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Abstract: Grounded cognition theory postulates that cognitive processes related to motor or sensory
content are processed by brain networks involved in motor execution and perception, respectively.
Processing words with auditory features was shown to activate the auditory cortex. Our study
aimed at determining whether onomatopoetic verbs (e.g., “tröpfeln”—to dripple), whose articulation
reproduces the sound of respective actions, engage the auditory cortex more than non-onomatopoetic
verbs. Alpha and beta brain frequencies as well as evoked-related fields (ERFs) were targeted as
potential neurophysiological correlates of this linguistic auditory quality. Twenty participants were
measured with magnetoencephalography (MEG) while semantically processing visually presented
onomatopoetic and non-onomatopoetic German verbs. While a descriptively stronger left temporal
alpha desynchronization for onomatopoetic verbs did not reach statistical significance, a larger ERF
for onomatopoetic verbs emerged at about 240 ms in the centro-parietal area. Findings suggest
increased cortical activation related to onomatopoeias in linguistically relevant areas.

Keywords: onomatopoeia; verbs; beta; alpha; ERF; MEG

1. Introduction

The theory of grounded cognition proposes that cognition is dependent on the brain’s
modal systems for perception, action and introspection [1]. This theory postulates that
the sensory and motor brain areas are activated not only during perception or action,
but also by cognitive processes such as understanding words related to these modalities.
Some studies show that this is true, for example, for the motor area: reading hand- and
foot-related action words activate areas belonging to the motor cortex and responsible
for hand and foot movements, respectively [2–8]. Analogously, words implying acoustic
features were shown to activate, beyond other areas, part of the same temporal brain area
also recruited during sound perception [9]. Behavioural findings showed that reading
auditory-related verbs improved the detection of subsequent hardly audible sounds in
participants with high lexical decision performance [10]. So far, there is a lack of research
about such cognitive simulation processes involving the auditory system during word
processing and even less studies focussed on neural oscillations in this context. The power
of brain oscillations can be used as an index of neural activation level. While synchronized
beta oscillations (12–25 Hz) have been proposed to maintain the current cognitive or senso-
rimotor state, desynchronized beta oscillations have been interpreted also as local cortical
activation, for example, related to movements or to auditory processing [11]. Synchroniza-
tion of the alpha frequency (8–12 Hz) is viewed as an idle state of the brain [12] while,
e.g., alpha (8–12 Hz) desynchronization in the auditory cortex has been shown to accom-
pany auditory stimulation [13]. Within the framework of the grounded cognition theory, it
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was found that visually presented words describing loud actions induced stronger beta
frequency desynchronization in the left auditory cortex compared to words describing
quiet actions [14].

Onomatopoetic words are especially interesting in this context as they tend to acous-
tically reproduce the sound (and sometimes the shape or even other semantic qualities)
of the object or action they refer to [15,16]. In earlier studies, onomatopoetic words were
shown to be accompanied by stronger activation in those areas that are usually activated
by the related real-sound stimuli: for example, animal sound-related onomatopoetic words
(e.g., the Japanese word “wanwan” indicating the dog’s barking) activated areas responsi-
ble for the perception of non-verbal sounds [17–22]. However, these studies exclusively
focussed on interjections, that is, words that only imitate a sound (e.g., “kikeriki” for a
rooster call); these, however, are neither verbs, nor nouns, nor adjectives. Profiting from the
strong onomatopoetic quality of interjections, most studies so far compared these to other
non-onomatopoetic word classes to determine the effect of onomatopoeias on brain and
behaviour [15,17–20,22–26]. Auditorily presented onomatopoetic interjections were shown
to activate the auditory cortex and, specifically, the bilateral middle and anterior superior
temporal sulcus (STS) more strongly than non-onomatopoetic nouns with the same reading
frequency, auditory familiarity and auditory imageability [22]. Similarly, activation of the
right posterior superior temporal sulcus (pSTS) following onomatopoetic word presenta-
tion was also found in another study [24]. Whereas these studies hint at a peculiar effect
of onomatopoetic words, the comparison of interjections with non-onomatopoetic words
belonging to different grammatical classes is problematic. Since the grammatical class of
the word stimuli influences the localization and strength of brain activation as well [23,27],
comparing interjections with verbs might result in effects going beyond onomatopoeias.

