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Abstract: This paper describes Sporolithon franciscanum, a new rhodolith-forming species of
non-geniculate coralline algae found at depths between 47–52 m near the São Francisco river
mouth, the second largest and the most extensive drainage basin in Brazil, and also at the Abrolhos
Bank, in the world´s largest rhodolith beds. DNA sequences from plastidial psbA and rbcL markers
indicate that the species is unique compared to all other Sporolithon species that have thus far
been sequenced. Since morpho-anatomical features of the new species are shared with some other
Sporolithon species, its identification was only confirmed by DNA sequences.
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1. Introduction

Coralline red algae (Corallinophycidae, Rhodophyta) have as their main feature the deposition of
calcium carbonate polymorphs (calcite, dolomite, magnesite, aragonite, calcite with low magnesium
content) on their cell walls [1–4]. Non-geniculate coralline algae are considered one of the most difficult
groups within the Rhodophyta in terms of taxonomic identification [5–7]. This perception can be
attributed largely to the fact that, unlike most seaweeds, they have a calcified thallus that requires specific
and time-consuming laboratory methods for taxonomic analyses [8]. Most identification from order
(Corallinales, Hapalidiales, Sporolithales) to species level requires analyses of characteristics related
to the reproductive structures (conceptacles or calcified compartments) from the tetra/bisporophytic
phases [9]. However, although tetra/bisporophytic phases are the most abundant in nature,
many specimens studied only have gametophytic conceptacles or, even more often, have been unfertile
(and so excluded from the morpho-anatomical analysis). At the genus and sometimes at species level,
the exclusive use of vegetative characteristics may also be useful in identification, such as the shape of
epithallial cells or type of cell connections. However, in most cases morpho-anatomical identification
in coralline algae is based on a combination of both vegetative and reproductive characteristics [9].
The main problem concerns cryptic species, which cannot be distinguished by morpho-anatomy,
but are genetically different species. One example has been seen in the genus Lithophyllum Philippi
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(Corallinales), in which 13 different species were passed under the name Lithophyllum stictaeforme
due to their similar morpho-anatomy [10]. On the other hand, a single species/genotype is often
represented by different morphologies/phenotypes (e.g., [11]). The incorporation of molecular data
into the coralline algae taxonomy has enabled previous classifications to be revised, confirmed or
modified, in addition to enabling the identification of cryptic and/or new species established by genetic
disparities or not revealed in the phenotype [12–19].

Non-geniculate coralline algae can grow attached to continuous substrates or loosen, forming
free-living calcareous nodules named rhodoliths, which, by definition, are composed mainly (>50%) by
non-geniculate coralline algae [20,21]. Non-geniculate coralline algae are represented worldwide by at
least 75 species known to form rhodoliths [9,15,22–26], and the highest richness of this group (33 taxa)
is found in Brazil where the genus Sporolithon Heydrich (Sporolithales) holds the largest number of
species [26,27].

Sporolithon is characterized by a combination of features, such as: epithallial cells with a trapezoidal
(‘flared’) lumen, contiguous filament cells connected by both cell fusions and secondary pit-connections,
and cruciate divided tetrasporangia produced singly within uniporate, calcified compartments,
each bearing an apical plug that are borne on a single stalk cell [28,29]. The members of this algal
genus are among the main rhodolith-forming algal genera in the southwestern (SW) Atlantic where
they are mainly found forming rhodoliths (and then contributing to the formation of rhodolith beds)
in mesophotic regions (20–133 m deep) [26,27,30–34], but some species can also be found in shallow
(2–7 m) reefs [26,35].

