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Abstract: Marine macroalgae have an interesting profile of bioactive compounds and have gained
tremendous attention in cosmeceuticals with negligible toxicity effects (cytotoxicity, reproductive
toxicity, genotoxicity, mutagenicity, carcinogenicity, etc.) on humans and exhibit strong benefits for
the skin. Among the diversified compounds, phenolic compounds are the group of phytochemicals
found in high amounts with great structural diversity. Phlorotannin is the most studied polyphenol
compound in brown algae, but besides there are some other phenolic compounds observed and
studied in macroalgae such as terpenoids, bromophenols, mycosporine amino acids (MAAs), and
flavonoids. These compounds are already characterized and studied for their full range of cos-
meceutical benefits such as skin whitening, moisturizing, photoprotection, antiaging, antiwrinkle,
anti-melanogenic, and antioxidant activities as well as in the treatment of pruritus (caused by acne,
eczema, dermatitis, hives, psoriasis), photoaging, and skin pigmentation disorders (hypopigmenta-
tion due to the absence of melanocytes and hyperpigmentation caused by skin irritation or metabolic
disorders). This review study mainly focuses on marine algae-derived phenolic compounds and their
extraction, characterization, and skin cosmetic benefits described in the literature. The present study
aims to provide a detailed insight into the phenolic compounds in marine algae.

Keywords: cosmetics; marine algae; polyphenols; phlorotannin; skin benefits

1. Introduction

Cosmeceutical ingredients are active compounds that are used to improve the appear-
ance of the human body and represent a new category of preparations placed between
cosmetics and pharmaceuticals. Cosmeceutical formulations intend the improvements of
skin health and beauty [1–3]. Globally, the cosmeceutical sector is growing each year due
to increasing modern beauty trends. To meet consumer demand, industries are moving
towards the excessive use of synthetic cosmetic ingredients in formulations listed as Hy-
droquinone (HQ), Phthalates, Para-aminobenzoic acid (PABA), Benzophenones, Butylated
Hydroxyanisole (BHA), Butylated Hydroxytoluene (BHT), and Dibenzoylmethane (DBM).
According to SCCS (Scientific Committee on Consumer Safety) opinion (SCCS/1564/15),
the excessive use of synthetic ingredients in cosmeceutical formulations may lead to dif-
ferent types of toxicities such as acute toxicity, corrosion and irritation, skin sensation,
dermal/percutaneous absorption, repeated dose toxicity, reproductive toxicity, mutagenic-
ity/genotoxicity, carcinogenicity, and photoinduced toxicity on the skin as well as human
health. Hydroxyanisole, widely used in skin-whitening creams, has reported many harmful
effects such as ochronosis and potential mutagenicity [4–6]. Benzophenones, DBM, and
PABA have shown allergic phototoxicities, dermatitis, and skin irritations [7,8]. Besides,
BHA and BHT are applied in moisturization and lipstick preparations that cause allergic
reactions, irritation, and corrosivity in the skin. Another ingredient, parabens, are highly
carcinogenic and neurotoxic among other harmful health effects. Around 75 to 90 percent
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of commercially available products contain parabens, which are mostly used as a mixture
in cosmetic formulations. Parabens have been reported to have a high risk of breast can-
cer and the development of malignant melanoma in women [9]. However, in the ACDS
Contact Allergen Management Program (CAMP) report, about 19% of products contained
different types of parabens, mainly methylparaben, ethylparaben, propylparaben, and
butylparaben. According to them, these components have little allergenicity compared
to other preservatives, with no adverse reactions, and low toxicity, safety, and cost [10].
Hafeez and Maibach [11] reported fewer sensitizing effects of parabens in commercial ap-
plications but very limited reports are often attributable to the use of parabens on damaged
skin. Polyethylene glycol (PEG) is a genotoxic compound that irritates and causes systemic
toxicities and skin damage. In skin cosmetics, PEGs function in three ways: as emollients
(that soften and lubricate the skin), as emulsifiers (that help to mix water-based and oil-
based ingredients properly), and as vehicles (that deliver ingredients deeper into the skin).
In addition, the Agency for Toxic Substances and Disease Registry (ATSDR) Information
Center, and the Centers for Disease Control and Prevention (CDC) reported the toxicity of
dibutyl phthalate (DBP) in DNA damage in male reproductive cells [12]. Some previous
studies have reported the harmful effects of cosmetic ingredients in animal studies, such
as male genitalia disabilities that altered pregnancy outcomes as well as reduced sperm
counts [13,14]. Moreover, the EC 1223/2009 regulation regarding the testing and marketing
ban of cosmetic products suggests the prohibition of testing finished cosmetic products on
animals and their marketing.

To overcome the toxicities of these formulations, consumers have changed their prefer-
ence to natural skin care products in the last few years. As a result, industries have moved
towards natural bioactive ingredients from various natural resources that are eco-friendly
and less toxic [15,16]. Various natural resources can be used in skin cosmetic products
such as terrestrial plants, fungi, marine algae, bacteria, animals, etc. [17–21]. Among
them, marine macroalgae are widely utilized for their skin benefits nowadays. Marine
macroalgae are also known as seaweed: eukaryotic, aquatic photosynthetic macroscopic,
multicellular organisms that are ubiquitously found along the seacoast and in seawater.
They belong to the Eukaryota domain and are classified into three major taxonomic groups,
red algae, brown algae, and green algae, belonging to the Rhodophyta phylum, Ochro-
phyta phylum, and Chlorophyta phylum, respectively [22–25]. These different types of
marine macroalgae are illustrated in Figure 1. There is an increasing demand for bioactive
constituents in cosmetic and cosmeceutical applications from macroalgae. The applications
of macroalgae-derived compounds to the cosmetic industry are based on their potential bi-
ological activities [26–28]. These are lipids, fatty acids, polysaccharides, vitamins, minerals,
amino acids, phenolic compounds, proteins, pigments, etc., which have attracted attention
for their skin cosmeceutical benefits [29–31].

