
applied  
sciences

Article

Carbon Dioxide Uptake by MOC-Based Materials
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Featured Application: The highest potential of magnesium oxychloride cement (MOC) is its
capability to be used as a component of low-energy building composite materials while acting as a
CO2 sink. The results of this contribution also show that MOC can be used as a binder in advanced
building materials that have particular properties, and therefore specific application potentials.
Formation and hardening of this material are rather fast, so the material can be used in quick
repairs as well as a protection layer. This property is also beneficial for use in prefabrication, due
to the possibility of unmolding after a shorter time compared to Portland cement (PC) materials, so
the whole production process can be considered more effective. Somewhat significant importance
should be given to its ability to capture CO2, which not only makes it more eco-friendly, but also
improves its mechanical properties.

Abstract: In this work, carbon dioxide uptake by magnesium oxychloride cement (MOC) based
materials is described. Both thermodynamically stable magnesium oxychloride phases with
stoichiometry 3Mg(OH)2·MgCl2·8H2O (Phase 3) and 5Mg(OH)2·MgCl2·8H2O (Phase 5) were prepared.
X-ray diffraction (XRD) measurements were performed to confirm the purity of the studied phases
after 7, 50, 100, 150, 200, and 250 days. Due to carbonation, chlorartinite was formed on the surface of
the examined samples. The Rietveld analysis was performed to calculate the phase composition and
evaluate the kinetics of carbonation. The SEM micrographs of the sample surfaces were compared
with those of the bulk to prove XRD results. Both MOC phases exhibited fast mineral carbonation
and high maximum theoretical values of CO2 uptake capacity. The materials based on MOC cement
can thus find use in applications where a higher concentration of CO2 in the environment is expected
(e.g., in flooring systems and wall panels), where they can partially mitigate the harmful effects of
CO2 on indoor air quality and contribute to the sustainability of the construction industry by means
of reducing the carbon footprints of alternative building materials and reducing CO2 concentrations
in the environment overall.

Keywords: magnesium oxychloride cement; MOC phases; carbonation; CO2 uptake; carbon footprint

1. Introduction

Magnesium oxychloride cement (MOC), also known as Sorel cement, was discovered by French
engineer Stanislas Sorel in 1867 [1]. Since then, it has often been compared to Portland cement (PC),
which was discovered just a few years earlier. It is formed using a mixture of magnesium oxide with an
aqueous solution of magnesium chloride in a certain ratio. The ratios in the system MgO-MgCl2-H2O
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are significant for each phase of MOC: Phase 2 (2Mg(OH)2·MgCl2·4H2O, MOC 2-1-4) and Phase 9
(9Mg(OH)2·MgCl2·5H2O, MOC 9-1-5), which are stable at elevated temperatures (~100 ◦C); and Phase
3 (3Mg(OH)2·MgCl2·8H2O, MOC 3-1-8) and Phase 5 (5Mg(OH)2·MgCl2·8H2O, MOC 5-1-8), which are
stable at ambient temperature until they react with CO2 or H2O. [2–4] The crystal structures of Phase 3
and 5 formed by double and triple ribbons of edges shared MgO6 octahedra with water molecules
and chloride anions in the interstitial region are shown in Figure 1. The drawings were produced by
VESTA Software [5].
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Figure 1. Crystal structures of Phase 3 (left) and Phase 5 (right). Mg atoms are located in the centers of
distorted octahedra formed by oxygen atoms. Cl atoms—green; O atoms—blue. Green-blue spheres in
the Phase 5 structures correspond to a mixed site occupied by chloride anions and water molecules
(hydrogen atoms are not shown).

MOC phases and MOC-based composites have been intensively studied in recent years. Synthesis,
structure, and the thermal stability of magnesium oxychlorides in particular were studied in detail [6,7].
MOC is a non-hydraulic versatile binder with specific properties, which make it superior to PC. One
of the most significant properties is its specific density, which is considerably lower and possesses
materially high compressive and flexural strength. Other superior properties are its elevated fire
resistance, resistance to abrasion, and low thermal conductivity. All of these properties develop in
quite a short curing time, so the material is suitable for quick repairs. Further, MOC is not affected by
oils, grease, or paint [8–11], and it is less alkaline (pH~10) than PC, making it appropriate for use with
glass fibers and preventing the aging process as well as with other fillers and aggregates such as tire
rubber, synthetic resin, and wood particles [12]. The advantage of MOC also lies in the fact that it has a
high bonding capacity with different types of filers including secondary raw materials coming from
industrial processes.