Currently, there are 29 recognized species of Sporolithon worldwide [36] from which 12 are recorded
in Brazil, namely, S. amadoi [26], S. australasicum [37], S. durum [38], S. elevatum [35], S. episoredion [35],
S. episporum [39,40], S. erythraeum [37], S. howei [37], S. molle [31], S. pacificum [37], S. tenue [32],
and S. yoneshigueae [33]. With the exception of S. howei, which has been recorded to form carbonate
concretions, all species were reported to occur in Brazilian rhodolith beds [31–35,37–40]. Among them,
only S. amadoi, S. tenue and S. yoneshigueae were assigned based on the analysis of DNA sequences of
the type material. The other nine Sporolithon species were determined based on specimens identified
using only morpho-anatomical analyses. Thus, some of these names may have been incorrectly
applied. In addition, and unfortunately, most specimen collections used for this identification were
formalin-preserved and DNA sequencing analysis is likely to be unfruitful. Therefore, investments in
new samplings of fresh rhodoliths with suitable storage methods for DNA analysis are required
to assess the true diversity of these coralline algae in the SW Atlantic. Recently, several molecular
studies have reported the existence of cryptic speciation in Sporolithon, which led to an increase in
the number of species of this genus [15,23–26]. These studies reinforced that comparative analyses
of DNA sequences based on sequences of type specimens is the best way to unequivocally identify
non-geniculate coralline algae since the morpho-anatomical characteristics alone can be misleading.
However, obtaining diagnostic DNA sequences from type material has been a hard task and the main
challenge in the current coralline algae taxonomy, since many attempts in doing it have failed [41,42].

There is an ongoing scientific interest in rhodolith beds worldwide due, among other reasons,
to the following: (1) The beds are bioengineers and provide a complex three-dimensional matrix
(structural complexity) and hard structure that serves as a relatively stable microhabitat for several
invertebrates, other macroalgae and fishes, some of which are endemic, rare or commercially
important species [10,11,27,43–48]; (2) they are sensitive to the ongoing global climate change (e.g.,
ocean warming and acidification) that is predicted for the current century [49]; (3) their structures serve
as paleoenvironmental indicators of past oceanic conditions [50,51]; (4) rhodolith beds are, alongside
coral reefs, one of the main contributors to the global calcium carbonate budget [52–54]. In the tropical
southwestern (SW) Atlantic Ocean (Brazil), the rhodolith-forming non-geniculate coralline algae are
also known to be the main carbonate builders forming the world’s largest rhodolith beds [27] in
addition to other extensive carbonate reefs [55,56].
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Coralline algae exert species-specific interactions with other key organisms for community
structuring. For instance, it has been demonstrated that larval settlement and metamorphosis of
some species of coral and other invertebrates occurs preferably or restrictedly in the presence of some
specific coralline algae [57–59]. Therefore, knowledge of the rhodolith-forming species is essential for
understanding their specific role within the communities. In this context, the aim of this study was to
report a new rhodolith-forming Sporolithon species that was found near the São Francisco River mouth
(the second largest and the most extensive drainage basin within the Brazilian territory [60,61]) and in
the Abrolhos Bank (the world’s largest rhodolith bed [53]). It is important to note that these two areas
are characterized by presenting a high biodiversity associated with rhodoliths [27,62].

2. Materials and Methods

2.1. Sampling

Two specimens were analyzed in this study. The first (RB 797665) was sampled within the scope
of the Marseal Project (Universidade Federal de Sergipe and Petrobras) that aims to generate physical,
geological, chemical and biological data related to the Sergipe-Alagoas basin (Northeast Brazil).
This specimen was collected offshore Aracaju (11◦9’49.580” S; 36◦53’0.814” W, Sergipe, Brazil, at 47 m
deep), during the third campaign of the Marseal Project, in 2011, using a Van Veen grab sediment
sampler. The sample was initially preserved in a 70% ethanol solution, and then preserved in silica
gel. The second (Voucher GM AF5) was a small, unfertile, rhodolith fragment sampled at the Abrolhos
continental shelf (17◦54’01” S; 37◦54’56” W, Bahia, Brazil, at 52 m deep, G.M. Amado Filho, 11.iii.2012),
preserved in silica gel, and with published sequences in GenBank (KP142752), which was used
to call Sporolithon sp. (voucher GM AF5) in Adey et al. [63] and Richards et al. [15,26]. The first
is housed at the Rio de Janeiro Botanical Garden Herbarium (RB) under the voucher RB 797665,
while the second is housed at the National Museum of Natural History (NMNH) (US, the United States
National Herbarium at NMNH) under the voucher GM AF5. Herbarium abbreviations follow [64],
continuously updated.

