata. Altogether, this data is
indicative of species-specific eicosanoid biosynthesis.

The current literature on coral eicosanoids contains data on the identification of
naturally occurring compounds (Corey et al. 1973, 1985; Varvas et al. 1993, 1994), the
elucidation of metabolic pathways involved in their biosynthesis (Brash et al. 1987;
Corey et al. 1987; Koljak et al. 1997, 2001; Varvas et al. 1999), and the effects of lipid
extracts or isolated compounds on other systems (Hashimoto et al. 2003). For today,
only the role of PGs in the defense of the coral P. hormomalla against predators has been
proposed (Pawlik et al. 1987; Gerhart 1991; O’Neal and Pawlik 2002; Whalen et al. 2010).
In regard to the LOX activity in other marine invertebrates, it was demonstrated that
8R-HETE induces the maturation of starfish oocytes (Meijer et al. 1986) and 11R-HpETE
is involved in the regeneration and bud formation of Hydra vulgaris (Di Marzo et al.
1993). In spite of the wide occurrence of different oxylipins (hydroxy fatty acids, PGs
and their derivatives, etc.) in invertebrates (Rowley et al. 2005; Brash et al. 1987), their
exact functions in those organisms remain unclear.

Coral Fusion Proteins in the Arachidonic Acid Pathway

In the arachidonate metabolism of corals, fusion proteins comprised of
N-terminal catalase-like allene oxide synthase (AOS) or hydroperoxide lyase (HPL)
and C-terminal 8R-LOX domains catalyze the conversion of AA via 8R-HpETE to
allene oxide (Koljak et al. 1997; Lohelaid et al. 2008, 2014a) or short-chain aldehydes
(Teder et al. 2015), respectively (Figure 2). The 3D structure of the AOS-LOX fusion
protein (Gilbert et al. 2008), as well as separately expressed AOS and LOX domains
(Oldham et al. 2005a, 2005b; Neau et al. 2009), have been determined. Even though
the structure of HPL-LOX has not been resolved, the differences in the substrate
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specificity and catalytic properties between HPL and AOS (Teder et al. 2017, 2019)
indicate distinct regulation and roles of corresponding fusion proteins in vivo.

Several transcriptomic studies of stony corals have reported the increased
expression of the AOS-LOX gene in response to white band disease (Libro et al. 2013),
elevated UV radiation (Aranda et al. 2011) and temperature (Polato et al. 2013).
However, transcriptomes lack information about expressed proteins and their activity.
A targeted study with the soft coral C. imbricata demonstrated the elevated levels
of AOS-LOX metabolites and increased gene expression in response to wounding
(Lohelaid et al. 2014a) and temperature (Lohelaid et al. 2014b). In parallel, the levels
of HPL-LOX mRNA and metabolites remained stable or even decreased. To date,
involvement of the AOS-LOX pathway in the stress response of corals is evident,
however, the biological importance of HPL-LOX remains elusive. Short-chain aldehydes
also known as “green leaf volatiles” play an essential part in the communication and
stress signaling of plants. In addition, aldehydes have antibacterial and antifungal
properties due to their molecular attributes. Therefore, HPL-LOX-derived aldehydes
may serve a housekeeping role, including defense against biotic stressors.

4. Eicosanoids in Stem Cells

SCs are undifferentiated progenitor cells with the ability to differentiate
into specialized cell types and regenerate. Eicosanoids are best known for their
inflammatory and immune-modulating properties, however, their ability to affect
the cell fate has increased their importance in SC biology. Eicosanoids act in an auto-
and paracrine manner to promote proliferation, migration, and differentiation of SCs
which contribute to the tissue repair, regeneration and other cellular processes. For
example, eicosanoids mediate the differentiation of SCs at each step of wound healing
(Berry et al. 2017). Due to the diversity of bioactive lipids and other regulators, the
role of eicosanoids in determining the fate of SCs is not very well understood.

The roles of PUFAs and eicosanoids have been studied in mammalian mesenchymal
stem cells (MSCs) (Jang et al. 2012; Yun et al. 2009b, 2011; Ern et al. 2019; Kim et al.
2009b; Rinkevich et al. 2009), hematopoietic stem cells (HSCs) (Hoggatt and Pelus 2010),
embryonic stem cells (ESCs) (Liou et al. 2007; Yanes et al. 2010; Yun et al. 2009b; Rajasingh
and Bright 2006; Kim et al. 2009a), neural stem cells (NSCs) (Katura et al. 2010; Wada
et al. 2006; Wiszniewska et al. 2011; Katakura et al. 2009, 2013; Beltz et al. 2007; He
et al. 2009; Sakayori et al. 2011; Kawakita et al. 2006; Jung et al. 2006; Goncalves et al.
2010; Sasaki et al. 2003), endothelial progenitor stem cells (EPC) (Kawabe et al. 2010;
Herrler et al. 2009) and others (Table 1). For instance, MSCs constitutively express COX,
PGE, synthase (PGES) (Jang et al. 2012; Kleiveland et al. 2008), 5-LOX, and 12-LOX
(Fang et al. 2015), giving rise to PGs, LTs and LXs, respectively. In addition, MSCs
express different PG receptors, EP1-EP3, FP, and IP (Rinkevich et al. 2009). MSCs
and eicosanoids are studied due to their involvement in immune-modulating and

180



inflammatory-related processes (Bernardo and Fibbe 2013). In addition to MSCs, human
periodontal ligament stem cells (hPDLSCs) produce PGE;, PGD, and PGF;, as well
as specialized pro-resolving mediators (SPMs), e.g., different resolvins, protectin D1,
maresins, and LXBy (Berry et al. 2017).

Table 1. Bioactions of eicosanoids in stem cells.

Fatty Acid or Eicosanoid

Stem Cell Type

Effects

References

Linoleic acid

Embryonic stem cells

Enhanced proliferation

(Kim et al. 2009a)

Arachidonic acid

Neuronal stem cells

Enhanced proliferation

(Vaca et al. 2008;
He et al. 2009;
Sakayori et al. 2011;
Kawakita et al. 2006;
Sakamoto et al. 2007)

Eicosapentaenoic acid

Neuronal stem cells

Improved differentiation

(Katakura et al. 2009)

Docosahexaenoic acid

Neuronal stem cells

Improved differentiation,
increased
proliferation

(Beltz et al. 2007;
Katakura et al. 2009, 2013;
Kan et al. 2007)

Prostaglandin Ej, Ep

Hematopoietic stem cells

Inhibited proliferation

(Gidali and Feher 1977;
Kurland et al. 1978;
Motomura and Dexter 1980)

Embryonic stem cells

Enhanced proliferation,
inhibited
apoptosis

(Yun et al. 2009b;
Liou et al. 2007;
Hou et al. 2013)

Human umbilical cord blood-derived

mesenchymal stem cells

Enhanced proliferation

(Yun et al. 2011;
Jang et al. 2012)

Neuronal stem cells

Enhanced proliferation

(Jung et al. 2006;
Goncalves et al. 2010;
Sasaki et al. 2003)

Bone marrow-derived cells

Improved endothelial differentiation

(Zhu et al. 2011)

Tendon stem cells

Improved osteogenic differentiation

(Liu etal. 2013)

A12,14-prostaglandin J,

Embryonic stem cells

Inhibited proliferation

(Rajasingh and Bright 2006)

15d-prostaglandin J,

Neuronal stem cells

Regulation of proliferation

(Katura et al. 2010)

Leukotriene By

Neuronal stem cells

Regulation of proliferation,
promoted differentiation to neurons

(Wada et al. 2006;
Wiszniewska et al. 2011)

Hematopoietic stem cells

Enhanced proliferation, inhibited apoptosis

(Chung et al. 2005)

Leukotriene Dy

Embryonic stem cells

Enhanced proliferation

(Kim et al. 2010)

Lipoxin Ay

Neuronal stem cells

Inhibited proliferation

(Wada et al. 2006)

Human periodontal
ligament stem cells

Enhanced proliferation,
migration and wound healing

(Berry et al. 2017)

Human dental apical papilla

Immunomodulation, proliferation,
wound healing.
Attenuated chemokine and
growth factor secretion

(Gaudin et al. 2018)

Bone marrow-derived
mesenchymal stem cells

Resolution of inflammation and injury,
bacterial clearance, increased SC growth.

(Fang et al. 2015;
Tsoyi et al. 2016)

Lipoxin By

Bone marrow-derived
mesenchymal stem cells

Radioprotection

(Walden 1988)

Neuroprotectin Dy

Embryonic stem cells

Improved neuronal and cardiac differentiation

(Yanes et al. 2010)

Thromboxane A,

Adipose tissue-derived
mesenchymal stem cells

Enhanced proliferation, promote
differentiation to smooth-muscle-like cells

(Yun et al. 2009a;
Kim et al. 2009b)

Table adapted from (Kang et al. 2014) and modified accordingly.

The role of eicosanoids has been extensively studied in tissue repair and
generation. Overall, LTs and PGD; have a negative regulatory effect on tissue
repair, while other lipid mediators, such as other PGs and LXs, promote healing
(Esser-von Bieren 2019). It should be noted that the same type of lipid mediators may
be differently regulated during proliferation, differentiation and migration of SCs
(Rinkevich et al. 2009).
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Modulation of eicosanoid pathways has an impact on the fate of SCs. For
instance, the inhibition of COX and LOX pathways manifests in the pluripotency
of ESC (Yanes et al. 2010). In contrast, supplementation of fatty acids and their
derivatives promote proliferation and differentiation of mouse ESC (Yanes et al. 2010;
Kim et al. 2009a). It is also known that SPMs lose their therapeutic effect when 5-LOX,
12-LOX and 15-LOX activities are attenuated (Romano et al. 2019).

4.1. Roles of Eicosanoids in Vertebrate Stem Cell Biology

4.1.1. The LOX Pathway in Stem Cells

The expression of 5-LOX and biosynthesis of LTs are increased in differentiated
ESCs. Inhibition of the 5-LOX pathway results in impaired vasculogenesis by ESCs
(Finkensieper et al. 2010). A downstream lipid mediator of the 5-LO pathway,
LTB4, induces the differentiation and anti-apoptotic effects of CD34+ HSCs and the
inhibition of LTA4H and its receptor, BLT2, resulted in self-renewal of HSCs (Chung
et al. 2005). In addition, 12/15-LOX and its products, 12-HpETE and 15-HpETE, play
important role in skin wound healing (Hong et al. 2014).

4.1.2. The COX Pathway in Stem Cells

The impact of PGs on the proliferation of HSCs was reported back in the 1970s
(Feher and Gidali 1974; Gidali and Feher 1977). It was shown that PGE, released by
monocytes or macrophages suppresses the proliferation of myeloid SCs in vitro. In
addition, the presence of PGE; and higher expression of its receptors are linked to
stimulation of angiogenesis and early state of inflammation (Ern et al. 2019). MSCs
secrete different bioactive molecules, including PGE,, that guide the polarization of
pro-inflammatory to anti-inflammatory macrophages, resulting in lowered levels of
inflammation (Prockop 2013). PGE; promotes the differentiation of HSCs to mature
granulocytes and attenuates the production of macrophages. Similarly to PGE,, PGI,
is necessary to angiogenesis and the inhibition of PGI, synthase results in impaired
wound healing (He et al. 2008). A short-term stimulation with PGE; enhances the
proliferation of MSCs, while longer treatments inhibit growth. In contrast, PGD, has
a growth-inhibitory effect in spite of the duration of the incubation (Ern et al. 2019).
The development of human smooth muscle-like cells from adipose tissue-derived
MSCs is controlled by another prostaglandin, TXA; (Yun et al. 2009a). Overall,
inhibition of COX pathways by NSAIDS, e.g., aspirin (Liu et al. 2014) and ibuprofen
(Goren et al. 2017), results in lower levels of TXs and PGs which delay the wound
healing and self-renewal.
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4.1.3. Pro-Resolving Mediators in Stem Cells

SPMs are formed in the cross-play between COXs, LOXs and other pathways
or in the presence of drugs. For instance, LXA4 can be formed cooperatively via
5-LOX and 12-/15-LOX pathways (Figure 1). It is evident that different SCs contain the
biosynthetic machinery to produce different SPMs which can be potentially involved in
the immune-modulating and anti-inflammatory properties of SCs (Romano et al. 2019).
For example, MSCs secrete LXA4 which regulates anti-inflammatory and pro-resolving
processes (Rinkevich et al. 2009; Tsoyi et al. 2016). In fact, exogenous or MSC-derived
LXA4 contribute to the recovery from acute lung injury (Fang et al. 2015). Moreover,
LXA, significantly enhances the wound healing capacity of hPDLSCs (Berry et al. 2017)
and regulates the proliferation and differentiation of NSCs (Wada et al. 2006). Protectin
D1 (also known as neuroprotection D1) promotes cardiac and neuronal differentiation
and is essential in the regeneration of nerve cells (Yanes et al. 2010).

4.2. Model Systems for Marine Invertebrates

There are four main invertebrate adult SC models—the “big four”: Porifera,
Cnidaria, Platyhelminthes (flatworm), and Tunicata (Rinkevich et al. 2021). The PUFAs
and eicosanoid pathways present in Cnidaria were discussed in detail above (see 3.
Coral Eicosanoids). Although more than 250 fatty acids are determined in Porifera,
there are no higher PUFAs, thus no traditional eicosanoids are present (Rod’kina
2005; Monroig et al. 2013) (Figure 3). In comparison, the main substrate PUFAs in
Platyhelminthes (Angerer et al. 2019; Makhutova et al. 2009) and Tunicates are EPA
and DHA, however, only trace amounts of AA are found (Mimura et al. 1986). It
should be noted, that as in Cnidarians, there might be high variance in PUFA content
between different species. In parallel, also the presence of LOXs varies between
invertebrate species. For instance, no LOX sequences have been found in Porifera
(Horn et al. 2015).

Dugasia tigrina was used as a planarian (Platyhelminthes) model to study
regeneration by DHA and DHA-derived oxylipins from vertebrates (Serhan et al.
2012) (Figure 3). The ability to enhance the tissue regeneration by a lipid mediator,
macrophage mediator in resolving inflammation (MaR1), indicates conserved
regulatory roles and pathways of DHA-derived mediators. Inhibition of 12-LOX
resulted in attenuated regeneration and formation of MaR1, suggesting that the
12-LOX pathway may play important role in D. tigrina (Figure 3). In addition, the
genome of Schistosoma japonicum revealed conserved sequences of LOX, LTA4H and
putative receptors for LTB,, cysteinyl-LTs, PGE, and PGF,, indicating that these
pathways may play a role in the physiology of planarian (Zhou et al. 2009). However,
Schmidtea mediterranea does not contain any similar sequences to COX or LOX
known in animals based on the PlanMine sequence database (Rozanski et al. 2019)
(personal data).

183



Stem cells Whole animal

Vertebrates Invertebrates
Porifera Cnidaria Platyhelminthes Tunicates
Hydra Coral
PUFA
AA, EPA, DHA No substrate AA, EPA, DHA EPA, DHA EPA, DHA

substrates

LTB,, 12-,and 15-HpETE 8R-,and 11R-
Detected PGE,, PGE , PGI,,PGD,, No tradictional HpETEs,
metabolites TXA:, LXA,, eicosanoids ~ 11R-HETE cyclopentenone, Marl n.d.

Neuroprotectin D1 PGs

Figure 3. The PUFA-dependent oxylipin pathways in vertebrate stem cells and
in model organisms of invertebrates. * Predicted based on the gene sequence;
n.d.—not determined. Source: Graphic by authors.

The PUFA composition of tunicates reveals that the most abundant PUFA
substrates are EPA and DHA (Carballeira et al. 1995; Hou et al. 2021). Even though
coral COX-like sequences exist in tunicates (Jarving et al. 2004), it remains unknown
if they encode functional dioxygenases and what is their catalytic specificity. Recently,
it was shown that the germ cell migration and chemotaxis in Botryllus schlosseri is
12S5-HETE-dependent (Kassmer et al. 2020). Unfortunately, only 125-HETE was
in the focus of their study and other HETEs remained untested. Furthermore, a
B. schlosseri LOX sequence was described with a sequence identity of around 50%
positives to human 5-LOX, 12-LOX and 15-LOX (Kassmer et al. 2020). The genome
of closely related Botrylloides diegensis supports the presence of a single LOX gene
in both species (Voskoboynik et al. 2013; Blanchoud et al. 2018). The sequence of
B. schlosseri LOX contains conserved iron-coordinating amino acids and the amino
acid determinant of regiospecificity (either S or R) suggests the presence of LOX
with the S-specificity. However, only the end of the C-terminal domain without
the N-terminal PLAT and part of the catalytic domains was present in the sequence
(personal data). Thus, the presence of catalytically functional LOX in B. schlosseri
needs to be confirmed by future studies.

Although major advances have been made in sequencing invertebrate genomes
and transcriptomes, the prediction of bioactive metabolites only based on sequence
data is not accurate due to highly conserved domains between dioxygenases with
different catalytical specificities and biological roles, such as LOXs (Lohelaid and
Samel 2018). Additional experiments with dioxygenases need to be performed to
supplement the sequence data. In conclusion, despite the progress in the field,
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very little is known about oxylipin biosynthesis or metabolites in invertebrate
model systems.

Common precursor PUFAs for the oxylipin synthesis in vertebrate and
invertebrate systems demonstrate the evolutionary requirement of lipid mediators
in the physiology of animals (Figure 3). As in vertebrates the effect of different
eicosanoids on the fate of SCs are clearly demonstrated (Table 1), it is likely that these
processes in marine invertebrates are driven by ancestor genes and similar mediators.

4.3. Potential Role of Eicosanoids in the Stem Cells of Marine Invertebrates

In contrast to vertebrates, SCs in marine invertebrates are disseminated
throughout the organism and instead of uni- or oligopotency, they possess pluri- and
totipotent capabilities. Another unique property of invertebrate SCs is their ability to
trans-differentiate from one cell type to other (Rinkevich et al. 2009). It occurs when
a significant amount of SCs is needed, specifically during budding, regeneration and
in response to severe abiotic or biotic stress (Rinkevich et al. 2009).

In all species studied to date, lipid mediators mediate important adaptation
responses to cellular stress. Organisms continuously sense and respond to
environmental conditions to maintain their homeostasis under changing conditions
and survive. Biological stress can be defined as an adverse condition or force which
disturbs the homeostasis and normal functioning of an organism (Jones et al. 2010).
Overall, external stressors may be biotic, such as pathogens, or physical, such as
temperature, salinity, water, nutrient deprivation, chemicals and pollutants, oxidative
stress, mechanical stress and radiation.

The initial wound response in animals aims for rapid and efficient isolation of
the wound to minimize both the loss of vital fluids and environmental challenges
(Proksch et al. 2008; Rodriguez et al. 2008; Ariel and Timor 2013; Palmer et al. 2011;
Maffei et al. 2007). In multicellular organisms, regeneration involves the repair of
tissues/organs after injury and homeostatic renewal. The spatio-temporal immune
cell activation is essential in regenerative response and its adequate regulation
defines the regenerative success. The initial step in response to the incision in
marine invertebrates, including corals, aims for rapid and efficient provisional
plugging of the wound, similar to vertebrates (Palmer et al. 2011). On a cellular
level, the wound repair in vertebrates has four phases: (1) hemostasis/coagulation,
(2) inflammation, (3) proliferation and (4) remodeling (Singer and Clark 1999; Schultz
et al. 2011; Maderna and Godson 2009). The same wound repair phases are observed
in Cnidarians (Reitzel et al. 2008; Olano and Bigger 2000; Palmer et al. 2008). Coral
wound response includes the recruitment of granular amoebocytes (Mydlarz et al.
2008; Palmer et al. 2008), which are important in pathogen clearance. Acting
cooperatively, eicosanoids mediate the initial stages of wound response and the
onset and end of the inflammatory phase of wound repair, promoting cell migration
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and modulating the central signal pathways involved in cell cycle control (Moreno
2009). Oxylipins are also involved in coral wound response (Lohelaid et al. 2014a),
but their effect on marine invertebrate stem cells is not known. Furthermore, innate
immune response and regeneration are inter-connected processes during tissue
repair (Aurora and Olson 2014). As pointed out before, 11R-HETE enhanced the
tentacle regeneration and bud formation of decapitated Hydra vulgaris (Di Marzo
et al. 1993) indicating its direct cellular regulator effect. The distribution of stem cells
and molecular regulation of stemness in Hydra is complex (Hobmayer et al. 2012).
Unfortunately, it is not known which cells are responding to this biomolecule and
what is the underlying molecular mechanism.

In addition, the levels and production of eicosanoids in vertebrates are low
and tightly controlled (Dennis and Norris 2015; Serhan and Chiang 2008), whereas
corals contain an enormous amount of various oxylipins (Weinheimer and Spraggins
1969). Thus, the high production of oxylipins, such as PGE; in P. homomalla, could
contribute to the differentiation of SCs and also increase the regenerative capacity
of invertebrates.

4.4. Challenges in the Stem Cell Biology of Marine Invertebrates

Currently, we lack basic knowledge about oxylipins and oxylipin-mediated
processes in marine invertebrates and their distribution in different cell populations,
including stem cells. The main practical limitations for efficient studies are the
absence of (1) SC definition in invertebrates, (2) adequate biomarkers to distinct cell
populations, (3) developed protocols for SC isolation, and (4) proper knowledge
of how to culture SCs and create SC lines. In addition, there are well-established
protocols for extraction and analysis of different lipid subclasses (Hou et al. 2021),
however, specific know-how, equipment and a certain amount of SCs for the proper
detection are still required. Apart from the identification and profiling of oxylipins,
it is challenging to determine the role of each of the individual oxylipins on the stem
cells due to the high number of oxylipin derivatives and complexity of intracellular
oxylipin pathways. Nevertheless, constantly improving state-of-the-art technology
and methodology as well as greater networking opportunities contribute to the
advancement of SC research.

5. Conclusions

Oxylipins, including eicosanoids, are short-lived lipid mediators, they act
locally in an auto- and paracrine manner to control proliferation, migration, and
differentiation of vertebrate SCs which contribute to tissue repair, regeneration and
other cellular processes. Based on current knowledge, we propose that oxylipins are
also involved in the renewal, proliferation and differentiation of marine invertebrate
SCs. Still, due to a variety of lipid mediators and other regulators, and lack of
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studies, the role of eicosanoids in determining the fate of marine invertebrate SCs
is far from being clear. For example, it is difficult to translate the function if there
is a high variation in oxylipin content between different species and the regio- and
stereoisomers of lipid mediators might have different or even opposite effects. Studies
on marine invertebrate genomes and transcriptomes are able to give some clues,
but they are insufficient to predict the specificity nor functionality of dioxygenases.
To date, sequence data from different organisms are emerging, however, we lack
systematic studies in different marine invertebrate species. For instance, profiling
of oxylipin pathways and biological actions of PUFAs and oxylipins on model
organisms and their SCs should be performed. Thus, only basic research on
invertebrate SCs is able to define the compounds produced in model systems and
the role of applied eicosanoids.
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Molecular Regulation of Decision Making
in the Interstitial Stem Cell Lineage of
Hydra Revisited
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Bert Hobmayer

Abstract: Multipotent interstitial stem cells in the freshwater polyp Hydra define
one of the best-studied pre-bilaterian adult cell lineages. Most of them represent a
population of small, fast-cycling cells that give rise to three somatic differentiation
products (neurons, nematocytes, and gland cells) under conditions of continuous
asexual growth and reproduction, and they also form the gametes when sexual
reproduction is initiated. Few proliferate with a longer cell cycle. Interstitial stem
cells in Hydra and other marine hydrozoans have been studied intensively using
sophisticated cellular and molecular methods over several decades. Here, we
discuss the properties of interstitial stem cells in Hydra and the known feedback
control mechanisms maintaining tissue homeostasis and spatial distribution of
interstitial cells along the polyp’s major body axis. We summarize the current state
of knowledge about molecular regulation of self-renewal and somatic differentiation
and put particular emphasis on those molecular factors that have been shown to
affect decision making using methods of functional interference.

1. Introduction

Interstitial cells (ICs) were discovered in the late 19th century by August
Weismann and described as putative migratory germline precursor cells in several
colonial marine hydrozoans, laying a basis for his theory of the germline published
nearly ten years later (Weismann 1883). Labeling techniques and tissue manipulations
revealed the lineage relationships and cellular dynamics of the various types of ICs
in hydrozoans, especially in the freshwater polyp Hydra (Tardent 1954; Miiller 1967;
for review also see David et al. 1987; Bode 1996; Plickert et al. 2012). These studies
showed that all ICs belong to a single adult stem cell lineage with three somatic cell
types—neurons, nematocytes (stinging cells), gland cells—as well as the two types
of gametes as differentiation products (Figure 1A).

Classic studies using Hydra as a model determined the probabilities for
self-renewal and for differentiation into the different somatic interstitial cell types,
and they precisely defined cell cycle and differentiation times (Campbell and David
1974; David and Gierer 1974; Schmidt and David 1986). Thus, there is a detailed
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quantitative understanding of IC lineage dynamics. More recently, omics approaches,
transgenic Hydra polyps and genetic up- and down-regulation have provided
an advanced understanding of the diversity and plasticity of sub-populations
of cells within the IC lineage (Siebert et al. 2008, 2019; Chapman et al. 2010;
Hemmrich et al. 2012; Buzgariu et al. 2015). An unexpected, modified model for
nerve and gland cell differentiation arose from single-cell transcriptome analysis
in Hydra, suggesting that these two differentiated cell types arise from a common
precursor (Figure 1B; Siebert et al. 2019). Altogether, Hydra interstitial stem cells
(ISCs), often referred to as “i-cells” in Hydra and other hydrozoans, and their
differentiation products represent probably the best-studied pre-bilaterian adult
stem cell system, and a number of comprehensive reviews have discussed its various
features (Bosch 2008; Watanabe et al. 2009; Bosch et al. 2010; Hobmayer et al. 2012;
David 2012; Nishimiya-Fujisawa and Kobayashi 2012). Here, after addressing
major ISC properties in Hydra, we summarize the current state of knowledge
about known molecular factors acting in lineage decision making in its asexual
reproduction mode, and we focus on those factors shown to be active in functional
interference assays. More detailed information about expression, putative function
and functional validation of these factors is listed in Table 1. Table 1 also includes
some regulators proposed to act in IC decision making on the basis of their cell
type-specific gene expression.

Table 1. Selected molecular factors acting in the Hydra interstitial cell lineage based
on available functional interference data and/or cell type-specific gene expression.

Cellular Hydra Genome Protein Expression Experimental

Factor (References) Function Model (Augustus) Pattern Validation

ISC self-renewal

HyGSK-3p

(Khalturin et al. 2007; 51gna1' Sc4wPfr_488.g29970.t1 IsC Smi: alsterpaullone
Broun etal. 2005) ~‘ransduction
Hyp-Catenin signal transgenesis, Smi:
(Gee et al. 2010; Hartl gna. Sc4wPfr_975.87262.t1 1SC genests, smt
etal. 2019) transduction alsterpaullone
Hy-I-celll
(Siebert et al. 2019) unknown ScdwPfr_559.g509.t1 ISC scRNAseq
FoxO transcription . .
(Bochm et al. 2012) factor Sc4wPfr_909.g33493.t2 1SC RNAI, transgenesis
HyMycl
(Ambrosoneetal. —transcription gy pg 73 011571 11 1SC RNAi, smi: 10058-F4
2012; Hartl et al. 2010, factor /28 : ’ :
2019)
HyMyc2 transcription
(Hartl et al. 2014, facth)Dr Sc4wPfr_850.1.g5732.t1 1SC WISH
2019)
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Table 1. Cont.

Factor (References) Cellular Hydra Genome Protein Expression Experimental
Function Model (Augustus) Pattern Validation
Hywi, Hyli o
(Juliano et al. 2014; RNA bm.dmg ScdwPfr_597.2.g14333.11, 1SC transgenesis
Teefy et al. 2020) protein Sc4wPfr_661.g19809.t1
Nerve cell differentiation
Cnash transcription ISC, sensory
(Grens et al. 1995) factor Sc4wPfr_147.g8607.t1 neurons WISH
Myb transcription neuronal
(Siebert et al. 2019) factor ScawPir_423.g13448.t1 progenitor cells scRNAseq
HvSoxC transcription neuronal
(Siebert et al. 2019) factor ScawPfr_351.811299.1 progenitor cells scRNAseq
Myc3 transcription neuronal
(Siebert et al. 2019) factor ScawPfr_199.828684.t1 progenitor cells scRNAseq
Cnox2 -
(Miljkovic-Licina et al. trar}iccrtloprtlon Sc4wPfr_165.¢g10051.t1 apical neurons RNAIi
2007)
Head activator . . :
(Fenger et al. 1994) signal peptide - - peptide treatment
(Takahl;lsy}? ji? 2000) neuropeptide Sc4wPfr_635.g14708.t1 neurons peptldve\];;e}altment,
Hym33H . peptide treatment,
(Takahashi et al. 1997) neuropeptide  Sc4wPfr_59.2.¢12471.t1 neurons WISH
NDA-1 transgenic
(Augustin et al. 2017;  neuropeptide Sc4wPfr_824.¢11313.t1 neurons overexpression and
Siebert et al. 2019) knock-down
prdl-a -
(Miljkovic-Licina etal.  TAMSCIPHON g4 pp 1080.515226.t1 nerve cells WISH
2007) factor (ectoderm)
prdl-b transcription nematocyt:
(Miljkovic-Licina et al. Scriptio Sc4wPfr_372.827997.t1 ematocyte, WISH
2007) factor nerve cells
msh transcription nerve cells
(Miljkovic-Licina et al. P Sc4wPfr_87.g16557.t1 WISH
2007) factor (ectoderm)
COUP-TF transcription nerve cells
(Miljkovic-Licina et al. P Sc4wPfr_17.g15881.t1 ’ WISH
2007) factor nematocytes
Nematocyte differentiation
HyZic transcription  Sc4wPfr_252.1.g15359.t1 iarr;yafrg;fetritmtg BedU. WISH
(Lindgens et al. 2004) factor ScawPfr 237.2.g16165.t1  '° ‘(’2_8)5 ests ’
ignal
HvNotch signa early nematoblast .
(Kéasbauer et al. 2007) trir;i(:;fgion ScdwPfr_326.g15645.t1 differentiation BrdU, smi: DAPT

GSK-3p
(Khalturin et al. 2007)

phospho-kinase

Sc4wPfr_488.g29970.t1

early nematoblast
differentiation

Smi: alsterpaullone
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Table 1. Cont.

Factor (References) Cellular Hydra Genome Protein Expression Experimental
Function Model (Augustus) Pattern Validation
Cnash ¢ ot nematoblast
nas ranscription Sc4wPfr_147.g8607.t1 differentiation WISH
(Grens et al. 1995) factor
(8 and 16 cells)
HyEED co-expressed epigenetic
with HyEZH2 rzggula tor Sc4wPfr_804.g24124.t1 = nematoblast—ISC transgenesis
(Khalturin et al. 2007)
Mycl - .
(Ambrosone et al. tranfscnptlon Sc4wPfr_73.g11571.t1 nematoblast—ISC ._RNAI’
2012) actor smi: 10058-F4
DKkk3 secreted wnt differentiating
(Fedders et al. 2004) modulator ScdwPfr 259_g33632.t1 nematocytes WISH
Gland cell differentiation
Myb transcription precursor gland
(Siebert et al. 2019) factor ScawPfr_839.4024.1 cells scRNAseq
Dkk 1/2/4 A-C secreted wnt endodermal
(Augustin et al. 2006; modulator Sc4wPfr_134_g20117.t1 gland cells in WISH
Guder et al. 2006) gastric region
Gametogenesis
signal
HvNotch . .
(Kasbauer et al. 2007) transduction Scd4wPfr_326.g15645.t1 oocyte smi-DAPT
receptor
Cnvasl and Cnvas2 .
N germ-line Sc4wPfr_861.g31120.t1 S
(M"d;OZS‘ll;‘ etal. factor ScwPfr 2009.g19353.¢1  Sermline—ISC WISH
Cnnosl and Cnnos2 .
- germ-line Sc4wPfr_366.g23802.t1 S
(Mod;lg(;lol;l etal. factor ScawPfr_169.529161.1 germline—ISC WISH
Hywi .
(Juliano et al. 2014; Rle:r-Obtler}:mg Sc4wPfr_597.2.¢14333.t1 germline—ISC immunocytochemistry
Teefy et al. 2020)
Pumilio RNA-binding
(Siebert et al. 2019) protein Sc4wPfr_112.1.g5130.t1 body column scRNAseq
HyEED epigenetic
(Genikhovich et al. r};ggulator Sc4wPfr_6.g19136.t1 spermatogonia WISH
2006)
HyMyc2 transcription spermatogenesis,
(Hartl et al. 2014) factor ScawPfr_850.1.g5732.t1 oogenesis WISH
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ecto

Figure 1. Schematics of the Hydra interstitial stem cell (ISC) lineage. (A) In the
classic model, an ISC gives rise to somatic nerve cells (nv), gland cells (gl), and
nematocytes (nc). ISCs also form sperm- and egg-restricted stem cells (ssc, esc),
which can differentiate mature sperm cells (sp) and eggs during sexual reproduction.
Nematocyte differentiation starts with the formation of nematoblast (nb) nests,
which differentiate mature nematocytes after going through terminal mitosis.
The committed precursor (pr) for nerve cell differentiation has a limited capacity for
proliferation. (B) Results from single-cell transcriptome analysis suggest a modified
model, in which nerve and gland cells derive from a common precursor (pr), whose
capacity for proliferation is yet not clear. Source: Graphic by authors.
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2. Interstitial Stem Cell (ISC) Properties in Hydra

2.1. ISC Self-Renewal and Stochastic Decision Making

ISCs represent small, undifferentiated cells appearing as single cells or cell
pairs and exhibiting a large nuclear—cytoplasmic ratio, a de-condensed chromatin
with conspicuous nucleoli, a poly-ribosome- and mitochondria-rich cytoplasm,
and multiple chromatoid bodies (nuage) associated with the nuclear membrane
and mitochondria or isolated within the cytoplasm without connections to other
organelles (Figure 2; Hobmayer et al. 2012). In vivo stem cell cloning experiments
using IC-free host tissue demonstrated the multipotency of Hydra ISCs and their
capacity to differentiate into somatic cells and gametes (David and Murphy 1977;
Bosch and David 1987; Nishimiya-Fujisawa and Sugiyama 1993). ISCs reside in
the ectodermal epithelial layer throughout the gastric region. In intact, asexually
growing polyps, ISCs continuously grow in contiguous patches and migrate only
small distances at most (Bosch and David 1990; Boehm and Bosch 2012). Nearly all
ISCs are fast-cycling cells with a cell cycle length of 18-30 h (Campbell and David
1974) and a probability for self-renewal (Ps) of around 0.6 (David and Gierer 1974).
Notably, after keeping clonal lab strains under conditions of fast and indefinite
growth over decades, ISCs do not show any sign of cellular senescence, indicating
that they have evolved mechanisms counteracting the known limits to expanded
stem cell division such as telomere reduction, mitochondrial dysfunction, DNA
damage, etc. (Sun et al. 2020; Tomczyk et al. 2020). There is also a tiny population of
slower cycling ISCs showing an expanded cell cycle length of several days, which can
be activated to proliferate faster by regeneration signals (Govindasamy et al. 2014).
Finally, tracking of Dil vitally labelled ISCs revealed the full capacity for decision
making, in which both daughter cells of a stem cell can remain stem cells or become
differentiation precursors, or in which asymmetric division yields one stem cell
and one differentiation precursor (David 2012). This type of flexible decision
making involves communication of ISCs with their environment and rather complex
processing of incoming short- and long-range signals.
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Figure 2. Ultrastructure of a Hydra interstitial stem cell (ISC). (A) ISC (green)
positioned apically to the basal epithelial muscle fibers and the underlying mesoglea
(yellow). Representative organelles of ISCs are depicted at higher magnification:

(B) nuclear membrane with a nuclear pore, de-condensed chromatin and part of
the nucleolus (n); (C) Golgi apparatus (g) and mitochondrium (m); (D) chromatoid
body/nuage (nu) associated with mitochondria (m); (E) abundant ribosomes and
chain-like poly-ribosomes in the cytoplasm. Bars: 1000 nm in (A), 500 nm in (B-D),
250 nm in (E). Source: Graphic by authors.