Few electroencephalography (EEG) studies applied onomatopoetic words instead of
interjections; auditorily presented onomatopoetic adverbs (e.g., the Japanese “gatagata” for
“rattling”) were found to elicit a larger late-positive sustained complex at about 400–800 ms
than control adverbs, thus reflecting increased post-lexical processing [23]. In another study,
processing visually presented onomatopoetic verbs resulted in a less negative-going N400
component and late-positive deflection compared to non-onomatopoetic control verbs [28].
The authors interpreted their findings as onomatopoeias being easier to process. However,
results from an additional behavioural task in Peeters’ study showed that participants
were not faster in differentiating onomatopoetic verbs from non-words than differentiating
non-onomatopoetic verbs from non-words. This behavioural finding thus does not support
the notion of the easier processing of onomatopoeias. Altogether, the literature is scarce
and inconsistent, to some extent.

In the current MEG study, we aimed at determining the oscillatory as well as evoked
neurophysiological activation related to onomatopoeias by comparing German onomatopo-
etic verbs (e.g., “brummen”—to hum) to non-onomatopoetic verbs matched for frequency,
length and implied loudness. The latter was meant at controlling for a dimension of acous-
tic relevance. We focussed on the temporal cortical areas, because of their role in auditory
processing and on the base of the literature on onomatopoeias [22,24]. For the aim of the
current analyses, we selected the MEG channels resulting from a previous auditory localizer
paradigm from our work group [14]. Here, onomatopoetic verbs were expected to induce
larger alpha and beta frequency desynchronization in comparison to non-onomatopoetic
verbs as a consequence of the increased engagement of the auditory cortex. Regarding
evoked fields, we expected an overall facilitated linguistic processing of onomatopoetic
verbs to reflect onto a lower amplitude than non-onomatopoetic verbs [28].

2. Materials and Methods
2.1. Participants

Twenty (10 females, 10 males, average age = 28.9 ± 6.9) right-handed (laterality
Quotient = 94.2 ± 9.6 [29]), monolingual, German native speakers with no formal training in
linguistics participated in the MEG study. Subjects had normal or corrected to normal vision,
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had no neurological or psychiatric disorder and were not using psychotropic medications.
Left-handed people were excluded, as right- and left-handed participants show different
cortical language dominance [30]. Linguists were excluded to avoid focussing on specific
linguistic aspects of the presented words and an implicit advantage compared to non-
linguists. Non-native speakers were not included in the study because different brain
language areas have been found to be activated by foreign versus native [31]. Even
if onomatopoetic foreign words may be intuitively easier to understand for non-native
speakers than non-onomatopoetic ones [32], the related cortical activation might still
be qualitatively different from that of native speakers. Participants were kept unaware
of the purpose of the study to prevent interference with cognitive processes. After the
completion of the experiment, participants were asked to guess the study purpose, and
they were debriefed.

2.2. Stimuli

An initial list of 136 German verbs describing actions related to sounds was created,
and they were initially pre-grouped in onomatopoetic and not onomatopoetic words. These
verbs were then evaluated by means of an online questionnaire (https://soscisurvey.de,
15 August 2019) by German native speakers. Only fully completed questionnaires were
used (n = 38, 20 females, 18 males, average age = 32.7 ± 14.5). Participants were asked
to rate each verb regarding familiarity, onomatopoeias, sound source (human vs. envi-
ronmental sounds) and loudness on a 1–4 Likert scale. To ensure that the participants
had a sufficient understanding of the concept of onomatopoeias, they were told that an
onomatopoeia describes how much the pronunciation of the verb imitates the sound as-
sociated with the implied action. Participant were then asked to “please rate how much
the pronunciation of the following word imitates the sounds associated with them”. They
were also given example words, such as “to excavate” (baggern) as an example for a non-
onomatopoetic word and “to hiss” (fauchen) as an example for a very onomatopoetic word.
These participants were not included in the MEG study to prevent a priori knowledge of the
stimuli. Items were presented in a random order to avoid systematic confounding effects
(e.g., tiredness). Based on the results of the questionnaire, 49 words with the highest
(3.1–2.5) and 56 with the lowest (2.2–1.3) onomatopoeia rating values were preliminarily
assigned to the respective conditions. The two groups of verbs were further matched for
length (p = 0.407), word frequency (p = 0.105), sound source (p = 0.736) and loudness rating
values (p = 0.189). The resulting onomatopoetic and non-onomatopoetic words differed sig-
nificantly for onomatopoeias (average 2.8 vs. 1.9; v = 0; p < 0.001). The matching procedure
resulted in 34 verbs for each condition. Non-onomatopoetic verbs were significantly more
familiar than onomatopoetic words (p = 0.020). Since this could not be avoided without
drastically shrinking the number of words per category, we opted for these verbs. The
length and word frequency values were tested for significant differences with a Student’s
t-test. All other values were tested with a Wilcoxon test. All the above-mentioned tests
were run with R version 3.5.2 (https://www.r-project.org/, 28 January 2019). The matching
process was performed in a semiautomatic way with the program Match [33]. Verbs used
in the MEG study (34 per group) are presented in Table S1.

