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Abstract: The investigations of the molecular components of eye development and phototransduction
in deep-sea species are important to elucidate the mechanism of their adaptation to dim light. In this
study, eye transcriptomes of the shrimp Alvinocaris longirostris from the deep-sea chemosynthetic
ecosystem and the shallow-water shrimp Palaemon carinicauda were compared. Two Pax6 homologs
with low expression levels were identified in both species, which are essential transcription factors in
eye development. This finding implies that the development of the two shrimp eyes at early embryo–
larvae stages might be similar. The multiple components of the phototransduction pathway were
identified in both species. However, the number of phototransduction components was significantly
reduced in A. longirostris, as well as expression level. Particularly, short-wavelength/UV-sensitive
(SWS/UVS) opsins were absent in A. longirostris and only one putative middle-wavelength-sensitive
(MWS) opsin was identified in this species. The conserved sites and structures of the putative LWS
opsins were found between deep-sea and shallow-water decapods, indicating that the opsins in
deep-sea crustaceans may also conserve their spectral absorption and signal transduction function.
Phylogenetic analyses supported the monophyly of LWS opsins and SWS/UVS opsins in arthropods,
while the MWS clade fell outside of the main arthropod LWS clade. The results are expected to
provide baseline for study of visual adaptation in deep-sea shrimps.

Keywords: alvinocarididae; deep sea; opsin; pax 6; phototransduction; transcriptome

1. Introduction

Deep-sea hydrothermal vents and cold seeps are unique ecosystems with extreme
properties, such as dim light, high pressure and chemical rich waters, which present
exceptional challenges to organisms [1,2]. No sunlight penetrates these deep-sea (below
1000 m) chemosynthetic environments, and the ambient light is usually composed of
bioluminescence and chemiluminescence [3–6]. These special conditions have a profound
effect on the designs of animal eyes optically and neurally [7].

The eyes of crustaceans from the deep sea have developed various characteristics.
Many species have small or degenerate eyes with reduced ommatidia (e.g., euphausiid
Thysanopoda minyops, Bentheuphausia amblyops and shrimp Alvinocaris markensis) [8–10]. In
contrast, some other crustaceans are equipped with large eyes and have enlarged corneal
facets and massive rhabdoms in order to maximize the sensitivity to dim light (e.g., crab
Paralomis multispina, isopod Bathynomus giganteus and mysid Boreomysis scyphops) [11–13].
Moreover, a ‘dorsal eye’ has formed in the hydrothermal vent blind shrimp Rimicaris exoculata,
lacking an externally differentiated eye [14], and the adult vent crab Bythograea thermydron
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possesses ‘naked retina’ eyes which lose their image-forming optics and develop high pho-
ton sensitivity [15]. However, the molecular mechanisms illustrating the eye development
and function in deep sea crustaceans remain uncovered due to the difficulties in deep-sea
study, especially in the culture of deep-sea animals.

The previous studies of tissue-specific transcription factors have improved our under-
standing of retinal determination networks that influence eye development in invertebrates
(Figure S1; revised according to [16]), including two major transcription factors, eyeless (ey)
and twin of eyeless (toy) (both paired-homeodomain Pax6 homologs). The mutations or
misexpression of the two upstream regulatory genes can lead to defects of eye develop-
ment or ectopic eye in Drosophila [17]. A series of genes encoding transcription factors
act downstream, including sine oculis (so), eyes absent (eya), dachshund (dac), hedgehog (hh)
and decapentaplegic (dpp) (Figure S1). They regulate each other to determine eye develop-
ment [18–20]. It has been found that the knockdown of dac causes strong but incomplete
adult eye reduction in flies [21]. One of the most extensive investigations of the eye de-
generation of aquatic animals focused on cavefish and their conspecific or closely related
surface-dwelling species, showing that the reduced transcription of phototransduction-
related genes and the down- or over-expression of different transcriptional factors have
direct roles in the retinal development, maintenance and function of cavefish [22–24].
Increasing studies have also shown that variation in gene regulation, rather than muta-
tional differences, is largely responsible for phenotypic variance among closely related
organisms [25]. Therefore, retinal degeneration can occur by different developmental
molecular mechanisms.