Marine algae are one of the natural resources of phytochemical compounds, which
confer potential biological activities [32,33]. Phenolic compounds are one of the bioactive
compounds produced in seaweeds, are made of an aromatic ring with one or more hy-
droxyl groups, and their structures diversify from simple to complex, higher molecular
weight compounds [34,35]. Many previous studies have been carried out in which phenolic
compounds were isolated from marine algae and they include simple phenolic compounds
or polyphenols such as flavonoids, phlorotannins, mycosporine-like amino acids (MAAs),
bromophenols, and terpenoids [36]. The biological action of phenolic compounds is de-
termined by the position of the hydroxyl groups, and the number of phenyl rings in the
structure [37]. Brown algal species contain a high amount of phlorotannins whereas green
and red algae mainly produce flavonoids, bromophenols, terpenoids, and mycosporine
amino acids in response to environmental conditions [36–40]. Marine algae-derived pheno-
lic compounds have a wide variety of applications such as enzyme inhibitory effects (for
example, tyrosinase inhibition, elastase inhibition, collagenase inhibition, matrix metallo-
proteinase inhibition in photoprotection, inhibition of angiotensin-converting enzyme-1
(ACE-1), pro-inflammatory cyclooxygenase and lipoxygenase (COX-1, 2 and 5-LOX) as well
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as dipeptidyl peptidase-4 (DPP-4) inhibition, and hydroxymethyl glutaryl coenzyme A re-
ductase (hMGCR) inhibition) antibacterial, antifungal, antioxidant, and anti-inflammatory
properties, which can be very attractive when utilized in cosmetics and cosmeceutical
product preparations [41–47]. In cosmetics, phlorotannin provides hyaluronidase acti-
vation, antiallergic, anti-wrinkle, anti-aging, skin whitening, photoprotection, and skin
health improvement benefits [48,49]. This review represents marine algae-derived phenolic
compounds, their chemical structures, together with their skin benefits and their potential
in the skin cosmetics industries.
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Figure 1. (a–u) Examples of marine macroalgae. (a) Chaetomorpha antennina (green); (b) Corallina sp.
(red); (c) Sargassum linearifolium (brown); (d) Palisada perforata (red); (e) Sargassum cinereum; (f) Palisada
perforata (as Laurencia papillosa); (g) Laurencia glandulifera (red); (h) Sargassum tenerrimum (brown);
(i) Sargassum tenerrimum (brown); (j) Ulva lactuca (green); (k) Laurencia sp. (red); (l) Gracilaria sp.
(red); (m) Gracilaria debilis (red); (n) Udotea indica (green); (o) Champia compressa (red); (p) Tricleocarpa
fragilis (red); (q) Caulerpa taxifolia (green); (r) Botryocladia leptopoda (red); (s) Centroceras clavulatum
(red); (t) Scinaia moniliformis (red); (u) Padina tetrastromatica (brown).

Phenolic compounds are one of the most researched marine macroalgae-derived
biologically active compounds and are already utilized in various cosmeceutical prepara-
tions [50]. Normally, these phenolic compounds are not extracted because seaweed extracts
contain a good number of phenolic compounds. According to Thomas and Kim [51],
Nagayama et al. [52], and Hwang [53], phlorotannin is one of the marine algae-derived
phenolic compounds with less toxicity than other natural antioxidant molecules and its
anti-aging benefit is attracting the attention of researchers looking to use it as an ingre-
dient in cosmetic formulations. Some marine algae extracts are rich in different pheno-
lic compounds such as phlorotannin, phloroglucinol, eckol, dieckol, fucol, phlorethol,
fuhalols, lignans, bromophenol, flavonoid, phenolic terpenoids, and mycosporine amino
acids (MAAs). These phenolic compounds contribute to skin benefits, with antiaging,
photoprotection, antiwrinkle, antiallergic, anti-inflammation, antioxidant, antimicrobial,
antifungal, tyrosinase inhibition, anti-melanogenic, skin whitening, UVB protector, and
antiacne properties, etc. [54–56]. Tang et al. [57], and Khanavi et al. [58] reported not only
cytotoxicity but also the antibacterial effect of a phenolic fraction from the Ulva clathrata
and Ulva flexuosa species that can be utilized for skin benefits. In addition, Lavoie et al. [59]
identified the antibacterial activity of Cladophora socialis-derived phenolic compounds, such
as 2,3,8,9-tetrahydroxybenzo[c]chromen-6-one, 3,4,30,40-tetrahydroxy-1,10-biphenyl, and
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cladophorol against methicillin-resistant Staphylococcus aureus. Based on a study carried
out by Ko et al. [60], bromophenols, such as 5′-Hydroxyisoavrainvilleol found in green
macroalga Avrainvillea nigricans, demonstrate promising antimicrobial activity. The green
macroalga, Caulerpa sp., has been reported for various flavonoids, such as kaempferol
and quercetin. These compounds have been studied and identified with antioxidant bene-
fits [61]. In addition, Vidalia colensoi (as Osmundaria colensoi) derived from lanosol methyl
ether, lanosol butenone, and rhodomelol has revealed antibacterial and antifungal activity
against various bacterial and fungal pathogens. These effects proved to be bactericidal and
bacteriostatic or fungicidal, fungistatic, and antiacne, and demonstrated a dose-dependent
curve effect against the pathogenic organisms [62]. Mycosporine amino acids such as paly-
thine, shinorine, asterina-330, Porphyra-334, palythinol, and usujirene have already been
isolated and have antioxidant, photoprotective, and antiproliferative activity in the HeLa
and HaCat cancer cell lines. In other studies, Lawrence et al. [63], Orfanoudaki et al. [64],
and Becker et al. [65] reported the anti-inflammatory and immune-modulatory proper-
ties of mycosporine-like amino acids. These compounds can act as UV filters against
photodamage. Moreover, Ecklonia cava-derived phlorotannin acts as an anti-UVB protec-
tive and reduces the photodamage effect provoked by UVB radiation [66]. Some other
brown macroalgal species-derived phlorotannins such as dieckol, dioxinodehydroeckol,
eckol, eckstolonol, phlorofucofuroeckol A, and 7-phloroeckol are being researched for
skin-whitening and antiwrinkle properties, as well as tyrosinase and hyaluronidase inhibi-
tion [67–73]. Bak et al. [74] reported the hair growth-promoting activity of 7-phloroeckol
isolated from E. cava.