2.2. A Putative ISC Niche

Hydra ISCs reside in the interstitial spaces between ectodermal epithelial
cells usually at the basal level of the epidermal layer close to the muscle fibers.
The microenvironment of stem cells (the “niche”) is commonly regarded as an
important regulatory entity for stem cell decision making and for providing
structural, trophic and physiological support. Thus, these interstitial spaces represent
distinct niches for ISCs. They may create a communication space for maintaining the
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multipotent stem cell state or for becoming a committed precursor cell. However,
none of the signals used to communicate has yet been isolated and characterized
by now. Light and electron microscopic images reveal the direct contact of ISCs
over almost their entire membrane surfaces with the membranes of surrounding
epithelial cells (Figure 2). There has been speculation that classic cadherin, as in
bilaterian stem cell niches, is involved in ISC—niche interactions (Bosch et al. 2010).
The Hydra genome indeed encodes one large classic cadherin protein (Chapman
et al. 2010), and this gene is transcriptionally activated in ectodermal epithelial cells
and ISCs (Hydra single-cell transcriptome data available at the Broad Institute Single
Cell Portal; Hobmayer lab, unpublished data). Functional analysis is required to
validate this view. Furthermore, direct contact between ISCs and the mesoglea,
Hydra’s extracellular matrix, has been discussed (Bosch et al. 2010), but also here a
more detailed analysis using advanced imaging and molecular methods is needed to
validate this idea.

2.3. Known Feedback Regulation through Signaling from Beyond the Niche

Two aspects of continuously growing asexual mass cultures of Hydra clearly
suggest that ISC behavior must be under tight control of complex feedback signaling
and global patterning mechanisms. First, ICs exhibit a defined distribution pattern
along the polyp’s major head—foot body axis. ISCs are restricted to the gastric
region, and they do not occur in the differentiated head and foot areas. This was
first demonstrated by David and Plotnick (1980) by analyzing the axial origin
of self-renewing and clone-forming interstitial cells in host aggregates. Later, it
was confirmed using ISC-specific antibody staining and stable transgenic polyps
expressing GFP in ISCs (David et al. 1987; Wittlieb et al. 2006). The boundaries to
the head and foot areas of differentiation are sharp, raising the question of how
such sharp boundaries are maintained under conditions where the entire tissue
is constantly growing and cells are permanently changing positions. Positional
information provided by the primary axial patterning system was suggested to shift
ISC decision making from self-renewal to differentiation at the gastric region-head
and gastric region-foot boundaries (Bosch 2008). Wnt/beta-Catenin signaling plays
a central role in the Hydra head organizer, the polyp’s major signaling center
for axial patterning and setting up positional information (Hobmayer et al. 2000;
Broun et al. 2005). Furthermore, accumulating evidence as discussed below in more
detail shows the effects of beta-Catenin on ISC maintenance, as well as on nerve and
nematocyte differentiation.

Second, asexual polyp growth strictly follows the rules of homeostasis. All cell
types maintain their numbers relative to each other. During permanent tissue growth,
they increase in numbers at the same pace, despite the fact that cell cycle lengths and
differentiation times of the various cell types differ substantially. Since cell death
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plays no role in asexually growing polyps, survival and the production of new cells by
proliferation and differentiation are the main players, and they require permanent cell
communication throughout the entire body column. By experimentally manipulating
the density of selected cell types, feedback mechanisms coming from beyond
the ISC niche were uncovered. ISC self-renewal reacts to the ISC density in the
surrounding gastric tissue. Low density causes an increase in the probability for
self-renewal, and high density a decrease (Bode et al. 1976; David and MacWilliams
1978; Sproull and David 1979; Fujisawa 1992). This feedback mechanism seems to be
strain-specific, since ISCs do not respond to host ISC densities in tests using donor
and host cells from different Hydra strains (David et al. 1991). Transplantation studies
introducing ISCs into host tissue with variable nerve cell densities demonstrated that
the nerve cell density positively affects ISC proliferation (Heimfeld and Bode 1985;
Bosch et al. 1991). Finally, Boehm and Bosch (2012) demonstrated that non-migratory
ISCs are stimulated to migrate towards gastric tissue devoid of ISCs. They proposed
two alternative models explaining the observed migration patterns. Either attractive
signals from empty niches may activate and direct ISC migration over some
distance, or gastric tissue holding normal ISC densities may constantly emit signals
suppressing ISC migration. None of the proposed signals discussed above has been
identified by now. In summary, our understanding of the molecular nature of the
described feedback mechanisms is only at its very beginning.

3. Molecular Factors Acting in Somatic IC Decision Making in Hydra

3.1. ISC Maintenance/Self-Renewal Factors

According to the current paradigm, adult stem cell maintenance and the
maintenance of pluri- or multi-potency is a result of the action of a distinct set
of molecular factors, mostly stem cell-specific transcription factors. Among these
factors, Oct4, Sox2, Kfl4, and c-Myc have become famous for inducing pluripotency
in mammalian somatic cells (Takahashi and Yamanaka 2006). Based on this, they
have been prime candidates in searches for stemness factors in other animals.
However, there is little evidence that they play such a role across the animal kingdom.
The Hydra genome does not encode homologs of oct4 and kIf4 genes. Genes of related
sub-families are encoded in the Hydra genome, but the closest relatives to oct4 and kif4
sub-families are not expressed in ISCs. Likewise, paralogs of the sox gene family are
encoded. However, while several of them are expressed in the interstitial cell lineage,
none of them is clearly and specifically activated in ISCs (Siebert et al. 2019). Taken
together, these results suggest that different animal lineages have evolved different
molecular signatures to maintain adult stem cells. A strong candidate factor for ISC
maintenance in Hydra and some bilaterians including vertebrates is the transcription
factor fork head box O, FoxO (Figure 3; Table 1). Overactivation of FoxO in normal
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polyps increased ISC proliferation (Boehm et al. 2012). It also activated expression of
vasa and piwi, two known stem cell genes (see below), in ISCs and in differentiating
nematocytes.

self-renewal nerve cell

differentiation
FoxO Head activator

L y

cAMP Hym33H Cnox2

Mycl J- &}v
7/
B- Catenln —7 ( > 2
: l

B- Catenln Hym355

Pl
N}
Vv

[-Catenin

nematoblast
proliferation

nematocyte
differentiation

Figure 3. Schematic of the known molecular regulators of self-renewal and
differentiation in the Hydra interstitial cell lineage. Positive and negative regulators
are depicted in green and red, respectively. The precise time of action of these
factors along a differentiation trajectory is in most cases unknown. Thus, the
depicted position does not necessarily represent the precise sequence of events.
Source: Graphic by authors.

Among the four myc gene homologs identified in Hydra, a structural and
biochemical characterization showed HyMycl and HyMyc?2 to share high similarities
with c-Myc from vertebrates (Hartl et al. 2010, 2014). RNA interference suggested an
initially unexpected role of hymycl to decrease ISC self-renewal (Figure 3; Table 1;
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Ambrosone et al. 2012). The hymycl promoter turned out to be a target of repression
by Wnt/3-Catenin signaling (Hartl et al. 2019). Furthermore, transgenic animals
overexpressing nuclear 3-Catenin show an increase in ISC density, which indicates an
overall stimulating effect of Wnt/3-Catenin signaling on ISC self-renewal possibly
by a double-negative cascade via HyMycl (Figure 3; Table 1; Hartl et al. 2019).
The precise function of HyMyc2 in ISC maintenance is not clear at the present.
The hymyc2 gene is expressed in all proliferating cells in Hydra, including ectodermal
and endodermal epithelial cells as well as gamete precursor cells, and its mRNA is a
maternal contribution to early embryos (Hartl et al. 2014). Furthermore, the hymyc2
exon/intron structure and the encoded amino acid sequence are slightly more similar
to vertebrate c-myc than hymycl. Thus, we proposed that hymyc2 represents the
functional Hydra homolog of vertebrate c-myc with a corresponding active role in cell
cycle regulation and stem cell self-renewal (Hartl et al. 2014). Functional interference
experiments to test this view are ongoing in our lab.

There are putative ISC stemness factors proposed primarily based on gene
expression data. The so-called germline-specific genes nanos, vasa and piwi are
strongly expressed in male- and female-restricted stem cells in Hydra, but also in
multi-potent ISCs (Table 1; Mochizuki et al. 2000, 2001; Juliano et al. 2014; for
review see Nishimiya-Fujisawa and Kobayashi 2012). Activation of these genes
in somatic adult stem cells was observed in other sexually and asexually reproducing
taxa such as Porifera, various other Cnidaria, Platyhelminthes, and Echinodermata,
indicating that there is no clear soma-germline boundary in these species and that
these genes contribute to maintaining adult stem cell multipotency (for review
see Juliano and Wessel 2010). A recent in-depth Hydra single-cell transcriptome
analysis identified only a single marker gene expressed specifically in the putative
multipotent ISCs (Siebert et al. 2019). This new factor, Hy-icelll, has no homolog in
the DNA data bases, and its function in ISCs is unknown at the present. Notably,
single-cell transcriptomics failed to identify a specific set of ISC stemness factors
(Siebert et al. 2019). Hence, it was argued that ISCs are largely defined by the absence
of activity of cell type-specific differentiation genes. How this lack of differentiation
activity is maintained is not known, but an understanding of its underlying molecular
regulation will be essential to understand the potency and longevity of Hydra
stem cells.

3.1.1. Nerve Cell Differentiation

Hydra exhibits a rather simple nervous system with distinct sub-clusters building
three non-overlapping networks (Dupre and Yuste 2017; Siebert et al. 2019). ISC
commitment for neuronal differentiation occurs in the late S-phase in the gastric
region (Venugopal and David 1981). Committed nerve precursors then either migrate
towards the head and foot areas or stay in the gastric region in order to support the
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growing neuronal network along the body column and the replacement of neurons
lost at the terminal ends. Nerve precursors mostly undergo one terminal mitosis
to yield two differentiated neurons; very few undergo one or two more divisions
to yield four or eight neurons (Heimfeld and Bode 1985; Hager and David 1997;
Technau and Holstein 1996).

Several studies revealed an unexpected action of small peptide signaling in
nerve cell differentiation (Figure 3; Table 1). Intact polyps treated with either purified
or synthetic Head Activator peptide (pEPPGGSKVILF) showed a significantly
increased number of nerve cells throughout the body column (Holstein et al. 1986).
This effect can be mimicked by cAMP, indicating that cAMP acts as second messenger
in this cascade (Fenger et al. 1994). The gene encoding the Head Activator peptide
sequence has yet not been found in the Hydra genome. Its origin thus remains
elusive. Two other small peptides regulate neurogenesis in Hydra. Hym-355, a
neuropeptide secreted along the entire body column (FPQSFLPRGa), enhances
nerve cell differentiation in the early commitment phase, and treatment with
this peptide leads to substantially higher numbers of nerve cells in the polyp
(Takahashi et al. 2000). The epitheliopeptide Hym-33H (AALPW) counteracts nerve
cell differentiation most likely also acting on early precursors (Takahashi et al. 1997).

Khalturin et al. (2007) showed that the differentiation of Hym-355-positive
neurons is stimulated in Hydra treated with the 3-Catenin-stabilizing small molecule
Alsterpaullone. Wnt/(3-Catenin signaling is also strongly elevated in transgenic
polyps, in which a 3-Catenin-GFP fusion protein is driven by the actinl promoter.
The density of neurons in the body column of these transgenic polyps is more
than twice as high as in controls (Hobmayer lab, unpublished data), clearly
supporting the view that Wnt/ 3-Catenin signaling stimulates neurogenesis in Hydra
(Figure 3; Table 1). Neurogenesis in the head of Hydra polyps is suppressed by the
knock-down of the transcription factor Cnox-2, as shown by using RNA interference
(Figure 3; Table 1). In addition, qPCR-data indicated that cnox-2 is an upstream
regulator of the nerve cell marker genes pradi-a, gsc, RFamide-B and hyCOUP-TF
(Miljkovic-Licina et al. 2007). Single-cell transcriptomics demonstrated that a few
other transcription factors are specifically expressed in neuronal progenitor cells
(HvSoxC) and in the population of precursors common to nerve and gland cell
differentiation (Myb and Myc3; Table 1; Siebert et al. 2019).

3.1.2. Gland Cell Differentiation

Endodermal gland cells are differentiation products of ISCs, but they retain a
capacity for proliferation in their differentiated state. Thus, very few gland cells are
produced anew, while most of them reproduce by cell division (Schmidt and David
1986). Gland cells actually represent a set of different sub-populations distributed
along the body column (Siebert et al. 2019), and they have been shown to change their
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phenotype by trans-differentiation when they change their axial position following
global tissue movement (Siebert et al. 2008). Gland cell differentiation is not well
studied in terms of regulatory molecular factors. As described above, gland cells
seem to share a common precursor with differentiating neurons based on specific
activation of myb and myc3 genes (Table 1; Siebert et al. 2019).

3.1.3. Nematocyte Differentiation

ISCs committed for nematocyte differentiation undergo two to four steps of
proliferation, resulting in cell nests of proliferating nematoblasts with a nest size of
4s to 16s. Nematoblast nests then undergo terminal mitosis and thereby form nests of
differentiating nematocytes with a nest size of 8s to 32s (David and Challoner 1974).
During the differentiation phase, every nest cell builds a fully functional nematocyte
capsule. Upon completion of this process, nests break up, and individual and fully
mature nematocytes start to migrate. Finally, nematocytes are taken up and mounted
at the apical membrane in ectodermal epithelial cells, mostly in ectodermal battery
cell complexes in the tentacles.

Wnt/-catenin signaling may have two modes of action in this pathway
(Figure 3; Table 1). First, the total number of nests of proliferating nematoblasts
in the body column of a polyp is strongly reduced upon nuclear activation of
[3-catenin in Alsterpaullone-treated and in (3-catenin transgenic polyps (Figure 3;
Khalturin et al. 2007); Hobmayer lab, unpublished data). Second, post-mitotic
differentiation of nematocytes seems to be strongly enhanced by Wnt/ 3-catenin
signaling based on the observation that differentiating nests expressing the
marker gene nb035 disappear, whereas mature nematocytes expressing the
marker gene nb031 strongly increase in numbers upon Alsterpaullone treatment
(Khalturin et al. 2007). In addition, Myc1 seems to be involved. The down-regulation
of mycl mRNAs by RNA interference resulted in an increase in nests of proliferating
nematoblasts and in an increased ratio of mature nematocytes/battery cells in the
tentacles (Figure 3; Table 1, Ambrosone et al. 2012). Equivalent results were obtained
after treatment of Hydra polyps with the c-Myc-specific small-molecule inhibitor
10058-F4 (Ambrosone et al. 2012).

Finally, Notch signaling has been reported to promote nematocyte differentiation
in the early post-mitotic phase possibly by acting in nematoblast nests shortly before
terminal mitosis (Figure 3; Table 1). This was shown using the small-molecule
inhibitor DAPT, which inhibits gamma-secretase and therefore prevents downstream
Notch signaling. Treating Hydra polyps with DAPT inhibited the expression of
the nematocyte marker genes nb031 and nb035, strongly reduced the numbers of
nematocyte nests with small vacuoles, and it forced differentiating nematocytes to
undergo programmed cell death (Kasbauer et al. 2007; Khalturin et al. 2007).
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4. Conclusions

Deciphering the molecular regulation of decision making in the Hydra IC lineage
is at its beginning. A detailed single-cell transcriptomic atlas and advanced methods
for stable transgenesis and genetic knock-down join the available molecular tool kit,
including a genome annotated at the chromosome level. A large set of sophisticated
methods allows the analysis of Hydra ISCs and their lineage products at the cellular
level. Due to its simple body plan, all this can be carried out in vivo in fully intact
polyps. Furthermore, ISC behavior is also studied in related marine hydrozoans such
as Hydractinia and Clytia. The action of the germline factors Nanos, Vasa and Piwi, as
well as Myc function, may be conserved. However, there are unexpected differences
among the hydrozoan polyp models. Polynem, a POU domain transcription factor
more closely related to vertebrate Oct4 than any Hydra Pou transcription factor
seems to keep cells undifferentiated in Hydractinia and is able to induce neoplasia
when overactivated (Millane et al. 2011). While AP2 is a core activator for germ
cell formation in Hydractinia and higher animals (DuBuc et al. 2020), single-cell
transcriptome data do not support this role in Hydra. Clytia Sox proteins, in contrast
to those in Hydra, seem to affect the balance between self-renewing stem cells and
cells undergoing differentiation (Jager et al. 2011). Thus, there is obvious within-class
diversity in the action of stem cell and differentiation factors among different
hydrozoans, and each lineage may have evolved a stemness regulation adapted
to its specific life cycle needs.

What are the imminent questions to be resolved? It is clear that we do
not understand most of the key issues well enough. How is stemness and the
non-differentiation state of ISCs in Hydra and other hydrozoan polyps defined
at the molecular level? What are the molecular signals acting in direct niche
interactions? How do long-range feedback mechanisms work? Finally, what roles do
post-translational modifiers play, and which types of epigenetic mechanisms affect
stem cell maintenance and differentiation? Isolating these regulatory factors will
clearly contribute to a more general understanding of adult stem cell dynamics and
decision making in the common ancestor of Bilateria, and more generally to the
evolutionary ancestry of cellular plasticity, regeneration, and ageing.
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ISC interstitial stem cell

scRNAseq  single-cell RNA Sequencing

smi small molecular inhibitor

WISH whole-mount in situ hybridization
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Planarian Stem Cells: Pluripotency
Maintenance and Fate Determination

Gaetana Gambino, Leonardo Rossi and Alessandra Salvetti

Abstract: Basic molecular mechanisms that orchestrate stem cell maintenance and
fate are widely conserved across kingdoms, allowing for cross-species studies from
simple model systems to mammals. In this context, planarians offer extraordinary
possibilities containing a reservoir of experimentally accessible adult pluripotent
stem cells, “the neoblasts”. Indeed, in vivo reverse genetic manipulation of
crucial neoblast regulators allows a fine study of adult stem cell fate in their
natural environment. Recent extensive transcriptomics analysis revealed that
planarian neoblasts are a widely heterogeneous population including clonogenic and
lineage-committed stem cells, constituting a dynamic compartment that talks with
differentiated tissue for proper physiological homeostasis and tissue regeneration. In
this chapter, we review, in a chronological perspective, the most recent findings in the
comprehension of neoblast biology, including their embryonic origin, and compare
the most accredited models of pluripotency maintenance and fate determination.

1. Introduction

You can hurt them, cut them, or even decapitate them, they will rapidly heal
and regrow. This is not a mythological tale, nor is it a sentence of a fantasy book;
this is the truth for regenerating organisms, especially planarians, flatworms of the
phylum Platyhelminthes (Box 1). The ability to reconstitute missing body parts
through the formation of a transient mass of undifferentiated cells, i.e., the epimorphic
regeneration, relies on the coexistence of three fundamental factors: (i) a pluripotent
reservoir of stem cells that will produce the “bricks” to form the blastema mass;
(ii) a sophisticated molecular machinery to address undifferentiated cell fate and
de novo tissue morphogenesis; (iii) a permissive inflammatory status that favors
regeneration versus scarring. All these features enable planarians to rebuild an
entire organism with perfect novel organs from almost any tiny piece of their body.
The presence of a pluripotent reservoir of stem cells and active body patterning cues
allows for continuous turn-over of specialized cells and tissue homeostasis also in
intact organisms, thus making planarians virtually immortal.
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Box 1. Planarian—an overview.

“Planarian” is the generic name applied to free-living members of the order Tricladida of
the phylum Platyhelminthes (the flatworms) (Sluys et al. 2009). A new higher classification of
planarian flatworms (Platyhelminthes, Tricladida). Planarians are unsegmented acoelomates
included in the Lophotrochozoan clade with bilateral symmetry and possess all three germ
layers. They have a clear anteroposterior polarity with a head and a tail and are usually
dorso-ventrally flattened. A mesenchyma intercalates among the various organs. The nervous
system is composed of two cephalic ganglia connected to various sensory structures of the
anterior part of the head and to two ventral longitudinal nerve cords, linked by commissural
neurons and connected to a submuscular plexus that runs beneath the body wall musculature.
Among sensory structures, the planarian eye is composed of two cell types, pigment cells,
and photoreceptors. Pigment cells organize to form a cup-shaped structure, photoreceptors
located at the opening of the pigment cup project their dendrites into the cup and their axons
to the cephalic ganglia. Photoreceptor dendrites terminate with multiple microvilli-like
structures called rhabdomeres and contain the photoreceptive molecule opsin.

The muscular system is organized into longitudinal, diagonal, and circular muscle
fibers. In the midline of the animal, there is a muscular extensible organ, called the pharynx,
connected to the digestive system, composed of three gut branches—one directed in the
anterior part of the animal and two toward the tail region. The excretory system includes
flame cells that remove unwanted liquids from the body by passing them through ducts,
which lead to excretory pores on the dorsal surface of the body. The main nitrogenous waste
product is soluble ammonia; thus, they are referred to as ammoniotelic. They lack circulatory,
respiratory, and skeletal structures.

Freshwater planarians reproduce either asexually by transverse fission, generating two
identical organisms (clones) or sexually as cross-fertilizing hermaphrodites.

If a planaria is cut, shortly after the amputation an unpigmented outgrowth, named the
regenerative blastema, is observed near the site of injury, and cells within this structure will
differentiate and spatially reorganize to restore the preexisting missing body part. Normal
body proportions are attained after 3—4 weeks of regeneration. Freshwater planarians
are easy and cheap to maintain in the laboratory and several species are used as model
systems for cellular and molecular biology studies, in particular Schmidtea Mediterranea and
Dugesia japonica species, belonging to the sister genus Schmidtea and Dugesia, respectively.
Both species have excellent regenerative abilities, and clonal strains originating from single
animals are used. Results from studies using either S. mediterranea or D. japonica are assumed
comparable also in light of the preliminary D. japonica cell type atlas, which demonstrates that
the two species share similar cell types in relatively comparable abundances (Garcia Castro
et al. 2021). Gene names in the planarian literature carry a prefix designating the species
(i.e., Smed for S. mediterranea and Dj for D. japonica). Additional species might offer further
features useful to understand complex patterning phenomena such as the Dendrocoelum
lacteum, which is a regeneration-deficient planarian species in that its tailpieces are unable
to regenerate a head and ultimately die. Indeed, downregulation of Dlac-B-catenin-1, the
Wnt signal transducer, enables tailpieces to fully regenerate functional heads, rescuing D.
lacteum’s regeneration defect (Liu et al. 2013). An integrated web resource of data and tools
to mine Planarian biology, PlanMine database: http://planmine.mpi-cbg.de/ (accessed on 18
July 2021)) has been created collecting all transcriptomics and genomic data and allowing for
comparative analysis of flatworm biology (Rozanski et al. 2019).
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From a research point of view, planarians represent a “laboratory platform”
in which the most complicated cellular and developmental phenomena are
continuously recapitulated in an in vivo context, thus offering the possibility to
gain information about molecular regulatory mechanisms, cell-to-cell cross-talk,
epigenetic phenomenon, ECM—cell interactions, and morphogenesis of tissues and
organs (Figure 1).

toxicology (
epigenetics{ ,

stem cell biology

s cell differentiation
and lineage tracing

cell cycle kinetics

biosafety of

space biology tissue nanomaterial/biomaterial

regeneration

Figure 1. Scheme depicting the potential uses of the planarian model system.
Orange arrows indicate methodological tools, while green arrows indicate some
research fields. Source: Graphic by authors.

For this reason, this model system accompanies scientists since early 1900 up to
nowadays despite, as perfectly described by Jaume Baguiia (2019) in his personal
commentary, with “evident stumbling blocks due to hidden complexity and technical
unfriendliness of planarians which explain why this model lagged, and still lags,
behind other regeneration models and why and how they baffled and still baffle
us” (ibid., p. 9). Today, most of the technical challenges have been overcome:
interactive genomic/ transcriptomics databases are available (PlanMine database:
http://planmine.mpi-cbg.de/ (accessed on 18 July 2021)) (Rozanski et al. 2019), even
in the form of a single-cell atlas (Available online: https://digiworm.wi.mit.edu/
(accessed on 18 July 2021)) (Fincher et al. 2018; Zeng et al. 2018); RNAi is a widely used
and validated technique (Sdnchez and Newmark 1999); molecular markers for most
of the differentiated tissues have been identified; protocols for several cellular assays
have been successfully developed. Thus, in the last decade, molecular research in the
planarian field jumped forward, revealing an extraordinary articulated cellular system
in which multiple different specialized cell types, several postmitotic progenitors, and

223



a complex population of stem cells, generally referred to as “the neoblasts”, interact
to orchestrate perfect physiological homeostasis and tissue regeneration program.
Here, we review, in a chronological perspective, the most significant findings in the
comprehension of neoblast biology, including their embryonic origin, and compare
the most accredited models of pluripotency maintenance and fate determination.

2. The Clonogenic Neoblasts

All the neoblasts share a similar morphology and show the presence in
their scanty undifferentiated cytoplasm (Figure 2A) of the so-called chromatoid
bodies, electron-dense non-membrane-bound aggregates rich in RNA (Coward 1974).
Requirements used nowadays to define a cell as a neoblast are widely described in
Alessandra and Rossi (2019). Among them, the expression of PIWI-encoding genes
(smedwi-1 for Schmidtea mediterranea and DjPiwiA for Dugesia japonica) (Figure 2B),
X-ray sensitivity (Figure 2C), and their proliferating activity (Figure 2D).

Figure 2. Neoblast features: (A) electron micrograph of a neoblast, mitochondria

are highlighted in yellow. N—nucleus; (B,C) distribution of DjPiwiA-positive cells
visualized by whole-mount in situ hybridization in wild-type (B) and in lethally
irradiated (30 Gy) animals, 3 days after treatment; (D) phospho-H3 immunolabelling
shows that proliferating cells are distributed throughout the entire planarian body
with the exception of the pharynx and the anterior part of the head, especially
behind the eyes. ph, pharynx. Scale bar corresponds to 800 nm in A and to 500 pm
in (B-D). Source: Graphic by authors.

Despite these shared features, the neoblast population appears transcriptionally
heterogeneous, as widely discussed in (Alessandra and Rossi 2019), and the
discovery at the beginning of this century of the existence of some neoblasts able
to resist low-dose X-ray treatment and repopulate the entire organism (Salvetti
et al. 2009) opened the path toward the development of sophisticated assays
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owing to which some secrets of these extraordinary cells have been unveiled.
A question that remained unsolved for several years was whether regeneration
or tissue homeostasis was accomplished by pluripotent cells or by the cooperative
activity of multiple lineage-committed cell types. In 2011, a breakthrough was
achieved by an elegant paper of the Reddien’s group (Wagner et al. 2011) in which
by coupling ionizing radiation and single-cell transplantation, they demonstrated
the existence of neoblasts that could give rise to progenies covering different germ
layers and restore regeneration in lethally irradiated hosts. These pluripotent cells
were defined as clonogenic neoblasts (the cNeoblasts).

2.1. From o Neoblasts to Deep Clustering by Single-Cell Transcriptional Profiling

cNeoblasts, initially simply defined as a subpopulation of the smedwi-1* cells,
became the object of intense studies to try to characterize their molecular signature.
Accordingly, the Reddien’s group in 2014 identified, by a single-cell qRT-PCR assay,
three prominent types of neoblasts—the  (zeta), the Y (gamma), and the o (sigma)
neoblast classes. o-neoblasts proliferate in response to injury, possess broad lineage
capacity, and can give rise to (-neoblasts, thus suggesting them as ideal candidates
to include the cNeoblasts (van Wolfswinkel et al. 2014). The same authors also
provide the observation that the conversion of the transcriptional profile from o- to
(-neoblasts begins directly upon entry into the S-phase. Indeed, the transcriptional
profile of early S-phase (-neoblasts was more similar to that of G1-phase o-neoblasts
than to that of the G1-phase (-neoblasts, and that the (-neoblast identity became more
resolved during progression through S-phase stages. Once produced, the majority
of recently divided (-neoblasts are thought to exit the cell cycle permanently (van
Wolfswinkel et al. 2014) and are not able of subsequent series of cell division and
self-renewal (Lai et al. 2018).

Further evidence supported that o-neoblasts might be the only neoblasts able
to indefinitely proliferate (Lai et al. 2018) and, as a matter of fact, Smed-soxP-1, one
of their molecular markers, is involved in stem cell self-renewal and is required
in the rescue process after low-dose X-ray treatment for colony expansion (i.e., the
ability of smedwi-1* cell colonies, formed by radioresistant neoblasts after low-dose
X-ray, to grow in size), strengthen the idea that o-class neoblasts include cNeoblasts
(Wagner et al. 2012). The discovery of o-neoblasts has led scientists to imagine a
well-defined population of stem cells with its own molecular signature endowed
with pluripotency. However, later, the expression of some c-neoblasts molecular
markers was found to be dispersed across all the neoblast classes identified by van
van Wolfswinkel et al. (2014), unlike the ¢ marker zfp-1 and y marker hnf4, which
are largely specific to their respective classes (Molinaro and Pearson 2016). For this
and further additional reasons, Molinaro and Pearson (2016) wondered whether
o-neoblasts were a truly distinct neoblast class or simply a collection of non-C and
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non-y cells. Accordingly, in a few years, advances in single-cell transcriptomic
rapidly brought to light that o-neoblasts are a heterogenous population themselves,
not a single well-defined neoblast class. Indeed, both Fincher et al. (2018) and Zeng
et al. (2018), focusing on the idea that smedwi-1 differential expression levels might
represent a discriminatory parameter for subclassifying neoblasts, identified several
neoblast subclasses. Making the assumption that cNeoblasts might be included in the
stem cell fraction with the highest level of smedwi-1 transcript and its coded PIWI-1
protein, Zeng et al. (2018) identified a cluster (Nb2) that satisfies a series of selection
criteria (expression of o-neoblast markers and self-renewal regulators; negativity for
fate specific transcription factors (FSTFs); increased expression of cluster markers
within hours after amputation; decline in expression of cluster markers up to 6 days
after sublethal irradiation with a markedly increased and sustained expression from
6 days after irradiation onward) was proposed to include the cNeoblasts. Nb2 cells
show an enriched expression of tspan-1 coding for the cell surface protein tetraspanin
1 (TSPAN-1).

Some concerns can be raised on the assumptions the author made delineating
their strategy. First, the reason for which cells with the highest expression of smedwi-1
should be considered as those that might contain cNeoblasts is a limiting assumption.
For example, it is clearly a not sound strategy for D. japonica (the other principal
planarian model system) in which both DjpiwiA and its coded protein show a very
high expression in a dorsal midline population of neoblast-like cells that do not
satisfy the previous selection criteria. Second, the “a priori” exclusion of clusters
expressing FSTFs bias the analysis pre-assuming that a cell at the beginning of its
commitments cannot revert its fate.

A common feature of adult pluripotent stem cells is that their self-renewal
potential is proportional to their state of quiescence or deep dormancy (Post and
Clevers 2019). This makes sense from an evolutionary point of view, as cell cycling
exposes cells to propagate accidental DNA damage to daughter cells and future
generations. Quiescent cells maintain DNA integrity and reenter the cell cycle only
under appropriate stimuli.

A long debate on the existence of neoblasts with different cycling rates or
on the length of the different cycle phases has characterized the 20th century.
This question appeared definitely closed with the finding that up to 99% of neoblasts
are labeled by BrdU in 3 days after treatment (Newmark and Sanchez 2000). However,
very recently, the presence of a slow-cycling population of neoblasts, with low
transcriptional activity (RNA°"neoblasts), has been identified and proposed as a
regeneration-reserved neoblast population (Molinaro et al. 2021). RNA®"neoblasts
show many characteristics reminiscent of quiescent stem cells, including very small
size, slow division rate, and similarities in gene expression profile. RNA®"neoblasts
undergo morphological changes after injury or low-dose X-ray and enter the cell
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cycle during regeneration by a TORC1-dependent mechanism (Molinaro et al. 2021).
A small fraction of RNA®"neoblasts expresses the tspan-1 marker, suggesting that
some of them are part of the N2b cluster. Diverging lineage markers were often
detected within individual RNA!®Y neoblasts, suggesting that some of these cells
may not be specified to any one lineage (Molinaro et al. 2021). Further studies
are necessary to characterize this novel subpopulation and its relationship with
cNeoblasts and/or other neoblast subpopulations.

2.2. The Neoblast Fate Restriction Model

The last 15 years of scientific research in the planarian stem cell field was
dominated by the line of reasoning that a clear hierarchical organization exists
between neoblast subpopulations, with pluripotent stem cells (the cNeoblasts) giving
rise to neoblasts with a restricted potency, the so-called lineage-committed neoblasts
(Figure 3, left side). The first evidence of the existence of lineage-committed neoblasts
was provided in 2006 owing to the work of Sato et al. (2006) that identified, in asexual
D. japonica, germline stem cells that specifically express a nanos-related gene (Djnos),
localized in the presumptive ovary or testis-forming regions, and morphologically
indistinguishable from neoblasts. Although these Djnos* cells highly express the
PCNA protein, they are blocked in the cell cycle and incapable to incorporate BrdU.
Following the discovery of epidermal-committed (-neoblast and gut-committed
Y-neoblasts (van Wolfswinkel et al. 2014), intense research was focused on identifying
FSTFs that were also expressed in smedwi-1* cells and, thus, probably involved
in neoblast commitment versus a specific lineage. In this way, putative neoblast
precursors for cells of the eye, protonephridia, nervous system, pharynx, anterior pole,
and gut were identified (Scimone et al. 2011, 2014a, 2014b; Lapan and Reddien 2012;
Currie and Pearson 2013; Cowles et al. 2013; Adler et al. 2014; Vasquez-Doorman and
Petersen 2014; Flores et al. 2016). Recently, Plass et al. (2018) performed highly parallel
droplet-based single-cell transcriptomics and by applying a partition-based graph
abstraction algorithm, combined with independent computational and experimental
approaches, derived a consolidated lineage tree that includes all identified cell types
rooted to a single stem cell cluster. In this tree, they identified gene sets that are
co-regulated during the differentiation of specific cell types, thus providing a single
tree that models stem cell differentiation trajectories into all identified cell types of
adult planarians. According to the consolidated lineage tree, neoblasts differentiate
into at least 23 independent cell lineages and several progenitors have been identified.
In addition to all these putative subpopulations, in the planarian species, D. japonica
a spatially well-defined abundant group of cells that show morphological features of
neoblasts, are sensitive to irradiation, express DjpiwiA transcripts and genes involved
in cell cycle progression, and is localized in the dorsal midline. This population is
specifically identifiable by the expression of DjPiwi-1 (Rossi et al. 2006, 2008), a piwi
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homolog gene that has been found in planarians from the Dugesia genus and not in
S. mediterranea and Girardia dorotocephala (Kashima et al. 2020). The function/fate of
DjPiwi-1* cells is still unknown; however, we recently demonstrated that they are part
of a population of soxP-1-negative lineage-committed neoblasts that, as a consequence
of their very slow-cycling rate, are transiently resistant to continuous high-dose
5-fluorouracil (5FU) treatment (Gambino et al. 2020). In case of short low-dose
5FU treatment, cells of this dorsal midline subpopulation never disappear, activate
proliferation after cutting but never change their expression pattern, remain negative
for soxP-1, and do not seem to contribute to the repopulation process (Gambino et al.
2021). On the contrary, DjPiwi-1" expression appears to be associated with cells
reentering the cell cycle at the ventral surface of the animal in challenging conditions,
as demonstrated after a short 5FU low-dose and sublethal X-ray treatment (Gambino
et al. 2021; Salvetti et al. 2009). The recent advances in single-cell transcriptomics
in D. japonica species (Garcia Castro et al. 2021) will allow more information to be
obtained on DjPiwi-1*cells of the dorsal midline, which may represent a valuable
resource for the understanding of planarian stem cell biology.
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Figure 3. Scheme depicting the comparison between the neoblast fate restriction
model and the single-step model of specialization and potency. In the first, the
cNeoblasts can symmetrically self-maintain or asymmetrically divide to give rise to a
daughter cNeoblast and a daughter specialized neoblast or even symmetrically divide
to give rise to two specialized daughters. It is not clear how many times specialized
neoblasts can divide, but in any case, they shortly produce postmitotic progenies,
which gradually differentiate into a specialized cell. piwi-like gene transcripts are
highly expressed in cNeoblasts, and their expression gradually declines in parallel
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to fate restriction being very low or undetectable in postmitotic progenies and
differentiated cells. Although soxP-1 expression has been found to span several
piwi-positive subclasses of neoblasts, several lines of evidence suggest that its
expression is limited to pluripotent stem cells and declines in specialized neoblasts.
FSTFs are specifically expressed in specialized neoblasts. In challenging conditions,
including sublethal X-ray doses, short (5FU) treatment, and regeneration for some
sexual planarians, bodies of evidence suggest that postmitotic cells or at least
specialized neoblasts can revert their fate and acquire a wider differentiation
potency. In the single-step model of specialization and potency, an unspecialized
G1 neoblast become specialized, progressing through the cell cycle and starting
to express FSTF from phase S. Concomitantly, a reduction in soxP-1 expression
could be hypothesized. Following the G2 phase, in many cases, an asymmetric
division (A) generates an unspecialized neoblast, which will progress through a
novel cell cycle, acquiring the same or a different specialization, and a postmitotic
piwi-soxP-1-negative progeny that will differentiate. In other cases, a symmetric
division can generate two unspecialized neoblasts (C) or even two postmitotic cells
(B). It cannot be excluded that in challenging conditions, early postmitotic progenies
might revert their fate and reenter the cell cycle. Source: Graphic by authors.