The phototransduction signaling cascade in invertebrates is usually initiated by the
light-activation of rhodopsin that stimulates the G-protein and phospholipase C (PLC),
leading to the opening of the cation-selective transient receptor potential (TRP) channels,
and transient receptor potential-like (TRPL) channels [26]. The most commonly studied
components of phototransduction pathway are the photoreceptor opsins [27], which have
been divided into three groups based on the maximal absorbance (λmax), long-wavelength-
sensitive (LWS), middle-wavelength-sensitive (MWS), and short-wavelength/UV-sensitive
(SWS/UVS) opsins. In the study by Porter et al. [28], SWS/UVS visual pigments were
defined as those with λmax ranging from 300 to 400 nm, MWS pigments as those with
400–490 nm and LWS pigments as those with greater than 490 nm. Photoreceptor opsins
in crustacean eyes are diverse. A single crustacean species may include only one spectral
photoreceptor class or dozens of different spectral receptor types, which is partly explained
by the various habitat types occupied by crustaceans, from deep sea to intertidal and even
terrestrial niches [29]. Studies between cave and surface crustaceans or fish have detected
mutations and the down-regulation of visual-related genes in dark cave species [30–34]. A
reduction in the total absorbance spectra of eye photoreceptor visual pigments was also
discovered in the cave species compared to the epigeal species [35].

The caridean shrimp genus Alvinocaris (Crustacea: Caridea: Alvinocarididae) is known
from chemosynthetic communities associated with deep-sea hydrothermal vents or cold
seeps. Morphologically, all the species in this genus retain the regressive eye structure,
lacking corneal facets, but usually with diffused pigmentation inside [36]. The examination
of the structure and ultrastructure of a species in genus Alvinocaris has found that the
expected massive array of photoreceptors is partially missing, showing a regressive eye
structure [10]. Therefore, the shrimps of genus Alvinocaris presents an operable object
to study the molecular mechanisms of eye degeneration and the visual adaptation of
shrimps inhabiting deep-sea chemosynthetic ecosystems. However, before we can do
so, we must firstly elucidate those molecular components related to eye development
and phototransduction.

In this study, we characterized and compared the previous reported eye transcriptome
of A. longirostris showing regressive eye structure and from a deep-sea chemosynthetic
ecosystem (Figure 1a,b) and the newly sequenced eye transcriptome of a shallow-sea shrimp
Palaemon carinicauda (Palaemonidae) with normal compound eyes (Figure 1c), which also
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belongs to Caridea and appears relatively closely related with Alvinocarididae in phy-
logeny [37]. In detail, we performed (1) the identification of key molecular components and
the expression of homologous genes from known eye development and phototransduction
pathways in the two shrimp species, and (2) the comparison of diversity, expression level
and phylogeny of these key genes from deep and shallow-water shrimps to present the
primary view of the molecular basis of eye development and vision in shrimps from deep
sea chemosynthetic environments and broaden insights into crustaceans’ visual systems.
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Figure 1. The living environment of deep-sea seep Alvinocaris longirostris (a), and photos of
A. longirostris (b) and Palaemon carinicauda (c). The photos (b,c) are taken by Ziming Yuan and
Chengzhang Liu, respectively. Shrimps A. longirostris are marked with yellow squares. The eyes of
the two shrimp species are identified by the arrows.

2. Materials and Methods
2.1. Sample Collection

The A. longirostris (Figure 1a,b) samples were collected near a methane seep in the
South China Sea (22◦6.9′ N, 119◦17.1′ E, depth 1119.2 m) in September 2017. In order to
reduce the damage to the retinal tissues of these deep-sea animals caused by the surface
light, they were captured at night by the remotely operated vehicle (ROV) Quasar MkII
on the scientific research vessel (RV) KEXUE (Institute of Oceanology, Chinese academy
of Sciences, China) and placed into the light-tight and insulated Bio-Boxes. After being
brought on board, the eyes of A. longirostris were dissected under dim light and frozen
in liquid nitrogen immediately. The samples had been stored in liquid nitrogen until
returning to the lab. The sampling method and transcriptome sequencing data for the eyes
of six A. longirostris individuals were described in our previous study [38]. Shallow-water
P. carinicauda (Figure 1c) samples were acquired from the aquarium in the Institute of
Oceanology, Chinese Academy of Sciences. After taken, the eye tissues of the species were
dissected and immediately frozen in liquid nitrogen for RNA extraction.

