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Abstract: Rock brittleness is pivotal in the development of the unconventional reservoirs. However, 
the existence of various methods of calculating the brittleness index (BI) such as the mineral-based 
brittleness index (MBI), the log-based brittleness index (LBI), and the elastic-based brittleness index 
(EBI) lead to inconclusive estimations of the brittleness index. Hence, in this work, the existing 
correlations are applied on prolific unconventional plays in the U.S. such as the Marcellus, Bakken, 
Niobrara, and Chattanooga Formation to examine the various BI methods. A detailed comparison 
between the MBI, LBI, and EBI has also been conducted. The results show that a universal 
correlation cannot be derived in order to define brittleness since it is a function of lithology. 
Correlation parameters vary significantly from one shale play to another. Nevertheless, an overall 
trend shows that abundant quartz and carbonates content yield high brittleness values, while the 
high clay content and porosity lower the rock brittleness. 

Keywords: rock brittleness; hydraulic fracturing; unconventional reservoirs; brittleness index; 
fracability index; Young’s modulus; Poisson’s ratio; Marcellus Formation; Bakken Formation; 
Niobrara Formation; Chattanooga shale 

 

1. Introduction 

Brittleness is a key parameter in the development of unconventional shale reservoirs and tight 
carbonate reservoirs since it plays a role in the design of hydraulic fractures as well as the selection 
of sweet-spot locations for perforation and fracture initiation. These reservoirs are defined by 
heterogeneities within a complex geological setting [1]. These reservoirs are characterized by low 
matrix permeability. Hence, hydraulic fracturing should be used to achieve commercial production 
rates [2]. More surface area becomes available by propagating a wide fracture network [3]. According 
to the U.S. Energy Information Administration (EIA), 69% of wells drilled within the US in 2016 were 
hydraulically fractured [4]. Furthermore, EIA lists a 17% increase of crude oil production in 2018, 
which is attributable to the production from tight rock formations, where both horizontal drilling and 
hydraulic fracturing were applied [5]. Since this appears to be the future, a qualitative analysis of the 
lithology, especially brittleness, is crucial for effective fracturing, as highly brittle formations are more 
prone to hydraulic stimulation [6]. 

The brittleness index (BI) is utilized to indicate if the formation rocks are brittle, which are 
preferable to form a complex network of fractures, [3] or ductile, which would be more resistant to 
fracture growth and failure. It describes the rock failure [7], which can be interpreted as a complex 
function of lithology, mineral composition, total organic carbon (TOC), effective stress, reservoir 
temperature, diagenesis, thermal maturity, porosity, and type of fluid [8]. Many correlations have 
been developed for different purposes, which can be investigated by geo-mechanical and 
mineralogical properties analysis [9]. However, there is a wide variety of BI methods in the literature 
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that lead to inconclusive BI values. The sweet spots for hydraulic fracturing cannot be located and 
identified by a single BI since the rock brittleness is controlled by a combination of factors including 
in situ stress, mineralogical composition (especially clay content), elastic moduli, the presence of pre-
existing fractures, and the well completion methods [10]. 

2. Review of Brittleness Index Correlations 

Various concepts of brittleness are suggested in the literature. The BI can be derived based on 
the stress-strain ratio, Young’s Modulus and Poisson’s ratio, energy balance analysis, unconfined 
compressive strength, Brazilian tensile strength, penetration, impact and hardness test, the mineral 
composition, porosity analysis, grain size, internal friction angle, the over-consolidation ratio, and 
geophysical analysis on Lame’s parameter and the density [11]. This review focusses on four 
parameters: Stress-strain ratio, Young’s Modulus and Poisson’s ratio, mineral composition, and 
porosity analysis. 

The BI can be derived in various ways. Differentiation can be obtained between the Mineral-
based Brittleness Index (MBI) and the Fracability Index (FI). Furthermore, FI is divided into the Log-
based Brittleness Index (LBI) and the Elastic-based Brittleness Index (EBI), which is further divided 
into static and dynamic FI (Figure 1). 

 
Figure 1. Workflow to derive the Brittleness Index. 