The versatility and functional performance of MOC-based materials have spurred considerable
research into product design, development, and characterization [13–15]. Properties of MOC
cement-based materials make them applicable in many ways—primarily as a flooring material,
but also in fire protective systems, grinding wheels, decoration, wall insulation, and others [16,17].

At the same time, these materials have also some disadvantages, especially when they come into
contact with water [18,19]. MOC has a low water resistance due to magnesium chloride leaching, a
corrosive compound that causes severe damage when it comes in contact with metals [20–22]. The rest
of the material is then left in the form of hydrated brucite (Mg(OH)2) as the binding phase. This process
can be prevented by improving the stability of MOC in humid conditions, which can be achieved
naturally by letting the surface of Sorel cement react with CO2 from the air. The reaction provides
magnesium chlorocarbonates to the surface of the original material. Another method of improving
MOC is to use a very small amount of additives such as phosphoric acid or soluble phosphates of
alkali metals, alkaline earth metals, aluminum, ammonia, or iron. This step causes the formation of
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insoluble phosphate complexes that enhance the waterproofness of Sorel cement [23,24]. The addition
of silica fume or fly ash is also a suitable way of improving MOC-based materials [25].

The main environmental advantage of MOC is its ability to store CO2—one of the main greenhouse
gasses (GHGs)—in the form of carbonates. MOC thus acts as a CO2 sink [26]. This process is called
carbon mineralization, and due to the increasing amount of GHG in the atmosphere, it has recently
been intensively studied [27–32].

Carbonation of MOC Phases is beneficial for the environment as well as for MOC itself, making
the material harder and tougher as a result of its denser microstructure [33–36]. The significance of
these issues has been documented by monitoring air pollution [37–39]. Using carbonation curing of
cement-based materials during the preparation of building materials has attracted wide attention [40–43].
Similarly, CO2 uptake within the carbonation of MOC phases can be beneficially used both from an
environmental point of view, and in improving the performances of MOC-based materials.

In this study, the uptake of CO2 by MOC Phases 3 and 5 is examined along with the long-term
kinetics of this process. The morphology of both materials was analyzed using scanning electron
microscopy, and the chemical composition of the precipitated MOC phases was determined using
energy dispersive spectroscopy. The kinetics of the carbonation of formed stable MOC phases
has not previously been reported in the literature in regards to the assumed high CO2 uptake
capacity by carbonated minerals and its use in the passive control of indoor air quality. This could
partially reduce the concentration of CO2 in the polluted environments, and thus slow down global
warming-related effects.

2. Materials and Methods

The following chemicals were used for the syntheses: MgCl2·6H2O (>99%, Penta, Czech Republic),
MgO (>8%, Penta, Czech Republic), and deionized water (16.8 MΩ).

The ratio of 5 MgO to MgCl2·6H2O was used for the synthesis of a stoichiometric phase of MOC
with a composition 5Mg(OH)2·MgCl2·8H2O (termed as Phase 5, also known as Mg3(OH)5Cl·4H2O). To
prepare the first sample, 30.6 g of MgCl2·6H2O was dissolved in 19.0 g of deionized water. In the next
step, 30.4 g of magnesium oxide was added, and the suspension was intensively stirred for 10 min.
Equation (1) summarizes the formation of Phase 5:

5 MgO + MgCl2·6H2O + 3 H2O·5Mg(OH)2·MgCl2·8H2O (1)

Similarly, the stoichiometric Phase 3 (3Mg(OH)2·MgCl2·8H2O or Mg2(OH)3Cl·4H2O) was prepared
by mixing MgO, MgCl2·6H2O and H2O in the molar ratio 3:1:5. To prepare the second sample, 39.1 g
of MgCl2·6H2O was dissolved in 17.3 g of deionized water. In the next step, 23.2 g of magnesium
oxide was added, and the suspension was intensively stirred for 5 min. The formation of magnesium
oxychloride cement MOC 3-1-8 is summarized in the following Equation (2):

3 MgO + MgCl2·6H2O + 5 H2O→ 3Mg(OH)2·MgCl2·8H2O. (2)

Suspensions were used to prepare small samples in XRD holders (Figure 2). Samples were stored
indoor at ambient temperature, with an excess of humidity and carbon dioxide. Figure 2 shows the
photography of prepared samples in XRD holders.