2.3. The Single-Step Fate Model of Specialization and Potency

An emerging viewpoint that opposes the historical idea that cNeoblasts are a
subpopulation with a specific molecular signature refutes the existence of exclusive
transcripts for pluripotent stem cells and accepts the concept of a modulation in
the expression levels of neoblast specific transcripts. In this view, a recent paper
by Gambino et al. (2021) demonstrated that following a short 5FU treatment,
soxP-1 expression is extensively downregulated below the detection limit of in situ
hybridization. However, soxP-1-positive cells remain in the animal body, and only
after a few weeks, some of these cells upregulate again soxP-1 expression, restart
proliferation and repopulate the entire planarian body. The idea that cell behavior
is dependent on the transitory enrichment of specific transcripts invalidates the
existence of clearly defined subpopulations organized in a strict hierarchy and opens
to the concept of blurred borders between neoblast populations, with cells that
possibly fluctuate from wider to restricted differentiative potential and “vice versa”.

In this line of thought, a cutting-edge interpretation of the neoblast fate
specification mechanism questions the idea of the existence of a limited population of
cNeoblasts, and a strictly organized hierarchy of neoblasts with progressive restriction
in differentiation potency has been recently published by Raz et al. (2021). They
demonstrated, by single-cell transplantation in irradiated animals and colony assays,
that no known neoblast subpopulation is exclusively pluripotent and neoblasts from
different subpopulations can be clonogenic. They proposed a single-step fate model
of specialization and potency: newly produced G1 neoblasts are pristine but become
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specified by progressive enrichment in FSTFs during the progression through S/G2/M
phases of cell cycle; a G2 specialized neoblast then asymmetrically divide to give
rise to a non-neoblast daughter cell that will differentiate and a daughter cell that
remains a neoblast and can again specialize to a different fate during the next cell
cycle progression without progenies with intermediary potency. In other terms,
this means that specialized neoblasts can return to pluripotency after cell division.
This model fits well with the proposed switch from o- to (-neoblasts in the S phase
and is in line with some recent publications: (i) Gambino et al. (2021) demonstrated
that in challenging conditions after 5FU treatment, neoblasts early postmitotic cells
could modify their expression profile reacquiring a broader differentiative potential;
(ii) Davidian et al. (2021) showed that subthreshold direct current stimulation rapidly
restores pluripotent stem cell populations previously eliminated by lethal irradiation
promoting cell cycle entry of postmitotic cells. However, even more remarkably, this
new line of thought brings us back to findings obtained at the beginning of the 1980s
from Gremigni’s group (Gremigni and Miceli 1980; Gremigni et al. 1980a, 1980b, 1982)
by using a triplo-hexaploid biotype of D. polychroa that provided a useful karyological
marker because embryonic and somatic cells are triploid (3n = 12 chromosomes) and
could be easily distinguished from male diploid (2n = 8 chromosomes) and female
hexaploid (6n = 24 chromosomes) germ cells by their chromosome number. Gremigni
et al. (1980a, 1980b, 1982) showed that a small percentage of male and (to a much
lesser extent) female germ cells are involved in blastema formation and somatic tissue
reconstruction, along with a large number of neoblasts, suggesting that germ cells,
at the very beginning of their differentiation process, can interrupt their pathway
toward specialization and return to the pluripotent state. This interpretation fits
perfectly with the single-step fate model of specialization and potency proposed by
Raz et al. (2021). In this case, germ cells can be interpreted as specialized neoblasts,
which asymmetrically divide to give rise on the one hand, to a gamete precursor and,
on the other hand, to a cell that specialized to a different fate. Unfortunately, the
triplo-hexaploid biotype did not survive up to the molecular age, and thus, it was
not possible to provide additional demonstrations (Salvetti and Rossi 2012).

A key event for the single-step fate model of specialization is the asymmetric
division, which is still an unexplored field in planarian mainly due to technical
difficulties. The first molecular evidence of asymmetric stem cell division has
been provided by a comprehensive paper of the Sanchez Alvarado’s group (Lei
et al. 2016) in which, by applying a combined approach of RNAi and colony
expansion assay after low-dose X-ray, they demonstrated that the epidermal
growth factor pathway and its receptor egfr-3 are involved in the expansion of
neoblasts when their number is diminished by sublethal radiation. egfr-3 is also
fundamental in physiological conditions for the second peak of hyperproliferation
at 48 h postamputation. Strikingly, egfr-3 protein frequently shows an asymmetric
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distribution on the neoblast membrane, and egfr-3 distribution during mitoses was
associated with symmetric/asymmetric distribution of smedwi-1 transcripts and the
chromatoid bodies. Thus, the authors hypothesize that egfr-3 controls the repopulation
of neoblast by regulating asymmetric versus symmetric cell division. Additional
lines of evidence emerged from the analysis of the function of the planarian homolog
of mex3 RNA-binding protein (Smed-mex3-1) that is expressed in both stem cell
and immediate postmitotic progeny populations (Zhu et al. 2015). Knockdown
of mex3-1 leads to a rapid decline of progenitor markers for multiple lineages
but not of stem cells, suggesting its specific role in specifying committed progeny.
Despite Smed-mex3-1 mRNA showing no asymmetric distribution into stem cells,
on the basis of its proven function in other model systems, the authors speculate
that it may function to maintain asymmetry in stem cell lineage progression by
promoting postmitotic fates and suppressing self-renewal (Zhu et al. 2015). Despite
these pioneering papers, much research needs to be performed to demonstrate and
understand asymmetric cell division in neoblasts.

In conclusion, the molecular classification of planarian neoblasts is still a work in
progress, and although many efforts to link the molecular and functional definitions
of cNeoblasts have been made, unambiguous cNeoblast markers have not been
yet identified. Thus, we cannot picture cNeoblasts as a special subpopulation;
on the contrary, we had to assume, according to the single-step fate model, that
pluripotency is the consequence of transitory and cell-cycle related fluctuations
in the quantitative transcriptional profile, rather than expression of specific genes;
asymmetric distribution of cell fate determinants such as chromatin remodeling
factors might be at the basis of self-maintenance mechanisms. In this view, all
neoblasts are potentially clonogenic, and the expression of FSTFs is correlated
with cell-cycle progression rather than limited to lineage-committed neoblasts with
intermediate potency. This hypothesis is groundbreaking and relates to a previous
probabilistic model that considers the possibility that pluripotency may be a transient,
probabilistic state exhibited by stem cells. In this view, self-renewal becomes a feature
not possessed by a discrete population of cells but transiently held by a small number
of cells and arising depending on the demands of the animal (Adler and Sanchez
2015). However, many open questions still remain. For example, which precise
changes in transcriptional profile drives the switch from G1 pluripotent state to S-G2
m lineage-committed state? Is the increase in the expression of FSTFs necessary
and sufficient for the downregulation of self-renewal regulators such as members
of the polycomb complex PRC2, the transcription factor soxP-1 (Wagner et al. 2012),
the RNA-binding proteins PIWI-like (smedwi-2 and 3), Bruno-like (Bruli), Pumilio,
and CIP29 (Reddien et al. 2005; Wagner et al. 2012; Guo et al. 2006; Salvetti et al.
2005; Rossi et al. 2007), histone-2B (Solana et al. 2012), the Retinoblastoma homolog
(Zhu and Pearson 2013), and the epidermal growth factor receptor egfr-3 (Lei et al.
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2016)? What is the role of p53 known to inhibit proliferation and stem cell identity
and induce differentiation in the early progeny (Pearson and Sanchez 2010)? Can all
the S-G2 m lineage-committed neoblasts reverse their differentiation fate with the
same effectiveness? What is the role played by epigenetic inheritance? For example,
the asymmetric inheritance of chromatoid bodies and piwi transcripts might bring
into one daughter cell transcripts that, once translated, produce a specific chromatin
condensation pattern that promotes self-renewal. Indeed, evidence that links PIWI
proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells
has been provided (Rouhana et al. 2014). Finally, which positional information
signals drive the decision of a G1 daughter cell to specialize toward a specific fate?
Indeed, a classical niche, meant as a specific anatomical structure in which stemness
is maintained, has not yet been proven in planarians. However, neoblast dynamics
appear to be under the control of signaling from multiple tissues, suggesting that
a global niche, a macroenvironment, comprehensive to the entire planarian body
might exist (Rossi and Salvetti 2019).

3. From Lineage-Committed Neoblasts to Differentiated Cells: The Case of
Epidermal Cell Differentiation

Independently from which specification model is valid, a committed neoblast
should first become a postmitotic cell and then progress toward a fully differentiated
fate. Several examples exist in the literature describing the role of molecular
regulators in the differentiation of multiple planarian tissues including the eye
(Lapan and Reddien 2012) and excretory system (Scimone et al. 2011). However,
owing to the prolific production of some research groups in the last decade, the
most comprehensive overview is available for the differentiation of epidermis.
The Planarian epidermis is a monostratified tissue of multiple multiciliated and
nonciliated cell types (Rompolas et al. 2010). However, despite similar morphological
appearance, Wurtzel et al. (2017) identified eight different spatial transcriptional
identities by the analysis of epidermis-enriched RNAseq libraries, demonstrating
that planarian epidermis is a complex tissue with distinct cell types, all originating
from the single lineage-committed class of (-neoblasts (van Wolfswinkel et al. 2014).
(-neoblasts, characterized by the expression of a group of molecular markers such
as zfp-1, divide and produce postmitotic progenitors that express the marker prog-1
(NB.21.11e)—the so-called early epidermal progeny. Early progeny cell identity is
maintained for a short period of time; indeed, prog-1* cells disappear 2 days after lethal
X-ray treatment and rapidly differentiate in the late epidermal progeny, characterized
by the expression of AGAT-1, AGAT-2, and AGAT-3 transcripts. The early growth
response family transcription factor, egr-5, seems implicated in switching off the
expression of prog-1 and turning on the expression of genes necessary for the AGAT-1+
transition stage. AGAT-1" cells localize more distal with respect to prog-1* cells
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and disappear 7 days after lethal irradiation (Tu et al. 2015; Eisenhoffer et al. 2008).
The spatial expression pattern of prog-1 and AGAT-1 indicates that these progeny
cells migrate to the outer surface of the animal during epidermal differentiation.
Zhu and Pearson (2018) identified myb-1 as a key regulator of the temporal phase
of early progenitor specification during epidermal lineage differentiation. Indeed,
myb-1 (RNAI) resulted in a selective loss of the early progeny fate, causing prog-1*
cells prematurely to adopt the late progeny transcriptional profile. Despite this
heterochronic temporal shift, late progenitors resumed differentiation. The early
transition state into the planarian epidermis is marked by the expression of zpuf-6
transcript, which labels all the AGAT-1" cells, but also some AGAT-1~ cells and some
cells located into the epidermis monolayer. Final differentiation steps are then marked
by vimentin 3 and rootletin expression (Tu et al. 2015). Recent findings demonstrate
that the terminal identity of epidermal cells is acquired early during the differentiation
process, indicating that epidermal progenitors recognize their position and modulate
their gene expression in a way to reflect the array of transcripts in the mature
epidermis (Wurtzel et al. 2017). Strikingly, also the expression of cilia specific genes
starts in early progenitors despite the fact that the formation of cilia is restricted to
the mature epidermis, and accordingly, it has been demonstrated that genes involved
in ciliogenesis that are inactive loci in the stem cell population are methylated in
order to poise them for activation later in development (Duncan et al. 2015). This also
demonstrates that the identity as a ciliated or not-ciliated epidermal cell is acquired
in migratory progenitors before their terminal differentiation (Wurtzel et al. 2017).
Interestingly, it has been demonstrated that terminal epidermal cell differentiation
is finely regulated by the two specific components of the nucleosome remodeling
deacetylase (NuRD) complex: the methyl-CpG-binding domain 2/3 (mbd2/3) gene
(Jaber-Hijazi et al. 2013) and the GATA-type zinc-finger-domain-containing gene p66
(Vasquez-Doorman and Petersen 2016) revealing opening future avenues of research
on how neoblast processes are coordinated at the epigenetic level (Dattani et al. 2019).

4. Embryonic Origin of Neoblasts

Where do cNeoblasts originate from? Are they the heritage of naive embryonic
stem cells? Or are they formed as a specific need for adult tissue maintenance? Yes
and no! Planarians show an ectolecitic embryonic development in which blastomeres
undergo dispersed cleavage among yolk cells, do not contact with one another, and
divide asynchronously. During sphere formation, temporary embryonic tissues are
formed and then degenerate as adult organs are shaped, owing to undifferentiated
blastomeres remaining after sphere formation (Martin-Durdn et al. 2012). Recently, a
very comprehensive study on S. mediterranea embryonic development demonstrates
that pluripotent neoblasts and lineage-dedicated progenitors arise when the
morphogenesis of definitive organs begins (Davies et al. 2017). The authors
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demonstrate that smedwi-1 transcripts are expressed in the zygote and smedwi-1* cells,
endowed with proliferative capability, are detectable throughout all embryogenesis.
However, large-scale changes in gene expression occur in smedwi-1" cells, as definitive
organogenesis begins (developmental stage S5). At this time, early embryo-enriched
(EEE) transcripts, specifically expressed by blastomeres, dramatically decline
and smedwi-1* cells start to be enriched in FSTE. Transplantation experiments of
blastomeres collected from different developmental stages into lethally irradiated
hosts demonstrate that the change in transcriptional profile reflects important
functional differences. Indeed, smedwi-1* cells from S4 and S5 embryonic donor
cells did not rescue lethally irradiated animals, while cells from S6-S8 embryos
acted similarly to adult neoblasts and rescued the lethal phenotype. These findings
suggest that cNeoblast specification occurs during S5. Considering that transcripts
of genes previously implicated in neoblast maintenance such as SoxP-1 or bruli-1
show an expression profile similar to that of smedwi-1 during embryogenesis, the
authors suggest that the expression of pluripotency factors is probably necessary
but not sufficient for the assumption of neoblast fate. Indeed, EEE transcripts
downregulation in blastomeres is necessary for neoblast specification, suggesting that
they might represent repressors of neoblast fate. This hypothesis is very intriguing;
however, no direct proof has been provided such as analyzing the ability to rescue
irradiated hosts after blocking the downregulation of EEE transcripts. Despite the
significant advances in the comprehension of cNeoblast origin, several questions
are still open—are EEE transcripts maternally deposited? If this is the case, which
mechanisms affect maternal transcript degradation? When does zygotic genome
activation occur? Further, how does it influence neoblast specification?
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Pigment Cell-Specific Genes throughout
Development and in Cell Cultures of
Embryonic Stem Cells of Scaphechinus
mirabilis, a Sand Dollar

Natalya V. Ageenko, Konstantin V. Kiselev and Nelly A. Odintsova

Abstract: Pigmentation, a natural mechanism, plays an important role in photo-
protecting larvae and embryos of sea urchins from harmful impacts of solar
radiation, hypoxia, pathogens, metals and toxicants and might be useful as a
marker of environmental stresses. The use of sea urchin embryos and gametes in
testing developmental and production effects has been successfully developed by
a number of laboratories worldwide. The objective of this study was to find the
maximal expression level of the genes encoding enzymes expressed in pigment
cells throughout the development of Scaphechinus mirabilis and in cell cultures of
this sand dollar. Two genes related to different gene families (pks and sult) were
selected for analysis in pigmentation, and their expression level was evaluated by
quantitative real-time PCR. The naphthoquinoid pigments of echinoderms and
related compounds form a new class of highly effective antioxidants of the phenol
type, exhibiting high bactericidal, algicidal, hypotonic and psychotropic activity.
Studying marine invertebrate stem cells and primarily differentiation processes
and growth regulation may open novel biotechnological avenues such as new
applications including basic research in translational medicine.

1. Introduction

Marine organisms are known to possess various compounds with significant
and valuable biotechnological potential for the pharmaceutical industry (Martins et al.
2014). Protostomes (Porifera, Cnidaria) and some deuterostomes (Echinodermata)
have been reported to contain very high concentrations of bioactive compounds, many
of which are not found in terrestrial organisms. In particular, sand dollar pigment
cells are the source of organic naphthoquinone pigments, known as potent antioxidant
substances (Koltsova etal. 1981). It has previously been reported that naphthoquinone
pigments from purple sea urchins (marked with various phenolic hydroxyl groups)
demonstrated the antioxidant ability to depress lipid peroxidation, driving purple
sea urchins as an original and natural source of antioxidants. Moreover, the sea
urchin naphthoquinone pigment response may manifest via an increased antioxidant
activity (Vasileva et al. 2020) due to carotenoids. The pigment—protein complex seems
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to have appeared 2-3 billion years ago in primitive purple photosynthetic bacteria.
Later, the resulting strong electronic donor became the naphthoquinoid pigment
(Sakuragi et al. 2005).

Pigmentation, a natural mechanism, plays an important role in photo-protecting
the larvae and embryos of sea urchins from harmful impacts of solar radiation,
hypoxia, pathogens, metals and toxicants (Pinsino and Matranga 2015; Calestani and
Wessel 2018). Pigmentation might be useful as a marker of environmental stresses in
adult and larval individuals. In fungi, the biosynthesis of naphthoquinone pigments
is an important response to stress exposure, as shown by Medentsev et al. (2005). In
sea urchins, the main pigments produced in normal conditions and in response to
different types of stress are also naphthoquinone pigments. For example, there are
echinochrome A and some spinochromes in the cytoplasm of sand dollar pigment
cells. One of the cellular defense mechanisms in sea urchins is the activation of
specific coelomocytes—red spherule cells. These specific coelomocytes participate in
recognizing and neutralizing pathogens. Only polyketide synthase (pks) and some
flavin-containing monooxygenases (finos) have been previously reported to have a
role in the biosynthesis of naphthoquinone pigments of Strongylocentrotus purpuratus,
a sea urchin (Perillo et al. 2020; Wessel et al. 2020). The sea urchin pks gene encodes
an enzyme important in echinochrome synthesis. Other functions of pigment cells
can be connected with their immune system (Smith et al. 2018; McClay et al. 2020).
It is possible that a sulfotransferase gene (sult) is necessary for some enzymes also
participating in naphthohynoid synthesis (Ageenko et al. 2011; Ageenko et al. 2014).

The chemical synthesis of naphthoquinones was reported in 1985, but commercial
applications have been hampered by the toxicity of some synthesized substances,
as demonstrated Klotz et al. (2014). Echinochrome A has been reported to usually
be produced in sand dollar pigment cells, while the spinochromes are synthesized
in cells of several sea urchin species (Koltsova et al. 1981; Ageenko et al. 2014). To
protect sea urchins and their habitat from over-exploitation, some authors have
developed in vitro approaches for the induction of pigment differentiation through
gene transfection in embryonic cell cultures of two echinoderms, the sand dollar
Scaphechinus mirabilis and Strongylocentrotus intermedius. After two-month cultivation,
the cells of sand dollar embryos transfected with plasmid DNA containing the yeast
gal4 produced naphthoquinone pigments with an absorbance spectrum similar to the
echinochrome spectrum in vivo. A new in vitro technology that does not consider
gene transfection into embryos of sea urchins was developed, supported by sea
urchins’ coelomic fluid components (Ageenko et al. 2011).

The pks and sult expressions were evaluated by quantitative real-time PCR
(gRT-PCR) in order to identify an association with the biosynthesis of naphthoquinone
pigments in the sand dollar S. mirabilis. Peak expression levels of pks and sult in sand
dollar embryos were detected at the blastula and gastrula stages. In vitro, sand dollar
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pigment cell numbers were higher when cultured in sea urchin coelomic fluids than
in seawater.

Currently, the knowledge on the growth actor genes expressed in the tissues
of marine invertebrates is meager. For vertebrates, the key genes regulating the
stem state of cells and ensuring a high level of proliferation of embryonic stem
cells in culture are, mainly, nanog and oct-4. The mechanism of the realization of
stem cell programming for the toti- and pluripotential states is determined by the
key genes regulating “stemness”. Some authors previously discovered one of the
conserved genes, SpOct, in the sea urchin S. purpuratus. In addition, a homologue
of the pluripotent gene nanog was found in the genome of sea urchins, with clear
expression at the mesenchymal blastula stage (the beginning of gastrulation). This
nanog gene exhibited 64% homology and 44.7% identity in amino acid residues,
further revealing high similarities with the mouse brain-specific homeobox gene bsx
(80.8% homology, 61.7% identity; Odintsova 2009). The aim of this article was to
describe naphthoquinoid pigments of sand dollars, obtained in vivo and in vitro for
practical application.

2. Methods

2.1. Collection of Biological Material

Adult sand dollars (S. mirabilis) were collected from Vostok Bay (Sea of Japan,
Russia) throughout the breeding season (at the beginning—middle of August) and
were maintained in running aerated seawater aquaria at 17 °C for 1-3 days. There
are different groups of Echinoderms: sea urchins, sea stars, holothurians and sea
lilies. In terms of body shape, sea urchins (Echinoidea) are divided into two types:
regular (spherical) and irregular (flat and heart-shaped) sea urchins. The irregular,
flat sea urchin S. mirabilis (sand dollar)) is one of the widespread representatives
of shallow-water benthos. The larvae at 48 hpf (hours post-fertilization) were fed
daily with Isochrysis galbana (100,000 cells mL~!). The larvae of the mesenchymal
blastula (14 hpf) were collected on a 30 um nylon mesh and cell cultures were
obtained, as described (Ageenko et al. 2014). The coelomic fluids from intact or
injured (after needle pricks around Aristotle’s lantern) adult sea urchins were named
normal coelomic fluid (CF,) or wounded coelomic fluid (CF,,), respectively. SW was
used as a control medium. All culture media (SW and the coelomic fluids) were
supplemented with 2% fetal calf serum and gentamicin (40 mg-L™1). All reagents
were purchased from Sigma-Aldrich Co. LLC (USA). We used CF of the wounded
sea urchins and CF of normal sea urchins, but not CF of sand dollars because it is
very difficult to collect the required amount of CF. In our first experiments, we tested
all sand dollar CFs: the effect was the same (data not shown).
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2.2. RNA Isolation

Total RNAs from sand dollar gametes, embryos and larvae, as well as from their
cultivated embryonic cells, were extracted using Yellow Solve reagent (Clonogen,
Russia) followed by DNase I treatment (Sileks, Russia) to remove genomic DNA.
The first strand of cDNA was synthesized using 1.5 ug of total RNA as a template
with the Reverse Transcription System (Sileks) in a 50 pL reaction volume. The
PCR reactions were conducted using an iCycler thermocycler (Bio-Rad Laboratories,
Minneapolis/Saint Paul, Minnesota, USA) under the following conditions: one cycle
of 2 min at 95 °C followed by 40 cycles of 15s at 95 °C, 15s at 50 °C and 35s at 72 °C,
with a final extension cycle of 10 min at 72 °C.

2.3. Quantitative Real-Time PCR (q-RT-PCR)

Q-RT-PCR (iCycler thermocycler equipped with the iQ5 Multicolor g-RT-PCR
detection system; Bio-Rad Laboratories) was performed using an established protocol
(Ageenko et al. 2011). ¢cDNAs were amplified in 20 pL of the reaction mixture
containing 1x TagMan Buffer, 2.5 mM MgCl,, 250 uM of each deoxynucleotide, 1U
Taq DNA polymerase, 0.5-2 uL cDNA samples and 0.25 uM of each primer and
probe (Real-Time PCR Kit, Syntol, Russia). Amplification conditions: one 2 min
cycle at 95 °C followed by 50 cycles of 10 s at 95 °C and 25 s at 62 °C. Results were
analyzed with the iQ5 Optical System Software v.2.0 and presented in relative units.
The S. mirabilis actin gene (GenBank accession number DQ222227) and ubiquitin
gene (PRJEB33560) were used as endogenous controls. Results were summarized
from five independent experiments, each with three technical replicates in relative
units. The primer and TagMan probe used in q-RT-PCR, namely, 5’CTT CGC CAG
CCC ATG ATC AAC3’ and 5’ ACT CGC CCA CGT CAC CAT CT3’, were developed
for expression analysis of the pks gene. The primer 5’ GAT CTT CGC TGG CAA GCA
GCT3’ and TagMan probe 5'CCT TCT GGA TGT TGT AGT CGG ACA3’ were used
for expression analysis of the sult gene (Ageenko et al. 2011; Kiselev et al. 2013).

3. Results

3.1. Pks and Sult Expression Profiles in Sand Dollar Gametes and throughout Development

We chose the sand dollar S. mirabilis from available species of regular and
irregular Echinoids because the sand dollar embryos and larvae contain many
pigment cells in their body (Figure 1). The gene expression profiles for the two genes
tested, pks and sult, were different in gametes and throughout development.
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Figure 1. Sand dollar Scaphechinus mirabilis pluteus larva. Arrows show the pigment
cells. Bar 20 um. Source: Graphic by author Natalya V. Ageenko.

We detected trace levels of pks and sult transcripts in spermatozoids and
unfertilized eggs. The highest pks level of expression was observed at the gastrula
stage (Figure 2A), while the maximum sulf level was found at the earlier blastula
stage (Figure 2B). Then, at the prism stage, the level of pks expression fell by more
than three times but increased in the pluteus larvae, without reaching the previous
peak gastrula levels. In contrast, the level of sult expression fell after gastrulation
and equally increased in abundance at the prism and pluteus stages but also did not
reach the level of sult expression at the blastula stage.
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Figure 2. Expression of pks and sult invivo: in unfertilized eggs (Egg),
spermatozoids (Sp), embryos and larvae of the sand dollar Scaphechinus mirabilis
(A,B) and Strongylocentrotus intermedius (C,D) at various stages of development:
blastula, 12 h post-fertilization (Bl); gastrula, 24 hpf (Gl); prism, 34 hpf (Pr); and
pluteus, 72 hpf (Pl). * p < 0.05; ** p < 0.01. Mean =+ SD, five biological replicates,
each with three technical replicates in relative units. One-way analysis of variance
(ANOVA) followed by Tukey’s pairwise comparison test Significant at p < 0.05.
Y-axis—relative units (r.u.). Source: Graphics 2A,B by author Natalya V. Ageenko;
graphics 2C,D from Ageenko et al. (2011).

3.2. Pigment Differentiation in Cell Culture

We found significant differences in the pigment gene expression profiling for
the embryonic sand dollar cells cultivated for four days under various culture media
(Figure 3). Three media were employed to test the effects of various culture conditions
on the sand dollar pigment differentiation under in vitro conditions (Figure 3): SW,
and the coelomic fluids of normal and wounded sea urchins. The appearance of sand
dollar cells cultivated for 4 days is presented in Figure 3A-C. In the blastula-derived
cultures, pigment cells were detected in all media tested at all cultivations. Pigment
cell numbers (Figure 3D) were associated with the coelomic fluids tested, and we
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revealed a >2-fold increase in pigment cell numbers in the CF,, as compared to the
CF,, after 4 days of cultivation. After 10 days of cultivation, the pigment cell numbers
drastically reduced in all tested media.
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Figure 3. Pigment cells of the sand dollar Scaphechinus mirabilis. (A-C) Embryonic
pigment cells in a blastula-derived cell culture of the sea urchin S. mirabilis cultivated
for 4 days (bar 10 um). The cells were cultivated in seawater (A); the coelomic
fluid of intact sea urchins (B); and the coelomic fluid of injured sea urchins (C).
(D) Cellular dynamics of the sand dollar pigment cells cultivated in the three
culture media (SW, CF, and CF,,) over 4-10 days of incubation. In total, >500 cells
were counted for each studied culture medium. (E,F) Expression of two genes
associated with the biosynthesis of naphthoquinone pigments in sand dollar cells
maintained under various culture media (SW, CF, and CF,) over four days: E. The
pks expression level; F. the sult expression level. Bars represent the mean + SD, five
biological replicates, each with three technical ones. One-way ANOVA followed
by Tukey’s pairwise comparison test. Significant at p < 0.05. Source: Graphics by
author Natalya V. Ageenko.

The expression of pks in sand dollar cells cultivated in the coelomic fluids was
increased when compared with cells cultivated in SW, and the expression levels in
CFw-cultivated cells were significantly (>2-fold) higher than those in cells cultivated
in SW (Figure 3E). These results coincide with our data about the number of pigment
cells cultivated in the various culture media. The expression profile of sult (Figure 3F)
had a similar trend to that of the pks expression profile.
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4. Discussion

Kominami and colleagues reported that sand dollar larvae contain one of the
largest amounts of pigment cells compared with larvae of all other tested species
of Echinoids (Kominami and Takata 2002). In contrast to our in vivo data obtained
previously for the sea urchin S. intermedius (Ageenko et al. 2011), in the sand dollar
S. mirabilus, the timing of pks and sult expressions differed between the blastula
and gastrula stages, indicating the specificity of pigment cell appearance in these
two echinoid species. Yet, we confirm previous results on the effects of the culture
medium composition on the appearance rates of echinoid pigment cell precursors
(Ageenko et al. 2014). As shown in this study, pigment differentiation in cultured
sand dollar cells grown in coelomic fluids intensified when compared with cells
grown in SW. The distinct changes in the proportion of pigment cells under the CF,,
versus the CF, conditions could be explained by the specific components of coelomic
fluids: alternations in protein compositions of coelomic fluids after sea urchin injury
compared to control (uninjured) animals and the considerable shift in the absorption
maxima for some proteins were previously reported (Ageenko et al. 2014).

However, there is an alternative explanation for these effects, which is connected
with carbonic anhydrases (CAs). CA is a participant in the calcification process in
numerous invertebrates. Recently, very low concentrations of a specific inhibitor
of biomineralization and a potent inhibitor of CAs, acetazolamide, have been
found to inhibit pigment cell precursor differentiation, as well as the production of
echinochrome in echinoid larvae (Zito et al. 2015). The authors suggest that some
isoforms of CAs might be implicated in the production of echinochrome, providing
plausible support for the impact of acetazolamide on the pigment cell number in
the sea urchin larvae. Currently, the roles of CAs in echinoid larval pigment cell
formation are still elusive, requiring further study and analysis.

Numerous endeavors focusing on the development of immortal cell lines from
a wide range of marine invertebrate species have been reported, but all have been
unsuccessful (Cai and Zhang 2014). Thus, we could not use any echinoid cell line.
In this study, g-RT-PCR and cell culture applications were used for the quantitative
assessment of pigment cell precursor differentiation in sand dollar primary cell
cultures. We revealed that the maximum level of pigment differentiation was reached
when the cells of the sand dollar S. mirabilus were cultivated in CF,,. The same has
previously been reported for S. intermedius cultivated cells, and pigment cell numbers
were higher when cultured in sea urchin coelomic fluids than in seawater (Ageenko
et al. 2014).

In vivo, the highest level of pigment expression in sand dollar embryos (the
Sea of Japan, Russia) was observed at the blastula and gastrula stages. In vitro,
genes of interest are also significantly expressed in blastula-derived cell cultures,
confirming that primary embryonic cell cultures are suitable models for in vitro
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investigation of pigment differentiation. Further, the employed assay has emerged as
a valuable tool for naphthoquinone pigment assessment throughout development
and in cell cultures of these sand dollars. The findings contribute to the understanding
of the pigment biology of Echinoid cells (Calestani and Wessel 2018; Perillo et al.
2020; Wessel et al. 2020) and create opportunities for the commercial production of
natural antioxidants of marine origin. The naphthoquinoid pigments of sea urchins
are a promising source for the production of drugs with various pharmacological
activities (Lebedev et al. 2005). The use of aqueous solutions of sodium salts of
naphthoquinone—echinochrome A in experiments to study the level of emission of
the cardiac isoenzyme creatine phosphokinase in the coronary effluent showed a
decrease in the size of the necrosis zone (Elyakov et al. 1999b). Thus, echinochrome A
was found to have some ophthalmological and cardioprotective properties (Elyakov
et al. 1999a, 1999b). Based on the data obtained, new effective drugs with unique
therapeutic properties, such as “Histochrome for cardiology” and “Histochrome for
ophthalmology”, have been developed.
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The Separation of Cell Suspensions Isolated
from Coelomic Fluid and Coelomic
Epithelium of the Starfish Asterias rubens

in Percoll Density Gradients

Natalia Sharlaimova, Sergey Shabelnikov, Dan Bobkov and Olga Petukhova

Abstract: The regeneration process assumes the presence in the body of
cells capable of self-renewal and subsequent differentiation into specialized
cells. Whether these cells are stem cells or are present in circulating fluids or
tissues as a pool of reserve progenitor cells, or whether they appear following
dedifferentiation/transdifferentiation of specialized cells of individual tissues, are
the main questions that scientists are focusing on. Understanding the origin and
pathways of differentiation in coelomic fluid cells and coelomocytes of the starfish
Asterias rubens was the aim of this research. The coelomic epithelium is considered
as a possible source of coelomocytes. Further effective studies of coelomocyte
replenishment are difficult due to the lack of protein markers characterizing various
cell morphotypes. Additional difficulties lie in the heterogeneity of analyzed cell
populations. In the present study, we separated cells of the coelomic fluid and the
coelomic epithelium, and a subpopulation of the coelomic epithelium enriched
with poorly differentiated cells, which are proposed precursors of some types of
coelomocytes, in a Percoll density gradient. Characterization of the cell morphology
of different fractions and their behavior in vitro (functional characteristics) revealed
an enrichment of the gradient fractions in two of eight types of coelomocytes and
three of eight morphotypes of cells of the coelomic epithelium.

1. Introduction

The origin of cells contributing to tissue homeostasis and regeneration is one of
the fundamental questions of biology (Rinkevich et al. 2022). Typical examples of
adult invertebrate stem cells include sponge archaeocytes and choanocytes (Simpson
1984; Funayama 2018), cnidarian interstitial cells (Bosch 2009), flatworm neoblasts (De
Mulder et al. 2009; Rossi and Salvetti 2019), and annelid teloblasts (Sugio et al. 2012).

Deuterostome invertebrates provide a significant pool of results supporting
the hypothesis of the dominant role of dedifferentiation or transdifferentiation of
body cells as the main mechanisms of regeneration, while the participation of stem
cells has been proven to tunicate hemoblasts (Ferrario et al. 2020; Kassmer et al.
2020). Studying the origin and fate of individual cells will answer many questions
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related to elucidating the mechanisms of tissue renewal. A prerequisite for this is the
characterization of molecular markers of specialized and undifferentiated cells.

The coelomocyte replenishment of the starfish Asterias rubens is an example
of maintenance of tissue homeostasis (Pellettieri and Alvarado 2007; Blanpain and
Fuchs 2014). Coelomocytes are a heterogeneous cell population of the main body
cavity of a starfish, or the coelom. Coelomocytes are responsible for various functions
including immune defense, nutrient transport, and formation of aggregates in the
zones of body damage (clotting reaction) (Smith 1981; Dogel 1981; Chia and Xing
1996). The coelomic cavity and organs located in it are lined with a ciliated epithelium,
called the coelomic epithelium (CE) (Dogel 1981; Blowes et al. 2017).

The concept of the origin of mature coelomocytes from the CE of the starfish
A. rubens is based on the work of French authors (Bossche and Jangoux 1976). Our
own data showed the presence of a significant pool of cells on the surface of the
CE, including small poorly differentiated cells named small epithelial cells of type 1
(SECs-1) (Sharlaimova et al. 2014, 2020). SECs-1 comprise about 50% of an individual
subpopulation of weakly attached CE cells (CE-W), which can be collected and
analyzed separately (Sharlaimova et al. 2014, 2020). Indirect data (experiments with
a conditionally intact epithelium) of the same work suggested cell migration from
the epithelium. Moreover, morphological analysis suggests that these cells may be
precursors of coelomocytes (Sharlaimova and Petukhova 2012).

The question of the origin of SECs-1 on the surface of the CE remains unclear.
It could be due to the activity of stem cells that serve as a pool of reserve cells, or
it could result from dedifferentiation of specialized cells, for example, ciliated cells
of the CE (Bossche and Jangoux 1976) or myoepithelial cells (Garcia-Arraras and
Dolmatov 2010). Further effective studies answering this question are difficult due
to the lack of protein markers characterizing various cell populations. To track the
fate of cells, it is necessary to identify molecular markers for different types of cells,
both undifferentiated and specialized.

The heterogeneity of cell populations is an additional problem for the search for
markers of certain types of cells, since the concentration of marker proteins specific
for a certain type of cell decreases in the mixture of cells, which leads to a decrease in
the efficiency of mass spectrum analysis.

The dominant types of cells in the coelomic fluid (CF) of A. rubens identified after
azure-eosin staining were small and large petaloid agranulocytes. A homogeneous
substance characterized the cytoplasmic matrix of these cells. Eosinophilic
granulocytes, roundish agranulocytes, fusiform cells, two types of small cells with a
high nuclear—cytoplasmic ratio, and bi- or trinucleated cells were less represented
among coelomocytes (Sharlaimova et al. 2020).