2.2. Transcriptome Sequencing and Assembly

Total RNA for three samples of P. carinicauda eyes was extracted using the TRIzol kit
(Invitrogen, Waltham, MA, USA), respectively, and was mixed equally. After treatment, the
fragmented mRNAs were used to construct the cDNA libraries with NEBNext® Ultra™
RNA Library as our previous study [38]. Then the library was sequenced on an Illumina
HiSeqTM 4000 platform following the manufacturer’s instructions (Illumina, San Diego,
SA, USA) and paired-end reads with length 150 bp were produced. To obtain clean reads,
the raw reads were filtered by removing reads containing an adaptor, ploy-N (with the
ratio of ‘N’ > 10%) and low quality reads (percentage of bases with Q value < 20 in the
sequence was >40%) through custom perl scripts. Here, Q value was a quality index to
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assess reliability of a base calling, and a higher Q value presented a more reliable base
calling. Transcriptome de novo assembly was carried out by using Trinity v2.2.1 [39] with
default parameters, except min_kmer_cov set to four in order to reduce the redundancy of
the assembled transcripts. The modules of Inchworm, Chrysalis and Butterfly in Trinity
were then used to assemble the clean sequences into contigs, de Bruijin graphs and full-
length transcripts sequentially. The one with the longest length of redundant transcripts
was defined as a unigene. The average length and N50 length of unigenes were calculated
through home-made perl scripts. All unigenes were arranged in length descending order,
and when the assembled length covered half of the total length of all unigenes, the length of
the current unigenes was considered to be N50. The completeness and redundancy of the
assembled transcriptome was evaluated by checking the coverage of the 1066 conserved
core genes of arthropoda (https://busco.ezlab.org/, accessed on 18 July 2022) with BUSCO
v5.3.2 [40,41].

2.3. Gene Functional Annotation and Expression Analysis

Functional annotations for the unigenes were carried out through BLAST against
the NR (NCBI non-redundant protein sequences), Swiss-Prot (http://www.ebi.ac.uk/
uniprot/; accessed on 3 August 2021), KEGG (Kyoto Encyclopedia of Genes and Genomes,
https://www.kegg.jp/kegg/; accessed on 4 August 2021) and KOG (euKaryotic Ortholog
Group, http://www.ncbi.nlm.nih.gov/COG/; accessed on 4 August 2021) databases
with an E-value ≤ 1E-5. GO (Gene Ontology) annotation was obtained using software
blast2GO [42] based on NR annotation results with a cut-off E-value threshold 1E-5. All uni-
genes with GO annotations were functionally classified using software WEGO [43]. Gene
expression levels were estimated by RPKM (Reads Per kb per Million reads) method [44].

2.4. Phylogenetic and Evolutionary Analyses

In order to investigate the diversity and evolutionary positions of the key phototrans-
duction components, opsins in A. longirostris and P. carinicauda were identified from the
transcriptomes according to the unigene annotation and further manual check by blast
analysis. The phylogenetic tree was constructed for 127 opsin sequences of representative
arthropod species (Table S1). In detail, the dataset comprised five opsins from A. longirostris,
13 opsins from P. carinicauda and 109 opsins with different wavelength sensitivity (65 LWS,
19 MWS and 25 SWS opsins) from other arthropods downloaded from NCBI or obtained
by personal communication. Among them, opsins from three other deep-sea shrimps,
Janicella spinicauda, Systellaspis debilis and Oplophorus gracilirostris, belonging to Oplophori-
dae were also included, which have compound eyes and light organs (photophores) [45,46].
Bos taurus rhodopsin and Gallus gallus pinopsin sequences served as out-group. Amino
acid sequences were aligned using MAFFT (https://mafft.cbrc.jp/alignment/server/,
accessed on 14 July 2022) [47,48] and the resulting alignment was used to construct a
phylogenetic tree with the maximum likelihood (ML) method implemented by IQ-TREE
web server (http://iqtree.cibiv.univie.ac.at/, accessed on 14 July 2022) [49]. The substi-
tution model test was run first by the ModelFineder [50] in IQ-TREE. The model LG +
R6 + F (a general amino acid replacement matrix, FreeRate model with six rating cate-
gories, and empirical base frequencies) was selected. Branch support was assessed in
triplicate by (1) a Shimodaira–Hasegawa-like approximate likelihood ratio test (SH-aLRT;
1000 replicates), (2) an approximate Bayes test and (3) an ultra-fast bootstrap approxi-
mation (UFBoot; 1000replicates) [51–53]. Images were created using the FigTree 1.4.4
(http://tree.bio.ed.ac.uk/software/figtree/, accessed on 14 July 2022). Similarly, a total
of two Pax6 amino acid sequences of A. longirostris, two Pax6 of P. carinicauda and twelve
Pax6 sequences (defined clearly as toy or eye) ofsix other arthropods available in NCBI
or obtained by personal communication were used to construct phylogenetic tree with
A. longirostris Pax2, J. spinicauda Pax5 and Neocaridina davidina Pax5 as out groups (Table S2).
ModelFinder suggested a VT + F + G4 (a general matrix VT model, empirical amino acid
frequencies and a discrete gamma model with four rating categories) model.