2.2. Morpho-Anatomical Analyses

Fractures from fertile areas of the holotype were decalcified according to Jesionek et al. [35] and
prepared for light microscopy examination using the histological methods described by Maneveldt and
Van der Merwe [65]. Other fractures were examined with scanning electron microscopy (SEM) following
the protocol used by Bahia et al. [66]. The thallus anatomical terminology followed Chamberlain [67].
The morphological (growth forms) terminology followed Woelkerling et al. [68]. Cell dimensions
were measured from all available images as described in Maneveldt et al. [33]. Tetrasporangial
compartments and tetrasporangia were measured separately according to Kaewsuralikhit et al. [69].
Since the specimen from Abrolhos (GM AF5) corresponds to an unfertile small fragment, no anatomical
analyses were performed for this specimen.

2.3. Molecular Analysis

DNA extraction, amplification and sequencing of the psbA genetic marker followed the protocol
used by Jesionek et al. [70] and were performed for the specimen from Sergipe (RB 797665). DNA was
extracted using the Qiagen DNeasy Blood and Tissue Kit® (Qiagen, Crawley, UK) following the
modified protocol of Broom et al. [13]. The psbA gene was amplified using the primers psbAF and
psbAR2 [71]. For the Abrolhos continental shelf specimen (GM AF5), the analysis for psbA and rbcL
followed Adey et al. [63]. The extraction was made following the protocol of Huguey et al. [72],
in which after a series of steps, it resulted in a working solution of 10:1 (water:DNA) for PCR and a
negative control for each set of extraction. For psbA gene amplification, were used the same primers as
for the Sergipe specimen (psbAF and psbAR2) [71], and for rbcL two pairs were used (F57—R1150
and F753—RrbcS) [73]. Since all attempts to amplify rbcL for the specimen from Sergipe (RB 797665)
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failed, it was not possible to use rbcL for molecular analysis. The sequences obtained for both markers
were assembled and edited in Sequencher v.4.1.4 (Gene Codes Corporation) and edited and aligned
in MEGA6 [74] within ClustalW [75,76]. The sequence dataset for the psbA analysis was built with
the sequence of the holotype generated in this study in addition to the sequence of the paratype from
GenBank (KP142752) and 37 others that were downloaded from GenBank from Sporolithon, Heydrichia
and the outgroup (Lithothamnion glaciale and Melyvonnea erubescens). The sequences dataset for the rbcL
analysis included the sequence of the paratype (since rbcL could not be amplified for the holotype)
generated in Adey et al. [63] and 22 others from GenBank from Sporolithon and the outgroup (Heydrichia
woelkerlingii and Heydrichia cerasina). The phylogenetic relationships between taxa were inferred in
Geneious R7, using Maximum Likelihood (ML) with Randomized Axelerated Maximum Likelihood
(RAxML 8) [77] with a bootstrap of 1000 replicates [78] and Bayesian Inference (BI) with Mr. Bayes [79]
with four Monte Carlo–Markov chains. Bootstrap and Bayesian posterior probabilities (PP) values
were considered high when they were equal to or higher than 70% and/or 0.70, respectively. In this
analysis, 5 million generations were launched. The trees were sampled every 1000 generations and
1,250,000 trees were discarded as burn-in. Finally, the standard deviation of the split frequencies was
verified in the summary statistics in Geneious R7.

3. Results

The results from psbA analyses indicated that the specimen from Sergipe (RB 797665) and the
one from the Abrolhos continental shelf (GM AF5) correspond to the same and new species (namely
Sporolithon franciscanum) (Figure 1). The phylogram shows that Sporolithon franciscanum formed a
highly supported (93/0.99, ML and BI) clade sister to S. eltorensis and an Australian Sporolithon sp.
(Figure 1). The divergence value between the specimens from Sergipe and Abrolhos continental shelf
was 0.1% (an intraspecific value), and the new species diverge from the sister species from the clade by
between 6.1–6.5% (Table 1). In rbcL analysis, the available sequences positioned two additional species
(Sporolithon dimotum and a Sporolithon sp.) within the S. franciscanum clade (Figure 2). The new species
diverged from all taxa within its clade by 6–12.3% (Table 1).

Table 1. Pairwise sequence divergence values (%) between S. franciscanum and other Sporolithon species
from the new species phylogenetic clade.

Sporolithon Species psbA rbcL

S. franciscanum vs Sporolithon sp. (Australia) 6.5% 6%
S. franciscanum vs S. eltorensis 6.1% 12.3%
S. franciscanum vs S. dimotum − 6.8%

S. franciscanum vs Sporolithon sp. − 6.8%

3.1. Sporolithon franciscanum L.A.S. Leão & Bahia sp. nov.

Holotype: RB 797665, collected February, 2, 2011, leg. L.C.S. Fontes, J.R. Santos, L.A. Santos, J.B.S.
Mendonça, & M.S. Santos, psbA - GenBank MT214482.