Mass spectrometric analysis, performed in our previous work (Sharlaimova
et al. 2020), identified only two proteins (integrin alpha 8 and integrin beta 1) that
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could serve as markers in a cell differentiation study among the proteins in the total
coelomocyte suspensions.

The dominant cell type of the CE (30%) is represented by small agranulocytes.
A significant part of small agranulocytes, possessing irregularly shaped nuclei
and tending to form aggregates, was identified as ciliated epithelial cells after
alpha-tubulin staining (Sharlaimova et al. 2014, 2020). Other cell types included
large agranulocytes, small azurophilic granulocytes, large eosinophilic granulocytes,
morula cells, myoepithelial cells, and two types of small cells with a high
nuclear-cytoplasmic ratio (Sharlaimova et al. 2014). Unique CE proteins identified in
the total cell suspensions were represented (according to Gene Ontology analysis) by
oxidoreductase activities only, although visual inspection revealed one regulatory
protein unique to this population (ninjurin) (Sharlaimova et al. 2020). However,
several proteins involved in the regulation of proliferation and differentiation
processes were identified in a subpopulation of weakly attached CE cells (CE-W),
which can be collected and analyzed separately (Sharlaimova et al. 2014). The CE-W
cell subpopulation is 50% enriched with small cells with a high nuclear—cytoplasmic
ratio (SECs-1). Importantly, SECs-1 demonstrate proliferative activity in vivo and
in vitro. They were proposed as precursors of some coelomocyte types (Sharlaimova
and Petukhova 2012).

One of the approaches to solving the problem of heterogeneous cell suspension
analysis is the preliminary fractionation of cells in density gradients to obtain
fractions enriched in specialized morphotypes. Examples of successful separation of
invertebrate cells have been reported in the literature (Kudryavtsev et al. 2016; Lin
et al. 2001; Kauschke et al. 2001; Hamed et al. 2005).

The aim of this study was the separation of CF and CE cell suspensions by
Percoll density gradient centrifugation, and the characterization of cell fractions
by histological and immunofluorescent staining and by functional tests in vitro.
Morphological and functional analysis of cells of different CF and CE fractions
showed that cell separation in the Percoll density gradients allows obtaining fractions
of CF and CE cells enriched with certain morphotypes.

Morphological and functional analysis of CF cells showed the enrichment of
fraction 1 with roundish coelomocytes unable to form networks (a characteristic
property of coelomocytes) and fraction 4 circulatory coelomocytes with petaloid
agranulocytes that form networks in vitro. For CE cells, enrichment with ciliated
cells in fractions 3 and 4 and enrichment with small epithelial cells of the second type
(SEC-2), another type of proliferating CE cell (Sharlaimova et al. 2014), in fractions 1
and 2 were found. For CE-W cells, additional enrichment with SECs-1 in fractions
1-3 was obtained.
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2. Materials and Methods

2.1. Animal Manipulation

Experiments were performed at the Biological Station of the Zoological Institute,
Russian Academy of Sciences, on Cape Kartesh (Kandalaksha Bay, the White Sea), in
September 2018-2020. Intact A. rubens L. (Asteroidea, Echinodermata) specimens,
10-15 cm in diameter, were collected off Fettakh Island and kept in cages at a depth
of 3-5 m throughout the experimental period. They were fed ad libitum with a diet
of mussels. Some experiments were also carried out on animals deprived of food for
4 days.

2.2. Isolation of Circulatory Coelomocytes

The CF was collected after cutting off an arm tip and filtering the fluid through
anylon gauze (70 mesh) into a test tube with saline solution free of Ca®* and Mg>*
(CMFSS, Kanungo 1982) and then supplemented with 15 mM EDTA (anticoagulant
buffer) (Sharlaimova et al. 2020). The cells were pelleted by centrifugation at 550 g
for 10 min and washed twice in CMFSS. About 200 x 10° circulatory coelomocytes
could be isolated from 4 freshly caught starfish with a diameter of 10-15 cm.

2.3. Isolation of Coelomic Epithelium Cells (Epitheliocytes)

Fragments of the CE were detached with forceps from the inner surface of
the aboral body wall of the arm and washed with CMFSS. The washing solution
obtained at this step contained a considerable number of cells, which were classified
as an individual subpopulation of weakly attached CE cells (CE-W) (Sharlaimova
et al. 2014, 2020). They were collected and analyzed separately. Remaining CE
fragments were treated with 0.05%-0.1% crab hepatopancreas collagenase (Biolot,
Russia) in CMFSS for 15 min with periodic pipetting to obtain the dissociated cells.
The CE-W cell preparation and dissociated CE cells were filtered through a nylon
gauze, pelleted from the suspension by centrifugation at 550x g for 10 min, and
washed twice with CMFSS. About 500 x 10° CE cells and 100 x 10° CE-W cells could
be isolated from 4 freshly caught starfish with a diameter of 10-15 cm.

2.4. Cell Separation in Discontinuous (Step) Percoll Density Gradients

CF and CE cell separation was performed in discontinuous (steps
50%—45%—40%-35%-30%-25%, 1 mL each) Percoll density gradients using the
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Amersham protocol with modification (Percoll Methodology and Applications
Amersham Biosciences).

CF and CE cell separation was performed in discontinuous (steps
50%—45%—40%-35%-30%-25%, 1 mL each) Percoll density gradients using the
manufactory protocol (GE Healthcare, Sweden, Uppsala) with modification.

To prepare a stock isotonic Percoll (SIP) solution, 9 parts (v/v) of Percoll were
added to 1 part (v/v) of 10x CMEFSS solution. To form Percoll density gradients,
SIP was diluted to lower densities by adding CMFSS and then layered in 15 mL
polycarbonate centrifuge tubes (Sarstedt, Germany), starting with the densest at the
bottom of the tube using a 3 mL syringe fitted with a 21 G needle.

The coelomocyte suspension was layered on top in 0.5 mL of CMFSS/5 mM
EDTA (about 33 x 10° per gradient), and tubes were centrifuged at 400x g for 20 min
at 8 °C using a swing-out bucket. CE and CE-W cell suspensions were layered in
0.5 mL of CMFSS (about 70 x 10° CE cells per gradient and 90-110 x 10° CE-W
cells per gradient), and tubes were centrifuged at 400 x g for 20 min at 8 °C using a
swing-out bucket.

The visible layers of cells at phase boundaries were collected with a Pasteur
pipette, transferred into the tubes with 7 mL CMFSS, and then centrifugated at
550 g for 10 min at 8 °C. Cells were resuspended in 1 mL of CMFSS, the number of
cells in each fraction was counted with a hemocytometer, and cell suspensions were
subdivided for fixation and functional tests. The number of cells in all fractions was
summed up, and the proportion of cells in each fraction was calculated (%).

2.5. Histological and Immunofluorescent Staining of CF and CE Cell Suspensions

The circulatory cells of the CF, and CE and CE-W cells were fixed with 4%
paraformaldehyde (PFA), placed onto coverslips coated with poly-L-lysine (Sigma)
(0.5-1.0 x 10° cells), and stained with azure-eosin or DAPL Preparations were
examined in transmitted light or in fluorescence light at a X100 objective lens
magnification under an Axiovert 200M microscope (Carl Zeiss, Jena, Germany)
fitted with a Leica DFC420 digital camera.

The efficiency of cell fractionation in Percoll density gradients was estimated
by comparing the proportion of distinct cell morphotypes, identified after staining
the nuclei with DAPI under an Axiovert 200M microscope (Carl Zeiss, Germany),
in each gradient fraction. In order to use the previously proposed terminology to
characterize cell morphotypes (Sharlaimova et al. 2014, 2020), we compared the
morphotypes of cells after staining with azure-eosin and DAPI. The criteria were
cell and nucleus size and shape, presence or absence of granules, and the pattern

1 Available online: www.amershambiosciences.com (accessed on 23 July 2021).
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and intensity of staining. Cell sizes were determined from images obtained with a
camera with a known resolution. Cell counts in three parallel samples were taken
in several randomly selected microscopic fields (in total, no less than 400 cells were
analyzed in each sample).

2.6. Functional Test of Cell Fractions In Vitro

For the functional test, cells of individual fractions were washed in CMFSS,
precipitated by centrifugation at 550 x g for 10 min, resuspended in sterile seawater,
and plated onto 96-well plates in a volume of 100 uL (0.5 x 10° of CF cells, and
0.8 x 10° of CE and CE-W cells per well). The samples were photographed in
transmitted light with an inverted Biolam microscope at different intervals of
incubation in seawater: 1.5 and 18 h for coelomocytes, and 18 h for CE cells. For
detecting ciliated CE cells, cells from Percoll density gradient fractions were placed
onto the coverslips for 18 h, fixed with 4% PFA, permeabilized with 0.1% Triton
X-100, and stained with anti-tubulin antibodies, 1:1500 (Sigma, New York, NY,
USA), and DAPI (Sigma, USA). Preparations were examined at a x63 objective
lens magnification under a Leica TSC SP5 confocal microscope (Leica Microsystems,
Wetzlar, Germany).

2.7. Statistics

The data of CF and CE cell population compositions are expressed as mean
£ SEM (p < 0.05); the data concerning the proportion of cells in different fractions
are expressed as box and whisker plots with the designation of means, SE, SD, and
outliers. All data were processed statistically by ANOVA with Tukey’s HSD multiple
comparison test to determine significant differences (p < 0.05), using the STATISTICA
7.0 Software.

3. Results

3.1. Separation of Cell Suspensions in Percoll Density Gradients

Separation of CF cells and CE cells in Percoll density gradients was carried out
for cell suspensions isolated from animals kept in cages.

Separation of both coelomocytes and CE cell suspensions in a six-step gradient
led to the concentration of cells in six zones: at the border of 25%—fraction 1; at the
border of 25%-30%—fraction 2; at the border of 30%-35%—fraction 3; at the border
of 35%—40%—fraction 4; at the border of 40%—45%—fraction 5; and at the border of
45%-50%—fraction 6 (Figure 1A). Preliminary experiments showed that fraction 6 of
coelomocytes and the CE contained an insignificant proportion of cells (<0.5%), and
they were represented, to a large extent, by cells with fragmented nuclei. Therefore,
no further analysis of this fraction was carried out.
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3.2. Coelomocyte Separation in Percoll Density Gradients

3.2.1. Composition of Gradient Fractions

The relative proportion of the total cells across the different fractions varied
in different experiments. The fact of significant variability in the number of cells
in fractions 1 and 4-5 was confirmed by statistical analysis (1 = 12), showing the
maximal variation in cell number in these fractions (Figure 1B).

The efficiency of cell separation in gradients was assessed by comparing the
composition of cell fractions with the composition of the total cell suspension. Images
were obtained, using a combination of immunofluorescence and bright-field light
microscopy, after staining the nuclei with DAPI (Figure 1C). The cell size was
determined at the light optical level after the attachment of the fixed cells to the
coverslips coated with poly-L-lysine. The cells corresponding to them in morphology,
revealed in CF previously after staining of cell suspensions with azure-eosin, are
shown next to each type (Figure 1C).

These cells comprise eight morphotypes: small coelomocytes (4.4 £ 0.25 um)
with a high nuclear—cytoplasmic ratio, having discretely (Figure 1C(a)) or densely
(Figure 1C(b)) stained nuclei and invisible cytoplasm; petaloid agranulocytes of
small (7.33 £ 0.2 um) and large (11.7 & 0.7 um) sizes with densely stained nuclei
(Figure 1C(c,d), respectively); roundish agranulocytes with densely stained nuclei
(8.2 £ 0.46 um) (Figure 1C(e)); eosinophilic granulocytes with weakly stained nuclei
(10.84 £ 0.28 um) (Figure 1C(f)); bi- or trinucleated cells with densely stained nuclei
(124 £ 0.5 pm) (Figure 1C(g)); and fusiform cells (15 + 0.5 um) (Figure 1C(h)).
In the calculations presented in Figure 1C(a,b), small coelomocytes with a high
nuclear—cytoplasmic ratio or discretely or densely stained nuclei were combined into
one type due to their insignificant proportion. Enrichment for these types of cells
was found in fraction 3. Moreover, fusiform cells were combined with the class of
large agranulocytes due to their insignificant proportion (less than 1% in each field
of view).

The data analysis showed that fractions 1 and 2 were enriched (58% and 41%,
respectively) with roundish (not petaloid) agranulocytes mainly with fine-grained
or smooth cytoplasm (Figure 1C(e)). These cells in the total suspension make up an
insignificant fraction. Azure-eosin staining showed that roundish cells possessed
densely stained nuclei, unlike weakly stained nuclei of eosinophilic granulocytes,
and there were no granules detected (Figure 1C(e)). Therefore, it is unlikely that they
are granulocytes. Most of the large petaloid agranulocytes are distributed between
fractions 3 and 5, while in fractions 1-2, their share is significantly reduced (up to
15% in fraction 1).

Granulocytes and two nuclear cells were more abundant in fraction 5 (35% and
5%, respectively) (Figure 1C(f,g)).
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Figure 1. Coelomocyte separation in discontinuous Percoll density gradients.
(A) An example of Asterias rubens coelomocyte separation using six-step Percoll
density gradients, (B) the portion of cells in different fractions, and (C) the
coelomocyte types revealed after azure-eosin staining and staining of cell

suspensions with DAPI, and the proportion of this type in each gradient fraction:
(a) small coelomocyte with discretely stained nuclei and invisible cytoplasm;
(b) small coelomocyte with densely stained nuclei and invisible cytoplasm (data for
types (a,b) were combined); (c) small petaloid agranulocyte with densely stained
nuclei; (d) large petaloid agranulocyte with densely stained nuclei; (e) roundish
agranulocyte with densely stained nuclei; (f) granulocyte with weakly stained
nuclei; (g) binucleated cell; and (h) fusiform cell. Values were obtained from three
independent separations. Bar 5 um. Source: Graphic by authors.
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3.2.2. Functional Analysis

Functional analysis was performed for each gradient fraction in each of the
12 cell separation experiments.

The test revealed different behaviors of coelomocytes from Percoll density
gradient fractions in vitro and from incubation in seawater. We used the term
“behavior” for adhesive characteristics of cells, and both cell-cell and cell-substrate
interactions. A typical picture of total coelomocyte suspension behavior is presented
in Figure 2A(a): cells after 1.5 h of incubation in seawater formed the nets of cells.
However, cells of fractions 1 and 2 did not form networks after 1.5 h (Figure 2A(b,c))
or after 18 h (Figure 2B(b,c)), while cells of fractions 4-5 formed networks after 1.5 h
(Figure 2A(e,f)), and a clotting reaction occurred after 18 h (Figure 2B(e,f)). Cells of
fraction 3 demonstrated an intermediate behavior (Figure 2A(d),B(d)).

These patterns of cell behavior in vitro were typical for cells of different fractions
in about 90% of the experiments. In 1 experiment of the 12 carried out, the
coelomocytes did not form networks in the total suspension or in the fractions.
Circulatory coelomocytes were isolated from the starfish after 4 days of starvation in
this case. The maximum number of cells was found in fraction 1 (Figure 2C). The
composition of the total suspension of these coelomocytes significantly differed from
that usually observed—the suspension was dominated by roundish (not petaloid)
cells with fine-grained cytoplasm (Figure 2D), which in other experiments were
observed mainly in fractions 1 and 2.

3.2.3. Separation of CE Cells in Percoll Density Gradients

A comparison of the proportion of cells in different CE fractions revealed the
maximum proportion of cells in fractions 3 and 4 and the minimum in fraction 5
(Figure 3A), while for CE-W cells, these fluctuations were not so significant. The
maximum variability for cell number was found for fractions 3 and 4 of the CE and
fraction 4 of CE-W cells (Figure 3B).
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Figure 2. Functional test for Percoll-separated coelomocyte suspensions.
(A) Behavior of coelomocytes of different fractions after 1.5 h cell incubation in
seawater: (a) a typical picture of total cell suspension behavior, net formation;
(b—f) behavior of coelomocytes from fractions 1-5. (B) Behavior of coelomocytes
of different fractions after 18 h cell incubation in seawater: (a) clotting reaction
of total cell suspensions; (b—f) behavior of coelomocytes from fractions 1-5.
(C) Comparison of cell number in each fraction in hungry (white columns) and
fed (gray columns) animals. (D) Comparison of the cell composition of total
coelomocyte suspensions for hungry (white columns) and fed (gray columns)
animals. SCCs—small coelomocytes; Sag—small agranulocytes; Lag—large
agranulocytes; Gr—granulocytes; R—roundish coelomocytes; BiN—binucleated
cells. Source: Graphic by authors.
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3.2.4. The Composition of CE Cell Gradient Fractions

The cell types of the CE and of CE-W cells (epitheliocytes) are presented in
Figure 3C. Analysis of images after staining with DAPI made it possible to subdivide
small agranulocytes of the CE into two subtypes. Dominant cell types in the
total CE cell suspension (Figure 3C(a)) were small agranulocytes with irregularly
shaped nuclei (4.8 & 0.17 um), which tended to form aggregates. Only this type of
agranulocyte was attributed to ciliated epithelial cells. Small agranulocytes with
roundish nuclei (6 £ 0.33 pm) were assigned to a different type (Figure 3C(b)). Other
cell types were as follows: two types of small cells with a high nuclear-cytoplasmic
ratio: small epitheliocytes with discretely stained roundish (4.06 + 0.2 um) or oval
(4 x 4.06 £ 0.5 um) nuclei (Figure 3C(c)) and invisible cytoplasm (SECs-1) and
small cells (3.3 £ 0.2 um) with densely stained nuclei (SECs-2) (Figure 3C(d)); large
agranulocytes with densely stained roundish nuclei (9.5 & 0.33 um) (Figure 3C(e));
large eosinophilic granulocytes with weakly stained nuclei and two or more
eosinophilic granules in the cytoplasm (9.3 £ 0.5 um) (Figure 3C(f)). Other cells
identified in the CE previously included: small azurophilic granulocytes with densely
stained nuclei, morula cells with weakly stained bean-shaped acentric nuclei, and
enucleated cells varying in size (2-12 um) and shape. These were not identified after
DAPI staining. Therefore, they were not evaluated in these experiments.

Analysis of the composition of CE gradient fractions revealed the presence of
ciliated cells in all fractions of the gradient (Figure 3C(a)). This is the dominant type
of cell. In addition, small agranulocytes with roundish nuclei were found in the
same fractions in a significant amount. Enrichment of fraction 1 with small cells of
type 2 (SECs-2) was found. In addition, the smallest number of large eosinophilic
granulocytes was found in fraction 1; their share increased in heavier fractions.

Separation of the subpopulation of CE-W cells, enriched with SECs-1, showed
other traits (Figure 3C). SECs-1 were abundantly revealed in fractions 1-3
(Figure 3C(c)). Ciliated cells occupy a much smaller proportion in the total population
of CE-W cells compared to the CE. Their share in fractions 1-3 is even lower.
Enrichment of fractions 4-5 with small agranulocytes (Figure 3C(b)) and fraction 4
with large agranulocytes (Figure 3C,E) was revealed.
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Figure 3. Coelomic epithelium (CE) and CE weakly bound (CE-W) cell separation
in discontinuous Percoll density gradients. (A) The portion of cells in different
fractions of the CE. (B) The portion of cells in different fractions of CE-W cells.
(C) The epitheliocyte types revealed after azure-eosin staining and staining of cell
suspensions with DAPI and the portion of this type in each gradient fraction of
CE and CE-W cells: (a) small agranulocyte with irregularly shaped nuclei (ciliated
cell); (b) small agranulocyte with roundish nuclei; (c) small epitheliocyte with
discretely stained nuclei and invisible cytoplasm; (d) small epitheliocyte with
densely stained nuclei and invisible cytoplasm; (e) large agranulocytes with densely
stained roundish nuclei; and (f) large granulocytes with weakly stained nuclei and
two or more granules in the cytoplasm. Bar 5 um. Source: Graphic by authors.

3.2.5. Functional Test

Cells of different CE fractions exhibited different behavior when incubated in
seawater (Figure 4A-F).

The peculiarities were revealed only after 18 h of incubation. Cells of fractions 1
and 2 remained solitary during the entire period of time, while cells of fractions 3-5
formed aggregates. The staining of the cells with anti-tubulin antibody and DAPI
showed that these aggregates are composed of ciliated cells (Figure 4G).
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Figure 4. Functional test for Percoll-separated epitheliocyte suspensions after
18 h of cell incubation in seawater. (A) A typical picture of total cell suspension
behavior, aggregate formation. (B-F) Behavior of epitheliocytes from fractions 1-5.
(G) Aggregate of ciliated cells after the staining of the CE cells with anti-tubulin
antibody (green) and DAPI (blue). Source: Graphic by authors.

4. Discussion

In this study, circulatory cells of the CF and cells of two subpopulations of the
A. rubens CE were separated in Percoll density gradients, and the morphology and
behavior of cells in each fraction of the gradient in vitro were characterized.

This study was undertaken with the aim of isolating subpopulations of cells
enriched with certain morphotypes for subsequent proteomic analysis. The need for
this is associated with the difficulties of assessing the origin of cells in heterogeneous
populations based only on morphological data. The general problem can be
formulated as follows: to find out whether coelomocytes are a single line of cells at
different stages of differentiation, or whether there are distinct sources for different
types of cells.
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The literature provides examples of the separation of invertebrate cells in
density gradients, followed by the characterization of the cytotoxicity and immune
characteristics of the cells.

Separation of earthworm (Eisenia foetida) coelomocytes in Percoll density
gradients revealed four fractions of cells. Four cell types that differ significantly
morphologically and functionally (Kauschke et al. 2001; Hamed et al. 2005) were
classified in them: acidophils, basophils, chloragocytes, and neutrophils. The second
fraction was composed mainly of basophils (40%), and the fourth fraction was
enriched with basophils (60%) and neutrophils (35%). Basophils and neutrophils
showed the greatest cytotoxic activity against the human immortalized myelogenous
leukemia cell line K562 (Kauschke et al. 2001).

Separation of coelomocytes of purple sea urchins, Arbacia punctulata, in Percoll
density gradients led to isolation of four cell types: white cells, which are called
phagocytic amebocytes (>99.5% pure), vibratile cells (>93% pure), granular white
spherule cells (white morula cells), and red spherule cells (red morula cells, >99%
pure) (Lin et al. 2001). White phagocytic amebocytes showed the greatest cytotoxic
activity against human K562 target cells compared to total coelomocytes.

Separation of the blood cells of Styela rustica (Styelidae, Stolidobranchiae) in
discontinuous Percoll gradients led to more than 90% enrichment with morula cells
of the bottom fraction (Podgornaya and Shaposhnikova 1998).

Coelomocytes of Asterias rubens were firstly separated in a four-step
discontinuous density gradient of sodium diatrizoate (Kudryavtsev et al. 2016).
Three cell fractions were obtained after centrifugation of circulatory coelomocytes.
Small cells (lymphocyte-like agranulocytes) with a high nuclear—cytoplasmic ratio
predominated in the upper fraction (>95%). These cells expressed a homolog of the
C3 gene, a component of the complement system, in response to stimulation with
bacterial lipopolysaccharides. Cells with small granules evenly distributed in the
cytoplasm were typical for the middle fraction (73%-80%). They demonstrated an
ability to produce reactive oxygen species and phagocytosis. The cells of the lower
fraction, large coelomocytes with a high content of large granules and vesicles in
the perinuclear space (75%—-85%), had a high level of hemolytic activity and neutral
red uptake.

Centrifugation of coelomocytes and CE cells in a six-step Percoll density
gradient, undertaken in the present study, resulted in the appearance of six zones of
cells formed at the boundaries of the steps. Cells were mainly redistributed among
fractions 1-5. The sixth fraction (55% Percoll) contained an insignificant proportion
of cells, mostly destroyed, and was excluded from consideration.

In this study, we identified eight conditional morphotypes of coelomocytes
after staining with azure-eosin and DAP], in contrast to the three types proposed by
Kudryavtsev et al. (2016). This led to a more complex picture when characterizing the
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composition of the fractions. Compared to our previous classification, we identified
and isolated another type of CF cells, roundish agranulocytes, which were rarely
represented in the total population and previously referred to as agranulocytes.
Moreover, DAPI staining revealed a new cell type among the CE cell population,
small agranulocytes with roundish nuclei. Roundish coelomocytes and small
agranulocytes of the CE with a roundish nucleus are probably independent types of
cells of the CF and CE, respectively.

Analysis of the composition of fractions revealed significant enrichment of
fractions 1 and 2 with roundish (not petaloid) cells. Their share in the total suspension
of coelomocytes was very small. Granules were not detected in the cytoplasm of
these cells after staining with azure-eosin. They did not form networks and did not
show a clotting reaction in the functional test. Therefore, these cells can be considered
separate from petaloid agranulocytes. They could be isolated with an enrichment
of 58% in fraction 1 and 40% in fraction 2. Fractions 4-5 were enriched (55% and
40%, respectively) in petaloid agranulocytes, which showed network formation and
clotting response in the functional test.

The stability of the results of the functional test was disturbed in only 1 case out
of 12, when the cells did not even form networks in the total coelomocyte suspension
or in fraction 4. In this case, the total cell population contained 40% of roundish
cells, the maximum number of cells was detected in fraction 1, and the proportion
of petaloid cells was 30% compared to 50% in other cases. This fact correlated with
the 4-day starvation of the animals. A previous study showed the importance of
such a physiological parameter as “fed-hungry” for the coelomocyte concentration:
starvation leads to a decrease in the concentration of circulating coelomocytes, while
feeding leads to an increase in this value (Sharlaimova et al. 2020). The fact of the
relationship between starvation and the composition of circulating coelomocytes
needs to be confirmed by further research.

The less represented types of cells, small cells with a high nuclear-cytoplasmic
ratio, granulocytes, and binucleated cells, also demonstrated enrichment in distinct
gradient fractions. However, their number was insufficient for subsequent proteomic
analysis. Other approaches are required to isolate these cell morphotypes.

Separation of CE cells in a Percoll density gradient revealed ciliated cells in all
fractions of the gradient. However, the functional test exhibited unequal behavior of
ciliated cells of different fractions: cells of fractions 1 and 2 remained singular during
the entire observation period, and cells of fractions 4 and 5 formed cell aggregates.
This indicates the heterogeneity of the buoyant density of ciliated cells, which can be
explained by the presence of several types of epithelia in the CE: a flat epithelium
on the mesentery, and a cuboid or cylindrical epithelium in other regions of the CE
(Sharlaimova et al. 2020).

267



The more interesting result in the case of CE cell separation is the enrichment in
fraction 1 with SECs-2. These cells are the second type of small proliferating cells of
the CE with unknown functions, identified both in the cellular suspension and with
electron microscopy (Sharlaimova et al. 2014).

The total suspension of the subpopulation of CE-W cells was enriched in SECs-1
cells, proposed to be the progenitor for some coelomocytes. This fact made it possible
to identify proteins that can serve as markers of these cells (Sharlaimova et al. 2020).
Gradient fractionation further increases the proportion of SECs-1 in the suspension.
SECs-1 were distributed among fractions 1-3, that is, in three Percoll densities, which
confirms the heterogeneity of the population of these cells. Earlier, the assumption
about their heterogeneity was made on the basis of electron microscopic studies
(Sharlaimova et al. 2020). Separation of CE-W cells also makes it possible to obtain
enrichment with small agranulocytes with roundish nuclei and ciliated epithelial cells
in fraction 5, in which the share of SECs-1 and SECs-2 is insignificant. The position
and function of small agranulocytes with roundish nuclei, cells that we separated
into an independent morphotype based on image analysis after cell staining with
DAPI in this study, are unclear.

5. Conclusions

Separation of the coelomic fluid and coelomic epithelial cells in Percoll density
gradients made it possible to isolate several enriched morphotypes of cells from
heterogeneous populations. For cells of the coelomic fluid, these were roundish
agranulocytes and petaloid agranulocytes, presumably two stages of coelomocyte
differentiation. Separation of the coelomic epithelium allowed the isolation of small
epithelial type 2 cells and ciliated cells, characterized by the ability to form aggregates
in vitro. Separation of CE-W cells primarily permitted the isolation of small epithelial
type 1 cells, which are proposed progenitors for some types of coelomocytes, and
small agranulocytes with roundish nuclei, which are cells with unclear functions.
This study creates the basis for proteomic analysis of cell fractions enriched with a
certain morphotype.

Identification of surface and membrane protein markers of poorly differentiated
cells of the coelomic epithelium, as well as protein markers of specialized cells of
the coelomic fluid and coelomic epithelium, allows tracking the differentiation or
dedifferentiation of cells. The results of this study contribute to the elucidation of the
mechanisms of coelomocyte replenishment.
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in Ascidians
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Abstract: Ascidians belong to tunicates, the sister group of vertebrates. Ascidians are
cosmopolitan marine filter-feeding organisms that, along with other members of the
chordate subphylum, maintain remarkable regenerative abilities throughout their
life. Ascidians” high stem-cell-mediated regenerative capacity, which allows colonial
species to continuously generate new individuals, has fascinated researchers and
scientists. In this chapter, we emphasize what is currently known about the biology
and level of involvement of stem cells in ascidian development and regeneration
for both solitary and colonial species. The chapter focuses on the methods used
to identify stem cells and stem cell niches and discusses hypotheses regarding
their role in biological phenomena such as budding, torpor, regeneration, aging,
and chimerism. Future areas of study on stem cells using regenerative ascidians
are discussed.

1. Introduction

Tunicates, the sister group of vertebrates (Figure 1) (Delsuc et al. 2006, 2018), are
filter-feeding marine invertebrates found in harbors, estuaries, and oceans around
the world (Burighel and Cloney 1997; Holland 2016).

As members of the phylum Chordata, tunicates develop from swimming larvae
that contain all the primary chordate features such as a notochord, dorsal neural tube,
segmented musculature, and gill slits (Brusca et al. 2016). After a swimming phase,
the larva loses many of its chordate characteristics, metamorphosing into a sessile or
pelagic individual (Brusca et al. 2016). Ascidians are the group most studied among
tunicates and include both solitary (Figure 1b—e) and colonial (Figure 1f-1) species.
Solitary ascidians reproduce via embryogenesis, with individuals developing from a
single fertilized egg, while the colonial species produce an adult body through both
embryogenesis and diverse types of asexual reproduction (Brien and Brien-Gavage
1928; Oka and Watanabe 1957a; Freeman 1964; Skold et al. 2011; Lemaire 2011;
Manni et al. 2019; Kowarsky et al. 2021). These two disparate reproductive methods
ultimately give rise to a similar adult body plan consisting of a simple central nervous
system, digestive system, respiratory system, circulatory system, and reproductive
system (Manni et al. 2019; Kowarsky et al. 2021) (Figure 1a—d).
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Figure 1. (a) Phylogenetic tree of deuterostomes (modified from (Delsuc et al.
2018). Ascidians are considered a paraphyletic group. The three taxa—namely,
Phlebobranchia, Aplousobranchia, and Stolidobranchia, also include colonial
species able of budding. (b—e) Solitary ascidians: Ciona robusta, lateral view (b);
Polycarpa mytiligera, upper view (c); Microcosmus exasperatus, upper-lateral view
(d); Styela plicata, lateral view (e). (f-1) Colonial ascidians (dorsal view): Botryllus
schlosseri (f) and detail of the colonial circulatory system (g, ventral view); Botryllus
primigenus (h); Botrylloides leachii (i); Polyandrocarpa zorritensis (j); Perophora viridis
(k,1); arrowheads in (k,1): stolon. The Square area in (k) is enlarged in (1). A: ampulla;
AZ: adult zooid; BB: branchial basket; G: gut; MV: marginal vessel; OS: oral siphon;
PB: primary bud; RV: radial vessel; TU: tunic. Source: Graphic by authors.

Both solitary and colonial species have high regenerative capacities, with colonial
species regenerating an entire body plan from a small fragment of its vasculature
(Oka and Watanabe 1957a; Sabbadin et al. 1975; Rinkevich et al. 2007a, 2007b, 2008;
Voskoboynik et al. 2007; Manni et al. 2014, 2019; Alié et al. 2021). When colonies
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come in contact with each other, colonies may form natural chimeras with adjacent
colonies by vascular fusion if they share one or two alleles in their highly polymorphic
histocompatibility gene, the Botryllus histocompatibility factor (BHF); if the colonies
are incompatible, a barrier forms between them, and they reject (Oka and Watanabe
1957b; Sabbadin 1962; Scofield et al. 1982; Voskoboynik et al. 2013b).

Following fusion, the circulating stem cells of the chimeric partners compete
to replace the germline and/or the soma of the other partner in a process similar to
allogeneic transplantation (Oka and Watanabe 1957b, 1959; Sabbadin and Zaniolo
1979; Pancer et al. 1995; Stoner and Weissman 1996; Stoner et al. 1999; Laird et al.
2005; Voskoboynik et al. 2008; Rinkevich et al. 2013).

The colonial ascidians” abilities to reproduce sexually and asexually, regenerate
whole body plans, and replace the genotypes of germline and somatic tissues in
chimeras has prompted studies aiming to identify and prospectively isolate the stem
cells involved in these events.

In this chapter, we review the current knowledge on the stem and
progenitor cells in solitary and colonial ascidians, and their involvement in
developmental/regeneration processes. Special emphasis is given to the methods
used to identify/isolate candidate stem cells and their niches.

2. Ascidians as Model Organisms for Developmental Studies

At the end of the 18th century, studies performed on ascidians established them
as key models of chordate development (Corbo et al. 2001; Satoh 2001; Lemaire
2011; Stolfi and Christiaen 2012), sexual and asexual reproduction (Manni et al. 2019;
Kowarsky et al. 2021), and the evolution of the immune system (Scofield et al. 1982;
Cooper et al. 1992; Oren et al. 2013; Voskoboynik et al. 2013b; Ballarin et al. 2015,
2021a; Franchi et al. 2017; Rosental et al. 2018; Mueller and Rinkevich 2020).

Through a classic chordate embryogenesis process, ascidians produce swimming
tadpole-like larvae that, following metamorphosis, lose their chordate characteristics
(Lemaire et al. 2008). Taking advantage of the transparent embryos of solitary
ascidians, Conklin (1905) performed the first cell lineage experiment in Styela partita
embryos and discovered that, at the cleavage stage, cells (blastomeres) are committed
to the three germ layers: ectoderm, mesoderm, and endoderm. Conklin’s studies
established ascidians as a key model for embryogenesis. Today’s advanced transgenic
lineage tracing techniques and single-cell transcriptome trajectories are used on
ascidian Ciona species to build comprehensive embryonic cell fate maps (Dehal et al.
2002; Lemaire 2011; Oonuma et al. 2016; Tolkin and Christiaen 2016; Cao et al. 2019;
Lemaire et al. 2021).

The most studied solitary ascidians for developmental research are the widely
distributed Ciona robusta (Figure 1b) and Ciona intestinalis. The genome of C. robusta
was one of the first genomes assembled (Dehal et al. 2002), allowing molecular studies
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on the origin of chordates. Embryos are obtained by in vitro fertilization, and gene
reporter assays are used to monitor and manipulate gene expression in vivo as the
embryo develops (Squarzoni et al. 2011; Stolfi and Christiaen 2012; Racioppi et al.
2014; Farley et al. 2015; Fujiwara and Cafiestro 2018).

Among colonial ascidians, Botryllus schlosseri is one of the reference
colonial species. Several features make B. schlosseri an excellent model organism
(Figure 1f,g)—namely, (i) it is abundant in shallow waters and easily cultured in the
laboratory; (i) its genome and transcriptome are available (Voskoboynik et al. 2013a,
2013b; Corey et al. 2016; Campagna et al. 2016; Rosental et al. 2018; Kowarsky et al.
2021; Voskoboynik et al. 2020; Anselmi et al. 2021); (iii) asexual reproduction results
in identical individuals, facilitating the ability to separate one colony (genotype)
into several clonal replicates (Manni et al. 2007, 2014; Kowarsky et al. 2021); (iv) it
naturally forms chimeras, which allow lineage tracing by DNA fingerprints (Stoner
and Weissman 1996; Laird et al. 2005); (v) its transparent tissue allows in vivo tracing
of labeled cells (Voskoboynik et al. 2008; Rinkevich et al. 2013; Rosental et al. 2018).

3. Stem Cells and Their Identification

The term stem cell derives in part from the word Stammzelle, first used by Ernst
Haeckel in the mid-1800s to describe both the single-celled organism precursors to
multicellular life and the single-celled embryo that develops into a multicellular
organism. The term and its concept were later used by August Weissman to describe
cells that he hypothesized to be the common precursor of a specific tissue.

Stem cells must satisfy the following criteria to be classified as stem cells: (i)
they can divide and create an identical copy of themselves (self-renewal), and (ii)
they can divide to produce other cell types (e.g., hematopoietic stem cells (HSCs)
produce all blood cells). They can also express a specific gene signature (e.g., piwi,
vasa) and demonstrate a high nucleus:cytoplasm ratio.