https://busco.ezlab.org/
http://www.ebi.ac.uk/uniprot/
http://www.ebi.ac.uk/uniprot/
https://www.kegg.jp/kegg/
http://www.ncbi.nlm.nih.gov/COG/
https://mafft.cbrc.jp/alignment/server/
http://iqtree.cibiv.univie.ac.at/
http://tree.bio.ed.ac.uk/software/figtree/
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2.5. Opsin Characterization Analysis

For opsin candidates, the open reading frames (ORFs) of the genes were predicted using
the ORF Finder (http://www.ncbi.nlm.nih.gov/projects/gorf/, accessed on 4 October
2021). A multiple alignment of 23 opsin amino acid sequences from 14 decapod species
including deep-sea and shallow-water species (Table S1) was performed using BioEdit
v7.1.3. Sequence alignment made it possible to identify characteristics of opsin sequences,
such as the lysine residue involved in the Schiff base linkage, the counterion and putative
disulfide bond sites.

3. Results
3.1. Transcriptome Assembly and Functional Annotation

In total, 52,400,160 raw reads of the P. carinicauda eye sample were newly obtained
and deposited into the Sequence Read Archive (SRA) database (http://www.ncbi.nlm.nih.
gov/Traces/sra/; accessed on 22 March 2020) with the accession number PRJNA597836.
Removing adaptors and low-quality reads resulted in the retention of 7.62 G clean bases for
P. carinicauda. Assembly generated 46,709 unigenes for P. carinicauda, with the unigene N50
length of 1217 bp. The raw reads of six A. longirostris eye samples were available with the
accession number PRJNA548620. The number of unigenes of A. longirostris eyes was 64,352
and the N50 length was 1868 bp reported in our previous study [36]. BUSCO evaluation
identified 788 (73.92%) complete BUSCOs in P. carinicauda eye transcriptome, which was
lower than that of A. longirostris (1009 complete BUSCOs, 94.65%).

Based on the four databases, 16,951 (36.29%) unigenes of P. carinicauda were finally
annotated in at least one database (Table 1), while 21,922 (34.07%) unigenes of A. longirostris
were annotated [38]. In KOG cluster, unigenes were classified into 25 functional categories,
and ‘signal transduction mechanisms’ made up a large proportion in the P. carinicauda
eye transcriptome, as well as in A. longirostris eye transcriptome (Figure 2). By KEGG
analysis, 8674 (18.57%) unigenes of P. carinicauda were found to be involved in 214 different
biological pathways, and the largest number of unigenes was assigned to the ‘metabolic
pathways’. There were 2216 (13.14%) NR-annotated unigenes grouping into 49 subcate-
gories in GO analysis P. carinicauda (Figure S2). These gene annotation and classification
would facilitate the following interpretation for key genes related to the eye development
and phototransduction of the deep-sea and shallow-water shrimps.

Table 1. Summary statistics of transcriptome data from Palaemon carinicauda eyes.

Index Value (Percentage)

Numbers of unigenes 46,709
N50 length of unigenes 1217

Average length of unigenes (bp) 718
Annotated in NR 16,866 (36.11%)

Annotated in Swiss-Prot 12,431 (26.61%)
Annotated in KOG 11,561 (24.75%)

Annotated in KEGG 8674 (18.57%)
Annotated in GO 2216 (13.14%)

Annotated in at least one database 16,951 (36.29%)

3.2. Eye Development Related Genes

To identify genes potentially related to the differences in retinal development and
maintenance between adult A. longirostris and P. carinicauda, seven key transcription factor
genes were queried, including ey, toy, so, eya, dac, hh and dpp. Among them, ey and toy
were the homologues of Pax6 in vertebrates. The number of these transcription factor
genes was similar in the two species, and the overall expression was relatively low in
both species (RPKM value 0.251–4.323, except eya in P. carinicauda with RPKM 10.163;
Table S3). Additionally, two kinds of Pax6 genes were separately annotated in A. longirostris
and P. carinicauda transcriptomes, including Al-Pax6.1, Al-Pax6.2, Pc-Pax6.1 and Pc-Pax6.2.