2. Characterization and Types of Phenolic Compounds

The extraction and characterization of phenolic compounds from marine algae consti-
tute interesting results, with those reported in the literature [75–79]. These compounds and
their biological action are commonly correlated. However, some phenolic extracts have an
interesting property but have not been fully characterized. Antioxidant activities have been
reported in green seaweed-derived bromophenols and flavonoids. Farasat et al. [80], and
Cho et al. [81] studied and proved the high radical scavenging activities of various green
(Chlorophyta) species such as Ulva clathrata, U. compressa (formerly known as Enteromorpha
compressa), U. intestinalis, U. linza, U. flexuosa, U. australis (formerly known as Ulva pertusa),
Capsosiphon fulvescens, and Chaetomorpha moniligera. In their findings, antibacterial and
cytotoxic effects on breast ductal carcinoma cell lines were verified in the phenolic fraction
of U. clathrata and U. flexuosa [82,83]. In a more recent study, Lavoie et al. [84] reported
C. socialis-derived phenolic compounds, such as 2,3,8,9-tetrahydrobenzo[c]chromen-6-one
(Figure 2a), 3,4,3′,4′-tetrahydroxy-1,1′-biphenyl (Figure 2b), and cladophorol C (α-hydro-
ω-[3,4-dihydroxyphenyl]octa[oxy(2-hydroxyphen-4-yl)]) (Figure 2c), have been identified
with antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA).

The functions of phenol compounds in red marine algae have barely been studied, but
they probably have multipurpose actions in cell life, such as antioxidant, chelation, and
anti-infection actions, as well as cofactors or hormones [85]. However, some research is not
with the isolated phenolic compounds but with an extract enriched in polyphenolics [85].
More than 8000 different structures of phenolic compounds are found in marine macroalgae,
because of their importance in organisms’ growth, survival, and defense. The classification
of phenolic compounds according to their chemical structures is depicted in Figure 3.
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Figure 3. Classification of phenolic compounds listed according to their chemical structures. Source:
Cotas et al. [36].

Moreover, the chemical structures of some phenolic compounds are illustrated in
Figure 4. These compounds can be synthesized by various metabolic pathways such as the
pentose phosphate pathway (PPP), and the phenylpropanoid and shikimate pathways.
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Figure 4. Chemical structures of some phenolic compounds. (A): Catechol, (B): Gallic acid, (C): Gen-
tisic acid, (D): Phloroglucinol, (E): Hydroquinone (HQ), (F): Chlorogenic acid, (G): Coumaric acid,
(H): 4-Hydroxybenzoic acid, (I): (+)-Catechin, (J): Caffeic acid, (K): Ferulic acid, (L): Sinapic acid,
(M): 7-Hydroxy coumarin sulfate, (N): Eckol, (O): Dieckol, (P): Eckstolonol, (Q): Triphloroethol-A,
(R): Epigallocatechin, (S): Catechin 3-O-gallate.



Appl. Sci. 2022, 12, 11954 8 of 25

Giada [86], and Vermerris and Nicholson [87] reported varieties of phenolic compound
classification to comprise a large number of heterogeneous structures from simple to highly
polymerized structures. A simple phenolic group is formed that reveals hydroxyl groups
at different positions: ortho, meta, and para (1,2-, 2,3-, and 1,4-), respectively. Catechol,
HQ, and phloroglucinol are examples of simple phenolic compounds found exclusively in
macroalgae [88]. One of the previous studies showed catechol in twenty-seven Japanese
green and red seaweeds [89]. It is quite common to find this simple phenol with a bromine
substituent that is bromophenol. C6-CN phenolic compounds possess a basic C6-CN
structure, where N is found between 1 and 3. Within this phenolic group, three subdivisions
can be made in C6-C1, C6-C2, and C6-C3 and correspond to phenolic acids and aldehydes,
which are characterized by having phenol with carboxylic group substitution [87]. Other
examples are phenolic acid, hydroxybenzoic acids (C6-C1), acetophenones, phenylacetic
acids, coumarins (C6-C2), coumarins, hydroxycinnamic acids, phenylpropanoids (C6-C3),
naphthoquinones (C6-C4), xanthones (C6-C1-C6), stilbenoids, anthraquinones (C6-C2-C6),
flavonoids, isoflavonoids (C6-C3-C6), lignans, neolignans ([C6-C3]2), lignins ([C6-C3]n),
and condensed tannins ([C6-C3-C6]n). Gallic acid is one of the simplest phenolic acids used
as a standard for total phenol content estimation. It can be found in high concentrations in
the brown alga Halopteris scoparia. Other simple acids such as 4-hydroxybenzoic acid have
been also reported in the brown alga Undaria pinnatifida [90]. C6-C2 are not very common in
nature but the red alga Tichocarpus crinitus was studied for the C6-C3 category of phenolic
compounds such as coumarins, isocoumarins, chromones, monolignols, hydroxycinnamic
acids, and cinnamic aldehydes [87,91]. Moreover, Hartmann et al. [92] found the presence
of coumarins in the green algae Dasycladus vermicularis. Other phenolic compounds include
xanthonoids (C6-C1-C6), stilbenoids, anthraquinones, anthrones (C6-C2-C6), flavonoids
(C6-C3-C6), and diarylheptanoids (C6-C7-C6). (C6-C3-C6) can be classified based on
the arrangement of the C3 group that connects two benzene rings such as chalcones,
aurones, and flavonoids. The last compound is further classified into different classes
such as flavonols, flavones, isoflavones, anthocyanins, and flavanones. Cho et al. [81]
found a high content of flavonoids in red algae, which was higher than in green and
brown algae. In addition, Generalić Mekinić et al. [90] reported a good number of different
flavonoids, catechin, epicatechin, gallate, and epigallocatechin, in brown algae species such
as Eisenia bicyclis, Sargassum fusiforme, and Saccharina japonica.