For the study of the surface morphology, scanning electron microscopy (SEM) was
used (Tescan MAIA 3). Elemental composition and mapping were characterized by energy
dispersive spectroscopy (EDS) using X-Max150 analyzer equipped with a 20-mm2 SDD detector
(Oxford instruments) and AZtecEnergy software. The sample was put on a carbon conductive tape in
order to ensure the conductivity of the experiments. For both SEM and SEM-EDS analyses, the electron
beam was set to 10 kV with a 10-mm work distance.

X-ray powder diffraction (XRD) was carried out by a Bruker D2 Phaser, a powder diffractometer
with Bragg-Brentano geometry, applying CuKα radiation (λ = 0.15418 nm, U = 30 kV, I = 10 mA) with
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a rotation of 5 rpm. The step size was set to of 0.02025◦ (2θ), and the overall data were acquired in the
range of 5–80◦. Measurements were performed on samples matured for 7, 28, 50, 100, 150, 200, and
250 days. After 250 days, the particular samples were manually homogenized in an agate mortar and
measured in a powder form to obtain information on the bulk phase composition. Rietveld analysis
was performed for the quantification of the identified phases.
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Figure 2. Photography of prepared samples in XRD holders: Phase 3 (left) and Phase 5 (right). 132 Figure 2. Photography of prepared samples in XRD holders: Phase 3 (left) and Phase 5 (right).

3. Results and Discussion

Two MOC phases were prepared and characterized. The phases under study with the compositions
3Mg(OH)2·MgCl2·8H2O and 5Mg(OH)2·MgCl2·8H2O are referred to as Phases 3 and 5, respectively.
The phase purities of both phases were determined using XRD analysis after 7 days (see Figure 3). A fast
formation of Phase 3 was confirmed, and a single-phase composition was obtained (ICDD 00-007-0412).
Similar results were also obtained for Phase 5. The formation of Phase 5 (ICDD 00-007-0420) was
confirmed with no significant impurities. Figure 3 shows the XRD patterns measured after 7 days for
MOC Phases 3 and 5.
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Figure 3. XRD patterns for magnesium oxychloride cement (MOC) Phases 3 and 5 after 7 days.

Another XRD measurement was performed after 50 days of samples maturing. In both
samples, chlorartinite was formed on the surface due to carbonation (see Figure 4). Phase 3 reacted
with carbon dioxide forming Mg2(CO3)(OH)Cl·2H2O (ICDD 00-061-0391), while Phase 5 formed
Mg2(CO3)(OH)Cl·3H2O (ICDD 00-00-0278). A tubular crystal structure of the dihydrate formed
by MgO6 octahedra interconnected by carbonate anions with chloride anions and water molecules
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located inside the channels is depicted in Figure 5. It is apparent from the comparison with the initial
structures of Phases 3 and 5 (Figure 1) that the CO2 incorporation into the system required a complete
reconstruction of the MgO6 network and, in the case of Phase 5, the formation of another phase
(see Equation (4) below). Hence, a relatively slow kinetics of the carbonation process can be anticipated.
Figure 4 shows the XRD pattern of MOC Phases 3 and 5 after 50 days of maturing. Figure 5 shows the
crystal structure of the chlorartinite phase.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 11 
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Figure 5. Crystal structure of the chlorartinite phase. Color scheme is the same as in Figure 1; carbon
atoms located in the centers of triangular carbonate molecules are in red.