http://www.ncbi.nlm.nih.gov/projects/gorf/
http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm.nih.gov/Traces/sra/
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High amino acid sequences sequence similarity (97%) was found between Al-Pax6.1 and
Pc-Pax6.1, as well as between Al-Pax6.2 and Pc-Pax6.2. Phylogenetic analysis based on the
amino acid sequences of Pax6 homologues in 16 arthropods (Table S2) showed that ey and
toy were two paralogs [54], and Al-Pax6.1 and Al-Pax6.2 were closely related to ey and toy,
respectively (Figure 3).
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3.3. Genes Involved in the Phototransduction Pathway

Multiple components of the phototransduction pathway were identified in both
species, including opsin, Gq protein, PLC, protein kinase C (PKC), TRP channels, TRPL
channels, calmodulin (CaM), neither inactivation nor afterpotential protein C (NINAC),
arrestin, diacylglycerol lipase (DAGL), actin and INAD PDZ domains (Table 2). Fewer
phototansduction transcripts were found in the deep-sea A. longirostris compared to the
shallow-water P. carinicauda (Figure 4). The most dramatic difference was the number of
opsin genes (five in A. longirostris and thirteen in P. carinicauda). According to the RPKM
values, the expression of opsins in A. longirostris (RPKM: 1.53–40.68) was roughly estimated
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to be lower than that in P. carinicauda (RPKM: 5.03–90,886.59) (Table 2). Specifically, the gene
DAGL was only found expressed in the adult eye transcriptome of A. longirostris. However,
an absence of expression does not mean that the genes are not present, considering that the
RNAseq data are dependent on the gene expression at time of sampling.

Table 2. Genes involved in the Gq-mediated phototransduction cascade from Alvinocaris longirostris
and Palaemon carinicauda. They include opsin, G-protein, G-protein subunit alpha (Gα), beta (Gβ)
and gamma (Gγ), Gq subclass of the G-protein alpha (Gαq) subunits, phospholipase C (PLC), protein
kinase C (PKC), transient receptor potential (TRP) channels, transient receptor potential-like (TRPL)
channels, calmodulin (CaM), neither inactivation nor afterpotential protein C (NINAC), arrestin,
diacylglycerol lipase (DAGL), actin and INAD PDZ domains. RPKM (reads per kb per million reads)
shows the gene expression level revealed by RNA-seq.

Alvinocaris longirostris Palaemon carinicauda
Gene ID RPKM Annotation GeneID RPKM Annotation

Opsin
Unigene0004368 8.17 rhodopsin [Penaeus vannamei] Unigene0037728 90,886.59 rhodopsin [Penaeus vannamei]
Unigene0032821 1.53 rhodopsin-like [Penaeus vannamei] Unigene0025543 63.29 LWS opsin [Macrobrachium nipponense]
Unigene0042144 40.68 rhodopsin-like [Penaeus vannamei] Unigene0033598 180.53 LWS opsin [Macrobrachium nipponense]
Unigene0027123 1.70 LWS opsin [Macrobrachium nipponense] Unigene0034802 15,756.87 LWS opsin [Macrobrachium nipponense]
Unigene0036486 2.92 opsin protein [Leptuca pugilator] Unigene0009342 15.00 LWS opsin [Macrobrachium nipponense]

Unigene0028409 20.80 opsin protein [Leptuca pugilator]
Unigene0032948 1417.97 opsin protein [Leptuca pugilator]
Unigene0023137 30.24 opsin protein [Leptuca pugilator]
Unigene0023206 5.03 opsin [Penaeus vannamei]
Unigene0030878 62.38 opsin 1 [Gelasimus vomeris]
Unigene0027784 10.57 UV2 opsin [Penaeus vannamei]
Unigene0032158 375.03 UV2 opsin [Penaeus vannamei]
Unigene0032059 158.62 opsin, UVS-like [Penaeus vannamei]

Gq
Unigene0018293 1.70 Gαq [Litopenaeus vannamei] Unigene0029827 306.06 Gαq [Litopenaeus vannamei]
Unigene0018292 6.81 Gαq [Panulirus argus] Unigene0019099 1.37 Gα [Anopheles gambiae]
Unigene0005837 20.00 Gγ [Megachile rotundata] Unigene0035586 88.09 Gγ [Megachile rotundata]

Unigene0036996 147.32 Gβ [Hyalella azteca]

PLC

Unigene0047519 7.07
1-phosphatidylinositol 4,5-bisphosphate
phosphodiesterase classes I and II
isoform X2 [Cimex lectularius]

Unigene0032290 3.50

1-phosphatidylinositol 4,5-bisphosphate
phosphodiesterase classes I and II
isoform X1
[Cimex lectularius]

Unigene0007465 38.34 phospholipid phospholipase C beta isoform
[Homarus americanus]