During the MEG measurement, the following task and trial design was applied (Figure 1):
a grey fixation point was presented for 1 s, followed by a white fixation point lasting 1 s
and indicating the upcoming verb. The word then appeared for 1 s, followed again by a
fixation point lasting 500 to 750 ms with a jittered interval in steps of 50 ms; a jitter was
used to prevent response automatization. The prompt displayed one out of three possible
symbols representing a glass of water, a mouth and an electric outlet with a plug (Figure 1).
In order to induce the semantic processing of word stimuli and to keep the participant
unaware of the study conditions and purpose, each symbol was associated with one of the
following questions, respectively:

https://soscisurvey.de
https://www.r-project.org/
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1. Has the process implied by the verb anything to do with liquids?
2. Is the process implied by the verb performed with the mouth?
3. Is the process implied by the verb performed with an electric tool?

Brain Sci. 2022, 12, x FOR PEER REVIEW 4 of 13 
 

was used to prevent response automatization. The prompt displayed one out of three pos-
sible symbols representing a glass of water, a mouth and an electric outlet with a plug 
(Figure 1). In order to induce the semantic processing of word stimuli and to keep the 
participant unaware of the study conditions and purpose, each symbol was associated 
with one of the following questions, respectively:  
1. Has the process implied by the verb anything to do with liquids? 
2. Is the process implied by the verb performed with the mouth? 
3. Is the process implied by the verb performed with an electric tool? 

 
Figure 1. Experimental design. 

The prompt was presented either on the right or on the left side of the screen. The 
participants were required to respond “yes” to the prompt by lifting the index finger of 
the hand positioned on the same side as the presented symbol and “no” by lifting the 
index finger of the opposite hand. Left- and right-hand responses were balanced pseudo-
randomly in order to trigger 50% right- and 50% left-hand responses. To reduce eye move-
ment-related artefacts, participants were asked to avoid blinking until the end of the trial, 
when an eye symbol lasting 2 s indicated to blink. All 68 verbs were presented 3 times 
across 3 blocks. Each word was always followed by one of the questions above (Table S1). 
Blocks were separated by pauses as long as needed by the participant. Words were pre-
sented in a randomized order within each block. The measurement lasted about 35 min, 
depending on participants’ reaction and pause time.  

2.3. Procedures 
After signing informed consent and data privacy forms, participants filled out the 

Edinburgh Handedness Inventory [29]. They were asked to remove metal belongings, and 
if needed, were offered metal-free cotton clothes as well as individually calibrated metal-
free glasses with corrective lenses. For electrooculography (EOG), four electrodes were 
placed around the eyes: one above and one under the left eye for vertical EOG and two at 
about 1 cm from the left and the right eye for horizontal EOG. These bipolar electrodes 
were used to detect eye movements and blinks. Four coils were placed on the forehead 
and behind the ears. The positions of the coils were digitized (Polhemus Isotrak) for later 
estimation of the head position during MEG measurements. During the MEG measure-
ment, the participants were seated comfortably with their hands resting on two pads and 
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The prompt was presented either on the right or on the left side of the screen. The
participants were required to respond “yes” to the prompt by lifting the index finger of
the hand positioned on the same side as the presented symbol and “no” by lifting the
index finger of the opposite hand. Left- and right-hand responses were balanced pseudo-
randomly in order to trigger 50% right- and 50% left-hand responses. To reduce eye
movement-related artefacts, participants were asked to avoid blinking until the end of
the trial, when an eye symbol lasting 2 s indicated to blink. All 68 verbs were presented
3 times across 3 blocks. Each word was always followed by one of the questions above
(Table S1). Blocks were separated by pauses as long as needed by the participant. Words
were presented in a randomized order within each block. The measurement lasted about
35 min, depending on participants’ reaction and pause time.