2.1. Polyphenolic Compounds

Polyphenol is mainly of two types, phlorotannin, and phloroglucinol. The former
is a polymer of phloroglucinol with an additional halogen or hydroxyl group whereas
the latter contains an aromatic ring structure with three hydroxyl groups [93–95]. These
can be subclassified into six different groups: (i) Eckols; (ii) Fucophlorethols; (iii) Fucols;
(iv) Phlorethols; (v) Carmalols; and (vi) Fuhalols.

2.2. Lignans

Lignans are a type of phenolic compound, a dimer or oligomer, formed due to the
union of monolignols, coniferyl alcohol, and sinapyl alcohol. Freile-Pelegrín and Robledo [96]
reported the presence of lignans in calcified red marine algae Calliarthron cheilosporioides
(Rhodophyta). Another polymeric phenol, lignin, is the most abundant organic polymer
found in nature but not extensively studied in marine algae, which are structurally composed
of monolignols (coniferyl alcohol, sinapyl alcohol), and lignan units randomly linked forming
a polymeric network. Tannins are usually divided into three different chemical structures:
hydrolyzable tannins, flavonoid-based tannins, and phlorotannins. The first one is derived
from simple phenolic acids and their carbohydrate hydroxyl groups that are partially or
completely esterified with phenolic groups. The second, flavonoid-based tannins, synthesize
through flavins and catechins whereas the last, phlorotannins, are oligomers of phloroglucinol
that are exclusively found in brown algae [97].
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2.3. Phlorotannins

Phlorotannins, a group of compounds that majorly include dioxinodehydroeckol (eck-
ostolonol), dieckol, eckol, phlorofucofuroeckol A, 7-phloroeckol, and fucofuroeckol A and
8,8′-bieckol, exhibit antioxidant-inhibitory effects against melanin synthesis, skin whiten-
ing (tyrosinase inhibition), and UV protection [98–103]. Kong et al. [104], Kim et al. [105],
Ahn et al. [106], Lee et al. [107], and Li et al. [108] demonstrated the anti-proliferative,
anti-inflammatory, and anti-adipogenic activities of Ecklonia cava (Phaeophyceae)-derived
dioxinodehydroeckol, dieckol, and phlorofucofuroeckol.

Phlorotannins are the most deeply studied phenolic compounds from algae [109].
Their antioxidant power is 2 to 10 times higher when compared to ascorbic acid or
tocopherol [110,111], which demonstrates their role as an anti-inflammatory agent [112].
They can act as an anti-UCB protector; Ryu et al. [113] suggested UVB protection by
dioxinodehydroeckol from E. cava on the HaCat cells that reduce the provoked apopto-
sis. Moreover, phlorotannins such as dieckol, dioxinodehydroeckol, eckol, eckstolonol,
phlorofucofuroeckol A, and 7-phloroeckol isolated from different marine algae are being
researched in cosmetics as whiteners and antiwrinkle agents. They have been shown
as promising tyrosinase inhibitors and hyaluronidase inhibitors [114–120]. In addition,
Bak et al. [121] proved the hair growth-promoting activity of 7- E. cava-derived phloroeckol.
Several reports have evaluated the effective antibacterial effect of phlorotannins, including
from Ecklonia cava subsp. kurome (formerly Ecklonia kurome) (Phaeophyceae), against several
food-borne pathogenic bacteria (e.g., methicillin-resistant Staphylococcus aureus (MRSA)
strains, Campylobacter sp., and Streptococcus pyogenes) [122–124].

2.4. Bromophenols

Phenolic compounds such as bromophenol and benzoic acids have been fully isolated and
characterized from red seaweeds [125]. Pérez et al. [126], Duan et al. [127], and Choi et al. [128]
studied the antioxidant activity of Vertebrata constricta (formerly Polysiphonia stricta or P. urceolata)
(Rhodophyta)-derived phenolic compounds, but that depends on the brominated units and
degree of bromination. In the same study, Symphyocladia latiuscula-derived bromophenols
reported antioxidant activity that was studied by DPPH assay. Colon et al. [129] found a cy-
totoxic effect on KB cells (human epithelial carcinoma cells) and the antimicrobial activity of
Avrainvillea nigricans (Chlorophyta)-derived 5′-hydroxyisoavrainvilleol, which is an example
of bromophenol. Moreover, Carte et al. [130] studied rawsonol, an example of bromophenol,
isolated from the same genus, but from another species, A. rawsoni, which revealed an inhibitory
effect in HMG-CoA reductase (a rate-controlling enzyme that produces cholesterol) activity. Be-
sides, Estrada et al. [131] reported the antibacterial activity of brominated monoterpenoid quinol
isolated from Cymopolia barbata (Chlorophyta) against S. aureus and Pseudomonas aeruginosa.