Studies on the proliferation state of mammalian HSCs demonstrate that HSCs
are quiescent most of the time (remaining in G0) and only on rare occasions enter the
cell cycle (Passegué et al. 2005; Forsberg et al. 2010); therefore, proliferation markers,
including EAU and PCNA, that detect proliferating progenitor cell populations in
many cases do not identify stem cells.

To isolate a pure population of self-renewing HSCs, the Weissman group
(Spangrude et al. 1988; Uchida and Weissman 1992; Morrison and Weissman 1994)
developed methods that used (i) FACS-based monoclonal antibody cell separation
technologies to isolate specific cell populations; (ii) transplantation of limited dilutions
of these cell populations to irradiated mice and long term tracing of transplanted cells
to assay multipotentiality; (iii) reisolation and transplantation of candidate stem cells
from primary recipients to secondary hosts and long term tracing of transplanted
cells to assay self-renewal. These became the standard methods to isolate adult
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tissue-specific stem cells and were used to isolate various tissue-specific stem cells
including neural (Uchida et al. 2000) and skeletal stem cells (Chan et al. 2018). A
genetic approach that uses fluorescent reporter genes to trace differentiation of single
cells was developed to isolate the gut stem cells (Barker et al. 2007). This genetic
tracing method also reveals self-renewal and multipotency characteristics.

In order to confirm the involvement of candidate stem cells in regeneration
in ascidians, cellular and transgenic methods such as the development of ascidian
specific monoclonal antibodies, FACS protocols, transplantation protocols, transgenic
animals, lineage tracing, and in vivo cell tracking are required.

4. Stem Cells in Ascidians

Observing C. intestinalis hemolymph, Rowley (1982) used the term to indicate
cells with a high nucleus:cytoplasm ratio typical of undifferentiated cells. Kawamura
et al. (1991) used the same term for cells with similar morphology that migrate and
aggregate in the developing buds of Polyandrocarpa misakiensis.

The vast majority of data on stem cells in ascidians emerged from studies on
Botryllus schlosseri. Observing genotype replacement of germline and somatic tissues
in B. schlosseri chimeras led Pancer et al. (1995) and Stoner and Weissman (1996) to
hypothesize that B. schlosseri chimerism, cell parasitism, and budding are mediated by
stem cells (Pancer et al. 1995; Stoner and Weissman 1996; Stoner et al. 1999; Rinkevich
and Yankelevich 2004).

The ability of allogeneic B. schlosseri colonies to form chimeras if they share one
or two alleles in their histocompatibility gene BHF (Voskoboynik et al. 2013b) allows
lineage tracing of transplanted cells using allele-specific markers of host and donor as
genotype barcodes (Figure 2) (Pancer et al. 1995; Stoner and Weissman 1996; Stoner
et al. 1999; Rinkevich and Yankelevich 2004; Laird et al. 2005; Voskoboynik et al.
2008; Rinkevich et al. 2013). By microinjecting 2.5-5 x 10* hemocytes into allogeneic
partners, Pancer et al. (1995) documented co-sharing and even replacement of the
gonads in the recipient partners by the donor cells, as well as continuous somatic
chimerism. By transplanting a small number of cells that expressed high aldehyde
dehydrogenase activity (ALDH, a stem cell marker), and a set of serial engraftment
assays (Figure 2a,b), Laird et al. (2005) further proved that in B. schlosseri stem cells are
mediating both chimerism and budding. Using transplantation experiments, in vivo
cell labeling, and tracing, the anterior ventral side of the endostyle and the cell islands
were identified as niches for somatic and germline stem cells (Voskoboynik et al. 2008;
Rinkevich et al. 2013). Cells from the endostyle niche migrated via the branchial
sac sinuses to buds and contributed to their development (Voskoboynik et al. 2008).
Cells from the cell islands migrated to the developing gonads and contributed to
their development (Rinkevich et al. 2013). Rosental et al. (2018) adapted FACS to
characterize B. schlosseri circulating cells and isolated 24 populations. Transcriptome
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analysis of these populations revealed a cluster of 3 cell populations that differentially
upregulated 235 genes homologous (based on sequence) to mammalian genes, known
to be expressed in the mammalian hematopoietic stem, progenitor, and myeloid
lineage cells. It also revealed three cell populations that highly expressed genes
homologous to mammalian genes expressed in cells and tissues of the human
reproductive system (testes, ovary, placenta, sperm, and germline). Transplantation
experiments and lineage tracing further demonstrated the multipotent potential of the
cHSC populations (Rosental et al. 2018) (Figure 2d). Transplantation of labeled cells
and in vivo tracing experiments demonstrated migration of cHSC to the endostyle
niche, while the cGSC identified based on sequence migrated to the cell island niche
(Rosental et al. 2018).

In both colonial and solitary ascidians, it was suggested that wound response and
tissue regeneration are mediated by stem cells (Voskoboynik et al. 2007; Voskoboynik
and Weissman 2015; Blanchoud et al. 2018; Jeffery 2019; Kassmer et al. 2020; Qarri
et al. 2020). A population of circulatory cells was proposed to have stem cell potency
(Kawamura et al. 1991; Stoner and Weissman 1996; Voskoboynik et al. 2007; Tiozzo
et al. 2008a; Brown et al. 2009; Jeffery 2015a; Kassmer et al. 2020). Genotyping of
somatic and germline tissues several months after transplantation of a few cells
isolated from specific niches (e.g., endostyle niche, cell islands) or expression specific
markers (ALDH) (Figure 2a; Table 1) demonstrated the ability of these cells to
contribute to somatic or germline organs (Laird et al. 2005; Voskoboynik et al. 2008;
Rinkevich et al. 2013). Transplantation of single cells with high ALDH expression
and lineage tracing of their contribution to germline or somatic B. schlosseri tissues
revealed contribution to either soma (buds) or germline (tests) but not both (Laird
et al. 2005) (Figure 2a,b). These results strongly suggest that B. schlosseri stem cells are
not pluripotent, i.e., they do not produce both germline and soma. The identification
of candidate hematopoietic stem cell and germline cell populations in the colonial
ascidian B. schlosseri (Rosental et al. 2018) (Figure 2c,d) suggests that tissue-specific
stem cells mediate bud formation in colonial ascidians. Tissue-specific transcriptional
signature and organogenesis timeline during embryogenesis and blastogenesis also
strongly support this notion (Kowarsky et al. 2021).
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Figure 2. Assaying multilineage contribution, self-renewal capacities, and homing
sites of B. schlosseri prospective isolated stem cells: (a) transplantation of candidate
stem cell populations between genetically distinct but compatible colonies and use
of tissue genotyping to determine the full developmental potential of transplanted
cells; (b) primary recipients are fused with secondary naive hosts several months
following initial transplantation, tissue genotyping of secondary hosts is used
to assay self-renewal capacities; (c) candidate stem cells are isolated by FACS,
labeled with fluorescent dyes, and transplanted to Botryllus blood vessels. Cells
are traced in vivo using confocal microscopy via the transparent body of the
colonies to identify the location of stem cell niches; (d) FACS-based analysis used
to demonstrate candidate stem cells differentiation ability. Candidate stem cell
and control populations are labeled with fluorescent dyes and transplanted into
compatible hosts, a few weeks following transplantation the fluorescent cells from
the recipient colonies are analyzed by FACS. While the majority of the transplanted
control cell populations are expected to remain in their original gate, the majority
of the transplanted candidate stem cell populations are expected to be detected
in gates different from their original gates (suggesting they were differentiated).
Source: Graphic by authors.
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Table 1. Genes expressed in ascidian candidate stem and progenitor cells.

Gene Species Expressing Cell(S) Methods References
RNA-binding proteins
Argonaute family silencing genes
. hemoblasts, (Brown et al. 2009;
Botryllus schlosseri .
. . phagocytes, tunic Rosner et al. 2009;
Botrylloides leachii . .
. . cells, stomach cells, Rinkevich et al. 2010,
.. Botrylloides violaceus . ISH, THC;
piwi Botrulloides diecensis cell islands, RNA 2013; Jeffery 2015d;
.y . €8 . endostyle, epithelial ! Jiménez-Merino et al.
Ciona intestinalis
Stuela plicata cells of the 2019; Kassmer et al.
yep vasculature 2020)
DEAD and DEAH-box-containing helicases
1 (Brown and Swalla
Botryllus schlosseri hez:ﬁl:las}tlz, chltl:eeshal 2007; Rosner et al.
vasa Botrylloides violaceus » PRagocytes, ISH, THC 2009; Rinkevich et al.
. . . stomach cells, cell
Botrylloides diegensis . 2013; Kassmer et al.
islands
2020)
epithelial cells, some
. blood cells, ISH, THC, (Rosner et al. 2006,
pl10 Botryllus schlosseri phagocytes in cell 1cC 2009)
islands, stomach cells
ddx1 Botryllus schlosseri cell islands IHC, ISH (Rosner et al. 2013)
Nanos family proteins
- pharyngeal epithelia
nanos Botryllus primigenus of developing budlets ISH,IHC  (Sunanaga et al. 2008)
RNA recognition motif (RRM)-containing proteins
. buds, during ISH; (Gasparini et al. 2011;
dazapl Botryllus schlosseri blastogenesis, cHSC RNAseq Rosental et al. 2018)
Signal transduction pathways
Wnt
wnt2B, secondary buds
wntba, (stages 1-3), ISH (Rinkevich et al. 2013;
wnt7a, Botryllus schlosseri developing gonads, RN As/e di Maio et al. 2015;
ntbA, primary buds, cHSC, 4 Rosental et al. 2018)
wnt9AB-cat endostyle
fzd5/8, loides di ) .
B-cat, dsh Botrylloides diegensis cycling hemoblasts ISH (Kassmer et al. 2020)
TGF-3/BMP
. phagocytes, IHC, ISH, (Rosner et al. 2013;
smad1/2/5/8 Botryllus schlosseri endostyle, cHSC RNAseq Rosental et al. 2018)
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Table 1. Cont.

Gene Species Expressing Cell(S) Methods References
Notch
notchl, ling hemoblast
notch2, Botrylloides diegensis, cye g cmob-asts ISH, (Rosental et al. 2018;
. during WBR,
notch3, Botryllus schlosseri RNAseq Kassmer et al. 2020)
hes] endostyle, cHSC
Kinases
atrial epithelium of
Polvandrocarpa developing buds,
pm-rackl yandarocarp undifferentiated ISH, IHC (Tatzuke et al. 2012)
misakiensis
mesenchymal cells,
pharynx epithelium

Homeobox-containing proteins

budlets at stage 1-3,
oral siphon and

(Tiozzo et al. 2005,

. tentacles; forming 2009; Rosner et al.
P ltx(;]ff;_[‘l' Botryllus schlosseri cerebral ganglion, ISIg,_IIDI({:% 2009; Tatzuke et al.
P endostyle, 9 2012; Rinkevich et al.
developing gut, 2013; Ricci et al. 2016)
epithelial cells
pou3 Botrylloides diegensis hemoblasts ISH (Kassmer et al. 2020)
Zinc-finger proteins
GATA4/5/6  Botryllus schlosseri "‘;ﬁ;iﬂ‘zﬂg; gf ISH (Ricci et al. 2016)
branchial epithelia,
circulating hemocytes
. of growing palleal (Sunanaga et al. 2008;
Botryllus primigenus, and vascular buds . X
) . Fujiwara et al. 2011;
myc Polyandrocarpa (Bs); cells of the atrial ISH Kawamura and
misakiensis epithelium and Sunanaga 2011)
fibroblast-like cells &
involved in
organogenesis (Pm)
Chromatin modification/cell cycle/differentiation
Histones
primary and
secondary buds, .
Botryllus schlosseri, zooidal stomach ]iggriz: I\Z ?ilr.lioeltét;l
p-h3 Botrylloides diegensis, (Bs, Bd) IHC, ISH 2019: Kassmer et al '
Styela plicata hemoblasts, intestine 4 ;SZO)G ctak
submucosa,
adults (Sp)
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Table 1. Cont.

Gene Species Expressing Cell(S) Methods References
Proliferation markers
Polvandrocarpa cells of the atrial
m%sakiensisp epithelium of the HC (Brown et al. 2009;
pcna Botrylloides violr;ceus developing buds, RN As/e Kawamura et al. 2012;
Bo tyr 1lus schlosseri ’ during WBR, q Rosental et al. 2018)
Y hemocytes, cHSC
cyclinb Botrylloides diegensis hemob‘l;s]?t’;durmg ISH (Kassmer et al. 2020)
Cytostatic proteins
atrial epithelial cells (Kawamura et al.
iﬁi—_é’ PO%ZZIZ ZZZZW of growing buds, IHC 1991; Matsumoto
hemoblasts et al. 2001)
Telomere protection
. multipotent epithelia o
pot1 Botryllus schlosseri of budlets ISH (Ricci et al. 2016)
Proteins involved in autophagy
Polyandrocarpa atrial epithelium of (Kawamura et al.
Pm-atg7 misakiensis developing buds ISH 2018)
Control of differentiation
circulating . .
. .. . (Rinkevich et al.
Botrylloides leachii, phagocytes, inner o
raldh Botryllus schlosseri epithelium of the ISH 2007b, 2013; Ricci
et al. 2016)
bud, endostyle
if-b Botrylloides leachii atrial e};’iﬁhum of ISH (Ricci et al. 2016)
Niche interaction
aggregates of
hemoblasts,
cadherin Botryllus schlosseri phaagi%I;%:tEZ;f the ISH, IHC (Rosner et al. 2007)
endostyle, bud
epithelia
ampullae epithelium
cd133 Botryllus schlosseri during Va.sculature ISH, FACS (Braden et al. 2014)
regeneration, some
hemocytes
la-6 Botrylloides diegensis hemoblasts ISH (Kassmer et al. 2020)
Others
: Polyandrocarpa atrial epithelium of (Kawamura et al.
Pm-pumpA misakiensis developing buds ISH 2018)
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Table 1. Cont.

Gene Species Expressing Cell(S) Methods References

Pathways associated with stem cell activity and stem cell niches

Whnt
signaling,
Signaling
by Notch,
SMAD Ciona endostyle ISH
signaling
(See
Figure 4¢g
for more)

Wnt/ RET/
HIF-1/
VEGEF/
signaling,
Nanog ESC Botryllus schlosseri
pluripotency
(See
Figure 6e
for more)

(Ogasawara et al.
2002)

endostyle

HSC RNAseq (Rosental et al. 2018)

5. Development and Regeneration in Ascidians

As stated above, ascidians reproduce through two different pathways—either
classic embryogenesis or blastogenesis where an adult organism develops via budding.
Solitary ascidian species are restricted to the sexual mode of reproduction, while
colonial species reproduce both ways.

The ability to replace or restore cells, tissues, and organs in response to either
damage or loss is a remarkable regenerative function shared by many organisms.
Ascidians vary in their regeneration capacities from those that have a limited
regeneration to those that can replace any missing body part or even regenerate a
complete organism.

5.1. Development, Regeneration, and Stem Cells in Solitary Ascidians

5.1.1. Embryonic Development

In solitary ascidians, fertilization occurs externally, and embryos develop on the
water’s column; a vacuolated layer of internal follicular cells can keep the embryos
floating. During embryogenesis, pluripotent embryonic cells gradually restrict their
developmental potential as they become committed toward particular tissues or cells.
By correlating single-cell transcriptomic data with knowledge regarding cell lineages,
recent works systematically examine lineage specification during development in
solitary species (Kobayashi et al. 2013; Cao et al. 2019; Ilsley et al. 2020; Sladitschek et al.
2020; Zhang et al. 2020). These studies reveal asymmetric cell divisions and conserved
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expression of transcription factors involved in cell differentiation trajectories between
ascidians and mice and may lead to the identification of the precursors of somatic or
germ stem cells in adults. Additional information on germ stem cells is shown below.

5.1.2. Regeneration in Solitary Ascidians

Solitary ascidian reproduction is strictly sexual, and their regeneration capacity
has been investigated in a few chosen species since the 19th century (reviewed in
Jeffery 2015b). The majority of these species can only regenerate specific body parts,
such as the siphons and neural complex (i.e., the brain and the associated neural
gland) (Table 1).

The first report on regeneration in Ciona dates back to 1891, when Mingazzini, at
the Stazione Zoologica in Naples (Italy), demonstrated that the oral and atrial siphons,
as well as the brain, could regenerate following ablation (Mingazzini 1891). Later,
Hirschler (1914) discovered Ciona’s basal body portion can regenerate distal organs,
even though the distal portion cannot similarly regenerate basal organs such as the
digestive system and heart. The basal body part is able to regenerate distal organs
within one month as long as a fragment of branchial sac remains in the basal portion
of the body (Jeffery 2015c). During the last century, new studies have confirmed these
results and further described the cellular and molecular processes underlying tissue
regeneration in this model system (Jeffery 2015a, 2015b, 2015c, 2019).

Partial body regeneration was also studied in the solitary ascidian Styela plicata
(Stolidobranchia) (Table 2). This species can regenerate both the oral and atrial
siphon following ablation (Gordon et al. 2019). By using the niacinamide antagonist
3-acetylpyridine (3AP) that causes lesions in the brain and reduction of glial and
neuronal cells, Medina et al. (2015) demonstrated neuron regeneration in this species
and the recruitment of circulating candidate stem cells to the lesion site.

A comparative study on the regenerative abilities of four solitary stolidobranch
ascidians, Polycarpa mytiligera, Herdmania momus, Microcosmus exasperatus, and S.
plicata (Figure 3) reported variation in regeneration potential among these species
(Gordon et al. 2019). While all species survived and initiated regeneration following
ablation of their siphons, only P. mytiligera survived the ablation of a larger portion
of its body, including both siphons and the brain. A recent study further examined P.
mytiligera’s regenerative capacity (Gordon et al. 2021). In this study, individuals were
cut in two or three fragments along the longitudinal and transverse body axis. After
a month, each fragment had reconstituted the whole body and was physiologically
active, able to filter feed and respond to stimuli (Figure 3a—c). P. mytiligera’s ability
to regenerate all tissue and organs distinguishes it from the other solitary species
studied so far (Gordon et al. 2021), emphasizing the wide range of regenerative
abilities among closely related species. Comparative studies of these species will
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shed light on the mechanisms underlying regeneration and the evolution of this

complex process.

Table 2. Solitary ascidians regeneration capacities and the source of candidate stem

cells that mediate it. N/A: not available.

Regenerative Candidate Methods l_Jsed
. to Identify
Species Body Stem Cell . References
Structures Source Candidate
Stem Cells
Proliferation
(EdU,Notch ~ (Danibers
. ) ! et al. 2009;
Siphons, signaling) and
. Auger et al.
Ciona neural . stemness

. o Branchial 2010; Jeffery

intestinalis complex, and markers (PIWI,

. . basket . 2015a, 2015b,

Ciona robusta branchial alkaline
2015¢, 2019;
basket phosphatase),
. Hamada et al.
Transplantation 2015)
experiments
Siphons,
neural
complex, (Shenkar and
Polycarpa branchial Gordon 2015;
mytiligera basket, N/A N/A Gordon et al.
digestive 2019, 2021)
system, and
heart
Morphological
characterization
proliferation (Medina et al
Siphons and Intestinal (pFIH3) and 2015; Gordon
. submucosa, stemness
Styela plicata neural . etal. 2019;
complex Branchial markers Jiménez-Merino
P basket (Aldehyde
et al. 2019)
dehydrogenase
activity, PIWI,
CD34)

Microcosmus . (Gordon et al.
exasperatus Siphons N/A N/A 2019)
Herdmania . (Gordon et al.

omus Siphons N/A N/A 2019)
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(i)

Figure 3. Solitary ascidians regeneration capacity: (a—c) Polycarpa mytiligera:
(a) illustration summarizing body structures and regeneration capabilities. Dashed
red lines indicate ablation lines. Regenerative body parts are highlighted in purple.
Note that all organs can be regenerated following amputations; (b,c) in vivo images
of regenerated animals 30 days following ablation along the anterior—posterior
body axes: (b) anterior body part following ablation of posterior structures
(indicated by a black dashed line). Note the open oral (OS) and atrial (AS)
siphons; (c) posterior body part following ablation of anterior structures. Note the
regenerated oral and atrial siphons. (d,e) Styela plicata: (d) illustration summarizing
body structures and regeneration capabilities; (e) in vivo image of atrial siphon
regeneration 30 days following ablation. Note the regenerated atrial siphon.
(f,g) Microcosmus exasperates: (f) illustration summarizing body structures and
regeneration capabilities; (g) in vivo image of atrial siphon regeneration 30 days
following ablation. Note the regenerated atrial siphon. (h,i) Herdmania momus: (h)
illustration summarizing body structures and regeneration capabilities; (i) in vivo
image of atrial siphon regeneration 30 days following ablation. Note the regenerated
oral siphon. BB: branchial basket; DG: digestive system; H: heart; NC: neural
complex. Source: Graphic by authors.

5.1.3. Regeneration in Ciona

The involvement of candidate stem cells in solitary ascidian regeneration in
response to injury is suggested by morphological, proliferation, and cell migration
studies, as well as stem-cell-associated gene expression (Ermak 1975; Jeffery 2019;
Jiménez-Merino et al. 2019; Kassmer et al. 2019). However, it is still unclear whether
regeneration is accomplished by the proliferation of differentiated cells, activation
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of quiescent stem cells, recruitment of progenitor cells, or a combination of these
strategies.

As stated above, C. robusta and C. intestinalis are the main solitary species used
to study regeneration (Bollner et al. 1992; Dahlberg et al. 2009; Auger et al. 2010;
Jeffery 2015a, 2015b, 2015¢, 2019). Members of the genus Ciona are among the most
abundant invasive marine species with a wide geographic distribution (Lambert
and Lambert 1998; Lambert 2001; Madariaga et al. 2014). The high accessibility of
the species, combined with a simple, transparent body structure and a relatively
short life span, associated with the availability of a sequenced genome and various
transcriptomes, render these organisms useful models for experimental studies on
regeneration (Millar 1952; Jeffery 2015¢; Satoh 2019).

Early studies suggested a possible role for circulatory hemoblasts in regeneration
(Hirschler 1914; Sutton 1953) (Figure 4). Using histological and light microscopy,
these pioneering researchers described tissue regeneration in detail. Following
these reports, Ciona regeneration research remained relatively silent, until a renewed
interest in the field arose with the emergence of stem cell research in the 1990s.
Recent studies introduced advanced molecular tools, such as in situ hybridization,
immunofluorescent staining, and gene expression to further analyze the cellular and
molecular process underlying Ciona regeneration. They focused, in particular, on the
possible role of adult stem cells in wound response and regeneration (Hamada et al.
2015; Spina et al. 2017; Jeffery 2019; Kassmer et al. 2019; Jeffery and Goricki 2021).

Most regeneration studies on Ciona focused on the ability of this species to
regrow its oral siphon (OS) (Figure 4c). The OS is composed of longitudinal and
circular muscle fibers entrapped within a dense extracellular matrix where vascular
sinuses and nerve fibers are present. Externally, the epidermis and the tunic layer
cover it. At the base of the OS, a ring of tentacles embeds the coronal organ, a
mechanosensory structure (Manni et al. 2006). Ciliated receptor cells at the center of
a cup-like structure of orange pigmented cells form the eight pigmented oral siphon
sensory organs (OPOs) located along the rim of the OS. The brain, from which several
nerves originate, lies at the OS base (Dilly and Wolken 1972; Auger et al. 2010).

Following amputation, the OS regeneration proceeds through the following
three phases: (i) formation of wound epidermis, (ii) OPO replacement, and (iii) OS
regrowth (Auger et al. 2010). Full siphon regeneration requires a blastema formation
supported by the migration of proliferating cells from the branchial sac (long-distance
regeneration). However, the regeneration of siphon tip (including OPOs) most likely
involves the differentiation of candidate quiescent stem cells already present in the
siphonal tissues (short-distance regeneration) (Auger et al. 2010; Jeffery 2015b). The
position of the amputation line controls the extent to which short- and long-distance
regeneration processes are used (Figure 4c): removal of the entire OS leads to a
complex regeneration process that involves both local cells and cells migrating from
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the lymph nodules of the branchial sac. Conversely, when the amputation line is
close to the siphon tip, it results in a faster regeneration process, relying only on local
cell reservoirs (Jeffery 2015c). The latter assumption results from the observation
that when the OS is fully removed from its base, the patterning of OPO regeneration
is not fully conserved, showing duplications in the OPO number. Conversely, the
removal of the distal part of the OS results in the complete replacement of the OPOs,
both in numbers and structure, even after repeated amputations (Auger et al. 2010).
In addition, UV irradiation of the siphon blocks OPO replacement following the
removal of the siphon tip, supporting the idea that regeneration is mediated by local
events (Auger et al. 2010). The regenerative capacities of Ciona are related to age and
are compromised in older animals; when siphons are amputated in old animals at
any position, the regeneration is often delayed or absent (Jeffery 2015a, 2015d).

Gene expression analysis of regenerating structures in C. intestinalis shows
upregulation of conserved regulatory signaling pathways such as Notch and TGF-beta,
as well as apoptosis-related genes (Hamada et al. 2015; Spina et al. 2017; Jeffery and
Goricki 2021) (Figure 4g). Consequently, when the Notch pathway is inhibited, the
levels of cell proliferation in the Ciona branchial sac and OS blastema is reduced
(Hamada et al. 2015), and differentiation of OS muscle cells in the regenerating area
is also affected. In particular, recent data indicate that apoptosis is required for OS
regeneration and branchial sac homeostasis through activation of Wnt signaling.
Notably, after mid-body amputation, these processes are unilateral, since they involve
only the basal fragments and not the distal ones (Jeffery and Goricki 2021).

Brain regeneration was first described in 1964 (Lender and Bouchard-Madrelle
1964). Recently, a combination of several methods, including live imaging and
functional analyses, along with transgenic animals expressing GFP in most neurons
(Dahlberg et al. 2009), revealed that proliferating cells (a potential blastema)
accumulated around severed nerve endings. The source of these cells, however,
was not identified. The authors speculated that these cells could be progenitor cells
already present in the central nervous system since the movement of GFP-positive
cells along the axons or migration of undifferentiated cells from other body parts were
not detected by confocal time-lapse microscopy. A recent study, however, reports
the involvement of proliferating cells, originating in the branchial basket, in brain
regeneration (Jeffery 2019). These candidate stem cells supply progenitor cells for
regeneration and differentiate into hemocytes, neural, and muscle cells (Jeffery 2019).
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Figure 4. Regeneration and enriched pathways for highly expressed genes
associated with stem cell activity in the solitary ascidian Ciona robusta endostyle:
(a) illustration of a young adult individual (sagittal view, dorsal side at left). The
branchial basket is perforated by numerous stigmata, delimited by longitudinal
and transverse bars where hemocytes flow in vessels; (b) illustration of oral siphon.
Upper horizontal line: siphon tip; lower horizontal line: siphon base; (c) transverse
histological section of a juvenile individual (hematoxylin—eosin). Note that in
transverse vessels there are hemocyte aggregations (arrows); (d) histological section
of the same individual shown in (c) (hematoxylin—eosin). Detail of hemocytes
(arrowheads) in a branchial basket transverse vessel; (e) hemoblast, transmission
electron microscopy of a juvenile. The hemoblast was recognized at branchial
basket level. Scale bar: 2 mm; (f) enrichment scores of the top ten pathways of
annotated genes in endostyle using GeneAnalytics tool. The gene list used in the
analysis is based on all the genes expressed by in situ hybridization (Ogasawara
et al. 2002); overall, 185 genes expressed in endostyle were analyzed. In the bars, the
number refers to annotated genes out of the list from the total genes in the human
indicated pathways. AC: atrial chamber; AS: atrial siphon; CO: coronal organ; G:
gut; NC: neural complex; OPO: oral siphon pigmented organ; OS: oral siphon; TV:
transverse vessel; SM: siphon muscles; SC: stem cell. Source: Graphic by authors.
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5.2. Development, Regeneration, and Stem Cells in Colonial Ascidians

Colonial ascidians possess extreme regenerative capacity known as vascular
budding (Sabbadin et al. 1975) or whole-body regeneration (WBR) (Pancer et al. 1995),
in which entire colonies regenerate from an aggregation of candidate stem cells in
the vasculature (Pancer et al. 1995; Rinkevich et al. 2007a, 2007b; Voskoboynik et al.
2007; Manni et al. 2019; Kassmer et al. 2020). As described above, stem cells have
been proven to mediate asexual reproduction in B. schlosseri (Laird et al. 2005) and,
therefore, most likely also mediate vascular budding in this species.

5.2.1. Embryonic Development

In colonial ascidians, embryos develop inside adult zooids (or outside the parent
body, isolated in the tunic) and, depending on the species and the temperature of
the water, are released into the water as mature swimming larvae after about a week
(Manni et al. 1993; Burighel and Cloney 1997; Winkley et al. 2019). During this
development, embryonic stem and progenitor cells divide and generate the primary
germ layers (ectoderm, mesoderm, and endoderm). At the morula and blastula
stages, a tissue-specific molecular signature can already be detected (e.g., germline,
endostyle, nervous system), and these systems subsequently form a swimming
larva (Kowarsky et al. 2021). The hatched larva settles and metamorphoses into a
sessile 0ozooid. During B. schlosseri embryogenesis, a bud develops within the larva
and remains after metamorphosis in the oozooid, initiating asexual reproduction
(astogeny) to produce a colony of genetically identical zooids.

The contemporary presence of disparate reproductive strategies (i.e.,
embryogenesis and blastogenesis) that generate similar individuals (an oozoid
from a zygote and zooids from stem cells and progenitor cells), allows colonial
ascidians to serve as valuable models to study how stem cells mediate developmental
processes (Laird et al. 2005; Manni et al. 2006; Rosner et al. 2014; Voskoboynik and
Weissman 2015; Kowarsky et al. 2021). In this context, the origin of hematopoietic stem
cells (HSCs) and germline stem cells (GSCs) during embryogenesis and blastogenesis
of B. schlosseri are of significant research interest (Rinkevich et al. 2013; Rosental et al.
2018; Kowarsky et al. 2021).

HSCs are multipotent stem cells that produce all blood cells in mice and humans
(Spangrude et al. 1988). In B. schlosseri, candidate HSCs and progenitor cells have been
identified, while the endostyle has been identified as their niche (Voskoboynik et al.
2008; Rinkevich et al. 2013; Rosental et al. 2018). During embryogenesis, hemoblasts
(undifferentiated cells with a high nucleus—cytoplasm ratio, abundant ribosomes,
and cytoplasm with few organelles), and morula cells appear in the early tailbud
stage (Kowarsky et al. 2021). By the mid-late tailbud stage, hyaline amoebocytes
and pigment cells appear. Macrophage-like cells appear at metamorphosis, and
nephrocytes are found in the oozooid. The number of B. schlosseri HSC-associated
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genes present during embryogenesis increases early in development (from the two-cell
stage to the morula stage). This gene expression profile includes 239 homologous
genes that are known to be expressed in the human hematopoietic bone marrow and
43 with human homologs expressed in HSCs (Kowarsky et al. 2021).

GSCs are the source of the gametes that produce daughter stem and differentiated
cells through asymmetric cell division (Spradling et al. 2011). In vertebrates, GSCs
segregate early in development producing a small founding population (Ueno et al.
2009). During B. schlosseri embryogenesis, cGSCs expressing vasa were identified
in the early cleavage stage (Brown et al. 2009). Upon isolating the B. schlosseri cell
populations by FACS, one cell population significantly upregulated 235 genes that
were known to be enriched in mammalian germline (Rosental et al. 2018). The
genes expressed by this cell population were used in the developmental atlas created
by Kowarsky et al. (Kowarsky et al. 2021), to track germline development. The
enrichment in GSC-associated genes suggests that, in the embryo, cGSCs develop
during the morula stage and proliferate as embryogenesis proceeds. The same study
compared the molecular signatures of cHSCs and c¢GSCs during the embryogenesis
and blastogenesis pathways, revealing that both developmental pathways share
similar patterns of HSC- and GSC-associated gene enrichment. The same was
confirmed for tissue-specific signatures during embryogenesis and blastogenesis.
This common trend suggests that tissue-specific stem cells mediate organogenesis
with similar molecular dynamics during both sexual and asexual reproduction
(Rosner et al. 2019; Kowarsky et al. 2021).

5.2.2. Asexual Reproduction

Colonial ascidian species produce their adult body through asexual reproduction
by budding, in a process termed blastogenesis. During embryogenesis, embryonic
stem cells differentiate and divide to build the complex adult body of the colony
founder, the oozooid. During blastogenesis, asexual reproduction utilizes adult stem
cells to clone new bodies and organs. As mentioned above, oozooids derived from
metamorphosed larvae carry buds, the precursors for the next generation’s zooid.
Pharyngeal, stolonal, epicardial, palleal, and vascular budding are various types of
blastogenesis described in colonial ascidians (Table 3; Figure 5).

In palleal budding, buds grow out from the body wall, specifically from the
epidermis, the epithelium of the peribranchial chamber, and the connective tissue
lying between them (Manni et al. 2007, 2014). Morphological studies show that buds
form a double vesicle where the outer leaflet will differentiate into the epidermis, while
the inner leaflet, originally derived from the peribranchial epithelium, will develop
most of the zooidal tissues. This budding mode is used by colonial stolidobranch
ascidians and has been mainly studied in B. schlosseri.
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Figure 5. Regeneration in B. schlosseri. (a—c) WBR: (a) colony before the surgical

manipulation; (b) colony after the removal of all the zooids of the colony, only the
marginal vessel and ampullae are left; (c) colony after 5 days from the operation, with
an enlargement of the developing vascular bud. (d-f) Budectomy induced WBR: (d)
control colony in which no buds were removed; (e) colony after 6 days following the
removal of all the buds. When takeover starts, the zooids are only partially resorbed
through an attenuated apoptotic process. Tight aggregates of partially absorbed
zooids and ampullae are formed. Then, new sporadic transparent elements appear
in various sites in the colonial tunic, the new centers of regeneration; (f) 20 days
after budectomy, functional zooids are differentiated from these regenerating sites.
(g/h) circulatory system regeneration: (g) colony after the removal of a part of the
marginal vessel and associated ampullae; (e) colony 3 days following partial blood
vessel removal. Source: Graphic by authors.
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Table 3. Prospective involvement of candidate stem cells in colonial ascidians
asexual reproduction modes.

Asexual Candidate Stem Cell
Reproduction Species Identified and (Methods References
Mode Used to Identify It)
Multipotent peribranchial (Laird et al. 2005;
Botrullus epithelia and candidate Voskoboynik et al.
) ) schloys seri circulating stem cells 2008; Rinkevich et al.
Per1brar.1ch1al (transplantations, labeling, 2013; Rosental et al.
budding long-term lineage tracing). 2018)
Botrylloides Candidate circulating vasa (Brown and Swalla

expressing cells in buds and

violaceus vasculature system (ISH)

2007)

Piwi-positive candidate stem

Vascular Botrylloides cells lining the vascular (Rinkevich et al. 2010)

budding leachiijdiegensis

epithelium (ISH)
Cells proliferating in the
Epicardial Diplosoma adult and in the bud and .
budding listerianum high telomerase activity in (Skold et al. 2011)
the buds (BrDU; TRAP)
Mesenchymal cells form
Per’oyhfym gonads., heart, and cergbral (Lefevre 1897, 1898)
Stolonal viridis ganglion (morphological
budding studies)
Mesenchymal cells form (Brien and
Clavelina gonads and the nervous .
lepadiformis system (morphological Brien-Gavage 1928;
y stucin) & Brien 1968)

Vascular budding is another budding mode present in colonial stolidobranch
ascidians, which occurs under normal conditions or in the aestivation of botryllid
colonies. It was first recorded by Savigny (1816) and Giard (1872). Morphological
studies suggest that new zooids regenerate from aggregated cells (hemocytes
contacting the epidermis lining the hemolymphatic vessels) with the morphological
features of undifferentiated cells, such as a small diameter and large round nuclei
with packed chromatin (Oka and Watanabe 1957a; Freeman 1964).

Stolonal budding characterizes Clavelinidae and Perophoridae growth
(Figure 1k,1). In these taxa, buds develop from the stolon, an outgrowth of the
zooid body that connects individual zooids keeping them attached to the substrate.
The stolon is bordered by the epidermis and contains 2-3 sinuses (known as
vessels), separated by connective tissue (Kott 2001). In Perophora, mesenchymal
cells accumulate in the growing extremity of the stolon, where they proliferate and
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develop the bud inner vesicle (Brien and Brien-Gavage 1928; Koguchi et al. 1993).
Morphological studies suggest that the outer vesicle originates from the epidermis
and will continue to form epidermal layers, while the inner vesicle develops the
peribranchial and branchial chambers, as well as the neural gland, gut, and endostyle.
Circulating hemocytes participate in the formation of Perophora’s gonads, heart, and
brain (Lefevre 1897, 1898). Even in Clavelinidae’s stolonial budding, mesenchymal
cells (also called neurogenital mass) are suggested to be involved in the development
of the nervous system and the germline (Brien and Brien-Gavage 1928; Brien 1968).
A particular type of stolonal budding, called vasal budding, was recently described
in the stolidobranch ascidian Polyandrocarpa zorritensis (Figure 1j) (Scelzo et al. 2019).
Buds originate from the thickening and invagination of a patch of cells on the
epidermis. The invagination leads to the formation of a double vesicle (outer
and inner epidermis and the hemolymph between them). Since aggregations of
hemoblasts are observed around the forming inner vesicle, it has been suggested that
circulating cells also contribute to organogenesis in this budding mode (Scelzo et al.
2019; Alié et al. 2021).