2.3. Procedures

After signing informed consent and data privacy forms, participants filled out the
Edinburgh Handedness Inventory [29]. They were asked to remove metal belongings, and if
needed, were offered metal-free cotton clothes as well as individually calibrated metal-free
glasses with corrective lenses. For electrooculography (EOG), four electrodes were placed
around the eyes: one above and one under the left eye for vertical EOG and two at about
1 cm from the left and the right eye for horizontal EOG. These bipolar electrodes were used
to detect eye movements and blinks. Four coils were placed on the forehead and behind the
ears. The positions of the coils were digitized (Polhemus Isotrak) for later estimation of the
head position during MEG measurements. During the MEG measurement, the participants
were seated comfortably with their hands resting on two pads and their index fingers on
two photoelectric switches. Instructions and word stimuli were projected onto a screen
in front of the participant. After three demonstration trials, participants performed three
practice trials that could be repeated, if needed, before starting the measurement.
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2.4. Data Acquisition and Analysis

Neuromagnetic brain activity was recorded with a 306-channel MEG system (Elekta
Neuromag, Helsinki, Finland). The channels consisted of 102 magnetometers and 204 or-
thogonal planar gradiometers. MEG data were digitized at 1000 Hz, bandpass filtered from
0.03 to 330 Hz online and stored on a computer hard disk.

MEG data were analysed with Matlab R2017b and fieldtrip toolbox [34]. Behavioural
data analysis was run with R version 3.5.2 [35].

2.5. Meg Data Pre-Processing

Epochs were cut from the continuous data and included the time window between
1 s before word onset and 1 s after word onset. Only correct trials entered the analysis.
Trials with answers at wrong time points or double answers were excluded from analyses.
Semiautomatic jump and muscle artifact rejection was applied to the selected epochs. A
notch filter was used to filter out the frequencies 49–51, 99–101 and 149–151 Hz. A high-
pass filter of 2 Hz and a padding of 5 s were used as well. Heart and eye-related artifacts
were removed via independent component analysis [36]: this resulted in the elimination
of, on average, 2.6 components per subject. Noisy or faulty channels were repaired by
interpolating data from neighbouring channels. An average of 6 surrounding gradiometers
of the same type were used for each faulty channel. Trials were visually inspected for
residual artifacts and then assigned to the two conditions.

2.6. Time–Frequency Representations and Event-Related Field Analysis

Time–frequency representations were calculated by using a fast Fourier transformation.
An adaptive sliding time window including 5 cycles was shifted in steps of 50 ms from −1 s
to 1 s after word onset. Data were padded up to 5 s. A single Hanning taper was applied,
and power was estimated in steps of 1 Hz between 2 and 40 Hz. The time–frequency
analysis was performed separately for horizontal and vertical planar gradiometers, and
the pairs of planar gradiometers were combined afterwards. The time from 600 ms before
word onset to 100 ms before word onset served as a baseline.

For the computation of ERFs, data were filtered with a low pass filter of 30 Hz. For
each subject episodes from −1 s to 1 s after word onset were averaged; the time interval
from −200 ms to word onset (=0 ms) served as the baseline. Horizontal and vertical planar
gradiometers were combined.

2.7. Statistics

Difference in reaction time between word conditions and question types were tested
with an ANOVA.

Considering the multidimensionality of MEG data, for the frequency and ERFs anal-
ysis, a procedure that effectively corrects for multiple comparisons, a non-parametric
randomisation test, was used [37]. With regard to frequency analysis, the contrast be-
tween onomatopoetic and non-onomatopoetic words was run in the alpha and beta range
(8–25 Hz), across the time window between 0 and 1 s after word onset (no average over
time) and on the average of the activity of 9 left hemispheric temporal channels (Figure S1)
that were selected on the base of results of a previous MEG localizer study targeting the
auditory cortex [14]. A one-sided t-test for dependent samples was used. T-values of the
time–frequency samples passing the significance threshold (p < 0.05) were selected and clus-
tered with adjacent time and frequency bins. A cluster-level statistic was then calculated
by taking the sum of the t-values of the samples within every cluster. A non-parametric
permutation test, which consisted in computing 1000 random sets of permutations between
the two conditions, was used to obtain a distribution of the cluster statistic; the significance
level was set to p < 0.05.