Paratype: GMAF5, collected March, 11, 2012, leg. GM Amado Filho, psbA - GenBank KP142752,
rbcL – GenBank KP142786 (Table S1).

Type locality: Aracaju, Sergipe State, Brazil (11◦9’49.580” S, 36◦53’0.814” W), subtidal region
(47 m deep), free-living form as rhodolith.

Etymology: The specific epithet franciscanum is derived from the main river of Sergipe-Alagoas
continental shelf, the São Francisco River.
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Figure 1. Phylogenetic tree inferred from RAxML (Randomized Axelerated Maximum Likelihood) 
and BI (Bayesian inference) analyses of the psbA dataset. Bootstrap support (1000 replicates) and 
Bayesian posterior probabilities (PP) are indicated at nodes. Bootstrap values lower than 70% and PP 
lower than 0.70 are not shown. Melyvonnea erubescens and Lithothamnion glaciale were used as 
outgroups. Sporolithon franciscanum sp. nov. is marked in boldface type. Stars represent holotype, 
isotype, neotype, or paratype specimens; diamonds represent topotype specimens (specimens from 
the type locality); triangles represent species whose identification was confirmed by comparison of 
DNA sequences with type material. 

Figure 1. Phylogenetic tree inferred from RAxML (Randomized Axelerated Maximum Likelihood) and
BI (Bayesian inference) analyses of the psbA dataset. Bootstrap support (1000 replicates) and Bayesian
posterior probabilities (PP) are indicated at nodes. Bootstrap values lower than 70% and PP lower
than 0.70 are not shown. Melyvonnea erubescens and Lithothamnion glaciale were used as outgroups.
Sporolithon franciscanum sp. nov. is marked in boldface type. Stars represent holotype, isotype, neotype,
or paratype specimens; diamonds represent topotype specimens (specimens from the type locality);
triangles represent species whose identification was confirmed by comparison of DNA sequences with
type material.
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lichenoides were used as outgroups. Sporolithon franciscanum sp. nov. is marked in boldface type. Stars 
represent holotype, isotype, neotype, or paratype specimens; diamonds represent topotype 
specimens (specimens from the type locality); triangles represent species whose identification was 
confirmed by comparison of DNA sequences with type material. 

3.2. Habit and Vegetative Anatomy  

The external morphology and anatomy of two specimens were analyzed: A tetrasporophyte 
holotype and an unfertile paratype. The holotype was found composing the surface of a multispecific 
rhodolith measuring 4–7 cm in diameter (Figure 3A). The paratype constitutes a small rhodolith 
fragment (Figure 3B). Thalli were encrusting, with smooth surface, and pink to purple color (Figure 
3A).  

Thallus dorsiventrally organized, monomerous, 500–1000 μm thick, with more than 20 cell 
layers (Figure 3C). Medulla plumose (non-coaxial) (Figure 3C), comprise 8–17 filaments aligned in 
more or less parallel mode to the substratum. Medullary filaments comprise square to elongated cells, 
measuring 7–22 μm in length and 4–10 μm in diameter. Cortical filaments comprise square to 

Figure 2. Phylogenetic tree inferred from RAxML and BI analyses of the rbcL dataset. Bootstrap support
(1000 replicates) and Bayesian posterior probabilities (PP) are indicated at nodes. Bootstrap values
lower than 70% and PP lower than 0.70 are not shown. Lithothamnion glaciale and Mesophyllum lichenoides
were used as outgroups. Sporolithon franciscanum sp. nov. is marked in boldface type. Stars represent
holotype, isotype, neotype, or paratype specimens; diamonds represent topotype specimens (specimens
from the type locality); triangles represent species whose identification was confirmed by comparison
of DNA sequences with type material.

3.2. Habit and Vegetative Anatomy

The external morphology and anatomy of two specimens were analyzed: A tetrasporophyte
holotype and an unfertile paratype. The holotype was found composing the surface of a multispecific
rhodolith measuring 4–7 cm in diameter (Figure 3A). The paratype constitutes a small rhodolith fragment
(Figure 3B). Thalli were encrusting, with smooth surface, and pink to purple color (Figure 3A).