2.5. Flavonoids

Other classes of phenolic compounds have been investigated for varieties of applica-
tions in cosmetics. Tanna et al. [132] found the antioxidant activity of various flavonoids
such as kaempferol and quercetin from Caleurpa spp. (Chlorophyta). Acanthophora spicifera
(Rhodophyta)-derived flavonoid demonstrates a mixture of chlorogenic acid (69.64%), caf-
feic acid (12.86%), vitexin-rhamnose (12.35%), quercetin (1.41%), and catechol (0.59%), and
this flavonoid-enriched extract has revealed antioxidant activity [133,134]. These molecules
are multi-active components that play a role in UV radiation absorption, the neutralization
of ROSs, and the inhibition of radical reactions, etc., which makes them important con-
tributors to cosmeceuticals [135]. This antioxidant activity becomes helpful to overcome
photo-induced skin aging. Ultraviolet light produces reactive oxygen species (ROS) in cells
that initiate the intracellular and extracellular oxidative stresses that are responsible for
wrinkle formation and atypical pigmentation on the skin [136].
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2.6. Phenolic Terpenoids

Makkar and Chakraborty [137] studied a chromene-based phenolic compound from
Gracilaria opuntia (Rhodophyta) that has been reported to have antioxidant activity in
in vitro assays. Pillai et al. [138] reported the role of antioxidants in the prevention of
extracellular matrix damage, the activation of MMPs, and inhibition of their expression.
These molecules scavenge and quench radical oxygen species (ROS). Freile-Pelegrín and
Robledo [96] found diterpenes and sesquiterpenes more commonly in red macroalgae as
well as in Sargassaceae and Rhodomelaceae. J. Chappell and R. M. Coates [139] showed
the role of sesquiterpene patchoulol as an extremely popular fragrance agent in colognes
and perfumes. Ruberto and Baratta [140] found the significant lipid oxidation efficacy of
oxygenated sesquiterpenes, which contributes to its role as an antioxidant that may act
as a eustressor.

2.7. Mycosporine-like Amino Acid

Various marine algal species such as Asparagopsis armata, Chondrus crispus, Mastocar-
pus stellatus, Palmaria palmata, Gelidium sp., Pyropia sp. (formerly known as Porphyra sp.),
Gracilaria cornea, Solieria chordalis, Grateloupia lanceola, and Curdiea racovitzae (Rhodophyta)
have been investigated for this exclusive class of phenolic compounds. This class of com-
pounds is more commonly found free in the intracellular space and around cell organelles
sensitive to ultraviolet rays. Mycosporine-like amino acids (MAAs) are formed by cyclo-
hexenone or cycloheximide chromophore conjugated to imino alcohol or an amino acid
residue [141,142]. Various MAAs (palythine, shinorine, asterina-330, Porphyra-334, palythi-
nol, and usujirene) have already been studied that have high antioxidant, photoprotection,
and anti-proliferative (HeLa cancer cell line, human cervical adenocarcinoma cell line) and
HaCat (human immortalized keratinocyte) activity [143,144]. Recent studies have reported
other important activities such as anti-inflammatory, and photoprotective activities (an
alternative to the synthetic UV-R filters in sunscreens). Thus, MAAs seems to be a special
focus on a specific area and application that can be applied to humans. Based on the
literature, the different types of marine algae-derived phenolic compounds and their skin
cosmetic benefits are tabulated in the below Table 1.

Table 1. Applications of marine macroalgae-derived phenolic compounds in skin benefits.

No. Name of Marine Algae Seaweed-Based Bioactive
Compounds Cosmetic Properties/Benefits References

1 Macroalgal species

Catechins, Flavanols, Flavanol
glycosides, Gallic acid, Epicatechin,

Phloroglucinol, Pyro catechol,
Gallate, Flavonoids, Anthocyanins,

Stilbenes, Lignans

Matrix Metalloproteinase (MMP)
inhibitors, Reduce

collagen degradation
[145–147]

2 Corallina pilulifera (R) - Inhibit the expression of MMP2
and MMP-9 [148]

3 Sargassum horneri (B) Sargachromanol E Antiaging [149]

4 Phycocalidia vietnamensis (R) Mycosporine-like amino
acids (MAAs) UV absorber [150]

5 Ecklonia cava (B) Phlorotannins Skin whitener, Tyrosinase inhibition [151]
6 Macroalgal species - Antioxidant activity [152,153]
7 Macroalgal species Phlorotannins Anti-wrinkle, Antiaging [154,155]

8 Sargassum fusiforme
(as Hizikia fusiformis) (B) Phlorotannins Tyrosinase inhibition, Skin whitener [156]

9 Corallina pilulifera (R)
Phlorotannins, Eckol, Fucols,

Fucophorethols, Fuhalols,
Phlorethols

Antiaging, Antiphotoaging,
Antioxidant, Tyrosinase inhibition [157–160]

10 Macroalgal species Phlorotannins Inhibit melanin synthesis, Anti
UVB photodamage [161]

11 Ecklonia cava (B) Phlorotannins Melanin synthesis, UV protector [162,163]

12 Ecklonia cava (B) Phlorotannins such as
eckstolonol, dieckol

Antioxidant, photoprotective,
UV protector [164]
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Table 1. Cont.

No. Name of Marine Algae Seaweed-Based Bioactive
Compounds Cosmetic Properties/Benefits References

13 Brown algae species Phlorotannins such as Phloroeckol,
Tetrameric phloroglucinol Anti-skin aging, Antioxidant [165]

14 Corallina pilulifera (R) Phlorotannins
Metalloproteinase inhibitors, and UV

protectors, Prevent collagen
degradation, Wrinkle formation

[166]

15

Ulva clathrata, Ulva compressa (as
Enteromorpha compressa), Ulva

intestinalis, Ulva linza, Ulva flexuosa,
Ulva australis, Capsosiphon fulvescens,

Chaetomorpha moniligera (G)

Bromophenols, Flavonoids Highly radical scavenger [167,168]

16 E. cava (B) Phlorotannins UVB protector [169]

17
Saccharina japonica

(as Laminaria japonica),
Ecklonia cava, (B)

Phlorotannins Utilized in facial masks, UV
protectors, Anti-acne [170–172]

18 Ulva compressa
(as Enteromorpha compressa) (G) Flavonoids, Tannins, Phlorotannins Antioxidant effect, Anti-aging [173]

19 Fucus vesiculosus (B) Flavonoids, Phenols, HQ, Saponin Tyrosinase inhibitor,
Melanin Inhibition [174]

20 Ecklonia cava (B)
Phlorotannins; Eckol, Dieckol,

Dioxinodehydroeckol, 7-
phloroeckol, Phloroglucinol

Tyrosinase inhibition (Skin whitener) [175–177]