The same procedure was applied to the statistical analysis of ERFs for the contrast
between the onomatopoetic and non-onomatopoetic verb condition. The analysis included
all channels. Considering the evidence for early semantic processes [38–41], we targeted
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the time window between 100 and 300 ms after word onset to detect semantically related
components. Group differences in ERFs amplitude were also tested with a one-sided t-test,
as onomatopoetic verbs were expected to elicit larger amplitudes.

3. Results
3.1. Behavioural Results

The reaction time for onomatopoetic verbs (on average, 741 ms ± 266 ms) was
significantly shorter than for non-onomatopoetic words (on average 748 ms ± 326 ms;
(p < 0.001)). The type of question did not have a significant effect on reaction times
(p = 0.465). Missing responses were, on average, 0.3% per subject.

Incorrect responses occurred in an average of 6.4% of trials per subject. No participant
thus exceeded the 15% error cut-off, at which the participant’s data would have been
discarded: this suggests that the task was not too difficult for the participants. As no
participant was able to correctly guess the purpose of the study, correct trials of all subjects
entered the analyses.

3.2. Time–Frequency Representations

A statistical analysis of alpha and beta power on the nine selected channels yielded
no significant result; no negative cluster emerged. However, on a descriptive level, dif-
ferences in alpha and beta power emerged mainly in the left temporal channel selection
(Figure 2). Here, a desynchronization in both frequency ranges was visible starting at
about 200 ms after word onset, both in the onomatopoetic and the non-onomatopoetic
verb condition (Figure 2a,b). The onomatopoetic condition showed a slightly increased
alpha desynchronization, between 400 and 600 ms, and beta desynchronization between
0 and 200 ms as well as at about 700 ms after stimulus onset (Figure 2c). A descriptively
stronger synchronization in the alpha range between 200–400 ms and in the beta range
around 400–500 ms was also visible.
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3.3. Event-Related Fields

ERFs analyses showed a statistically significant difference (p = 0.033) between the
onomatopoetic and non-onomatopoetic condition around 240 ms after word onset with
larger amplitudes for onomatopoetic words (Figures 3 and 4). The difference emerged on
centro-parietal channels and then shifted to slightly right lateralised sites.
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4. Discussion

Accuracy results showed that the participants did semantically process the words
in the given time. Reaction time was shorter for onomatopoetic in comparison to non-
onomatopoetic verbs, even though familiarity was significantly lower for onomatopoetic
verbs and should thus increase reaction time. This suggests that onomatopoetic words
are easier to understand, possibly depending on the non-arbitrary link between the word
sound and its meaning. In contrast, the oscillatory and the ERFs patterns of activation
seem to indicate a more effortful processing of onomatopoetic verbs. In a behavioural
study also applying auditory onomatopoetic versus control verbs, no difference in reaction
time emerged [29]. Since in that study the task consisted in distinguishing words from
pseudo-words, a possible difference in processing ease was suggested to be obscured by
task-related decision making and motor processes, which might require more time than the
lexical processing. This suggests that semantic versus lexical processing, which reflects the
depth of linguistic processing, may be responsible for the emergence of behavioural effects.
A role of the depth of semantic processes in the emergence of embodiment effects was
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indeed shown in a previous study of our group, where semantic discrimination impacted
the modulation of verb processing as induced by electrical stimulation [42]. However,
differences in reaction time in the current study should be interpreted with caution, since
our task was not a simple reaction time task as in Peeters’ study.