Epicardial budding or strobilation characterizes most colonial Aplousobranchia.
In this process, buds derive from epidermal constrictions that enclose part of the
epicardium, a tube-like sac originating as an invagination of the pharynx (Sunanaga
etal. 2008) and other tissues. Skold etal. (2011) observed an extensive cell proliferation
in growing epicardial buds of Diplosoma listerianum.

5.2.3. Whole-Body Regeneration

While some colonial ascidians species continuously develop zooids from their
vasculature (Oka and Watanabe 1957a; Freeman 1964; Saito and Watanabe 1985;
Okuyama and Saito 2001; Gutierrez and Brown 2017) (Figure 1k,1), other colonial
species regenerate the whole body from their vasculature only when injured (e.g.,
after zooid- and budectomy). This kind of regeneration is known as whole-body
regeneration (WBR). B. schlosseri, Botrylloides leachii, Botrylloides violaceus, and
Botrylloides diegensis are among the species used for WBR studies (Table 4).

In Botrylloides species, WBR occurs in isolated fragments of colonial matrix
and vasculature (Rinkevich et al. 1995, 2007a, 2007b, 2008; Brown and Swalla 2007;
Kassmer et al. 2020). In B. schlosseri, WBR can be induced by removing all the
individuals from colonies approaching the cyclical generation change or takeover
(TO) (Voskoboynik et al. 2007), during which massive apoptosis events occur in
adult tissues (Lauzon et al. 1992, 2007; Cima et al. 2010) that are resorbed and
succeeded by their primary buds (Figure 5a—c). In this case, WBR requires an intact
marginal hemolymphatic vessel of the colony (Milkman 1967; Sabbadin et al. 1975;
Voskoboynik et al. 2007; Kiirn et al. 2011; Ricci et al. 2016).
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Table 4. Regeneration capacity and involvement of candidate stem cells in colonial
ascidian regeneration. N/A: not available.

Regenerative
Structure

Candidate Stem Cell
Description and
Identification

Candidate Stem Cell
Source

References

Botryllus schlosseri

Preexisting vascular

(Zaniolo and Trentin

Vi . ) 1987; Gasparini et al.
essels and tissue-resident cells. . .
ampullae Based on vascular cell Vascular tissue 2008, 2014; Tiozzo et al.
lineage tracing 2008b; Braden et al.
2014)
Whole-body Hemolymph/colonial (Sabbadin et al. 1975;
from colonial N/A Y }; col0 Voskoboynik et al. 2007;
vasculature vasculature Ricci et al. 2016)
Whole-body N/A Tissue fracments (Sabbadin et al. 1975;
from body Circulating cells Hemol gm h Majone 1977; Rosner
fragments expressing P110 ymp et al. 2019)

Preexisting vascular

(Zaniolo and Trentin

. : 1987; Gasparini et al.
Vessels and tissue-resident cells. . .
moullae Based on vascular cell Vascular tissue 2008, 2014; Tiozzo et al.
amp lin tracin 2008b; Braden et al.
eage tracing 2014)
Botrylloides leachii, Botrylloides diegensis
Candidate stem cells
Whole-body expressing Piwi. Based (Rinkevich et al. 1995,
from colonial on inhibition of WBR Vasculature epithelia 2007b, 2008, 2010;
vasculature upon injection of siRNA Zondag et al. 2016, 2019)
for Piwi
Botrylloides violaceus
Candidate stem cells in
the vasculature
expressing Integrin
The whole body alpha 6. Based on
from the regeneration recovery Circulatory hemocvtes (Brown et al. 2009;
colonial on colonies treated with y Yy Kassmer et al. 2020)
vasculature mytomycin C and
injected with one IA6+
cell and on lineage
tracing (EdU)
Polyandrocarpa zorritensis
Whole body N/A Hemoblasts, based on (Scelzo et al. 2019)

morphological data

An alternative mode of WBR described in B. schlosseri was termed budectomy-
induced WBR (Figure 4d—f) (Rosner et al. 2019). Notably, 100% of young colonies
(<6 months old) and 50-60% of old colonies (>8 months old) form new zooids within
2-3 weeks following complete budectomy. In this case, adult zooids regularly enter
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the programmed TO phase. However, the apoptosis process does not culminate in
the complete removal of the zooids” debris. Instead, some cells in the degenerating
zooids or in the vascular vessels start proliferating to form new zooids. The presence
of even a single bud in the colony prevents this mode of regeneration and leads to
the full resorption of the zooidal generation and the survival of the single bud, which
can reform the colony.

Several members of the IAP family of genes, the PI3K/Akt pathway, apoptosis
signals, as well as signals derived from the buds themselves, are involved in the
regulation of this mode of regeneration (Rosner et al. 2019). The tight association
between the onset of apoptosis and regeneration may be attributed to a phenomenon
called apoptosis-induced compensatory proliferation that has been described in
additional animal models (invertebrates and vertebrates) (Bergmann and Steller 2010;
Fan and Bergmann 2008). During this process, caspase 3 activates target genes in a
Xiap (or its ortholog)-dependent manner.

In stolonal species, such as P. zorritensis (Figure 1j), Clavelina lepadiformis, and
Perophora viridis (Figure 1k,1), WBR is induced when part of the stolon is isolated from
the remaining colony (Della Valle 1914; Huxley 1921; Brien 1930; Deviney 1934; Ries
1937; Goldin 1948; Scelzo et al. 2019). WBR in Symplegma reptans, P. misakiensis, and
B. schlosseri can also occur from isolated bud fragments able to produce new buds
before being slowly resorbed (Majone 1977; Sugino and Nakauchi 1987).

In B. violaceus (Brown et al. 2009) and B. leachii (Rinkevich et al. 2010) WBR,
hemocytes adhering to the vasculature epithelium express piwi. In B. violaceus, the
piwi-positive cells show immunopositivity to anti-PCNA antibodies (Brown et al.
2009). Retinoid acid (RA) is required for B. leachii WBR: the presence of RA agonist
increases the number of buds, whereas RA inhibitors block the process (Rinkevich
et al. 2007a). In addition, the development of regenerating buds in B. leachii is altered
by serine protease inhibitors, suggesting a role to this enzyme during regeneration
(Rinkevich et al. 2007Db).

Candidate stem cells expressing integrin-alpha-6 (1A6), pou3, and vasa have been
suggested to mediate WBR in B. diegensis (Kassmer et al. 2020). In fragmented
B. diegensis tissues that were treated by mitomycin C, WBR was triggered by
transplantation of a single IA6* cell. Moreover, when both Notch or canonical
Wnt signaling pathways were impaired by treatment with specific drugs, WBR could
notbe triggered through transplantation of IA6" cells, suggesting that these pathways
play an important role in the process (Kassmer et al. 2020).

This study suggests that a single IA6* candidate stem cell can mediate WBR in B.
diegensis. However, long-term tracing of transplanted cells to fully understand their
differentiation potential, along with reisolation and transplantation of IA6™ cells from
primary recipients to secondary hosts with the same WBR outcomes, will be needed

296



to clarify whether these cells are stem cells, and what is their potency potential (e.g.,
multipotent, pluripotent cells).

5.2.4. Tunic and Colonial Circulatory System Regeneration

Colonial circulatory system regeneration (CCR) refers to the ability of a colony to
regenerate its tunic and the circulatory system following damage. Ascidians possess
an open circulatory system containing diverse cells, flowing in hemolymphatic spaces
and in sinuses and lacunae of the body wall, delimited by connective tissues (Millar
1953; Kriebel 1968; Monniot et al. 1991). Some colonial ascidians have a system of
vessels that cross the tunic and connect between zooids. Tunic vessels originate
from the zooid epidermis; therefore, they are not homologous to the mesodermal
vertebrate blood vessels. CCR was studied in B. schlosseri (Figure 1g; Figure 5g,h), in
which full regeneration occurs in a period of time ranging from a few hours to days,
depending on the extent of the ablation or the stress that causes vessel degeneration
(Zaniolo and Trentin 1987; Gasparini et al. 2008; Qarri et al. 2020; Tiozzo et al. 2008b;
Braden et al. 2014). Damage caused by UV exposure to the vasculature was repaired
within a few days (Qarri et al. 2020). The incubation with anti-PCNA antibodies
revealed that the proliferation of epidermal cells occurs immediately after ablation,
as these cells contribute to the synthesis of a new tunic (Gasparini et al. 2008). The
regeneration of vasculature is stimulated by the injection into the circulatory system
of vertebrate vascular endothelial growth factor (VEGF) and epidermal growth factor
(EGF) (Gasparini et al. 2014). Both the knockdown of the VEGF receptor and the
inhibition of VEGFR by a chemical agent inhibit vascular regeneration, suggesting
the VEGF pathway plays a role in this process (Tiozzo et al. 2008b). Braden et al.
(Braden et al. 2014) injected fluorophores to label the cells inside the vasculature in B.
schlosseri and followed their contribution to vascular regeneration: they identified
resident, proliferating cells that expressed homologs of cd133, vegfr, and cadherin and
suggested that they contribute to vasculature regeneration.

5.2.5. In and Out of Dormancy

The ability of organisms to become dormant (termed torpor) when rough
environmental conditions appear is well documented in marine invertebrates. Some
taxa display seasonal torpor where hibernation occurs in the winter, and aestivation
occurs in the summer (Storey and Storey 2011). Hibernation and aestivation events are
recorded in a wide range of ascidians, including C. lepadiformis (De Caralt et al. 2002),
several Perophora species (Mukai et al. 1983), Polysyncraton lacazei (Turon 1992), Diazona
and Aplidium (Nakauchi 1982), Ecteinascidia turbinata (Carballo 2000), Didemnum
vexillum (Valentine 2009), Pseudodistoma crucisgaster (Tarjuelo et al. 2004) and botryllid
ascidians (Bancroft 1903; Burighel et al. 1976; Rinkevich and Rabinowitz 1993;
Rinkevich et al. 1996; Hyams et al. 2017). The torpor states (hibernation/aestivation)
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were studied in Botrylloides leachii on the Levantine coast of Israel (Rinkevich and
Rabinowitz 1993; Hyams et al. 2017) and on the Italian coast of the Adriatic Sea
(Bancroft 1903; Burighel et al. 1976). The role of stem cells in torpor states of B. leachii
was first suggested (Rinkevich et al. 1996) as part of the survival budding repertoire
of this species, which includes the WBR phenomenon (Pancer et al. 1995). Alongside
hibernation, Hyams et al. (2017) revealed high expression levels of genes related
to stem cell activity including piwi, pl10, and pcna, mostly by multinucleated cells,
whose numbers were observed to increase during torpor in B. leachii. Using in situ
hybridization and immunohistochemistry assays, Hyams et al. (2017) documented
that piwi PI10 and pcna expressions during the hibernation processes diverged
significantly from normal blastogenesis (asexual growth) related expressions. As
the hibernation progressed, the cells that expressed piwi, P10, and pcna significantly
increased in numbers, peaking in aroused colonies. In non-hibernating colonies,
these markers are highly expressed in the cell islands stem cell niches along the
endostyle (Rinkevich et al. 2013).

5.2.6. Stem Cell Aging

As described above, colonial ascidians undergo cyclical formation of new
individuals (zooids) by stem-cell-mediated budding (Laird et al. 2005; Voskoboynik
et al. 2008). In this cyclical process, zooids die through massive apoptosis as the
next generation of buds matures into an entire new replicated zooid body. As the
colony ages, both sexual and asexual reproduction methods slow and eventually
halt, demonstrating the colonies’ reduced regenerative potential (Voskoboynik and
Weissman 2015). While the colony can live for years, the zooids live for only a few days,
creating unique characteristics that distinguish it from aging in solitary organisms
(Rosen 1986; Voskoboynik and Weissman 2015; Rinkevich 2017). The colony ages
due to its stem cells that remain and circulate from one generation to the next. As
new zooids are formed, the self-renewing stem cells are the cells that are maintained
and age throughout the life of the colony (Voskoboynik and Weissman 2015).

Zooid death is part of the botryllids’ life cycle and is not indicative of the
systemic aging processes that occur within the colony (Borges 2009). A study on the
weekly cycle of B. schlosseri zooids weekly cycle (Ben-Hamo et al. 2018) has revealed
the importance of mortalin (an HSP70 family member that is highly associated with
development, cell proliferation, senescence, aging, and apoptosis) for the zooid life
cycle. In the planarian Dugesia japonica, djmot, the mortalin-like gene is expressed in
the neoblasts—the adult stem cells of the animal (Conte et al. 2009).

In B. schlosseri, mortalin is highly expressed in the endostyle and putative
circulating stem cells, and its expression is reduced in zooids during the takeover
stage (Ben-Hamo et al. 2018). It is also expressed in in vitro epithelial monolayers
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that also express other genes associated with stem cells (Rabinowitz and Rinkevich
2004, 2011).

Lifespans differ between wild B. schlosseri colonies grown in the field, compared
with colonies reared in the lab. Colonies grown in the field have short, subannual life
spans (Grosberg 1988; Chadwick-Furman and Weissman 1995a, 1995b) influenced by
seasonal fluctuations of light, nutrients, and temperature. Spring-born colonies have
a shorter lifespan of about 3 months, compared with the 8-month lifespan of fall-born
colonies (Chadwick-Furman and Weissman 1995a, 1995b). Laboratory-bred colonies
exhibit either short (<0.5 years), medium (0.5-2 years), or long (2-20+ years) lifespan
(Sabbadin 1969; Boyd et al. 1986; Rinkevich et al. 1992; Lauzon et al. 2000; Voskoboynik
and Weissman 2015; Rinkevich 2017; Voskoboynik et al. 2020). However, when an
individual Botryllus colony is divided into several subclones (clonal replicates),
the subclones will often die simultaneously (Rinkevich et al. 1992; Lauzon et al.
2000). This suggests that lifespan in B. schlosseri colonies is determined through a
heritable factor. Morphological differences are observed in older colonies, such as
increased pigmentation, reduced zooid size, and reshaping of the vasculature system
(Voskoboynik and Weissman 2015; Voskoboynik et al. 2020; Rodriguez et al. 2021).
The diurnal circadian cycle also differs in aged versus young and mid-aged colonies,
with younger colonies exhibiting reduced nocturnal heart rate and siphon activity,
while aged B. schlosseri colonies show no observable circadian changes/changes in
heart rate and siphon activity, indicating that diurnal phenotypes diminish with age
(Voskoboynik et al. 2020). Using a comprehensive transcriptome sequencing of whole
systems, B schlosseri colonies were sampled every 3 h over a 24 h period. Samples
from three different age groups (36-140 days; 2142-2146 days; 5869-5871 days)
(Voskoboynik et al. 2020) revealed that the oscillation patterns of B. schlosseri clock
and clock-controlled genes declined with age. Age-specific cyclical expressions were
found in hundreds of pathways including those associated with known hallmarks of
aging (Voskoboynik et al. 2020; Lopez-Otin et al. 2013). Significant age-associated
changes were found in the cycling dynamics of genes associated with the B. schlosseri
enriched HSC and GSC, as well as the endostyle and the central nervous system
(Voskoboynik et al. 2020).

A subsequent CNS study (Anselmi et al. 2021) characterized brains from diverse
developmental stages and ages, discovering that each week the number of neurons
in the zooid brain fluctuates, reaching a maximum of ~1000 cells, and thereafter
decreasing while the number of immunocytes increases. Comparing the number of
neurons in the brains of young and old colonies, they found that aged brains contain
fewer cells. In both weekly degeneration cycles and overall B. schlosseri aging, they
observed that the decrease in the number of neurons correlates with reduced response
to stimuli and with significant changes in the expression of genes for which the
mammalian homologous are associated with neural stem cells and neurodegeneration
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pathways (Anselmi et al. 2021). Among the 411 putative homologous genes that
correlate with neurodegenerative diseases (including Alzheimer’s, Parkinson’s, and
dementia), that are expressed in the B. schlosseri brain, 71 are differentially expressed
between early and late cycle, and 157 are differentially expressed between young and
old colonies.

Since stem cells are the only cells that self-renew and are maintained throughout
the entire life of the colony, the aging phenotypes described above most likely reflect
tissue-specific stem cells exhaustion.

5.2.7. Stem Cell Competition in Development and Aging

As described above, colonial ascidians such as B. schlosseri may form natural
chimeras with adjacent colonies by vascular fusion if they share one or two alleles
in the highly polymorphic histocompatibility gene, BHF (Voskoboynik et al. 2013b).
Itinerant GSCs compete in chimeras with heritable winner and loser hierarchies
(Stoner et al. 1999; Laird et al. 2005; Rinkevich et al. 2013). These studies revealed
fundamental aspects of stem cell biology with relevance to pathological conditions
in humans (Weissman 2000, 2015). Studying mammalian stem cells as clones of
competing stem cells, the Weissman lab and others discovered that competition
between stem cells led to the emergence of myeloid biased HSC clones that dominate
aged mice and humans and produced mainly cells from the myeloid lineage when
compared to young animals where balanced HSC clones produce cells from both
lymphoid and myeloid lineages (Rossi et al. 2005, 2007; Beerman et al. 2010; Pang
et al. 2011, 2013). Stem cell competition is also observed in human acute myeloid
leukemia where clonal preleukemic progression occurs in the HSC stage and each
heritable change increases the competitive competence of the clone vs. normal HSC
(Jamieson et al. 2004, 2006; Miyamoto et al. 2000; Jan et al. 2012; Corces-Zimmerman
et al. 2014; Jaiswal and Ebert 2014; Sykes et al. 2015), and amongst germline stem
cells (Ueno et al. 2009). Understanding the molecular determinants that regulate
stem cell competition and the expansion of specific clones throughout an organism’s
life is now a major area of interest in stem cell aging and cancer and regenerative
medicine (Weissman 2015).

6. Adult Stem Cell Niches

The term stem cell niche, originally conceptualized by (Schofield 1978), refers to
a discrete anatomical microenvironment where stem cells and their milieu reside, all
playing critical roles in maintaining/regulating the stem cell state and self-renewal
potential (Fuchs et al. 2004; Saez et al. 2017). Morphologically, all niches hold
self-renewal stem cells and their progeny, heterologous cell types, and the surrounding
niche-specific extracellular matrix (Chacon-Martinez et al. 2018). Consistent with the
strict vertebrate definition in which stem cells are present in their undifferentiated
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and, in some cases, quiescent states, the vast majority of stem cell niches in ascidians
are putative.

6.1. Somatic Stem Cell Niches

In ascidians, prospective stem cell niches have been identified in solitary and
colonial species. As previously reported in Ciona, putative stem cells residing in
pharyngeal sinuses and lymph nodules migrate to the distal regeneration blastema
(Figure 4). A short pulse of the DNA synthesis marker 5-ethynyl-2’-deoxyuridine
(EdU) labels dividing cells located in the pharyngeal sinuses, while EAU pulse—chase
results in the regenerating oral siphon, in an area resembling a blastema. These
cells were labeled by anti-piwi antibodies and expressed alkaline phosphatase
activity, which is associated with stem cells (Auger et al. 2010; Jeffery 2015b).
Furthermore, EdU-labeled cells were observed in Ciona-regenerating oral siphons
following transplantation of branchial sac fragments, taken from EdU-treated Ciona
to recipients that were not treated by EdU, but their oral siphon was removed. These
results demonstrate the presence of proliferating cells that migrate to regenerating
sites and are involved in tissue regeneration (Jeffery 2015b, 2019). Additional putative
stem cell niches harboring hemoblast-like cells have been identified in the pharyngeal
nodules of Styela clava and in the intestinal submucosa of Styela plicata (Ermak 1976;
Jiménez-Merino et al. 2019).

Using in vivo cell labeling, transplantation experiments, confocal microscopy,
and time-lapse imaging, Voskoboynik et al. (2008) found cells with stem cell
potentiality in the anterior ventral region of the B. schlosseri’s endostyle (subendostylar
sinus) (Figure 6a-d). Cells from the endostyle niche divide and migrate to developing
organs in buds but do not participate in gonads formation. When a few cells are
transplanted from the endostyle niche, they participate in tissue formation and induce
long-term chimerism in allogeneic tissues. When a few cells are transplanted from
the vasculature, they do not contribute to tissue formation or induce chimerism.
Being able to label and monitor cells in vivo by imaging them in their natural
niches through the transparent body of this model organism, in combination with
the ability to transplant cells between allogeneic colonies, provides a fundamental
framework to trace cell differentiation into more mature cell types for studying stem
cell development (Voskoboynik et al. 2008). This study was the first to demonstrate the
endostyle’s role beyond assisting in feeding (secretes mucus) and iodine accumulation
(homologous to vertebrate thyroid). Supporting the subendostylar niche as a somatic
stem cell niche, a decade later it was shown, through cHSC transplantations and
diverse functional essays, that the B. schlosseri’s subendostylar niche is harboring
cHSC. Furthermore, the endostyle molecular signature further suggested that the
vertebrate hematopoietic bone marrow niche evolved from an organ resembling the
B. schlosseri endostyle (Figure 6e) (Rosental et al. 2018). Specifically, this analysis
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revealed 337 shared genes with significant upregulation between the B. schlosseri
endostyle and human hematopoietic bone marrow. These include the genes foxo3,
needed for hematopoietic stem and progenitor cell maintenance; notchl; smad2,
important for adult murine HSC function; vwy, the von Willebrand factor. Analyses of
genes expressed in C. robusta endostyle based on in situ expression data (Ogasawara
et al. 2002) revealed significant similarities with the genes expressed in the endostyle
of B. schlosseri (Figure 4g) (Rosental et al. 2018). Importantly, other stem cell niches
could exist, including ampullae that can regenerate a whole zooid (Voskoboynik et al.
2007) and niches in the branchial sac sinuses (Jeffery 2015a). Considering that many
of the candidate stem cell niches found in solitary and colonial ascidian species are
associated with sinuses and cells aggregations located in proximity to the branchial
sac (e.g., endostyle niche/cell islands/nodule/lymph nodes) a comprehensive study
aiming to compare these candidate stem cell niches may reveal conserved elements
essential for stem cell maintenance.

6.2. Germ Stem Cells and Their Niches

The oocytes of solitary and colonial ascidians contain a special region called
postplasm (Shirae-Kurabayashi et al. 2006; Brown et al. 2009; Rosner et al. 2009),
which holds the condensed aggregate of maternal RNA and protein molecules, similar
in content and functionality to the germ plasm observed in some organisms (e.g.,
C. elegans, Drosophila, Zebrafish). In these organisms, with preformistic modes of
germline sequestering, the cells committed to becoming primordial germ cells (PGCs)
inherit the germ plasm-like derived maternal components, limiting cell differentiation
into the germ lineage to the cell’s descendants. In C. robusta, postplasm was identified
in the posterior-most blastomeres and thereafter in B8.12 cells that were classified
as PGCs formed in a postplasm-dependent manner (Wessel et al. 2020). In larvae,
those PGCs reside in the ventral side of the tail until metamorphosis, when the PGCs
are retracted along with tail tissues into the body trunk and populate the gonads
(Shirae-Kurabayashi et al. 2006).

In colonial ascidians, a cGSC-specific transcriptomic signature suggests that
PGCs are established at the embryo’s morula stage (E1.4) and proliferate as the
embryo grows (Kowarsky et al. 2021). At this stage, candidate germ precursor cells
expressing vasa were identified (Brown et al. 2009), with candidate PGCs identified in
the embryo body trunk but not observed within the tail (Rosner et al. 2009). Examples
of postplasm materials that are important for PGC specification include pem, piwi,
and vasa gene products. In C. robusta, pem functions to repress somatic specific gene
expressions in early germline at the level of polymerase II (Pol II) activity (Strome
and Updike 2015). Pem proteins are only transiently expressed during the early
specification of germ cells, while during later stages, their function is replaced by a
chromatin repression mechanism (e.g., in Halocynthia roretzi) (Zheng et al. 2020).
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Figure 6. Putative stem cells and stem cell niches in B. schlosseri: (a—c) endostyle
and cell island niches. Dotted lines in b: cell islands; (d) hemoblasts (arrows)
in endostyle niche, transmission electron microscopy; (e) enrichment scores of
pathways associated with stem cell activity that are expressed in B. schlosseri
endostyle and enriched HSCs using GeneAnalytics tool. The gene list used in
the analysis is based on gene expression data of isolated endostyles and enriched
B. schlosseri HSCs populations described in Rosental et al. (2018). The number
in the bars indicates the number of genes that were significantly upregulated in
endostyle/cHSC populations and annotated to human genes in the specific pathway.
The numbers on the right indicate the total number of genes in the specific pathway
known in humans. Bars indicate the score of the pathway; high and medium
scoring pathways associated with stem cells that appear in both gene sets (endostyle
and HSCs) were used; (f-h) immunohistochemical analyses of fixed sections with
cy3+coupled BS-Vasa polyclonal antibodies: (f) staining of the gonad (arrow) within
a primary bud; (g) vasa-positive cells aggregate attached to the zooidal stomach and
intestine (arrows); (h) vasa-positive cells aggregate in the hemolymphatic vessel
(arrow) and attach to the zooidal stomach. BB: branchial basket; BV: blood vessel;
CL cell island; DL: dorsal lamina; E: endostyle; LBV: longitudinal branchial vessels;
IN: intestine; PB: primary bud; PE: peribranchial chamber; SB: secondary bud; SI:
stigmata; SO: stomach; TU: tunic; Z: zooid. Source: Graphic by authors.
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Vasa is considered a key marker of PGCs and germ lineages, although its
expression was also detected in the somatic cells of various aquatic animals,
including ascidians (Rosner et al. 2009). Vasa is an RNA helicase involved
in the remodeling of RNA structure and in the regulation of genes translation.
Moreover, vasa protein acts on the piwi-interacting RNA (piRNA) metabolic
process and, together with piRNA and piwi proteins, governs the transposons
methylation needed for their repression to ensure germline integrity (Siomi and
Kuramochi-Miyagawa 2009; Kuramochi-Miyagawa et al. 2010). As such, vasa and
piwi expressions were studied in many solitary and colonial ascidians (Fujimura
and Takamura 2000; Shirae-Kurabayashi et al. 2006; Brown et al. 2009; Rosner et al.
2009, 2013). In B. primigenus, when vasa-expressing cells were depleted from the
colony, vasa-expressing germ cells reappeared in the colony to form piwi-expressing
candidate germ stem cells (Kawamura and Sunanaga 2009).

Studies suggest that in some marine invertebrate taxa with high regenerative
aptitude (e.g., sponges, hydrozoans, and planarians), the adult stem cells can
differentiate into both germ and somatic lineages (Buss 1982, 1983; Blackstone
and Jasker 2003; Extavour and Akam 2003; Juliano et al. 2010; Alié et al. 2015;
Fierro-Constain et al. 2017; Rosner et al. 2021).

Considering the high regenerative capacity of ascidians, the potential for ascidian
adult stem cells to differentiate into germ lineage in an alternative parallel mode of
PGC sequestering has been investigated in both solitary and colonial species. In C.
robusta, PGCs removal by cutting larval tails is compensated by the regeneration of
the germ cells from cells that otherwise are assumed to have a somatic fate (Takamura
et al. 2002; Yoshida et al. 2017; Wessel et al. 2020). However, since the cells behind this
phenomenon were not identified yet, it is not clear whether this mode of sequestering
is restricted to a specific time window during development or if PGCs regenerate from
soma/germ stem cells or by trans- or de-differentiation of other cells. Experiments
performed with TALEN-induced mutations in germ lineage (Yoshida et al. 2017)
suggest that this mode of induction might occur without the removal of the original
PGCs, and the cells involved in this process might be of epidermal, neural, muscle,
or stem cell origin. Opposing conclusions were drawn by Laird et al. (2005) working
with B. schlosseri and tracing the fate of single cells transplanted into genetically
distinct individuals. This research, which was further strengthened by Voskoboynik
et al. (2008) and Rinkevich et al. (2013), implies that cells with self-renewing and
differentiation abilities can differentiate into somatic or germ cells but not both. These
opposing results might reflect differences between species or even solitary versus
colonial variations. However, single-cell lineage tracing experiments are needed to
solve this discrepancy.

No matter the mode of germ cell sequestering, the germ cell precursors are
always formed earlier than the gonads and the PGCs and migrate (passively or
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actively) to the gonad, which might be relatively far apart from the PGCs. PGC
motility is associated with the regulation of the level of their adhesion molecules at
the onset and end of the movement and acquisition of amoeboid movement during
the migration (Grimaldi and Raz 2020). Molecules that were associated with this
movement include G protein-coupled receptors and Dead-end protein (Dnd), an
RNA-binding protein involved in cell survival and fate that regulate proteins of the
“motility module” (Grimaldi and Raz 2020). Colonial ascidians are characterized by
repeated weekly migration of PGCs to the gonads of the newly formed buds. There,
apart from the gonads situated in the buds that serve as niches for the germ lineages,
it seems that additional “temporary niches” exist in various zooidal tissues including
the cell islands (Figure 6b) (Rinkevich et al. 2013; Rosner et al. 2013). In B. schlosseri, cell
islands were identified as niches for putative germ stem cells (Rinkevich et al. 2013).
Expression of genes associated with germ and general stem cells was shown within
them. These include piwi, alkaline-phosphatase, vasa, pl10, and pcna. Transplantation of
whole-cell islands induces chimerism in the gonadal tissues. Moreover, labeling of
cells in the cell islands leads to the appearance of the stain 10 days later in the gonads,
including testis and ovaries of the newly developed zooids (Rinkevich et al. 2013).
Isolated by cell sorting, a candidate GSC population, uniquely expressed 80 genes
known to be expressed in mammalian germline, migrated to the cell islands following
transplantation (Rosental et al. 2018), providing more support to the identification
of the cell islands as a germline stem cell niche. Migrating PGCs in B. schlosseri
were defined as BS-Vasa*-BS-DDX1+BS-cadherin®-y-H2AX*-phospho-Smad1/5/8*
cell aggregates (Rosner et al. 2013). These PGCs form complexes, mediated by
BS-cadherin (Rosner et al. 2013), with follicular cells expressing members of the
TGF-b family, which are the migratory unit during PGCs migration to the gonads
(Langenbacher and Tomaso 2016). Additionally, changes in the migration of germ
cells between old and new gonads in the new generation of buds are due to a
chemotactic signal along a sphingosine-1-phosphate gradient (Kassmer et al. 2015)
and involves also an ABC transporter-mediated autocrine export of an eicosanoid
signaling (Kassmer et al. 2020).

7. Stem Cells as a Unit of Natural Selection

Discussing chimerisms in slime molds, Buss (1982) hypothesized that cells can
compete within a chimera and take it over. By studying chimeras of the colonial
chordate Botryllus schlosseri, the Weissman group discovered that natural selection
operates at the level of GSC clones, which compete for niches within the organism’s
body. Chimeras usually produce only GSC’s from one chimeric partner, despite
maintaining the soma of both, leading to reproductive pressures toward increasingly
competitive GSC’s (Stoner and Weissman 1996; Stoner et al. 1999; Weissman 2000, 2015;
Laird et al. 2005; Rinkevich et al. 2013). Weissman (2000) further suggested that stem
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cells are not only units of biological organization, responsible for the development
and the regeneration of tissue and organ systems, but are also units in evolution by
natural selection. On the other hand, considerations of somatic adult stem cells of
animals, including cancer stem cells (another type of adult stem cell not discussed
here; Greaves 2013) as units of selection are not trivial, because of the failure to identify
the hierarchical level upon which natural selection operates and what exactly is being
selected (Rinkevich 2000; Greaves 2013). Indeed, in vertebrates and ecdysozoan
invertebrates, adult stem cells are observed as pools of undifferentiated cells capable
of self-renewal, proliferation, and production of a number of differentiated but
lineage-restricted progenies, all for the general maintenance and various regeneration
needs. Yet, the literature on non-ecdysozoan invertebrates (e.g., Gremigni and
Puccinelli 1977; Rinkevich et al. 2007b; Ereskovsky et al. 2015; Hyams et al. 2017;
Ferrario et al. 2020) suggests that adult stem cells carry a great degree of plasticity
in their functions; therefore, the tissue-specific and lineage-restricted adult stem
cell view, mainly derived from studies on vertebrates, may need to be expanded.
Flexibility in the adult stem cell destiny allows high capabilities for regeneration and
changes in cell fates in response to any emerging need; however, experiments that
enable long-term lineage tracing of a single cell must be employed before conclusions
regarding cell plasticity are made.

In many animal taxa (including sponges, cnidarians, and platyhelminths), the
germline is not sequestered from somatic cells early in ontogeny and during the
lifespan of the organism germ cells are continuously developing from somatic cells
(Buss 1982; Blackstone and Jasker 2003; Miiller et al. 2004; Seipel et al. 2004; Rinkevich
et al. 2009; Rosner et al. 2009; Gold and Jacobs 2013; Dannenberg and Seaver 2018;
DuBuc et al. 2020; Mueller and Rinkevich 2020; Vasquez-Kuntz et al. 2020). In
non-chimeric metazoans, somatic and germ cell lineages share a single heritable
genotype. In contrast, within a chimera, genotypically different somatic lineages
compete for survival, as do germ cell lineages (Buss 1982; Stoner and Weissman
1996; Stoner et al. 1999; Rinkevich 2002a, 2002b, 2004a, 2004b, 2005a, 2011; Rinkevich
and Yankelevich 2004; Simon-Blecher et al. 2004; Laird et al. 2005; Voskoboynik et al.
2008; Rinkevich et al. 2013). The genotype that dominates among the somatic cells
likely confers some survival advantage and is subject to forces of natural selection.
However, heritable germ cell lineages of one genotype may survive within the
chimeric entity even though they do not contribute to the somatic tissue (Stoner and
Weissman 1996; Stoner et al. 1999; Rinkevich and Yankelevich 2004; Laird et al. 2005;
Voskoboynik et al. 2008; Rinkevich et al. 2013). In these cases, the germline is said to
hitchhike on or parasitize the soma of a different genotype, transferring heritable
traits unseen by natural selection forces to subsequent generations that then express
these non-selected “parasitic” traits. The newborn individual carrying a parasitic
genotype need not reach sexual maturity to pass on an “unfit” germline genotype

306



to the next generation, as it may quickly fuse with adults or other offspring (e.g.,
Grosberg 1988) with “fit” somatic cells for continued germline hitchhiking. As a
result, superparasitic germ cell genotypes, most capable of dominating foreign soma,
may emerge in a population. Thus, germline parasitism may defy the Darwinian
paradigm (Rinkevich 2011).

The above notions are further amplified in multichimerism (multipartner
associations), where more than two allogeneic adult stem cells form a single botryllid
ascidian colony (Rinkevich 1996; Rinkevich and Shapira 1999; Stoner et al. 1999;
Paz and Rinkevich 2002). Multipartner chimeras grow faster and produce larger
colonies when compared with chimeras made of two partners. They also exhibit other
traits associated with more stable entities including fewer cases of morphological
resorption or fragmentation events. Following the above, it was proposed that in
multichimeras, the different intraspecific conflicts mitigate each other, generating an
improved entity (the benefits of the conspecific adult stem cells living in a group
exceed the cost of not doing so) where natural selection may act on the level of the
whole colony instead of on each conspecific adult stem cell.

As in all stem cells, botryllid ascidian adult stem cells are self-renewing cells
capable of differentiation. Five traits highlight these stem cells as genuine units of
selection: (a) they efficiently migrate within the organism and between compatible
organisms; (b) they compete with the host somatic and/or germline stem cells; (c)
they express high and unlimited replication capacity; (d) they may share the soma
with conspecific stem cells lineages and commonly determine specific traits for the
benefit of the chimeric organism as a whole; (e) they can inhabit several different
hosts. As a result, chimerism reflects cases where specific environmental pressures
lead to the takeover of the fittest stem cells and their clones (Buss 1982; Rinkevich
and Yankelevich 2004).