XRD measurements with subsequent Rietveld analysis were performed again after 100, 150, 200,
and 250 days of maturing. In both samples, the content of chlorartinite increased with the aging time
of the samples. However, as can be seen from Figure 6, the rate of chlorartinite formation was different
for Phases 3 and 5. In the case of Phase 3, MOC almost disappeared after 250 days, while chlorartinite
represented the dominant phase. The carbonation of Phase 5 was slower than Phase 3, likely due to
the phase separation. After 150 days, the surface of the sample contained similar amounts of Phase 5
and chlorartinite. After 250 days, this sample contained 46% of Phase 5 and 54% of chlorartinite. The
XRD patterns acquired on 250-day samples are shown in Figure 7 for both surfaces and bulk. It is
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obvious from Figure 7 that the carbonation took place mainly on the surface. Although the Phase 3
sample contained over 95 wt% chlorartinite, in the whole volume the content of chlorartinite did not
exceed 15 wt%. Similar results were obtained for Phase 5, where the content of chlorartinite in the bulk
was even lower. Figure 6 shows the surface phase composition of Phases 3 and 5 after 7, 50, 100, 150,
200, and 250 days of sample ageing. Figure 7 shows the phase composition of the surface and bulk
(powder) of Phases 3 and 5 assessed for 250-day samples.
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SEM micrographs were acquired to study the microstructure of the 250-day MOC samples. The
typical needle-like crystalline structure of Phases 3 and 5 were obtained in the bulk at high magnification
(see Figure 8). The needles were 1–5 µm long and approximately 0.5 µm wide. On the other hand, the
morphology of the surface was different. Due to carbonation (formation of chlorartinite), the surface
contained a lower amount of needles in both samples. More needles (MOC phase) were detected in
Phase 5 than Phase 3, which is in good agreement with the XRD results. The EDS chemical composition
was also measured at three different locations in the sample (surface, center, and bottom). High purity
of both samples was confirmed when only magnesium, oxygen, chlorine, and carbon were detected.
The EDS data confirmed the highest carbon content on the surface of the tested samples. The carbon
content in the center and on the bottom of the analyzed samples was significantly lower. Figure 8
shows the SEM micrographs of the surface and bulk (fracture surface) of the Phases 3 and 5 samples
scanned after 250 days of materials ageing. The EDS data measured from the surface, center, and
bottom of the samples are also provided.
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Both MOC phases analyzed in this study exhibited fast formation of chlorartinite as a result of
their reaction with carbon dioxide. The carbon footprint of MOC cement-based materials will be
thus significantly and quickly reduced. Based on the great sorption activity of Phase 3 towards CO2,
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it is estimated that 1 kg of Phase 3 could theoretically incorporate 211 g of CO2, as formulated in
Equation (3):

3Mg(OH)2·MgCl2·8H2O + 2 CO2 → 2 [Mg2(CO3)(OH)Cl·2H2O] + 6 H2O (3)

Similarly, assuming carbonation of Phase 5 in accordance with Equation (4),

5Mg(OH)2·MgCl2·8H2O + 4 CO2 → 2 [Mg2(CO3)(OH)Cl·3H2O] + 2 MgCO3 + 6 H2O (4)

where maximum calculated theoretical CO2 uptake capacity of Phase 5 was 331 g/kg. However, these
are theoretical assumptions only, requiring a high concentration of CO2 in the surrounding air, and
full-volume carbonation of MOC phases. On the other hand, increased global CO2 emissions pose a
threat to the Earth’s atmospheric environments. It was reported that the annual CO2 concentration at
the Earth’s surface in 2017 reached 405 ppm [44], which is approximately quadruple that of the early
1960s [45]. Therefore, any attempt at a reduction of the carbon footprint of construction materials is of
particular importance from a sustainability point of view.

The production of Portland cement, as a material that is competitive to MOC cement, represents
5–8% of global CO2 emissions [46,47]. In this sense, alternative approaches to reducing CO2 emissions
associated with the manufacture of the binder phase in concrete and other construction materials are
in demand [48]. Seo et al. [44] reported on the potential of CO2 reduction materialized by carbonation
curing. He calculated the CO2 uptake capacity of Portland cement during an accelerated carbonation
test as 12.3%. The computing was done based on the thermogravimetry (TG) and calculation of the
difference between the weight loss at 500–720 ◦C of carbonated and noncarbonated cement paste
samples. This was a similar level of CO2 uptake as observed in a study published by Jang and
Lee [41]. Nevertheless, this CO2 uptake capacity corresponds with the 5% CO2 concentration within
the accelerated carbonation test. The normal level of CO2 concentration in the air is 250–400 ppm [49].
In occupied spaces with good air exchange, the concentration of CO2 varies in the 400–1000 ppm range.
This means that the applied CO2 concentration in accelerated carbonation tests was typically even
200 times higher than the normal CO2 concentration in air. The significant reduction of CO2 uptake
by Portland cement paste can be therefore be anticipated under standard atmospheric conditions.
Moreover, the sequestration of CO2 as a result of the carbonation of Portland cement paste in normal
environments is extremely slow [50], contrary to the fast formation of chlorartinite from MOC phases.

Based on the data provided and analysis conducted in this study, it can be concluded that MOC
cement represents an alternative construction binder for the production of low carbon materials that can
partially mitigate the atmospheric concentration of CO2, which is the main constituent of greenhouse
gases related to global warming issues [51].

4. Conclusions

The issue of global warming has resulted in a climate crisis faced by people all over the world.
Annually, billions of metric tons of Portland cement are produced around the world, which represents
a serious environmental burden due to the release of huge amounts of CO2 within the decomposition
of limestone and burning of coal in cement production plants. As Portland cement and cement-based
materials are the most widespread materials in the construction industry, there is a need to develop
and discover alternative cement materials with similar or better functional properties than Portland
cement, with a lower negative environmental impact.