Both onomatopoetic and non-onomatopoetic words showed alpha and beta desynchro-
nization starting at about 200 ms after word onset in the left temporal lobe: this result adds
evidence to the role of alpha and beta desynchronization as a marker of semantic processing.
Although not reaching statistical significance, the slightly decreased alpha and beta power
accompanying onomatopoetic verbs in the selected left temporal channels suggests that
this linguistically predominant hemisphere might be sensitive to onomatopoeias. Similarly,
increased left temporal beta desynchronization accompanies words implying loud vs. quiet
actions [14]. On the base of these results, onomatopoetic verbs were expected to cause a
stronger recruitment of the auditory cortex due to their linking function between semantics
and phonetics. The synchronization visible in the alpha band around 200–400 ms and in
the low beta band around 400–500 ms is more difficult to explain. It was not expected to
be a marker of increased cortical engagement in the context of embodied semantics, but
considering its latency, we cannot exclude a relation to particular semantic diverging as-
pects between the two conditions. Beta oscillations in particular are also related to complex
linguistic sub-processes, to expectancy violation and attention as well as to working mem-
ory [43]. Whether familiarity, which was rated higher for non-onomatopoetic words, might
be responsible for this effect, remains unclear. One limitation of the current study is that
additional word-related parameters such as imageability, age of acquisition and emotional
valence were not rated and controlled for. Possibly, even more linguistic parameters might
affect ERF amplitude or brain oscillations; this needs to be further determined with studies
specifically designed for this purpose. To our knowledge, this is the first study addressing
oscillatory correlates of onomatopoetic versus non-onomatopoetic verb processing, and we
cannot report a significant difference in brain oscillations. Previous studies using interjec-
tions compared to verbs point to stronger onomatopoetic qualities of these words and to a
stronger activation of the auditory cortex. This might be an explanation as to why our word
stimuli with weaker onomatopoetic qualities did not engage the auditory cortex as much
as previously used stimuli. Although previous studies have matched interjections and
control words for imageability, familiarity and age of acquisition [24], the two conditions
included different grammatical categories. The use of verbs in the present study allowed a
better control of grammatical aspects as well as of other related parameters such as length,
word frequency and loudness. By controlling for linguistically confounding effects, we
improved the comparability between conditions. Increasing semantic task difficulty might
help determining a neurophysiological effect of this subtle semantic quality that is the ono-
matopoeia. It is worth noting that half of the words used in our study described events that
were not primarily associated with human actions, but more with environmental events
(e.g., “surren”—to whir, “zischen”—to hiss and “plaetschern”—to platter). Since environ-
mental events and human actions were balanced between conditions, and the sound source
should not have affected results. Still, it might have impaired simulation processes by
moving the attentional focus to an extra-personal space. Verbs related to actions in which
participants can envision themselves as actors are likely to induce stronger simulation.

ERF analysis showed a significant effect emerging at about 240 ms after word onset in
the centro-parietal sensors, suggesting increased cortical activation related to onomatopo-
etic verbs. This hints at a more effortful processing of onomatopoetic verbs: as proposed
in a previous study [28], onomatopoetic verbs have a duality of lexical and sound com-
ponents, which creates a processing conflict. Peeters [28] argued that this is compensated
by an easier understanding due to the link between the word content and the way the
word is pronounced. While this was not confirmed by the behavioral results, the current
findings point in that direction and show faster reaction times following onomatopoetic
verbs despite the jittered time interval between the word and prompt onset.
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The current results are in line with those of EEG studies showing differences in the
ERPs when comparing acoustically presented onomatopoetic verbs to control verbs [28] as
well as comparing visually presented ideophones (which are regarded as either very similar
to or as the same as interjections) to control adverbs [23]. Peeters [28] found a significant
amplitude decrease of the N2 component, a less negative-going N400 and a late-positive
deflection compared to the control words distributed over all cortical areas. Lockwood and
Tuomainen [23] found ERP effects at roughly the same time points as Peeters [28], but with
a more negative going N400 for ideophones than for control words. We found significant
differences in ERFs at about 240 ms after stimulus onset. This result might depend on
similar mechanisms as those related to P2 modulation in Lockwood and Tuomainen’s [23]
study, that is, the load of sensory (auditory) information embedded in onomatopoetic
word. There was no significant late-positivity effect as in the two mentioned studies in
our data [23,28]; however, the interpretation of more effortful retrieval might as well be
dependent on the use of ideophones, and the enhanced difficulty of making meta lexical
decisions [28] is fairly task-specific.

Clinical Applications

Possible clinical applications of the grounded cognition framework have been pre-
viously proposed [44]. It was proposed that patients with aphasia and lesions in motor
areas could benefit from cognitive training with words that imply movement. This might
add to conventional movement therapies and is supposed to induce neuroplasticity and
regeneration in the affected areas. The effects of linguistic cognitive training on neural
plasticity have been shown in healthy volunteers, thus delivering encouraging results [45].
First clinical tests have also been performed, but only as proofs of concepts and not in
large cohorts of patients [46]. A similar cognitive improvement might be aimed at in
patients with aphasia and lesions in auditory areas by applying linguistic training with
sound-related words. The current ERFs results suggest that onomatopoetic verbs might
suit such cognitive therapy programs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/brainsci12040481/s1, Table S1: Word stimuli. Figure S1: Grandaverage of
power difference between onomatopoetic and non-onomatopoetic sound verbs across all channels.
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