8. Future Directions on Stem Cells in Ascidians

Although ascidians represent a group of chordates exhibiting astonishing stem
cell-mediated processes, most of the significant progress has been made in the last two
decades. These advancements were mainly due to the application of unbiased methods
translated from mammals to these marine invertebrates and the accessibility of omics
methodologies. In the future, the study of ascidians will undoubtedly unravel stem
cell potentialities, contributing to the basic knowledge of these cells. In this respect,
ascidian simplicity and evolutionary closeness to vertebrates make them unique.
Nonetheless, there are still several limitations to exploiting ascidians as a model
organism for studies in stem cells biology, mainly due to the lack of methodological
tools (such as cell lines, panels of specific monoclonal antibodies) and to the limitations
of maintaining colonies in inland facilities, away from seawater supply.
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8.1. Cell Cultures and Transgenesis

Immortal cell lines (established cell lines), including cell lines of adult stem
cells, may provide an important tool in the research; yet, established cell lines for
ascidians, as for all other marine invertebrates, are not yet available (Rinkevich 1999,
2005c). Nevertheless, several attempts in the last three decades have focused on the
development of in vitro approaches. The first attempt (Rinkevich and Rabinowitz
1993) concentrated on the development of cell culture from the whole B. schlosseri
hemocyte populations, followed by the establishment of embryo-derived cell cultures
(Rinkevich and Rabinowitz 1994). Then, a series of studies followed the expression
of stem cell-associated genes in in vitro cultures of epithelial cells from B. schlosseri’s
buds (Rinkevich and Rabinowitz 1997; Rabinowitz and Rinkevich 2004, 2005, 2011;
Rabinowitz et al. 2009). Although well developed in solitary ascidians, transgenic
lines are still not available for colonial species. This is mainly due to the difficulties
encountered in treating eggs for gene delivery: in colonial ascidians, fertilization
is internal, and eggs are enveloped by follicular cells. Yet, the availability of this
technique, coupled with the transparency of colonial tissues, facilitates the ability to
monitor in vivo the fate of stem cells and to uncover the molecular pathways that
control stem cell proliferation and differentiation.

8.2. Monoclonal and Polyclonal Antibodies

Monoclonal antibodies (MAbs) are primary markers in biological sciences. The
development of species-specific MAbs is highly valuable in research in general and
in stem cells isolation. Initially, several MAbs were developed for experiments
performed on B. schlosseri. The first sets were target antigens located on B. schlosseri
hemocyte surface (Schlumpberger et al. 1984a) and embryonic cells (Schlumpberger
et al. 1984b). An MAD that recognized all B. schlosseri hemocytes and zooids
perivisceral epithelium was also developed (Lauzon et al. 1992). Aiming to develop
MADbs that recognize epitopes involved in botryllid historecognition, Fagan and
Weissman (1998) produced a MAD that labeled an epitope found on the atrial
siphon and on the inner surfaces of hemolymphatic vessels. The above sets of
experiments further revealed the existence of a MAb that specifically recognized
and bound to all somatic cells of one genotype but did not react against somatic
cells of another genotype and was used to follow somatic cell movements between
partners within chimeras (Rinkevich 2004b). Ballarin et al. produced a monoclonal
antibody recognizing a surface epitope on B. schlosseri’s germ and accessory cells,
tunic cells, and hemocytes (Ballarin et al. 2011). However, the majority of previously
tested MAbs are no longer available (Rinkevich personal communication), and
renewed efforts are needed to establish new panels of MAbs for the research of
stem cells in ascidians. In parallel, Lapidot et al. (2003) have established a MAb
specific to the B. schlosseri pyloric gland cells, and Lapidot and Rinkevich (2005,
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2006) developed panels of MAbs specific to cell surface antigens and to intracellular
epitopes. Additional polyclonal antibodies were developed against specific stemness
proteins of botryllid ascidians and include B. schlosseri specific anti-pl10, anti-vasa,
anti-cadherin antibodies (Rosner et al. 2006, 2007, 2009), and B. leachii specific anti-piwi
antibodies (Rinkevich et al. 2010).

8.3. Animal Breeding Methodologies

Established ex situ, inland culturing methods for ascidians species and the
development of inbred lines and defined genetic stocks are important prerequisites
for research (also alleviating seasonal availability of animals and laboratory
acclimatization problems), primarily when dealing with stem cell studies. While
research for the cultivation of ascidians under laboratory conditions started decades
ago (e.g., Grave 1937), very little has been achieved when considering defined
genetic stocks. For colonial species, animal breeding methodologies for the long-term
development of inland brood stocks were employed primarily on B. schlosseri,
representing three various ex situ approaches—one developed in Italy (Brunetti
et al. 1984; Sabbadin 1960), another in the USA (Milkman 1967; Boyd et al. 1986)
and Israel (Rinkevich and Shapira 1998), and a third, for Botrylloides simodensis,
in Japan (Kawamura and Nakauchi 1986). Using classical breeding experiments,
Yasunori Saito established defined homozygous and heterozygous lines for distinct
histocompatibility genotypes (AA, BB, AB, and AX) that were crossed and maintained
in the Hopkins Marine Station mariculture for several decades (De Tomaso et al.
1998; Voskoboynik et al. 2013b). These lines added compelling evidence that
histocompatibility in Botryllus is controlled by a single gene, and they were used to
isolate the Botryllus histocompatibility factor (BHF).

There were also attempts for inland culturing of other colonial ascidians, such
as S. reptans (Sugino and Nakauchi 1987), and Didemnum vexillum (Fletcher and
Forrest 2011; Rinkevich and Fidler 2014). Culturing systems have been established for
four solitary species: C. robusta, C. intestinalis, H. roretzi, and recently, for P. mytiligera
(Hendrickson et al. 2004; Joly et al. 2007; Li et al. 2020; Gordon et al. 2020).

8.4. Model Species for Studying Stem Cells and Ascidian Biodiversity

Most of the studies on regeneration and asexual reproduction in ascidians
focused on a limited number of species, i.e., the solitary C. intestinalis and C. robusta
and the colonial B. schlosseri. Several tools and protocols have been tuned for these
animals and different laboratories use them as model species, even in absence of
genetically defined lines. However, in recent years, molecular studies suggest the
presence of cryptic species with the same nomenclature. In the case of Ciona sp.,
before 2015, the name C. intestinalis was used to indicate what is currently known as
either C. intestinalis or C. robusta (Brunetti et al. 2015; Pennati et al. 2015; Gissi et al.
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2017). Recently, the species B. schlosseri has been redescribed (Brunetti et al. 2017),
since five divergent clades have been hypothesized under its name: B. schlosseri
represents the clade A; Botryllus gaiae the clade E (Brunetti et al. 2020); clades B-C
have not been determined yet. The uncertainty in species identification for botryllid
ascidians has further been discussed (Reem et al. 2018). This equivocal taxonomical
determination represents gaps of knowledge at several levels: firstly biological, but
also operative, since methods, databases, and tools are developed in a laboratory and
cannot be easily applied by other laboratories using different wild-type lines.

It is also worth noting that the ascidians exhibit an extraordinary variety of
processes involving stem cells, and many of them are not manifested by Ciona sp. or
Botryllus sp. For example, recently, extraordinary regenerative potentialities, going
far beyond what is shown by Ciona, have been described in the solitary P. mitiligera
(Gordon et al. 2021). Some Botrylloides species exhibit putative stem cell-based
phenomena, such as torpor and constitutive WBR (Hyams et al. 2017; Kassmer et al.
2020) that are not exhibited by B. schlosseri. Future studies should consider these
attributes.

8.5. Stem Cells and Immunity

The crosstalk between stem cells and immune cells during homeostasis and
regeneration is well studied in mammals (Castillo et al. 2007; DelaRosa et al. 2012;
Naik et al. 2018) but poorly investigated in aquatic invertebrates (Ballarin et al. 2021b).
Studies on allograft rejections in ascidians point to potential relationships between
stem and immune cells. For example, in the case of allograft rejections in the solitary
ascidian Styela plicata, following the initial recruitment of cytotoxic morula cells to the
graft area, an increase in the number of hemoblasts in the tunic surrounding the graft
is observed (up to 30 days following rejection) (Parrinello 1996; Raftos et al. 1987).
Similarly, in Styela clava, the injection of allogeneic hemocytes to the tunic induces
the proliferation of hemoblasts within 5 days postinjection (Raftos and Cooper 1991).

Several events in the life cycle of colonial ascidians most likely involve
interactions between stem and immune cells. These include (i) rejection of an
allogeneic colony, (ii) chimerism, and (iii) resorption of zooids when the new
generation buds replace them.

As described above, colonial ascidians exhibit natural stem-cell-mediated
chimerism (Laird et al. 2005). When two genetically distinct colonies meet, they
either anastomose extracorporeal blood vessels to form a chimera with a common
vasculature or reject one another (Oka and Watanabe 1957b; Sabbadin 1962; Scofield
et al. 1982; Voskoboynik et al. 2013b). In some chimeras, one of the chimeric partners
undergoes partial or complete reabsorption (Rinkevich and Weissman 1992; Corey
etal. 2016). Circulating germ and/or somatic stem cells of one partner in a chimera can
compete with and replace the germline and/or soma of the other partner (Laird et al.
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2005; Voskoboynik et al. 2008; Rinkevich et al. 2013). Therefore, stem cell engraftment
in colonial ascidians is regulated on four different levels: (1) fusion or rejection; (2) if
fusion occurs, the body of the losing partner is resorbed; (3) competition between
circulating somatic stem cells to seed buds for asexual whole-body development; (4)
stem cell competition among germline stem cells, which determines the genotype of
the next generation.

Each level involves immune cell implications: the histocompatibility gene BHF
controls fusion/rejection and limits stem cell parasitism to kin (Voskoboynik et al.
2013b); rejection is characterized by the extravasation of cytotoxic cells along the
contact border and their degranulation and death with the consequent formation
of points of rejection (Ballarin et al. 1995; Cima 2004; Rinkevich 2005b; Franchi and
Ballarin 2017); resorption is a model for stem cell loss (failure to bud) when the
immune system attacks the buds (Corey et al. 2016), and stem cell competitions relate
to stem cell transplant engraftability.

The elimination of one partner in a chimera occurs mostly during a
developmental period corresponding to a massive wave of programmed cell death
and removal (Rinkevich and Weissman 1992; Cima et al. 2010; Corey et al. 2016;
Franchi et al. 2016). Each blastogenic cycle in B. schlosseri ends in an apoptotic
and phagocytic event of parental zooids, concurrent with the rapid development of
next-generation primary buds (blastogenic “takeover” stage).

Using differential expression and gene set analysis, Corey et al. (2016)
demonstrated that takeover pathways are co-opted by colonies to induce
histocompatible partner elimination. These gene profiles show that colonies usurp
developmental programs of autophagy, senescence, programmed cell death, and
removal to eliminate allogeneic partners. This study also shows that the exposure
of asexually propagating tissues to allogeneic cytotoxic and phagocytic populations
has clear effects on development, leading to a developmental arrest. These findings
suggest that the critical early events of asexual reproduction are dependent on
protection from immune damage—a biological theme that emerges in higher
vertebrates, where regulatory systems have evolved to create local sites of immune
privilege such as for germ cell development or to protect a fetal allograft. The
interactions between immune and stem cells in colonial ascidians are also suggested
by a marked proliferative response observed following hemocyte xenotransplantation
in Botrylloides (Simon-Blecher et al. 2004).

The life history of colonial ascidians, in which the interplay between stem and
immune cells can be studied in vivo (Voskoboynik et al. 2008; Rinkevich et al. 2013;
Corey et al. 2016; Rosental et al. 2018), offers an opportunity to better understand the
relationship between immune function and regeneration.
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Improving the Yields of Blood Cell
Extractions from Botryllus schlosseri
Vasculature

Andy Qarri, Yuval Rinkevich and Baruch Rinkevich

Abstract: The tunicate Botryllus schlosseri belongs to the Vertebrata’s closest living
invertebrate group. This colonial species represents an invertebrate model system
that maintain high capacity of adult stem cell activity, where various blood cell
types, expressing multipotent or totipotent phenotypes, circulate in vasculature
throughout life. While isolated Botryllus blood cells may serve as indispensable
tools for studying stem cells biology, up to date, no single cell line is available. The
major bottle-necks for established cultures include the lack of cell division under
in vitro conditions as from 24 to 72 h post isolation and enhanced contami-nation
rates by bacteria and protists. Moreover, low yields of blood cells are of significant
hindrance to the development of long-term cultures since lower numbers of cells
eventually lead to poor results. Tackling these two critical technical obstacles,
we present here methodologies for improved aseptic conditions and for higher
yields of cells extracted from colonial vasculature. This study was performed
on two colonial stocks (Israel, laboratory stocks; Helgoland, Germany—field
collected stocks) which resulted with a significant difference in the numbers of
cell extrac-tions between the two stocks and significantly different blood cell yields
between various blastogenic stages (laboratory stocks), further revealing differences
between field /laboratory-maintained colonies.

1. Introduction

The cosmopolitan tunicate Botryllus schlosseri belongs to a taxonomic taxon
considered as the closest living invertebrates to the Vertebrata (Delsuc et al. 2006)
and is used as an important model species in a wide range of biological disciplines
(Ben-Hamo and Rinkevich 2021), such as ecotoxicology (Gregorin et al. 2021; Rosner
et al. 2021), immunobiology and allorecognition (Magor et al. 1999; Rinkevich
2004), developmental biology including colony astogeny (Manni et al. 2019; Rosner
et al. 2006; Rosner et al. 2019), regeneration (Voskoboynik et al. 2007), senescence
(Rabinowitz and Rinkevich 2004a; Rinkevich 2017), evolutionary biology (Rinkevich
2002) and above all—stem cell biology (Ballarin et al. 2021; Voskoboynik et al.
2008). B. schlosseri colonies express two modes of reproduction, sexual and asexual
(Manni et al. 2019). Sexual reproduction cycles occur weekly, each starting with the
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fertilization of eggs and progressing through embryonic stages into a tadpole larva
featuring chordate characteristics that includes striated musculature, neural tube,
notochord and tail (Voskoboynik et al. 2007). The tadpole larva swims for a short
period of time and then attaches to a substrate near the mother colony, loses the
tail through apoptosis, and then develops into the first zooid (the colonial module),
called an oozooid (Berrill 1950). Colonies develop from the 0oozooids through weekly
cycles of growth and death (Manni et al. 2019; Rinkevich 2019) and form several
typical star-shaped groups of zooids, each called a system, that are embedded within
the tunic, the transparent gelatinous extra cellular matrix (ECM) of the colony which
contains cellulose cross-linked with proteins as well as the colonial circulatory system
(Figure 1). Colonial systems are connected to each other via common blood vessels,
which carry at the periphery of the colony sets of blind vasculature termini, called
ampullae (spherical to elongate in structure). Each zooid in the colony possesses an
oral siphon (branchial siphon) and an atrial siphon is shared for all zooids in each
system (Berrill 1950).

Figure 1. A B. schlosseri colony originated from the Israeli stock at the National
Institute of Oceanography, Haifa (a,al), at blastogenetic stage A, and (b,b1) a colony
from Helgoland Island, Germany in blastogenetic stage C. Cells extracted from the
marginal ampullae (arrows in al, b1) of the colonies. Dotted squares represent the
enlarged area of al and bl, respectively. Bars = 0.1 mm (a,b) and 1 mm (al,b1).
Source: Graphic by authors.
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The asexual mode of development in B. schlosseri is expressed as weekly
developmental cycles called blastogenesis, where each blastogenic cycle is composed
of four major stages (marked by the letters A to D (Mukai and Watanabe 1976), during
which the primary buds mature to adult zooids in concert with the development of
the secondary buds from the body wall of each primary bud. A massive apoptotic
event concludes each blastogenic cycle with the morphological resorption of all
parental zooids, concurrently followed with the development of primary buds
to functioning zooids (Lauzon et al. 1993). Thus, the blastogenesis process can
be characterized by somatic self-renewal and vasculature regeneration, which
demonstrate a model organism that carry out continuous somatic proliferation
throughout the organism life span. In other words, the weekly budding process
of somatic self-renewal and high vasculature regeneration capacity suggests an
invertebrate model organism that maintain high capacity of stem cell activity
throughout life (Ben-Hamo and Rinkevich 2021; Qarri et al. 2020; Rinkevich 2019).

Blood cell isolation and culturing are essential tools in the study of stem cells
and regeneration in this model organism. Various cell types from B. schlosseri possess
extensive potentialities such as multipotency and totipotency (Laird et al. 2005;
Rinkevich and Rabinowitz 1994; Rinkevich and Rabinowitz 1997; Rosner et al. 2009;
Rosner et al. 2021) and may serve as important tools in studying immunology,
developmental biology, apoptosis and regeneration (Ballarin et al. 1994; Lauzon
et al. 1993; Rosner et al. 2009; Rosner et al. 2021; Voskoboynik et al. 2007). Studies
that attempted to develop primary cultures and permanent cell cultures from B.
schlosseri, commonly used to extract blood cells that are directly collected from the
blood vessels (Ballarin et al. 2008; Rinkevich and Rabinowitz 1993). Other studies
used cells originated from epithelial layers (Rinkevich and Rabinowitz 1997), which
show de novo stemness signatures (Rabinowitz et al. 2009; Rabinowitz and Rinkevich
2011) and cells originating from embryos (Rinkevich and Rabinowitz 1994). However
to date, no single Botryllus cell line is available and it has repeatedly shown that
extracted cells stop dividing in vitro within 24-72 h after their isolation. Moreover,
many of the cultures are contaminated with opportunistic organisms including
bacteria and protists, such as thraustochytrids (Qarri et al. 2021; Rabinowitz et al.
2006; Rinkevich and Rabinowitz 1993; Rinkevich and Rabinowitz 1994; Rinkevich
1999; Rinkevich 2011.)

The above studies indicate that, in order to establish long-term cell cultures,
attempts should approach two critical technical statuses prior cell cultivation,
(a) approved methodologies for aseptic conditions and (b) high yields of cell
extraction. High yields of cells are of significant importance since lower numbers of
cells eventually lead to poor results and fast senescence of extracted cells, primarily
when dealing with blood cells that represent a rapid turnover and survival of
only several weeks (Raftos et al. 1990; Rinkevich 1999; Rinkevich 2011). These
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limitations have led to attempts of pooling of blood cells originated from several
colonies. For example, Ballarin et al. (2008) extracted 10° cells from more than three
colonies, and Kamer and Rinkevich (2002) obtained the same cell concentrations (10°
cells) by cutting the tunic matrix and the zooids without specifying the number of
used colonies.

Responding to the above challenges, here we present a general aseptic approach
with higher yield for blood cell (including stem cells) extractions employed on B.
schlosseri colonies originating from two colonial stocks, the long-term established
laboratory colonial cultures from Israel and from newly collected colonies originated
from Helgoland Island, Germany. The essence of this approach is to improve blood
cells yields from a single colony for in vitro applications.

2. Materials and Methods

2.1. Botryllus schlosseri Husbandry

Twenty-two colonies originated from Israeli cultures (long-term cultures
maintained at the National Institute of Oceanography, Haifa, Israel) and freshly
collected colonies from Helgoland Island, Germany, were selected for cell extraction
experiments. Thirteen colonies (blastogenic stages A =4, B=3,C=2and D =4)
were derived from laboratory stocks reared in the Israeli facility for several years
and originated from several USA west coast marinas (Monterey, Half Moon Bay and
Moss Landing, California), as from Nelson Marina, New Zealand. The colonies were
kept vertically on 5 x 7.5 cm? glass slides in slots of glass staining racks at 20 °C,
in a 21-Liter plastic tank under a 12:12 h light:dark regimen, in a standing seawater
system, as described (Rinkevich and Shapira 1998). Air stones were continuously
used and the seawater was changed twice a week. Colonies were fed daily with
freeze-dried rotifers, green unicellular algae and commercial powdered plankton.
Nine colonies (blastogenic stages A =5, B =2 and C = 2) were collected from the
rocky intertidal zone in Helgoland. These colonies were reared at the Biological
Institute Helgoland (BAH) of the Alfred Wegener Institute, Helmholtz Centre for
Polar and Marine Research—house C and maintained as the Israeli stock colonies
under running seawater system and temperatures between 15.7 and 23.4 °C. Colonies
were fed daily with dried algae powder. Colonies of both stocks were gently cleaned
twice a week using small and soft brushes to remove trapped food particles, fouling
organisms and debris. All experimental colonies were in good health and well
adapted to their maintenance conditions.

2.2. Aseptic Solution, Instruments and Environment

Washing solution (WS) was used in order to reduce contaminations during the
process of cell extraction. Artificial seawater (ASW) was prepared as described in
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Rabinowitz and Rinkevich (Rabinowitz and Rinkevich 2004b), autoclaved, sterilized
by a 0.2 pm filter membrane (Millipore) and stored at room temperature. For
each 50 mL of WS, we used 44 mL of ASW, supplemented with 3 mL of PSA
(Biological Industries; Penicillin 10,000 units/mL, Streptomycin sulphate 10 mg/mL
and Amphotericin B 25 um/mlL; Cat. 03-033-1B. MP Biomedicals; Cat. 091674049)
and 3 mL of Gentamycin Sulfate (Biological Industries; 50 mg/mL; Cat. 03-035-1.
Gibco; 50 mg/mL; Cat. 15750037). Only sterilized plasticware was used. In addition
to ASW sterilization, glassware was routinely autoclaved. Cell extraction protocols
were carefully observed to maintain pathogen-free conditions. Additionally, prior to
cell isolation colonies were kept under sterile conditions in a biosafety cabinet within
a 20 °C cool room (Israel) and in an incubator of 20 °C (Helgoland).

2.3. Cell Extraction Approach under Aseptic Conditions

Before cell extraction procedure (Figure 2) colonies were taken out from
aquaria and photographed under stereomicroscope (SMZ1000, Nikon equipped with
DeltaPix digital camera Invenio 3SII, S/N: 3648213012. Leica M125 equipped with a
camera Leica IC80 HD). Then colonies were meticulously cleaned by soft brushes,
and the glass slides on which they were grown were comprehensively cleaned
and wiped with 70% ethanol. Using razor blades under a biosafety cabinet, the
colonies were carefully pulled off from the slides and placed in the centers of sterile
60 mm Petri dishes (Greiner bio-one, CELLSTARR 628160, Petri-dish 60 x 15 mm?)
for approximately 20 min in a humidity chamber, containing ASW, to actively attach
to the dish substrates (detailed procedure in Rinkevich and Weissman (1987)). Then,
6 mL of WS (Washing solution) was added, and animals were left under sterile
conditions for 48 h without food (starvation with antibiotic supplements significantly
reduced contaminations of cell cultures; Rinkevich and Rabinowitz 1993). Then,
the WS was changed 12 times (every hour for the first 6 h, left for 12 h and then,
from the 18th hour, the WS changes protocol was repeated for the next 6 h; total of
12 washes). Following the above, all peripheral ampullae of each colony in a plate
were punctured with an insulin syringe needle (28-Gauge) and the WS containing
B. schlosseri blood cells was dropped into a 15 mL tube, pursued by centrifugation
(2000 rpm for 10 min) using Eppendorf (Hamburg, Germany). The plates were then
supplemented with WS and left for an addition 1.5 h in a biosafety cabinet, following
which the WS from each plate was collected into a tube and cell extraction procedure
(described above) was performed again. B. schlosseri blood cells in the tubes were
centrifuged and the pellets were suspended in 1 mL of WS for further investigations.
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Figure 2. Schematic illustration of the cell extraction approach. (a) Colonies
maintained under laboratory conditions, in tanks. (b1) Prior to cell extraction,
colonies with their glass substrates are removed from their growth system, cleaned
meticulously by soft brushes and the glass slides are wiped with 70% ethanol.
(b2) Working in biosafety cabinet, each colony is removed, using a razor blade,
from the glass substrate and is transferred to a sterile 60 mm Petri dish until actively
attached. Then the Petri dish is being filled with 6 mL of WS. The plates are left
in a biosafety cabinet for 48 h following 12 changes of WS. (c) Cell extraction is
performed within a biosafety cabinet by puncturing the ampullae of each colony
with the insulin syringe needle. This procedure is repeated after 1.5 h. Then the WS
containing B. schlosseri blood cells are collected into a tube for further investigation.
Source: Graphic by authors.

2.4. Cell Observation and Counting

All cell extractions were counted, using a hemocytometer, and photographed
under the microscope (Olympus inverted system microscope, model I x 70, equipped
with DP73 camera. Leica ICC50 HD). Cell viability was determined using Trypan
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Blue solution (Biological Industries; Cat. 03-102-1B. Gibco; Cat. 15250061). Obtained
values of B. schlosseri blood viable cells were between 93.6 and 98.5%.

2.5. Statistical Analyses

Statistical analyses were applied on extracts of two B. schlosseri colonial stocks
originated from Israeli laboratory cultures and Helgoland Island, Germany using an
SPSS V16. An independent-samples T test was performed on two stock cell yields.
One-way ANOVA test using post hoc comparison (Bonferroni and Tukey HSD) was
applied on blastogenesis of cell extracts of each B. schlosseri colonial stocks. Pearson
correlation test was performed on zooid numbers of each colony with respect to
cell yields.

3. Results

Cell Yields

The cell extraction protocol was performed on the 22 Botryllus schlosseri colonies
originating from the Israeli stock of colonies (Figure 1a; 13 colonies in blastogenic
stages A-D) and from Helgoland, Germany newly established stock (Figure 1b;
9 colonies in blastogenic stages A-C). Zooid numbers of the two stocks varied
between 8 and 32 per colony for the Israeli colonies and 8 and 31 for the Helgoland
colonies, yet no correlation (Figure 3) was recorded between the number of zooids
per colony (of the colonial sizes used in this experiment) and cell yields for each
stock (rpearson = —0.097, p > 0.05; rpearson = 0.503, p > 0.05; for Israeli/Helgoland
stocks, respectively). Cells were extracted (Figure 4) from the marginal ampullae
(Figure 1(al,bl)) and numbers of cells and viability were studied on yields upon
cell collections with respect to donors’ blastogenic stages. Comparing between
the two stocks of colonies, the results revealed a significant difference (p < 0.0001;
independent-sample T test) in the numbers of cell extractions between the two stocks,
where more cells were extracted from the freshly collected Helgoland stock. Within
stock analyses revealed significant blastogenic-associated differences in cell yields
from the Israeli stock colonies (p < 0.05; one-way ANOVA) but not in the freshly
collected colonies from Helgoland (p > 0.05; one way ANOVA).
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Figure 3. The correlation for cell yields vs. zooid numbers. (a) Cell yields vs. zooid
numbers for the Israeli stock. (b) Cell yields vs. zooid numbers for the Helgoland
stock. The red dot in b represents two different colonies with 16 numbers of zooids
and cell yields of 3.28 and 3.27 x 10° cells. Source: Graphic by authors.

Figure 4. B. schlosseri cells under in vitro conditions. (a) A primary culture of blood

cells from a blastogenesis stage B colony originated from the Israeli stock. (b) A
primary culture of blood cells from a blastogenesis stage A colony from Helgoland,
Germany. Bars = 100 um. Source: Graphic by authors.

Cell yields from the Israeli blastogenic stages A and C colonies (Figure 5)
composed of two significant groups, shared by the cell yields of blastogenic stages
B and D colonies (Tukey HSD comparison). Cell yields from blastogenic stage A
colonies (n = 4) varied between (2.12 & 0.3) x 10° and (3.75 + 0.2) x 10° (p < 0.05)
in the Israeli stocks. For Helgoland colonies (1 = 5), cell numbers varied between
(2.9 £ 0.08) x 10° and (4.6 + 0.69) x 10° (p > 0.05). Cell yields from blastogenic stage
B colonies (1 = 3) varied between (2.2 4- 0.13) x 10° and (2.7 + 0.3) x 10° (p > 0.05)
in the Israeli stocks, and for Helgoland colonies (n = 2) cell numbers varied between
(2.2 £ 0.21) x 10° and (5.35 4 0.3) x 10° (p > 0.05). Cell yields from blastogenic stage
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C colonies (n = 2) varied between (1.76 4 0.12) x 10° and (1.87 = 0.34) x 10° (p < 0.05)
in the Israeli stocks, and for Helgoland colonies (n = 2) cell numbers varied between
(3.28 £ 0.08) x 10° and (3.72 4 0.83) x 10° (p > 0.05). Cell yields from blastogenic
stage D colonies (1 = 4) varied between (1.44 + 0.11) x 10° and (2.17 4 0.48) x 10°
(p <0.05) in the Israeli stocks.
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Figure 5. B. schlosseri cell yields. (a) Cell yields (x10°) of colonies at blastogenic
stages A-D originated from the Israeli stock. (b) Cell yields (x 10°) of colonies at
blastogenic stages A-C originated from Helgoland Island. Each column represents
an average of two extractions per colony (£S.D.). « and (3 symbolize statistical
group differences between the tested blastogenesis stages obtained by Tukey HSD.
Source: Graphic by authors.

4. Discussion

The literature reveals that primary cell cultures originated from B. schlosseri
vasculature stop dividing 24-72 h post isolation (Rinkevich 1999) and further
indicates low yields of cells per colony (Table 1) with high contamination rates
(Rinkevich 1999; Rinkevich 2011.)
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Here we present an improved approach for blood cell extractions from
B. schlosseri vasculature, performed under our aseptic conditions, which showed
reduced contamination rates as compared to former outcomes. Yet, this issue was not
analyzed in the present study. We used two B. schlosseri colonial stocks originated
from a long-term laboratory cultures (from Israel) and colonies freshly collected
from Helgoland Island, Germany. While at the colonial sizes used in this experiment
there was no differences between the blood cell numbers obtained per colony, the
results of this study clearly revealed, (1) a significant difference (p < 0.0001) in the
number of blood cells obtained between the two disparate stocks and (2) changes
in the numbers of blood cells obtained from various blastogenic stages (recorded
only for the Israeli stock colonies). We obtained two significantly different blood cell
yields between colonies at blastogenic stage A vs. stage C colonies. These results
point to possible differences in numbers of total blood cells between freshly collected
colonies from the field and colonies from established stocks, a result which should be
taken into consideration when cell yields are an important component in structuring
a research. This is also an interesting result regarding the B. schlosseri blood cell (and
potentially stem cells) biology that should be studied in further experimentation.

The present study is the first that focuses on cell yields from B. schlosseri colonies.
The literature (Table 1) reveals that past studies used undefined numbers of colonies
in the research, or that the yield was lower than levels detailed in this study. Thus,
our approach demonstrates potential for improving the extracting of circulating
cells, including stem cells, under aseptic conditions, for any in vitro application,
without pooling cells from different genotypes, augmenting the importance of
B. schlosseri as a model organism in the field of cell biology (Ballarin et al. 2011;
Ben-Hamo and Rinkevich 2021; Frizzo et al. 2000; Rosner et al. 2021). As a final point,
the recognition of this model organism in the field of cell biology and stem cells
biology is associated with its circulating blood cells that hold potentialities such as
multipotency and totipotency (Ballarin et al. 2021; Laird et al. 2005; Rosner et al. 2009;
Rosner et al. 2021).
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Sweet Tunicate Blood Cells: A Glycan
Profiling of Haemocytes in Three
Ascidian Species

Fan Zeng, Anna Peronato, Loriano Ballarin and Ute Rothbicher

Abstract: Ascidians are invertebrate chordates and may reveal parallels to vertebrate
traits including cellular immunity, tissue rejection, and self-renewal, all functions
executed by ascidian blood cells. Understanding their individual properties,
functional plasticity, and lineage resemblances among ascidian species is, however,
limited by a lack of cytochemical and molecular markers. We performed a
lectin-based glycan profiling of haemocytes in three selected ascidian species
to compare different blood cell populations and mirror their relatedness. We
found differing repertoires of species-specific glycans for blood cells believed to
be homologous in their function. Within species, characteristic glycans or glycan
combinations mark haemocyte types and support their hematopoietic relatedness
or distinguish maturation stages. Strikingly, Ciona and Phallusia haemoblasts
have few carbohydrate decorations and drastically differ from differentiated cells,
likewise phagocytes from cytotoxic cells, as compared with Botryllus, where a
complex role of haemocytes in asexual self-renewal and allorecognition may
involve carbohydrates. Cytotoxic cells generally carry most decorations. Within
cell types, specific carbohydrates reside on the cell surface including amoeboid
extensions, while others are within granules possibly marking molecules important
in cytotoxicity and crosslinking. Taken together, these carbohydrate biosensors
should further the molecular and functional characterisation of the outstanding
properties of the different haemocytes in genetically accessible ascidian species.

1. Introduction

Tunicates are the closest relatives to vertebrates and include the ascidians that
form swimming larvae with a chordate body plan. Understanding their blood
cells is essential for understanding the evolution of the vertebrate immune system
and notably the origins of adaptive immunity. Ascidians possess a simple form of
allelic self-non-self recognition, particularly important for colonial ascidians to reject
non-allelic mates or to fuse with those of allelic resemblance. Genome sequencing of
model tunicates and molecular surveys have revealed a clear lack of an orthologous
highly polymorphic major histocompatibility complex (MHC) locus used for adaptive
immunity in vertebrates but found a less polymorphic fusibility locus (fuhc/BHF)
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that contains several genes discussed in non-self reactions (reviewed in Taketa and
Tomaso 2015). Interestingly, the immune receptors of innate immunity inherent to
all metazoans and which normally cooperate with MHC molecules in vertebrates
are more numerous in tunicates, and the variable products of the less polymorphic
immune loci identified in tunicates may support a primitive resemblance of the
immune system to the vertebrate condition (Azumi et al. 2003; Mueller and Rinkevich
2020). It remains a domain of active research to understand how the various immune
molecules mediate specific immune functions in tunicates (reviewed in Franchi and
Ballarin 2017; Parrinello et al. 2018; Rosental et al. 2020).

As in most metazoans, the immune functions in tunicates are overly executed
by haemocytes, and their immune receptors are important for both the evolutionary
ancient innate (defensive, non-specific) immunity and the more sophisticated
allogeneic immune response (reviewed in Rosental et al. 2020). While tunicate
blood cells resemble their vertebrate counterparts in many aspects, their striking
features as stem cells attract more attention recently, in parallel to other invertebrates
(reviewed in Ballarin et al. 2021a). Of note is their outstanding functional plasticity
and regenerative potential, well evident in colonial tunicates where haemocytes can
reconstitute an entire animal (reviewed in Manni et al. 2019; Ferrario et al. 2020;
Alié et al. 2021). Mature haemocytes exert specialised functions such as immune
recognition, phagocytosis, or cytotoxicity, but as a highly dynamic cell population
with various differentiation and activation stages, it remains challenging to clearly
group them into functional subtypes. Morphological criteria were used to distinguish
the different haemocytes, and their resembling characteristics to vertebrates’” blood
cells were used to categorise their functions (Hartenstein 2006; Arizza and Parrinello
2009; Franchi and Ballarin 2017; Blanchoud et al. 2017; Rosental et al. 2020). When
comparing blood cells among tunicates, clear similarities, but also notable differences,
are observed between species, both in their morphological diversity and number of
prominent subtypes with several questions about their functional homologisation
and origin within the hematopoietic lineage remaining open (reviewed in Cima et al.
2016; Parrinello et al. 2018).

Toward understanding the functions of tunicate blood cells at a molecular level,
the isolation of distinguishing molecular markers is instrumental to characterise and
subgroup them. Such markers have been limiting in the study of haemocytes and for
their functional comparisons (Rosental et al. 2020). Classically, proteins are considered
major effectors of cellular functions, including immune recognition, and are detected
at the level of their coding mRNA or by antibodies for differential expression
to be associated with haemocyte functions. An independent but overlapping
functional category includes carbohydrate modifications occurring on glycoproteins
and glycolipids that strongly influence their maturation, structure, and function.
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Furthermore, sugar epitopes often extend far in the extracellular space, giving these
structural decorations great relevance to molecular and cellular interactions.

We have previously performed extensive lectin profiling of ascidian (Ciona
intestinalis) larvae focusing on their sensory adhesive organs (papillae, palps) and
have detected interesting similarities in three model organisms (Ciona, Phallusia, and
Botryllus), suggesting a possible functional conservation of certain sugar residues,
at least related to their papillary function (Zeng et al. 2019a, 2019b). Since we also
observed specific lectin binding to migratory cell types, which were suggested to
include haemocytes (Cloney and Grimm 1970; Sotgia et al. 1993; Sato et al. 1997;
Davidson and Swalla 2002; Jimenez-Merino et al. 2019), we here aimed to profile and
compare lectin patterns of the well accessible migratory haemocytes and provide
useful markers and tools to access the molecules behind their epitopes.

In an attempt to provide an array of biosensors for tunicate blood cells of
Ciona intestinalis, Phallusia mammillata, and Botryllus schlosseri, we fingerprinted their
carbohydrate decorations in three model ascidian species using a collection of sixteen
biotinylated plant lectins. We obtained glycan patterns of typical combinations
in the three species that allow for haemocyte distinction and for mirroring their
hematopoietic relatedness. Uniquely binding lectins will further the identification
and functional characterisation of the interacting immune receptors within the highly
dynamic haemocyte populations. Our glycophenotyping notably identifies the
multiple sugar reactive sites for endogenous ascidian lectins on their natural target
counterreceptors present on haemocytes. This knowledge is relevant to deciphering
the intricate haemocyte functions and crosstalk in simpler chordates.