Thallus dorsiventrally organized, monomerous, 500–1000 µm thick, with more than 20 cell layers
(Figure 3C). Medulla plumose (non-coaxial) (Figure 3C), comprise 8–17 filaments aligned in more
or less parallel mode to the substratum. Medullary filaments comprise square to elongated cells,
measuring 7–22 µm in length and 4–10 µm in diameter. Cortical filaments comprise square to elongated
cells, measuring 6–19 µm in length and 3–8 µm in diameter. Contiguous cortical filaments are joined by
both secondary pit connections and cell fusions (Figure 3D); cell fusions predominate by a ratio of 2:1.
Subepithallial initials square to rectangular, with 6–11 µm in length and 4–7 µm in diameter, as long as
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or longer than subtending cells (Figure 3E). Epithallial cells single layered, flattened with flared upper
corners (Figure 3E), and measuring 2–5 µm in length and 3–7 µm in diameter. Trichocytes absent.
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Figure 3. Sporolithon franciscanum sp. nov. holotype (RB 797665) and paratype (GM AF5). (A) Habit of 
holotype; scale bar = 2 cm. (B) Habit of paratype; scale bar = 1 cm. (C) Scanning electron micrograph 
(SEM) of a vertical section of the thallus showing the monomerous, plumose (non-coaxial) 
construction, with medullary (M) and cortical (C) filaments; scale bar = 100 μm. (D) SEM of a vertical 
section showing a secondary pit connection (arrow) and a cell fusion (arrowhead) in the same thallus; 

Figure 3. Sporolithon franciscanum sp. nov. holotype (RB 797665) and paratype (GM AF5). (A) Habit of
holotype; scale bar = 2 cm. (B) Habit of paratype; scale bar = 1 cm. (C) Scanning electron micrograph
(SEM) of a vertical section of the thallus showing the monomerous, plumose (non-coaxial) construction,
with medullary (M) and cortical (C) filaments; scale bar = 100 µm. (D) SEM of a vertical section showing
a secondary pit connection (arrow) and a cell fusion (arrowhead) in the same thallus; scale bar = 20 µm.
(E) SEM view of the upper portion of the thallus showing flared epithallial and square to rectangular
subepithallial cells; scale bar = 5 µm. (F) SEM view of the thallus showing tetrasporangial compartments
buried in a distinct layer; scale bar = 500 µm. (G) SEM view of the upper portion of the thallus showing
tetrasporangial chambers raised, 3–5 cells (including epithallial cells), above the surrounding thallus
surface; scale bar = 100 µm. (H) SEM view of the upper portion of the thallus showing the paraphyses
(white arrowhead) between tetrasporangial chambers, a tetrasporangia subtended by a single stalk
cell (arrow) and chambers with a basal layer of elongated cells (black arrowhead); scale bar = 30 µm.
(I) Vertical section showing a cruciately divided tetrasporangia (1–4); scale bar = 15 µm. (J) SEM view
of a tetrasporangial chamber pore and the surrounding rosette cells; scale bar = 10 µm.
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3.3. Reproductive Anatomy

Tetrasporangial chambers clustered into raised sori, 3–5 cells (including epithallial cell), above the
surrounding thallus surface (Figure 3G). Individual tetrasporangial chambers uniporate, elliptical,
measuring 30–60 µm in diameter and 70–100 µm high, clustered in large groups, separated by
0–5 paraphyses (mostly 0–1) comprise 3–4 elongate cells each (Figure 3H). Chambers possess a basal
layer of elongated cells (Figure 3H). In surface view, chamber pores possess 10–16 µm in diameter and
are surrounded by 11–13 rosette cells (Figure 3J). Entire tetrasporangial sori become buried within the
thallus (Figure 3F). Each chamber bears only one tetrasporangium measuring 60–80 µm in length and
30–56 µm in diameter (Figure 3I). Tetrasporangia are cruciately divided (Figure 3I). Tetrasporangia bear
an apical pore plug and are borne on a single triangular stalk cell (Figure 3H).

3.4. Diagnosis

The diagnostic features of the new species are as follows: psbA DNA sequence from the
holotype (MT214482) and the sequences from the paratype: psbA (KP142752) and rbcL (KP142786).
No morpho-anatomical diagnostic features were found to distinguish this new species from other
known Sporolithon species.