21

Ericaria selaginoides (as Cystoseira
tamariscifolia), Gongolaria usneoides (as

Cystoseira usneoides), Fucus spiralis,
Gongolaria nodicaulis

(as Cystoseira nodicaulis (B)

Phlorotannins, Fucophloroethol,
Bieckol, Phlorofucofuroeckol,

7-phloroeckol

Antioxidant, Anti-aging,
anti-wrinkling, Hyaluronidase

inhibition, Lipid
peroxidase inhibition

[178]

22 Ecklonia bicyclis
(as Eisenia bicyclis) (B)

Phlorotannins (Phlorofucofuroeckol-
A, Dieckol, Eckol, Phloroglucinol,

8,8′ bieckol

Hyaluronidase inhibitor,
Anti-wrinkle [179]

23 Ecklonia kurome (B) Phlorofucofuroeckol A, 8-8 bieckol,
Dieckol, Eckol, Phloroglucinol

Hyaluronidase inhibition,
Anti-wrinkle [180]

24 Ecklonia stolonifera (B)
Phlorotannins: Eckol,

Phlorofucofuroeckol A,
Dieckol, Eckstolonol

Tyrosinase inhibitor, Skin whitener
Metalloproteinase inhibitors,

Anti-wrinkle
[181]

25 Ecklonia stolonifera (B) Phlorotannins:
phlorofucofuroeckol A Anti-inflammatory [182]

26 Ecklonia cava (B) Phlorotannins UVB protector [183]

27 Ecklonia cava (B) Phlorotannins, 6,6′-Bieckol,
dioxinodehydroeckol

Metalloproteinase inhibitors,
Anti-wrinkle [183]

28 Fucus vesiculosus, Ecklonia cava,
Corallina pilulifera (R)

Eckols, Fucols, Fuhalols, Phlorethols,
Fucolphlorethols

Antiphotoaging, Antiaging,
Antioxidants, UV protector,

Tyrosinase inhibition,
Hyaluronidase inhibition

[184–187]

29 Ishige foliacea (B) Octaphlorethol A Tyrosinase inhibitor
(whitening effect) [188]

30 Ishige okamurae (B) Diphlorethohydroxycarmalol Antioxidant, UV protector [189]

31 Sargassum horneri (B) Sargachromanol E Antiaging,
Metalloproteinase inhibitors [189]

32 Gracilaria gracilis (R) Phenol Antioxidant, ROS scavenger [190]

33 Sargassum polycystum (B) Flavonoids, Tannins, Terpenoids,
Phenols, Saponins Anti-melanogenesis (skin whitener) [190,191]

34 Laurencia sp. ® Bromophenols Antioxidant [192]

35
Halidrys siliquosa, Ecklonia cava,
Ascoseira mirabilis, Cystosphaera
jacquinotii, Ishige okamurae, (B)

Phlorotannins: diphlorethol,
triphloroethol, trifuhalol and
tetrafuhalol, phloroglucinol,

eckol, eckstolonol

Antioxidant, UV protector [193–198]

36 Fucus vesiculosus (B) high polyphenol content
Increased brightness and skin age
spot reduction, UV protector, and

soothing benefit
[198]

37

Sargassum polycystum,
Ecklonia cava subsp. stolonifera (as
Ecklonia stolonifera), Ecklonia cava,

Sargassum siliquastrum (B)

Unspecified flavonoids,
Tannins, Phlorotannins

Tyrosinase inhibition,
Anti melanogenesis [199–201]
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Table 1. Cont.

No. Name of Marine Algae Seaweed-Based Bioactive
Compounds Cosmetic Properties/Benefits References

38
Eisenia bicyclis, Ecklonia cava subsp.

kurome (as Ecklonia kurome),
Ecklonia cava (B)

Phlorofucofuroeckol-A, Phlorotannins

Hyaluronidase inhibition
Anti-inflammatory

Inhibit melanin
synthesis, Antioxidant

[202]

39 Ecklonia stolonifera (B) Phlorofucofuroeckol A and B Anti-inflammation, Antiaging
(Metalloproteinase inhibitors) [203]

40 Sargassum fusiforme
(as Hizikia fusiformis) (B) Fucosterol Antiaging,

Metalloproteinase inhibitors [204]

41 Ecklonia cava (B) Eckol, dieckol Skin whitener [204]

42 Ishige foliacea (B) Phlorotannin
Downregulation of tyrosinase and

melanin
synthesis

[205,206]

43 Laminaria ochroleuca (B) Polyphenol Antioxidant [207]
44 Macrocystis pyrifera (B) Phlorotannin Antioxidant, ROS scavenger [208]
45 Saccharina latissima (B) Phenol Antioxidant [209]
46 Sargassum serratifolium (B) Sargachromenol Anti-melanogenic [210]

47 Schizymenia dubyi (R) Phenol Anti-melanogenic, tyrosinase
inhibition [210]

48 Sargassum thunbergia (B) Thunbergol Antioxidant [211]
49 Pyropia columbina (R) Phenol Antioxidant [212]
50 Rhodomela confervoides (R) Bromophenol Antioxidant [213]
51 Ulva prolifera (G) Phenol, flavonoid Antioxidant [214]
52 Ulva rigida (G) Phenol Antioxidant [215]
53 Ecklonia cava (B) Dioxinodehydroeckol UVB protector [216]

54
Eisenia bicyclis,

Ecklonia cava subsp. stolonifera
(as E. stolonifera) (B)

Ecokol Anti-inflammatory,
Tyrosinase inhibition [217–219]

55 Ecklonia cava subsp. stolonifera
(as E. stolonifera) (B) Fucofuroeckol-A UVB protector [220]

56 Cystoseira compressa (B) Fuhalol Antioxidant [221]
57 Fucus vesiculosus (B) Fucophloroethol Antioxidant [222]
58 Ecklonia cava (B) Eckstolonol Antioxidant [223]
59 Ishige foliacea (B) Octaphlorethol-A Antioxidant effects [224]