2. Materials and Methods
2.1. Animal Husbandry

The three ascidian species selected (two solitary and one colonial species)
provide well-developed genomics tools and will be amenable for further molecular
profiling and functional testing. Ciona intestinalis and Phallusia mammillata adults
were purchased and shipped from the Roscoff Marine Station, France, and kept in
aquaria with circulating and oxygenated artificial seawater at 16 °C. Botryllus schlosseri
colonies were from the Venice Lagoon (provided by A. P.and L. B., Padova, Italy). The
colonies were grown on glass slides and maintained in aerated aquaria (temperature
17 °C, salinity 35%o) and fed with Interpet Liquifry Marine (Dorking, UK).

2.2. Haemocyte Preparations from Three Species

Solitary ascidian Ciona intestinalis and Phallusia mammillata were tissue dried for
any excess seawater, then dissected with scissors to expose their hearts. By a small
incision, the haemocytes were released and collected into ice-cold Eppendorf tubes
with 0.38% Na-citrate in filtered ASWH, pH 7.5 to prevent haemocyte aggregation,

353



then centrifuged at 750x g for 10 min and resuspended in FSW at a final concentration
of 5 x 10° cells/ml. 80-100 puL of this haemocyte suspension were placed in the centre
of Superfrost glass slides to which they were adhered for 20-30 min, to generate
haemocyte monolayers for later lectin staining. For the colonial ascidian, Botryllus
schlosseri, zooids were torn using a fine tungsten needle causing blood cells leakage,
and haemocytes were collected and prepared as above.

2.3. Lectin Staining of Haemocytes from Three Species

Haemocyte monolayers of Ciona intestinalis, Phallusia mammillata, and Botryllus
schlosseri were fixed in 4% paraformaldehyde (PFA) for 30 min at room temperature,
transferred, and kept in 1x phosphate-buffered saline (PBS) until use. Lectin labelling
was performed as described previously (Zeng et al. 2019a). Biotinylated lectins
(GSL 1, DBA, SBA, PNA, RCA 1, SJA, ECL, GSL 11, PHA-E, PHA-L, LEL, STL, DSL,
PSA, LCA and UEA I, Vector Laboratories, Burlingame) were incubated at a final
concentration of 15-25 pg mL~! in 3% BSA-TBS, followed by washes with TBS,
then fluorescently labelled with Streptavidin dye light 488 (Vector Laboratories,
Burlingame) at 1:300 dilution in 3% BSA-TBS with DAPI (Merck/Sigma, D9542,
Darmstadt) added at 0.035 pg mL~! for nuclear staining. Samples were imaged by
Leica fluorescent microscopy with filter cube L5 (wavelength 488), DAPI, and DIC;
images were analysed with Image] (version 1.52 h).

3. Results
3.1. A Common Standard to Compare the Ascidian Haemocytes

The description of the ascidian haemocytes shows considerable variations among
species and may exhibit 5-11 morphologically distinguishable cell types (Nette et al.
1999; Hartenstein 2006; Arizza and Parrinello 2009; Blanchoud et al. 2017; Cima et al.
2017; Gutierrez and Brown 2017). Therefore, to gain comparable information on the
differing glycans of blood cells, we adopted a common standard for the haemocyte
classification in ascidians, with three main groups: haemoblasts, immunocytes, and
storage cells (Figure 1).

Figure la shows the main groups and subtypes of ascidian blood cells.
Haemoblasts (Hbs) are uniquely small haemocytes, with a high nucleus/cytoplasm
ratio, considered multipotent cells involved in regeneration and budding phenomena.
Among immunocytes described in the three species, the phagocytes (Phcs) may
encompass hyaline amoebocytes (HAs), macrophage-like cells (MLCs), and granular
amoebocytes (GAs), while cytotoxic cells may include granulocytes with small
granules (GSs), with large granules (GLs), morula cells (MCs), and unilocular
refractile granulocytes (URGs). Storage cells may include pigment cells (PCs) or
bivacuolated cells (BCs) and signet ring cells (SCs).
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Figure 1. Ascidian blood cell types. (a) Scheme of ascidian blood cells: haemoblasts
(Hb), immunocytes and storage cells. Immunocytes divide into phagocytes
(containing hyaline amoebocytes or phagocytes, HA/Phc, macrophage-like cells,
MLC and granular amebocytes, GA) and cytotoxic cells (encompassing granulocytes
with small granules, GS, granulocytes with large granules, GL, morula cells, MC,
and unilocular refractile granulocyte, URG). Storage cells include bivacuolated cells
(BC), signet ring cells (SRC) and pigment cells (PC). (b) Haemocyte populations
and characteristics in three ascidian species, Botryllus schlosseri, Phallusia mammillata
and Ciona intestinalis. Haemocyte colors code: haemoblasts red, phagocytes yellow,
cytotoxic cells orange, storage cells blue. Haemocyte schemes are modified from:
(Nette et al. 1999, Hartenstein 2006, Arizza and Parrinello 2009, Blanchoud et al.
2017 and Cima et al. 2017). Source: Graphic by authors.
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In Figure 1b, according to the three main categories of ascidian blood cells listed
above (haemoblast, immunocytes, and storage cells), we grouped the haemocyte
subtypes described in each of the three species, Botryllus schlosseri, Phallusia mammillata,
and Ciona intestinalis, and summarised their typical characteristics. The blood cells
of the colonial Botryllus encompass Hbs, phagocytic HAs, and MLCs, while MCs
are only cytotoxic cells, and PCs are only storage cells. In contrast, in the solitary
Phallusia and Ciona, several additional cell types are distinguished. They both feature
additional cytotoxic granulocytes (GSs, GLs), and Ciona has a fourth cytotoxic cell
type, the URGs, and the second type of phagocytic GA. As storage cells, they both
have SCs and PCs, while Phallusia has BCs instead of PCs.

The scheme of ascidian blood cells includes haemoblasts (Hbs), immunocytes,
and storage cells. Immunocytes divide into phagocytes, (containing hyaline
amoebocytes or phagocytes (HAs/Phcs), macrophage-like cells (MLCs), and granular
amoebocytes (GAs)) and cytotoxic cells (encompassing granulocytes with small
granules (GSs), granulocytes with large granules (GLs), morula cells (MCs), and
unilocular refractile granulocytes (URGs)). Storage cells include bivacuolated cells
(BC)s, signet ring cells (SRCs), and pigment cells (PCs). Haemocyte schemes are
modified from Blanchoud et al. (2017).

3.2. Carbohydrate Profiling of Haemocytes in Three Model Ascidian Species

The diversity of haemocytes is considered here as a function of their carbohydrate
modifications since it was previously shown to play an important role in haemocyte
recognition and interactions for immune activation. Plant lectins, in addition to
being well-defined biosensors recognising specific carbohydrate moieties, can also be
considered as biochemical tools to access the corresponding glycosylated receptors.

To obtain a more complete picture of the carbohydrate moieties in haemocytes of
the three ascidian species, we screened 16 lectins featuring various sugar specificities
listed in Table 1 (key recognition structures from lectins, Chapters 25 and 45:
Yasuda et al. 2014; Kobayashi et al. 2014). We used lectins that recognise derivatives
of galactose, glucose, mannose, and fucose. The first group comprises GSL I,
SBA, DBA, PNA, SJA, and RCA I recognising galactose (Gal)/N-acetylgalactosamine
(GalNACc) and N-acetyllactosamine (LacNAc, Gal-GalNAc)/GalNAc for ECL, with
PNA and several others in this group known to bind O-linked sugars. A second
group comprises lectins recognising sugars often found in N-linked protein
glycosylation including N-acetylglucosamine (GIcNAc), recognised by GSL II,
Gal/GlcNAc¢/mannose (Man) by PHA-L and PHA-E (the latter only for bisections of
core Man), chitin (poly-GlcNAc)/GlcNAc/LacNAc by LEL, STL, DSL, and fucosylated
glycans containing D-mannose/D-glucose/GlcNAc interacting with PSA and LCA, or
with UEA I when in terminal position.
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Table 1. Lectin bound glycosylations and key recognition structures.

n Acro- Preferred Sugar A i A Key recognition structures
Spec ity GEneralEih g Rleti (as of, Lectins’ ch. 25 and 45)

o . 3 .
Griffonia (Bandeiraea) GSLI aGal, aGalNAC R @R aGalN/(\_I?r,])G:r:gﬁc_gaSler/Thr

simplicifolial

. 5 GalNAca-Ser/Thr (Tn) and
Dolichos biflorus DBA aGalNAc @R GalNAcal-3GalNAc

Terminal GalNAc, especially

Soybean SBA a>pGalNAc @R R GalNAcal-3Gal of O-linked

glycopeptides

GalB1-3GalNAca-Ser/Thr (T)

Peanut agglutini $
eanutagglutinin AR el O of O-glycans and glycolipids
- : @B—R LacNAcB, GalNAcB, GalB,
Ricinus communis | RCAI Gal Lacp of O- and N-glycans
Sophora japonica SJA BGalNAc -EER
. . . i GalB1-4GlcNAc-> Lac >
Erythrina cristagalli ECL GalB4GlcNAc :‘E R GalNAc> Gal
Griffonia (Bandeiraea) @ GlcNAc and agalactosylated
simplicifoliall Gl ZoRBGIchAS @R R N-glycans
GalB4GlcNAcB2Mana6
Phaseolus vulgaris (GlcNACB4) Bisecting GlcNAc and
Erythroagglutinin PHA-E (GlcNAcB4Mana3) biantennary N-glycans
ManpB4
Phaseolus vulgaris PHA-L GalB4GlcNAcB6 Tetraantennary complex-
Leucoagglutinin (GlcNAcB2Mana3) type N-glycans

(GlcNAcB1-4)n, (GalP1-

Lycopersicon R4 B3 B4 B3 R4 B
esculentum LEL (GleNA), , [GO= =e= == =gy 4G|CNAC)H'
(polylactosamine)
(GlcNAc-)n,
Solanum tuberosum ~ STL (GleNAQ), , (GlcNAc-4MurNAc)n
(peptidoglycan backbone)
N-linked (GalB1-4GIcNAc-)n
Datura stramonium DSL (GleNAc), , polyLacNAc and branched
LacNAc
) . | Fucal-6GlcNAc (core
Pisum sativum PSA aMan, aGle fucose) and a-Man
e A GleNAC (
S LCA +/-R{E ) ucal-6GlcNAc (core
Lens culinaris aMan, aGlc Ve sAS" (e anelar e, 6-ElE
Ulex europaeus| UEAI aFuc +R - g R Fucal-2GalB1-4GlcNAc

OGal OGalNAc ®GIctNAc  @Man  VFuc

Source: Table created by authors.

Overall, we isolated circulating blood cells of the three ascidian species and
performed stainings using conjugates of biotinylated lectins and fluorescent streptavidin.
The haemocyte stainings are summarised for the three species in Table 2 and shown for
the individual species in Figures 2—4, respectively. The staining pattern of each of the 16
lectins is shown in Appendix A Figures A1-A16 as a comparison in the three species.
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Table 2. Summary of lectin profiling for ascidian blood cells: Botryllus schlosseri,
Phallusia mammillata, and Ciona intestinalis blood cells lectin fluorescent labelling
intensity: (—) no staining, (+) very weak, + weak, ++ intermediate, +++ strong
labelling, (?) no corresponding cells identified; colour code: haemoblasts—red;
immunocytes—yellow; phagocytes or cytotoxic cells—orange; storage cells—blue.

Haemocytes
Sugar Specificity
aGal, aGalNAc
aGalNAc
a>BGalNAc
GalB3GalNAc
Gal
3 BGalNAC
2 GalP4GlcNAc
% aorBGlcNAc
“ GalB4GlcNAcB2Mana6 (GlcNAcR4)
@ (GlcNAcB4Mana3) ManB4
GalB4GIcNACPB6 (GlcNAcB2Mana3) Mana3
(GlcNAc)2-4
(GlcNAc)2-4
(GlcNAc)2-4
aMan, aGlc
|+ aMan, aGlc
|| i aFuc
| Haemocytss |
e
-n_mmla:
GSLI - ElEE aGal, aGalNAc
DBA = = = = = aGalNAc
SBA = = = a>BGalNAc
PNA - - - - GalB3GalNAc
. RCAI = = = = = = = Gal
s BGalNAc
H - GalB4GIcNAc
E + aorBGIcNAC
5 R _ B _ B B GalB4GlcNAcB2Mana6 (GIcNAcR4)
(GlcNAcB4Mana3) ManB4
PHA-L - - - - - GalB4GIcNACB6 (GlcNACB2Mana3) Mana3
LEL - - - - - - (GlcNAC)2-4
STL = = = = = = = (GlcNAc)2-4
DSL = = = i = = (GlcNAC)2-4
ESA - - - - aMan, aGle
LCA = = = = = aMan, aGlc
| | uEal - - - - - aFuc
Sugar Spe y
aGal, aGalNAc
aGalNAc
SBA = a>BGalNAc
PNA = GalB3GalNAc
RCAI = Gal
2| SJA = BGalNAc
2| ecL - GalB4GIcNAC
B lesLn - aorBGlcNAC
f§ — N GalB4GlcNAcB2Manas (GIcNACB4)
< (GlcNAcB4Mana3) ManB4
PHA-L = GalB4GIcNACB6 (GlcNAcB2Mana3) Mana3
LEL - (GlcNAC)2-4
STL - (GlcNAC)2-4
DSL - (GlcNAc)2-4
PSA = aMan, aGlc
LCA = aMan, aGlc
| | uEAl - aFuc

Source: Table created by authors.
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Figure 2. Botryllus schlosseri haemocyte types labelled with lectin probes. Lectin
fluorescent labelling of B. schlosseri haemocytes: haemoblasts (Hbs) with GSL I,
DBA, SBA, LEL, DSL, UEA I; hyaline amoebocytes or phagocytes (HAs/Phcs) with
GSL I, DBA, SBA, SJA, PHA-E, PHA-L, DSL; macrophage-like cells (MLCs) with
GSL I, DBA, SBA, GSL II, PHA-E, LEL, DSL; morula cells (MCs) with GSL I, DBA,
SBA, PNA, SJA, ECL, PHA-E, PHA-L, DSL, PSA, LCA, UEA I; pigment cells (PCs)
with GSL I, DBA, SBA, DSL, PSA, UEA I. Each lectin staining compares fluorescence
images (green), the merged overlap (lectin with DIC), and DIC (bright field), scale
bar: 5 pm. Source: Graphic by authors.
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Figure 3. Phallusia mammillata haemocyte types labelled with lectin probes. Lectin

Lectin Dapi DIC

fluorescent labelling of P. mammillata haemocytes: haemoblasts (Hbs) with GSL II;
hyaline amoebocytes or phagocytes (HAs/Phcs) with SBA, PNA, SJA, ECL, GSLII;
granulocytes with small granules (GSs) with SBA, GSL II, DSL, PSA; granulocytes
with large granules (GLs) with GSL I, GSL II, PHA-E, PHA-L, LEL, PSA, LCA, UEA
I; signet ring cells (SRCs) with GSL II; bivacuolated cells (BCs) with GSL II. Each
lectin staining has fluorescence images (green), Dipa (blue), and DIC (bright filed),
scale bar: 5 pm. Source: Graphic by authors.
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Figure 4. Ciona intestinalis haemocyte types labelled with lectin probes. Lectin

fluorescent labelling of C. intestinalis haemocytes: hyaline amoebocytes (HAs)
with DSL: granular amoebocytes (GAs) with DSL, PSA, LCA, UEA I; granulocytes
with small granules (GSs) with GSL I, ECL, GSL II, PHA-L, STL, PSA, LCA, UEA
I; granulocytes with large granules (GLs) with DBA, SBA, PNA, ECL, GSL II, LEL,
DSL, PSA, LCA, UEA I; morula cells (MCs) with PNA, RCA I, SJA, PHA-E, PHA-L,
unilocular refractile granulocytes (URGs) with GSL I, PNA, RCA I, SJA, ECL, GSL
II, PHA-E, LEL, DSL; pigment cells (PCs) with SJA, ECL, GSL 1I, PHA-L, LEL, LCA.
Each lectin staining has Lectin in fluorescence images (green), Dipa (blue), and DIC
(bright filed), scale bar: 5 pm. Source: Graphic by authors.
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3.2.1. Botryllus schlosseri Haemocytes Are Richly Carbohydrated

Circulating Botryllus schlosseri blood cells have multiple and diverse carbohydrate
decorations on all of their haemocytes (Table 2 and Figure 2). Hbs and PCs bound
6 lectins, phagocytes (HAs and MLCs), 7 lectins each, and cytotoxic cells (MCa)
12 lectins of the 14 positively reacting, of the overall 16 tested lectins.

Four lectins labelled all of the Botryllus haemocytes: three were «GalNAc specific
(GSLI, DBA, and SBA) and one GIcNAc specific (DSL). Interestingly, the first group of
sugars (notably GSL I) was more abundant in the cellular periphery and well visible
on membrane extensions, while the latter was rather enriched in the cytoplasm or
in inclusions.

Several shared carbohydrate epitopes were found for haemocyte subgroups: All
of the immunocytes (phagocytes and cytotoxic cells) carried the PHA-E epitope for
complex bisecting N-linked sugars. Among phagocytes, the hyaline amoebocytes
(HA) can be distinguished by SJA and PHA-L staining (complex N-linked sugars) but
are negative for GSL II and LEL which, in turn, label macrophage-like cells (MLCs).
Interestingly, the SJA and PHA-L epitopes of HAs are shared with cytotoxic MCs,
while the LEL epitope (GIcNAc oligomers) of MLCs is shared with the immature
haemoblasts. UEA I (fucosyl modifications) occur on Hbs, MCs, and PCs.

Cytotoxic MCs of Botryllus were most diversely carbohydrated and bound
almost all of the lectins, also recognising other haemocytes, except for GSL I and LEL.
Pigment (storage) cells bound (in addition to the four common lectins) also PSA and
UEA I, both shared with MCs and the latter epitope (fucosylation) with haemoblasts.

Unique sugar specificities associated with a single haemocyte type occurred only
on two cell types: only MC-bound PNA, ECL, and LCA on the terminal (O-linked)
galactoses and core-fucosylated complex N-linked sugars, while macrophage-like
cells (MLCs) uniquely bound GSL II for N-acetylglucosamines (GIcNAc).

3.2.2. Phallusia mammillata Haemocytes Are Sparsely Carbohydrated

The sugar decorations of Phallusia mammillata haemocytes showed the lowest
diversity of the three species analysed, particularly for haemoblasts and storage cells
(Table 2 and Figure 3). Hbs and storage cells carried a single sugar decoration, common
also to all other haemocytes except MCs. Within immunocytes, the phagocytes (Phcs)
bound five lectins, while cytotoxic GSs and GLs bound four and eight lectins,
respectively. Strikingly, the MCs of Phallusin were devoid of any carbohydrate
decorations tested.

All blood cells (with the exception of MCs) bound one universal lectin, GSL II
(for terminal Gal free GIcNAc), and that was also the only one for haemoblasts and
storage cells (both BCs and SRCs).

Few overlapping sugars were found on Phallusia haemocyte subgroups, while
several unique lectins bound to a single haemocyte type within immunocytes:
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Phagocytes uniquely featured terminal galactoses on GalNAc or GlcNAc of likely
O-linked sugars recognised by PNA, SJA, and ECL. In contrast, cytotoxic granulocytes
presented mostly N-linked sugars on mannose, interacting with PSA common to
GSs and GLs, which were more complex in GLs, with longer side chains (LEL) and
terminal decorations including galactose (PHA-L), fucose (UEA I), or even bisections
(PHA-E). Finally, GSs uniquely bound DSL (GlcNAc chains) and shared SBA (terminal
GalNAc) with phagocytes only, while GLs uniquely bound PHA-E, PHA-L, LEL, LCA,
and UEA I (bisecting complex and fucosylated N-linked sugars).

3.2.3. Ciona intestinalis Haemocytes Are Selectively Carbohydrated

The most diversified haemocyte subtypes of all three ascidian species are
reported in Ciona intestinalis (Figure 1b, Table 2 and Figure 4). However, only selective
subgroups are richly decorated with glycans—namely, all of the cytotoxic cell types
(GSs and GLs bound 8 and 10 lectins; MCs and URGs 5 and 9 lectins, respectively)
but also the pigment cells (six lectins), while phagocytes bound only one (HA) or
four (GA) lectins, respectively). In contrast, Hbs and the storage SRCs did not bind
any of the tested lectins.

Sugar residues common to the major haemocyte groups were scarce: Only the
storage subtype of PC shared all of their six epitopes with different cytotoxic cells
(SJA, ECL, GSL II, PHA-L, LEL), representing GalNAc and/or GIcNAc residues on
likely core N-linked glycans. Within the group of immunocytes, only a few epitopes
(four lectins) were shared between phagocytes and cytotoxic cells, while extremely
many (all tested lectins) were variably distributed among the four cytotoxic cell
types. More precisely, Ciona phagocytes (HAs and GAs) and cytotoxic GSs and GLs
commonly featured GlcNAc chains (DSL lectin, shared with URGs), but only the GA
shared fucosylated N-linked sugars (PSA, LCA, UEA I lectins) with the cytotoxic GSs
and GLs.

Interestingly, different combinations of all of the 16 tested lectins are found
among the four cytotoxic subtypes. The GSs and GLs stained with 8 and 10 lectins,
respectively, while MC and URG bound 5 and 9 lectins. Only GS and GL carried
fucosylated, N-linked sugars (PSA, LCA, and UEA I), as mentioned above. Only
GLs uniquely bound DBA and SBA (xGalNAc) but shared Gal-GalNAc (PNA) with
MCs and URGs. The GSs uniquely bound STL but also PHA-L-marking Gal-GlcNAc
on complex N-linked sugars, which are not shared with GLs. The GLs, instead,
stained with LEL and DSL, for Gal-GlcNAc oligomers but possibly not on complex
branches (PHA-L negative). Consistently, GSs and GLs, both stained with ECL and
GSL II (GlcNAc lacking Gal). The simpler GL epitopes (ECL, GSL II) are shared with
URGs, while only the complex N-linked GS epitope (PHA-L) is also found on MC.
Interestingly, MCs and URGs uniquely share the complex bisecting N-linked sugars
(PHA-E epitope). In addition, MC and URG were uniquely recognised by RCA I and
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SJA (galactose and GalNAc), while staining by PNA (Gal-GalNAc) was also shared
with GLs. URGs, but not MCs, bound GSL I (Gal in x-position) shared with GS cells
only. Overall, URGs featured no unique markers but significantly overlapped with
MCs and GLs, but also PCs, as mentioned above.

Unique sugar decorations on single haemocyte types of Ciona were, therefore,
only for STL on GSs, and DBA and SBA on GLs, while all the other epitopes were
variably shared among the haemocytes.

4. Discussion

Our carbohydrate profiling of circulating haemocytes in three ascidian species
revealed that sugar decorations largely differ in composition and complexity between
species but also feature some notable commonalities. Interestingly, the circulating
haemocytes of the colonial Bortyllus are richly sugar modified throughout all subtypes
of haemocytes, which contrasts with the solitary Phallusia and Ciona that, although
carrying various decorations on cytotoxic cells, are more scarcely or not glycosylated
otherwise. Botryllus haemocytes are also the only ones to carry multiple glycan
epitopes shared among all of their blood cells. As glycan residues are involved
in the molecular interactions of their carriers such differences point to a divergent
functional complexity of circulating blood cells in colonial versus solitary ascidians
but also to important differences among solitary ascidians.

4.1. Comparing Sugar Decorations on Blood Cells of Different Ascidians

The presented sugar profiling constitutes a more detailed and sensitive
carbohydrate fingerprinting, as compared with previous records (Schlumpberger
et al. 1984; Cima et al. 2017; Rosental et al. 2018), with unique and overlapping
specificities of 16 plant lectins combined to increased signal amplification through
biotinylated lectins crosslinking streptavidin of multiple fluorescent residues. The
detection of weaker lectin binding and a wider reactivity is expected and observed.

A comparative summary of the lectin profiling for the three species is presented
in Table 2, with colour codes for haemocyte subtypes consistently grouped into
haemoblasts (red), immunocytes (yellow and orange, for phagocytes and cytotoxic
cells, respectively), and storage cells (blue), and further subdivided according to their
known morphological and functional relatedness (Figure 1). The plant lectin probes
are roughly ordered according to their similar specificities (elaborated in Table 1) with
the upper vs. lower groups preferably recognising Gal residues on often O-linked
sugars vs. rather N-linked glycans, respectively, separated by the bisecting N-linked
modification (PHA-E), and at the bottom mostly fucose recognition.

Haemoblasts (Hbs, red in Figures 1-4, Table 2) are small stem cells believed to
give rise to all of the other blood cells and are also capable of whole-body regeneration
in colonial ascidians (reviewed in Ballarin et al. 2021a, Ballarin et al. 2021a, 2021b).
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Interestingly, the Hbs of colonial Botryllus carry much richer carbohydrate
decorations (6 of 16 tested lectins), as compared with solitary Phallusia or Ciona (0 or
1 lectin). Such striking difference may reflect the differing degree of importance and
variability in functions of Hbs, notably in the circulatory system of colonial versus
solitary ascidians. It will be interesting to compare the Hbs of other colonial (vs.
solitary) species and consider the bound immune receptors possibly with functions
in stemness, regeneration, or plasticity.

Immunocytes (yellow and orange in Figures 14, Table 2) constitute the largest
and most diverse haemocyte group with a moderate variability in phagocytes
and greater diversity defined in cytotoxic cell subtypes. Two types of phagocytes
(Figure 1, Table 2, yellow) are presented in Botryllus and Ciona, but only one in
Phallusia. The sugar residues of phagocytes differ in the three ascidians with Phallusia
presenting mostly O-linked sugars, while overly N-linked or bisecting in Botryllus and
fucosylated in Ciona. For Botryllus and Ciona the phagocyte decorations significantly
overlapped with those on cytotoxic cell types.

Cytotoxic cells are the most diverse and richly glycosylated haemocyte subgroup
among immunocytes. The considerable differences between species are reflected by
a variable presentation of maturation stages in the circulating blood cell populations
(Figure 1, Table 2, orange): MCs exist in all three species, the two solitary species
also comprise many earlier-stage GSs or GLs and, in Ciona, an additional URG. As
of plant lectin binding, cytotoxic MCs of Botryllus carry abundant O- and N-linked
sugars, while those of Phallusia are rather N linked (and devoid of sugar for MCs).
Ciona presents an interesting situation where the various cytotoxic morphotypes
carry a combination of all of the 16 lectin epitopes, with typical combinations for
subtypes: most strikingly, GSs likely lack O-linked sugars, and GSs and GLs share
fucosylation on N-linked sugars that in MCs and URGs lack the fucose but are core
bisecting, in turn.

Storage cells (blue in Figures 1-4, Table 2) are much less diverse, and some
differences among species exist: PCs are present in Botryllus and Ciona but absent
in Phallusia, while they are represented by BCs; only the solitary species feature
SRCs. In all three species, their sugar modifications overlap with those of cytotoxic
cells. In Phallusia, however, their single sugar epitope also occurs on all of the
other haemocytes (except the non-glycosylated MCs). In Botryllus, the PCs carry
fucosylations such as MCs (but also the Hbs), and Ciona presents rather only N-linked
cores, as shared with many cytotoxic subtypes.

4.2. Functional Implications from Haemocyte Glycophenotyping

The diversity of tunicate blood cells is strikingly amplified by their variable
glycan modifications and the idea suggests that they were important drivers of
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tunicate evolution. Our plant biosensors can ‘sugar phenotype’ the haemocytes and
‘phenocopy’ the sugar binding of endogenous lectins to haemocytes.

To understand the enormous combinatorial possibilities offered by carbohydrate
residues in biological systems, a defined ‘sugar code’ is proposed for sugar recognition
(Solis et al. 2015). Sugars can be combined in three ‘dimensions’: linear, branching,
and conformational variants. The presentation and recognition of the sugars are
rigid on both sides, with conserved residues and little conformational effects upon
binding (key-lock principle). Specifically, tailored protein domains, the carbohydrate
recognition domains (CRDs), are common denominators of lectins to recognise
specific sugars, and 14 different folds are described for animals/humans. Evolutionary
diversification of lectins occurred via domain duplications and multiple events are
paralleled by a secondary loss of non-functional domains. Lectins may present tandem
CRDs and often contain different domains to produce the actual biological effect. The
CRDs furthermore read sugar encoded “postal codes’ to reach desired destinations,
and haemocytes are thusly targeted, attracted, or activated by endogenous lectins.

Our sugar profiling thus pinpoints to various haemocytic targets for endogenous
tunicate lectins. Glycan recognition, indeed, plays a prominent role in both tunicate
and vertebrate innate immunity, notably via the group of so-called pattern recognition
receptors (PRRs) containing CRD domains to recognise foreign and endogenous
carbohydrate residues, elicit interactions with downstream signalling components
and trigger a network of crosstalks for a proper inflammatory immune response
(Franchi and Ballarin 2017; Parrinello et al. 2018). These include lectins with conserved
CRDs such as galectins (binding galactoside residues), RBLs (thamnose or galactoside
binding) or VCBPs (variable chitin-binding proteins, binding poly-GlcNAc) or more
variable sugar-binding domains such as C-type lectins, including the collectins
MBL/GBL and ficolins (for mannose/glucose and GIcNAc binding, respectively). Such
endogenous lectins may have multiple distributions and functions, may be soluble,
membrane bound, or intracellular, and may trigger the activation of haemocytes
for release of cytokines, phagocytosis, or cytotoxicity, cause their crosslinking,
recruitment to specific locations of inflammation, or interact intracellularly in glycan
metabolism and proliferation (summary table in Franchi and Ballarin 2017). Not
unexpectedly, many endogenous lectins are themselves expressed and also secreted
by haemocytes.

Various subcellular locations of sugar epitopes could be detected, pointing to
the variable functions of carbohydrates in cell compartments of the haemocytes.
Epitopes in the cell periphery were particularly well visible on membrane extensions of
phagocytes (Figures 2-4). Extracellular residues are likely involved in cell interactions,
migration, and triggering the immune response. Intriguingly, these peripheral
epitopes include several sugars shared among all of the Botryllus haemocytes (Table 2),
and it is tempting to speculate that these are present on membrane-associated
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molecules that are crucial in the synchronised, weekly generation change in Botryllus
orchestrated by haemocytes (Cima et al. 2010). Interestingly, these share galactoside
residues, suggesting a possible role for galectins or RBLs targeting common haemocyte
receptors. Notably, RBLs are known to play important roles in colonial generation
change, phagocytic clearance of apoptotic haemocytes, and termination of the
blastogenetic cycle, while ascidian galectins are known to play pivotal roles in
haemagglutination, as well as the recruitment of migrating haemocytes (reviewed in
Ballarin et al. 2013).

In contrast, several sugar epitopes seem enriched in the cytoplasm or in
inclusions, well visible within cytotoxic cells (Figures 2—4). These are often
N-linked sugars with fucosylations in all three species and bisecting sugars in
Botryllus. Such inclusions may be degradation products from ingested microbes
(pathogen-associated molecular patterns (PAMPs)) often containing high mannose
contents. Alternatively, they may represent stored molecules to be released upon
inflammatory activation including cytokines, enzymes, or toxic material. It is well
known that the vacuolar localisation in haemocytes of inactive phenoloxidase (proPO,
related to tyrosinase) causes the oxidation of polyphenol substrates (including the
tunichromes, representing L-DOPA and L-TOPA peptides) into microcidal chinones
upon release in the seawater/physiologic pH. Intriguingly, the major PO activity
and release of microcidal components such as polyphenols is exerted by different
cytotoxic subtypes in the three tunicates: MCs in Botryllus, URGs in Ciona, and GLs
in Phallusia, rather than MCs (reviewed in Franchi and Ballarin 2017; Parrinello
et al. 2018). Strikingly, such distribution roughly coincides with the resembling
sugar epitopes in their vacuolar compartments. It will be interesting to identify their
molecular carriers. Nevertheless, Ciona granulocytes (GSs and GLs) also contain
intracellular glycans and could represent glycoproteinaceous maturation stages
and targets for intracellular lectins, such as collectins, involved in the complement
pathway (Franchi and Ballarin 2017).

Overall, it became evident that the same sugar residues can be followed
throughout several related morphotypes, and thus, inversely, haematopoietic lineage
relatedness may be concluded by the shared sugar epitopes, thus representing lineage
markers. Such lineage identity considerations are of interest when haemocytes
are analysed in a tissue context other than the circulating haemolymph, such as
microbial-induced inflammation in the pharynx, but also if the host tissue is damaged
or stressed (reviewed in Parrinello et al. 2018). Damage-associated molecular patterns
(DAMPs) may cause an inflammation-like gene activation repertoire, as was shown
for heat-shock proteins or during larval metamorphosis. It will be interesting
to determine whether the shared sugar epitopes on DAMPs represent identical
molecules or may resemble each other by mere coincidence.
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In the future, our sugar profiling and the specificity of the individual biosensors will
promote the analysis of glycoproteinaceous interactions of haemocytes and, notably, the
various haemocytic targets for the endogenous tunicate lectins. Hybrid synthetic lectin
probes prepared from CRDs (Dishaw et al. 2016) of the various lectin families will confirm
the binding specificities and the differences detected in the three ascidians. Finally, such
probes may also give direct biochemical access to the bound counterreceptors and will
enrich our understanding of the intricate life of tunicate haemocytes.
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Appendix A

B. schlosseri |

P. mammillata C. intestinalis |

Figure Al. Individual lectin stainings for ascidian blood cells, GSL I. GSL I [«Gal,
a«GalNac]. Brown frames indicate positively stained haemocytes. Scale bar, 5 pm.
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B. schlosseri 3 il C. intestinalis

Figure A2. Individual lectin stainings for ascidian blood cells, DBA. DBA [«xGalNac].
Brown frames indicate positively stained haemocytes. Scale bar, 5 um.
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Figure A3. Individual lectin stainings for ascidian blood cells, SBA. SBA [« >
BGalNac]. Brown frames indicate positively stained haemocytes. Scale bar, 5 um.
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P. mammillata C. intestinalis

Figure A4. Individual lectin stainings for ascidian blood cells, PNA. PNA
[GalB3GalNac]. Brown frames indicate positively stained haemocytes. Scale
bar, 5 um.
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Figure A5. Individual lectin stainings for ascidian blood cells, RCA 1. RCA I [Gal].
Brown frames indicate positively stained haemocytes. Scale bar, 5 um.
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Figure A6. Individual lectin stainings for ascidian blood cells, SJA. SJA [GalNac].
Brown frames indicate positively stained haemocytes. Scale bar, 5 pum.

B. schlosseri

Figure A7. Individual lectin stainings for ascidian blood cells, ECL. ECL
[GalB4GlcNAc]. Brown frames indicate positively stained haemocytes. Scale
bar, 5 um.



B. schlosseri

Figure A8. Individual lectin stainings for ascidian blood cells, GSL II. GSL II [« or
3 GlcNAc]. Brown frames indicate positively stained haemocytes. Scale bar, 5 pm.
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Figure A9. Individual lectin stainings for ascidian blood cells, PHA-E. PHA-E
[Galp4GlcNAcR2Mana6 (GleNAcb4) (GleNAcb4Mana3) Manf4]. Brown frames
indicate positively stained haemocytes. Scale bar, 5 um.

372



B. schlosseri |

P. mammillata C. intestinalis

ek

Figure A10. Individual lectin stainings for ascidian blood cells, PHA-L. PHA-L
[GalB4GIlcNAcB6 (GlcNAcB2Mana3)Mana3]. Brown frames indicate positively
stained haemocytes. Scale bar, 5 um.

| B. schlosseri | | P. mammillata C. intestinalis

Figure A11. Individuallectin stainings for ascidian blood cells, LEL. LEL [(GIcNAc);_4].
Brown frames indicate positively stained haemocytes. Scale bar, 5 um.
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| B. schlosseri P. mammillata C. intestinalis

Figure A12. Individual lectin stainings for ascidian blood cells, STL. STL [(GIcNAc);_4].
Brown frames indicate positively stained haemocytes. Scale bar, 5 um.

| B. schlosseri | | P. mammillata C. intestinalis |

Figure A13. Individual lectin stainings for ascidian blood cells, DSL. DSL
[(GlcNAc),4]. Brown frames indicate positively stained haemocytes. Scale bar,
5 pm.
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Figure A14. Individual lectin stainings for ascidian blood cells, PSA. PSA [«Man,
«Glc]. Brown frames indicate positively stained haemocytes. Scale bar, 5 pm.
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Figure A15. Individual lectin stainings for ascidian blood cells, LCA. LCA [«Man,
«Glc]. Brown frames indicate positively stained haemocytes. Scale bar, 5 pm.
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B. schlosseri | |

Figure A16. Individual lectin stainings for ascidian blood cells, UEA 1. UEA I
[«Fuc]. Brown frames indicate positively stained haemocytes. Scale bar, 5 um.
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