4. Discussion

The divergence values for both markers (psbA and rbcL) (Table 1) between Sporolithon franciscanum
sp. nov. and the species that lie within its phylogenetic clade, are greater than those between other
closely related species in Sporolithon (e.g., in psbA analysis, S. episporum and S. indopacificum diverge by
2.7% [25]; and in rbcL analysis, the divergence value between S. molle and S. ptychoides is 3.3% [15]).
These results confirm the uniqueness of the new species.

Sporolithon franciscanum, the nearby clade of the species S. ptychoides and S. molle, and the sister
species in rbcL phylogram, S. dimotum, cannot be distinguished morpho-anatomically, as they have
tetrasporangial chambers that are overgrown and buried, tetrasporangial chambers with a basal layer
of elongated cells and a similar number of rosette cells that surround each tetrasporangial chamber pore
(Table 2). Sporolithon franciscanum is also morpho-anatomically similar to its sister species, S. eltorensis,
in the psbA phylogram except for the abundance of secondary pit connections versus cell fusions; in the
new species, cell fusions predominate at a rate of 2:1, and in S. eltorensis, this ratio is 1:1 [15]. However,
a larger sample size is needed to confirm whether the ratios of secondary pit connections to cell fusions
are truly a useful characteristic separating these species.
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Table 2. Characteristics found to be informative in separating species of Sporolithon occurring in the Atlantic Ocean for which recent detailed descriptions are
available. Descriptions are included only for species for where type/’topotype’ specimens and for where representative specimens were confirmed by DNA sequence
data. ND = No data provided. * Measure taken from Richards et al. [15]. ** Based on images from field-collected specimens provided by Richards et al. [24].
*** Measure taken from Keats et al. [80].

References and Algal
Characteristics

Species

S. episporum S. franciscanum S. mesophoticum S. amadoi S. sinuxmexicanum S. tenue S. yoneshigueae

References Keats & Chamberlain [80] This study Richards et al. [15] Richards et al. [26] Richards & Fredericq [24] Bahia et al. [32] Bahia et al. [33]

Locality Point Toro, near Colon,
Canal Zone (Panama)

Southwestern Atlantic
(Aracaju, Sergipe, and

Northeast region (Brazil)

Plantagenet (Argus) Bank
(Southwest of Bermuda)

Recifes Esquecidos,
(Espírito Santo, Brazil)

Sackett Bank, NWGMx
(USA)

Southwestern Atlantic
(Brazil)

Abrolhos continental shelf
(Bahia, Brazil)

Growth form Flat to lumpy Encrusting Encrusting Encrusting to Warty to
lumpy Encrusting Encrusting to warty to

fruticose
Encrusting to warty to

lumpy to fruticose

Habit Epilithic or free living as
rhodolith

Epilithic or free living as
rhodolith

Epilithic, epizoic, or free
living as rhodolith

Epilithic, epizoic, or free
living as rhodolith Free living as rhodolith Free living as rhodolith Free living as rhodolith

Relative abundance of
secondary pit connections

versus cell
fusions (proportion)

Primarily by secondary pit
connections; cell fusions

rare

Cell fusions predominate by
a ratio of 2:1

Cell fusions (Secondary
pit-connections not

observed)

Secondary pit connections
predominate by a ratio of

2:1;

Abundant cell fusions
(secondary pit connections

not observed)

Secondary pit connections
predominate at a ratio of

2–3:1

Cell fusions predominate by
a ratio of 2–3:1

Vegetative thallus thickness ND >250 µm
(500–1000 µm) 120–150 µm ND

(>20 cell layers)
>250 µm

(at least 800 µm) **
45–250 µm

(less than 20 cell layers)
>250 µm

(1000–2500 µm)
Tetrasporangia length up to 50 µm 60–90 µm ND ND ND 50–75 µm 90–140 µm

Tetrasporangia diameter ca. 30 µm 30–60 µm ND ND ND 30–40 µm 80–100 µm
Tetrasporangial chamber

length 50–70 µm 70–100 µm ND 65–108 µm 83 µm 70–95 µm 140–210 µm

Tetrasporangial chamber
diameter 25–40 µm 30–60 µm ND 41–64 µm 59 µm 35–55 µm 70–130 µm