PKC

Unigene0035146 3.53 PKC, brain isozyme
[Trachymyrmex cornetzi] Unigene0037047 12.51 PKC, brain isozyme [Cimex lectularius]

TRP
Unigene0031956 1.28 TRP protein-like [Plutella xylostella] Unigene0041701 4.31 TRP protein-like [Tribolium castaneum]
Unigene0008099 1.87 TRP protein-like [Hyalella azteca] Unigene0025995 4.03 TRP protein-like [Hyalella azteca]

Unigene0036355 138.36 TRP protein-like [Hyalella azteca]
Unigene0025996 3.12 TRP protein [Orchesella cincta]
Unigene0037466 63.95 TRP channel [Danaus plexippus]

TRPL
Unigene0002671 2.20 TRPL protein [Hyalella azteca] Unigene0036670 1807.23 TRPL protein [Hyalella azteca]
Unigene0009926 1.04 TRPL protein [Hyalella azteca]

CaM

Unigene0041980 2.74 calmodulin-alpha isoform
[Papilio machaon] Unigene0046282 1.20 calmodulin-beta-like isoform

[Aethina tumida]
Unigene0028022 1207.07 calmodulin [Trichinella pseudospiralis]

Unigene0034208 21.68 calmodulin-like protein
[Zootermopsis nevadensis]

NINAC
Unigene0013894 1.68 myosin-IIIb-like [Hyalella azteca] Unigene0036698 109.85 myosin-IIIb-like [Hyalella azteca]

Unigene0036679 46.20 myosin-IIIb-like [Orussus abietinus]
Unigene0036678 79.34 NINAC-like isoform [Hyalella azteca]
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Table 2. Cont.

Alvinocaris longirostris Palaemon carinicauda
Gene ID RPKM Annotation GeneID RPKM Annotation

Arrestin
Unigene0037454 1.79 arrestin homolog [Hyalella azteca] Unigene0031031 135.94 arrestin homolog [Hyalella azteca]

Unigene0031684 117.09 arrestin homolog [Hyalella azteca]
Unigene0036855 33074.95 arrestin homolog [Hyalella azteca]
Unigene0030229 6832.96 arrestin homolog [Hyalella azteca]
Unigene0029989 609.90 arrestin [Orchesella cincta]

DAGL
Unigene0045000 2.47 DAGL alpha-like [Hyalella azteca]

Actin
Unigene0050853 29.43 actin [Eulimnogammarus vittatus] Unigene0038263 91.80 actin [Eulimnogammarus cyaneus]
Unigene0014222 1.0 actin [Chilodonella uncinata] Unigene0034159 1824.31 beta-actin [Macrobrachium nipponense]
Unigene0002593 8.28 actin [Portunus trituberculatus] Unigene0035399 2.07 actin 1 [Procambarus clarkii]
Unigene0046083 14.64 actin 1 [Procambarus clarkii] Unigene0038246 9.52 actin-2 [Penaeus vannamei]
Unigene0046852 2532.89 beta-actin [Penaeus monodon] Unigene0035402 13.00 actin 1 [Penaeus vannamei]
Unigene0039765 128.24 actin 6 [Pandalus platyceros] Unigene0035632 15.64 actin 6 [Pandalus platyceros]
Unigene0014452 1.69 actin [Armadillidium vulgare] Unigene0038264 1.67 actin [Penaeus vannamei]

Unigene0012144 686.58 skeletal muscle actin 6
[Rimicaris exoculata] Unigene0035395 5.76 skeletal muscle actin 6 [Rimicaris exoculata]

Unigene0034554 16.89 actin-like [Penaeus vannamei] Unigene0038262 39.92 skeletal muscle actin 6 [Palaemon varians]
Unigene0009093 12.08 actin-2 [Penaeus vannamei] Unigene0034152 80.94 actin-like [Penaeus vannamei]

Unigene0038252 111.22 skeletal muscle actin 8 [Homarus americanus]

Unigene0034150 65.39 skeletal muscle alpha actin
[Pandalus platyceros]

Unigene0035634 25.35 actin 2 [Penaeus vannamei]

INAD PDZ

Unigene0046429 4.50 multiple PDZ domain protein
[Portunus trituberculatus] Unigene0011764 1.83 PDZ domain-containing protein 2

[Portunus trituberculatus]

Unigene0000247 1.57 multiple PDZ domain protein-like
[Zootermopsis nevadensis] Unigene0020200 1.52 PDZ domain-containing protein 2

[Penaeus vannamei]

Unigene0042843 3.33 PDZ domain-containing protein 2
[Penaeus vannamei] Unigene0034891 38.85

multiple PDZ domain protein-like
isoform X5
[Penaeus vannamei]