60
Eisenia bicyclis,

Ecklonia cava subsp. stolonifera
(as E. stolonifera) (B)

Phlorofucofuroeckol-A Hepatoprotective against oxidative
stress, Tyrosinase inhibition [225,226]

61 Ecklonia cava (B) 2-phloroeckol,
2-O-(2,4,6-Trihydroxyphenyl)-6,6′-bieckol Tyrosinase inhibition [227]

62
Ascophyllum nodosum, Fucus serratus,

Himanthalia elongata,
Halidrys siliquosa, (B)

Phlorotannins Antioxidant, Photoprotective [228–230]

63 Ecklonia cava subsp. stolonifera
(as E. stolonifera) (B) Dioxinodehydroeckol

Downregulation of melanogenic
enzymes that are namely TYR, TRP1,

and TRP2
[231]

(B: Brown algae; G: Green algae; R: Red algae).

3. Extraction of Phenolic Compounds

There are several extraction techniques available for obtaining phenolic compounds;
two general techniques are found: conventional and nonconventional extraction tech-
niques. The conventional techniques include simple solid solvent extraction, whereas
nontraditional techniques include microwave-assisted extraction, subcritical CO2 extrac-
tion, ultrasound-assisted extraction, and pressurized liquid extraction, among others. The
extraction and characterization of phenolic compounds from marine algae reported an
interesting result as in Figure 5 [44–48].
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The most important step is to select an appropriate extraction method, since many
procedures of extraction are available nowadays. Traditional methods include heat-assisted
extraction or maceration, percolation, and Soxhlet extraction as reported by Aires [233].
One of the classical methods is maceration, in which the components are extracted by
submerging marine algae in an appropriate solvent or solvent combinations [234]. On a
large scale, at the industrial level, ethanol is preferred as a solvent for extraction because of
its economic benefit [235]. This procedure is widely applicable in current practice. In this
method, methanol, ethanol, acetone, water, and ethyl ethanoate in different proportions are
commonly utilized for extraction. The selection can be done based on polarity. Due to the
hydrophilic nature of these compounds, hydroalcoholic solvent is the most effective for this
process. Some previous studies have mentioned the combination of solvents, with acids
such as citric acid, tartaric acid, or HCl potentially improving the extraction of phenolic
compounds [236,237]. In traditional procedures, Soxhlet extraction provides better results
of extraction in terms of yield, although this technique also presents some demerits such
as the degradation of temperature-sensitive compounds as some phenolic acids, tannins,
and anthocyanins require a large number of solvents and are time-consuming. Besides,
this classical Soxhlet extraction method is a continuous process; the solvent can easily be
recycled, and less time and less solvent are used than in maceration and percolation [238].
Moreover, the used extract of the selected algae is constantly being heated at the boiling
point of the solvent and it may damage some temperature-sensitive components, which
may affect further analysis [239]. Santos-Buelga et al. [236] reported the use of the Soxhlet
method in the extraction of lipophilic compounds. Moreover, heat-assisted extraction can
be divided into two steps. The first step is the faster step and the second one is slower. The
faster method consists of a compound’s transference from the matrix surface to the solvent
whereas the slower method consists of diffusion from the matrix to the solvent. Extraction
is mainly affected by the type of sample, type of solvent, temperature value, and time. The
main disadvantage is that it requires filtration, decantation, or clarification to separate the
solid parts when the extraction is done. It also requires a large number of solvents and
takes a long time. Hence, these classical methods are not efficient and environmentally
friendly due to the high requirements of the organic solvents [240]. With advancements,
new techniques have evolved to improve the efficacy and accuracy of extraction.
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A non-conventional technique, Pressurized Liquid Extraction (PLE), also known as
extraction with pressurized solvent, includes high pressure (1 to 15 MPa), short processing
time, and temperature ranges of about 50 to 200 ◦C using a low volume of nontoxic
solvent and thus being considered a green technology. Otero et al. [241] observed a highest
extraction yield of 37% for 80 ◦C and 52% for 160 ◦C using diluted ethanol from the brown
alga Laminaria ochroleuca (Phaeophyceae) at 100 bars. Microwave-assisted extraction is
mainly used for the extraction of polyphenols and polysaccharides. This method can be
performed in open (at atmospheric pressure) or closed (higher than atmospheric pressure)
vessels. In this method, electromagnetic waves cause changes in cell structures. Two
mechanisms, ionic conduction, and dipole rotation, transform electromagnetic energy into
calorific energy [242,243]. There are many affecting factors such as the type of extraction,
frequency of microwave, solid-to-solvent ratio, temperature, pressure, and time. Besides,
the demerit is that high microwave power and elevated temperature may degrade phenolic
compounds [244]. Cikoš et al. [243] showed the merits of ultrasound-assisted extraction
(UAE) for the extraction of phenolic compounds from algae including low temperature,
short times, and low amounts of solvent. However, the ultrasonication time can increase the
temperature, which may affect the stability of the phenolic compounds. Besides, there are
some other affecting factors such as frequency, power, time, temperature, and solid: solvent
ratio [245]. This method applies ultrasound waves with a frequency between 20 kHz and
100 kHz, which creates bubbles due to pressure differences. Then, the bubbles collapse
and cavitation occurs, causing the near liquid–solid interface breakdown of particles with
the release of bioactive compounds to the matrix. The subcritical water extraction (SWE)
method requires an application of water at a higher temperature (100–374 ◦C) than its
boiling point under high pressure (10–60 bar) to maintain its liquid state for 5–10 min. In
this technique, pressure, time, temperature, and the selection of the solvent are affecting
factors for extraction [246,247]. In the SC-CO2 method, CO2 is a nontoxic gas used as a
supercritical fluid, so the fluid behaves like a liquid simultaneously, which makes extraction
easier. Ethanol can be used to change the polarity of CO2, while extraction, low temperature,
and low pressure are used to degrade the phenolic compounds. Moreover, varieties of
seaweed species were studied and explored for a great variety of biochemicals and their
skin benefits.