In this work, MOC was studied as an alternative to Portland cement binder. Based on the
conducted tests and analyses, the fast formation and hardening of both stable MOC phases was
documented, which is an advantageous property and contrary to the significantly slower hardening
of Portland cement-based materials. This could be beneficially exploited in repair applications,
prefabrication, and the speeding up of construction processes. Specific attention was paid to the ability
of MOC to capture CO2 from the environment, making it eco-friendly, but also resulting in a more
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dense and mechanically resistant structure than was anticipated. Both MOC phases proved their fast
mineral carbonation, whereas the maximum theoretical CO2 uptake capacity was high and significantly
greater than that of Portland cement paste. Nevertheless, one must consider the surface and bulk
carbonation effects, relative humidity values, and CO2 concentration available for carbonation reaction
in this respect. MOC-based composites could find use in applications where a higher concentration
of CO2 in the environment is expected (e.g., in areas and construction sites exposed to higher traffic
density, industrial air pollution, etc.). Here, they can be applied in industrial flooring and wall panels.
In this case, the concentration of the prevailing component of greenhouse gases will be safely reduced
by CO2 uptake in newly formed carbonated MOC phases which will be more durable and resistant
against mechanical loads. Based on the free carbonation capacity of MOC-based products, they could
also serve as the passive moderators of indoor air climates with respect to the mitigation of excessive
CO2 concentrations (which can cause serious health problems).
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Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg (OH) 2·MgCl2·8H2O.
Materials 2020, 13, 767. [CrossRef]

8. Demediuk, T.; Cole, W.; Hueber, H. Studies on magnesium and calcium oxychlorides. Aust. J. Chem. 1955, 8,
215–233. [CrossRef]

9. Li, Z.; Chau, C. Influence of molar ratios on properties of magnesium oxychloride cement. Cem. Concr. Res.
2007, 37, 866–870. [CrossRef]

10. Montle, J.; Mayhan, K. The role of magnesium oxychloride as a fire-resistive material. Fire Technol. 1974, 10,
201–210. [CrossRef]

11. Qiao, H.X.; Zhu, B.R.; Shi, Y.Y.; Dong, J.M.; Elizabeth Wanjiru, M. Strength development and micro-mechanism
of magnesium oxychloride cement concrete. Mater. Res. Innov. 2015, 19, S1–S185. [CrossRef]

12. Zhou, X.; Li, Z. Light-weight wood–magnesium oxychloride cement composite building products made by
extrusion. Constr. Build. Mater. 2012, 27, 382–389. [CrossRef]

13. El-Gammal, M.; El-Alfy, A.; Mohamed, N. Using magnesium oxide wallboard as an alternative building
façade cladding material in modern cairo buildings. J. Appl. Sci. Res. 2012, 8, 2024–2032.

http://dx.doi.org/10.1021/ic1004566
http://www.ncbi.nlm.nih.gov/pubmed/20886888
http://dx.doi.org/10.1002/zaac.201100497
http://dx.doi.org/10.1038/physci246079a0
http://dx.doi.org/10.1107/S0021889811038970
http://dx.doi.org/10.3390/app10051683
http://dx.doi.org/10.3390/ma13030767
http://dx.doi.org/10.1071/CH9550215
http://dx.doi.org/10.1016/j.cemconres.2007.03.015
http://dx.doi.org/10.1007/BF02588845
http://dx.doi.org/10.1179/1432891715Z.0000000001401
http://dx.doi.org/10.1016/j.conbuildmat.2011.07.033


Appl. Sci. 2020, 10, 2254 10 of 11

14. Chau, C.K.; Chan, J.; Li, Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos.
2009, 31, 250–254. [CrossRef]

15. Ozturk, A.; Said, M.; Timuçin, M. Production and characterization of magnesium oxychloride cement bricks
for fine polishing of porcelain stoneware tiles. Ind. Ceram. 2011, 31, 89–98.

16. Karimi, Y.; Monshi, A. Effect of magnesium chloride concentrations on the properties of magnesium
oxychloride cement for nano SiC composite purposes. Ceram. Int. 2011, 37, 2405–2410. [CrossRef]

17. Yunsong, J. Study of the new type of light magnesium cement foamed material. Mater. Lett. 2001, 50, 28–31.
[CrossRef]

18. Záleská, M.; Pavlíková, M.; Jankovský, O.; Lojka, M.; Antončík, F.; Pivák, A.; Pavlík, Z. Influence of waste
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