Unigene0026310 3.19 PDZ domain-containing protein 2
[Penaeus vannamei]
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The topology of the phylogenetic tree of opsins demonstrates the monophyletic clades
of LWS opsins and SWS/UVS opsins, respectively, while the insect MWS clade is the sister
group to the LWS clade (Figure 5), and the sequenced MWS opsins in crustacean fall outside
of the main arthropod LWS clade and insect MWS. Based on the phylogenetic analysis,
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four candidate LWS opsins and one MWS opsin in A. longirostris eye transcriptome were
identified, while there were five putative LWS opsins, five MWS opsins and another three
SWS/UVS opsins in P. carinicauda transcriptome (Figure 5). It is noteworthy that SWS/UVS
opsins were absent in A. longirostris, and fewer MWS opsins were discovered in this deep-
sea shrimp. In comparison, putative LWS opsins showed relatively high expression level in
A. longirostris and P. carinicauda, respectively. Amino acid sequence alignments were then
further performed on the LWS opsins from deep-sea and shallow-water decapods (Table S1).
It was revealed that conservative domains and sites were present in all opsins (Figure S3),
including the seven-transmembrane (TM), the critical chromophore attachment site at K296,
the important rhodopsin-class GRCR domain (E)DRY, glutamate counterion candidate E181
and two cysterine residues (C110, C187) potentially involved in the disulfide bond [55].
It indicates that the key opsins in these deep-sea crustaceans may conserve their signal
transduction function.
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Figure 5. Maximum-likelihood phylogeny of opsin visual proteins in representative arthropod species.
The tree is constructed based on the amino acid sequences. Bos taurus rhodopsin and Gallus gallus
pinopsin sequences serve as out-group. Most bootstrap support is significant, and the low support is
indicated by red circles (SH-aLRT < 80, or UFBoot < 95, and aBayes < 0.95). LWS (long-wavelength-
sensitive) opsins, MWS (middle-wavelength-sensitive) opsins and SWS/UVS (short-wavelength/UV-
sensitive) opsins are located in areas with different color. Opsins in Alvinocaris longirostris and
Palaemon carinicauda are marked with red and yellow, respectively. The detailed information of
sequences used to construct phylogenetic tree is described in Table S1.
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4. Discussion

In the deep-sea aphotic zone, many crustaceans and fish have reduced eyes or lack
eyes completely. Most existing studies have focused on the morphological and physi-
ological characters of deep-sea animal eyes (reviewed in [7]). Our study based on the
comparative transcriptomes of deep-sea A. longirostris and shallow-water P. carinicauda eyes
provides basic gene resources to elucidate the molecular mechanism of eye development
and phototransduction of alvinocaridid shrimps in deep-sea chemosynthetic ecosystems.

Previous studies have improved our understanding of retinal determination network
that influence eye development. In a limited capacity, researchers have focused on the
compound eyes of insects such as Drosophila, and there are few molecular studies on the
development of compound eyes of crustaceans. It has been discovered that loss of ey is
linked to the headless phenotype in Drosophila, while toy acts upstream of ey and activates
its expression [56–60]. In this study, the key genes in retinal determination network have
been identified in the deep-sea and shallow-water shrimps, and two ‘master regulator’ Pax6
paralogs, ey and toy, are present in the two species. However, the gene expression level of
ey and toy is low in both shrimp species, probably due to the fact that ey and toy mainly
act early during eye development in invertebrates [61]. It has also been observed that the
eyes of alvinocaridid shrimp and the hydrothermal vent crab Bythograea thermidron present
a clear switch between the larvae and adults, from an imaging retina to the non-imaging
retina: the zoeal eye is similar to those of other surface-dwelling decapod larvae [62–64].
Therefore, based on the identification of important genes involved in retinal determination
network in the two adult shrimps, it is hypothesized that the molecular mechanism of eye
development at the embryo–larvae stages in deep-sea chemosynthetic A. longirostris and
shallow-water P. carinicauda might be similar, which requires further verification in samples
from early developmental stages.