4. Commercial Availability of Seaweed-Based Cosmetic Products

Marine algae have received more attention recently in cosmetics. Several skin cosmetic
products are available in the market, some of them prepared by using algal extract, whereas
some contain extracted bioactive compounds from potential marine algae. Nowadays, sev-
eral cosmetic companies are using marine algae extracts and compounds in cosmetic prepa-
rations, as an active ingredient or as an excipient, gelling, thickening, preservative, additive,
aroma, or fragrance agent [248]. For example, red alga Gracilaria sp. extracts are integrated
into different products, such as A-Gel, Sealaria (Kfar Hess, Israel; https://www.sealaria.
com/our-products/, accessed on 23 September 2022), facial masks by Balinique (Miami,
FL, USA; https://www.gsg-creative.com/cases/balinique, accessed on 23 September 2022),
and hydrating creams by Thalasso (Rosa Graf, Stamford, USA; https://skincare.rosagraf.
com/product-category/thalasso/, accessed on 23 September 2022) [249]. Helioguard®

365 (Mibelle Biochemistry; https://mibellebiochemistry.com/helioguardtm-365, accessed
on 21 September 2022) is a cosmetic ingredient complex that was formulated by using
mycosporine-like amino acids derived from the red alga Porphyra umbilicalis (Rhodophyta),
which has a powerful UV-protective capacity. This product proved suitable to use daily and
boasts photoaging benefits. Besides, a product prepared by OSEA Malibu (Los Angeles,
USA; https://oseamalibu.com/products/undaria-algae-oil, accessed on 24 September
2022), Undaria algae body oil, contains Undaria pinnatifida powder, which confers antioxi-
dant benefits and improves skin nourishment and firmness. “Hyaluronic Sea Serum” is
prepared by mixing Codium fragile (Chlorophyta) extract with other natural extracts and
ingredients to improve hydration, minimize lines, and enhance firmness (shorturl.at/lq148).
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There are some other products such as W2 SPF 50 PA+++ Red Seaweed (Life Essentials
Personal Care Pvt Ltd., Haryana, India; shorturl.at/lrS28), which contains red alga ex-
tract that prevents dehydration of the skin and provides photoprotection benefits; Sea-
weed Cleansing Soap (Mario Badescu Skin Care Inc., New York, NY 10022 https://www.
mariobadescu.com/product/seaweed-cleansing-soap, accessed on 24 September 2022),
which contains seaweed grains and Bladderwrack (Seaweed) extract that contribute to
nourishment, creamy cleansing, and soothing and gentle mineral exfoliation benefits;
Seaweed Oil Control Gel Cream (The Body Shop International Limited, West Sussex,
UK; https://www.thebodyshop.com/en-gb/face/moisturisers/seaweed-oil-control-gel-
cream/p/p000181, accessed on 23 September 2022), which controls shine, hydration,
skin protection, and nourishment; Sea Algae Daily Repair Serum (Prolixr, India; https:
//prolixr.in/products/sea-algae-daily-repair-serum, accessed on 23 September 2022),
which replenishes moisturization and improves skin elasticity; and in addition other prod-
ucts, Seaweed Oil-Control Gel Cream (The Body Shop International Limited, UK), prepared
by using the extract of the brown alga Fucus vesiculosus with other natural ingredients that
help to maintain oil balance and excess sebum for a matte and shine-free complexion. Like-
wise, Sea Algae Daily Repair Ace Serum (FURR, Pee Safe, India; https://furr.in/products/
furr-daily-repair-face-serum, accessed on 18 October 2022) strengthens the elastin tissues,
revitalizes the skin and reduces shine. Another market-available product is Universal Face
Oil by MARA Beauty (Queenstown, New Zealand; https://themarabeauty.com/products/
algae-moringa-universal-face-oil, accessed on 18 October 2022) that is made by mixing
algae plus moringa. In this product, algae play a proprietary role that enhances the natural
hyaluronic acid synthesis and is loaded with phytonutrients and fatty acids to improve
the plumpness, firmness, and smoothness of the skin. Moreover, Green Confertii Extract-
NS (Gyeonggi-do, Republic of Korea; https://cosmetics.specialchem.com/product/i-the-
garden-of-naturalsolution-green-confertii-extract-ns, accessed on 18 October 2022) con-
tains an extract of Ulva compressa (formerly Enteromorpha compressa) (Chlorophyta), which
is rich in bioactive compounds, polysaccharides, flavonoids, tannins, and acrylic acid. This
extract possesses antioxidant, antiallergic, and antimicrobial activity.

5. Conclusions

The macroalgae-derived phenolic compounds are scarce and further exploration will
create a good library of bioactive chemicals and enhance the possibility of discovering new
compounds in different types of skin cosmetic preparations. Hence, phycological research,
mainly isolation, extraction, and the characterization of seaweed species, will improve
the cosmetic market commercially. The main focus is on the concentration of bioactive
compounds present in macroalgal species, which creates a real problem at the formulation
level. Polyphenolic compounds and other classes of chemical compounds are the attention
of ongoing research. Their study is very limited and there is a lack of clarity about the
in vivo effects of seaweed-derived phenolic compounds and their interaction with human
cells. These problems can be overcome by using various methodologies and determination
methods that evaluate at a deeper level to make them safer. More studies and research
are needed on the characterization of phytochemicals, extraction, characterization, and
in vitro and in vivo study for toxicity by diversified methodology. Overall, new research
studies are required to analyze and fully understand their biological benefits in cosmetic
formulation and on the skin to make the cosmetic sector sustainable.

Ultimately, many more seaweed species will require study and characterization for
their application in cosmetic formulation and to understand their skin benefits. Due to their
tremendous number of applications and various biological benefits, marine macroalgae
are gaining attention and becoming increasingly attractive in the exploration of the skin
cosmetic properties of their natural bioactive extracts and formulations.
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