Tetrasporangial chamber
pore diameter up to 30 µm 10–16 µm 16–23 µm* 8.5–16.5 µm 16–22 µm ** 9–14 µm 35–43 µm

Number of rosette cells
surrounding tetraporangial

chamber pore
12–16 *** 11–13 10–14 9–13 10–12 8–12 19–24

Layer of elongated cells at
the base of tetrasporangial

chamber
Present Present ND Present Absent Absent Present

Buried tetrasporangial
chambers Absent Present Absent Present Absent Absent Present

Position of tetrasporangial
chambers relative to the
surrounding vegetative

surface (number of cells)

Slightly raised
(3–4 cells)

Raised, 3–5 cells
(incl. epithallial cell)

Flush to slightly raised (ND
for number of cells layers)

Raised (ND for number of
cells layers)

Slightly raised (ND for
number of cells layers) ** Raised (5–7 cells) Raised 5–8 cells
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Considering Sporolithon species that occur in the SW Atlantic (S. amadoi, S. episporum, S. tenue and
S. yoneshigueae), the analysis has shown that they are all positioned in distinct phylogenetic clades from
that of S. franciscanum. However, it has been demonstrated that the new species and Sporolithon amadoi
cannot be distinguished morpho-anatomically. Brazilian specimens with the same features present in
S. franciscanum and S. amadoi (confirmed to occur in Southeast and Northeast Brazil in addition to the
Gulf of Mexico) have been erroneously determined as the single species S. ptychoides [26,30,81] and
considered one of the most common rhodolith-forming species in the SW Atlantic [27,81]. This finding
suggests that S. franciscanum could be more common and have a wider distribution in the SW Atlantic;
this result can only be confirmed through a review of all specimens assigned to S. ptychoides for Brazil,
including DNA analysis and likely requiring new, freshly collected material. On the other hand,
the following features were found to be useful to separate S. franciscanum from the other remaining
SW Atlantic Sporolithon species: Thallus thickness, relative abundance of secondary pit connections
and cell fusions, presence/absence of buried tetrasporangial chambers, dimensions of tetrasporangial
chambers, number of rosette cells surrounding tetrasporangial pore and tetrasporangial chamber pore
diameter (Table 2).

Richards et al. [15] concluded that the genus Sporolithon has undergone extensive speciation
processes with little concomitant phenotypical/morpho-anatomical modifications. Indeed, there are
records of fossil Sporolithon specimens dated from over 10 million years and attributed to present-day
species due to anatomical similarity (e.g., S. ptychoides from the middle Miocene from Romania) [82].
Therefore, a global effort to review Sporolithon species including DNA sequencing is necessary to assess
the real richness of this genus and understand its role within the past and present carbonate ecosystems.

Rhodolith beds are subjected to multiple threats as direct and indirect consequences of human
activities, such as extraction for commercial use of calcium carbonate, bottom fishing trawling, oil and
gas activities [49]. Oil and gas production can be considered the main concern to the rhodolith
beds inhabiting the Sergipe-Alagoas continental shelf [62,83,84] by promoting massive sediment
dislodgment, resulting mainly in burial by sediment deposition, and hampering photosynthesis of
coralline algae by light attenuation as a consequence of sediment suspension [85]. In this context,
taxonomic inventories are becoming even more urgent to support local conservation and management
actions directed towards rhodolith beds.

5. Conclusions

This study demonstrated that the genus Sporolithon is richer than previously thought revealing a
new cryptic species to science morpho-anatomically similar to other Atlantic species. This finding
corroborates results from previous studies indicating that comparative analyses of DNA sequences
based on sequences of type specimens is required to unequivocally identify Sporolithon species. Based on
these observations, we find ourselves having to question all reports, based only on morpho-anatomy of
the Sporolithon species in SW Atlantic, particularly of S. australasicum, S. durum, S. elevatum, S. episoredion,
S. episporum, S. erythraeum, S. howei, and S. molle. Considering the ecological significance of Sporolithon
as an important rhodolith-forming genus and that coralline algae are among the most sensitive calcified
organisms to the emergent threat of ocean acidification (with negative effects that could be amplified
by global warming), taxonomic studies like the present one are becoming even more urgent to support
local conservation and management actions directed towards rhodolith beds.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/12/5/199/s1,
Table S1: List of specimens used in the phylogenetic analyses, including specimen identification number, locality,
collector names, collection date and GenBank accession number.
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