Visual processing begins with photoreceptors that convert photon energy into an
electrical signal transmitted to the nervous system. Opsin, G-protein, PLC, TRP and
TRPL channels are critical components in phototransduction of invertebrates [65]. The
development of genomics and transcriptomics has made comparative studies of visual
systems more feasible [66,67]. In this study, visual related expressed genes are less abundant
in deep-sea A. longirostris, similar to the situation in cave fishes, cave shrimps and other
deep-sea crustaceans [32–34,45,46]. A different number of opsin genes between A. longirostris
and P. carinicauda have been identified, which might correlate with the life-history, habitat
and the ecological niches the animals occupy [68,69]. By constructing the phylogenetic tree
of representative arthropod opsins, the evolutionary placement of opsins in A. longirostris
and P. carinicauda is determined and the spectral sensitivity of the opsins in the two shrimps
is inferred, although it requires experimental quantification. The light emitted by the
hot hydrothermal plume is usually in the form of long wavelength radiation (>700 nm),
and temporally variable light is observed in the 400–600 nm region of the spectrum [70].
Moreover, the vast majority of bioluminescence lies about 450–510 nm [71–73]. In this study,
more transcripts of putative LWS (>490 nm) opsins are expressed in both species, which is
consistent with the results of other studies on the photoreceptors of crustaceans [28,74–76].
The conserved sites and structures of the LWS opsins have been found between deep-sea
and shallow-water decapods, indicating that these opsins in deep-sea crustaceans may also
conserve their spectral absorption and signal transduction function. Moreover, a putative
MWS (400–490 nm) opsin is also detected. Therefore, we interpret that the degenerate
eyes of A. longirostris might retain the function of detecting low-level illumination in the
deep-sea chemosynthetic environments. However, due to the absence of SWS light in
the deep sea [77,78], no SWS/UVS (<400 nm) opsin has been discovered expressed in
eyes of deep-sea A. longirostris adults. In general, opsins in deep-sea A. longirostris show
reduced expression levels (the highest RPKM 40.68) compared to those of shallow-water
P. carinicauda (the highest RPKM 90,886.59), which has also been found in the retinas of
cave crustacean, cavefish and the hydrothermal vent crab Austinograea alayseae [30,31,79],
as well as a reduction in their total absorbance spectra [35]. In addition, studies found
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that TRP and TRPL are potently activated by polyunsaturated fatty acids (PUFAs), which
could be released from DAG by DAGL [80,81]. The gene DAGL has only been found in
the deep-sea A. longirostris, which may indicate that there are additional messengers that
could result in the opening of the TRP and TRPL channels in this shrimp species. The
divergence in the number and type of different phototransduction related genes, especially
opsins, could be a strategy to adapt to specific spectral ranges in deep-sea chemosynthetic
ecosystems. Although the absence of particular types of opsins does not indicate absence
from the genome, we can at least estimate the number of transcripts represented in the
transcriptome of each species as a baseline for further studies.

5. Conclusions

In this study, the eye transcriptomes of deep-sea A. longirostris and shallow-water
P. carinicauda were compared. Key transcription factor genes involved in retinal develop-
ment were all recovered in both species. It is hypothesized that eye development processes
at the larval stages of the two shrimps might be similar and the eyes of A. longirostris
degenerate during the late developmental stage, which requires the gene expression data of
larval samples for verification. In comparison with the shallow-water shrimps, the number
and expression level of genes involved in phototransduction pathway were significantly
reduced in A. longirostris. The lack of SWS opsin and the low amount of MWS opsin likely
resulted from the restricted spectral range of the deep-sea chemosynthetic environment.
The conserved sites and structures of LWS opsins between deep-sea and shallow-water
shrimps suggested the conserved function of the genes. These may correlate with the
life-history and habitat of A. longirostris. The complete list of visual-related genes should
be pursued by whole genome sequencing as this study is intended to supply baseline
transcript information for further investigation.
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dachshund (dac), hedgehog (hh), and decapentaplegic (dpp) (revised according to [16]); Figure S2:
GO function classification of annotated genes in the transcriptomes of Alvinocaris longirostris and
Palaemon carinicauda; Figure S3: Sequence alignment of LWS (long-wavelength sensitive) opsins from
deep-sea species and shallow-water decapod species. Conserved sites and structures of the opsins
are analyzed and marked with Bos taurus rhodopsin sequence as a model (accession number: NM
001014890.2). Black boxes encircle the transmembrane alpha-helices 1–7 of opsins. C110 and C187 are
potentially involved in a disulfide bond. The DRY-type tripeptide motif (D134, R135, Y136) is marked
by asterisks. E181 is the glutamate counterion position. K296 is involved in the formation of Schiff
base linkage; Table S1: Arthropod opsin sequences used to construct phylogenetic tree; Table S2:
Pax sequences used to construct phylogenetic tree; Table S3: Eye development related transcription
factors from eye transcriptomes of Alvinocaris longirostris and Palaemon carinicauda. Paired box protein
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