The mineral-based brittleness index (MBI), which is a method based on the mineral composition 
of the formation [12], can be derived from laboratory core testing or well logging data using mineral 
logging or calculated using a matrix inversion. The output of this derivation is the mineral fraction, 
which is leading to the BI using different MBI correlations. The LBI on the other hand can be directly 
derived from wireline logging using the Neutron Porosity (NPHI) or the compressional slowness. 
Empirical equations yield to the BI [13]. The EBI can be subdivided into static and dynamic properties. 
Static properties are usually derived from laboratory testing, such as triaxial testing, to essentially 
obtain the static Young’s modulus and Poisson’s ratio. Dynamic properties are derived from bulk 
compressional slowness, shear slowness, and bulk density, to ultimately obtain the dynamic Young’s 
modulus and Poisson’s ratio. 

2.1. Mineral-Based Brittleness Index Correlations 
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The lithology has a significant impact on the brittleness. Some minerals increase the brittleness, 
while others decrease it. Numerous correlations were derived to estimate the brittleness based on the 
mineral weight fraction. The correlations were derived from testing on different formations, and 
those formations vary in mineral content, TOC, burial depth, porosity, permeability, and geologic 
age, respectively. However, most of the correlations exist for the Barnett Shale. 

Jarvie et al. [12] performed tests on the Mississippian Barnett Shale in north-central Texas. The 
Barnett Shale is considered a low-porosity (6%) and low-permeability shale play [12]. The formation 
is dominated by fine-grained particles, whereas the system can be divided into three lithofacies, 
laminated siliceous mudstone, laminated argillaceous marl and skeletal, and argillaceous lime 
packstone, containing abundant pyrite and phosphate, respectively [14]. Therefore, the formation can 
be described as shale bounded by limestone. The mineral fraction is showing a high abundance of 
quartz (~50%), slightly lower values of clay (~45%), and low values for calcite (~5%) on average [12]. 
The tested wells have a thermal maturity of 0.80–0.90% Ro with an average TOC content of 6.41% [12]. 
Based on the testing results Jarvie et al. [12] suggested, the following equation to derive the brittleness 
is shown below. MBI = QQ + Carb + Cly (1)

where Q = quartz, Carb = carbonate, and Cly = clay in weight fraction, respectively.  
Quartz is considered to be a brittle mineral, while carbonate and clay are considered to be less 

brittle and non-brittle, respectively. This equation would lead to accurate results for formations that 
contain high amounts of quartz and clay and low carbonate content. However, for formations with a 
significant amount of carbonate, this equation would underestimate the brittleness. 

Wang and Gale [8] modified the correlation. Dolomite could be, apart from quartz, considered 
as a brittle mineral while increasing the brittleness. Since TOC is anticipated to decrease the 
brittleness [15], it is added in the denominator of the equation as follows. MBI = Q + DQ + D + Cal + Cly + TOC (2)

where D = dolomite, Cal = calcite, and TOC = total organic carbon in weight fraction, respectively.  
The petrophysical properties demonstrate that dolomite should be considered a brittle mineral. 

This equation would yield to more accurate results of brittleness for formations where dolomite is 
abundant. However, for formations containing both calcite and dolomite, this equation would 
underestimate the brittleness.  

Therefore, Glorioso and Rattia [16] modified the previous equation based on studies on the Late 
Jurassic Neuquén Basin in Argentina. The basin is associated with low porosity (8%) and low 
permeability argillaceous siliceous and calcareous mudstone with an average TOC content of 2.5–
3.5% [16]. The dominant carbonate minerals within the calcareous mudstones are calcite and 
dolomite. Since calcite tends to increase the brittleness as well, the Glorioso and Rattia [16] suggest 
considering not only dolomite but the entire carbonate weight fraction as brittle minerals. Hence, the 
equation was modified for the MBI [16]. MBI = Q + CarbQ + Carb + Cly + TOC (3)

Buller et al. [17] used the same approach, stating the brittle minerals in the nominator and the 
brittle and ductile minerals in the denominator. Studies were performed on the Jurassic Haynesville 
Shale in the Texas part of the play. The lithology varies between calcite-rich shale with little clay to 
silica-rich shale with large amounts of bedded clay and less calcite [17]. The effective porosity was 
determined to be 8% and a TOC content ranging between 3% and 6% [18]. The following equation 
was found [17]. MBI = (abM1 + abM2 … )(abM1 + abM2 + abM3 … ) (4)

where M = mineral, a = mineral-specific brittleness factor, and b = mineral distribution factor.  
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Each mineral is multiplied by a brittleness coefficient considering the mechanical properties, the 
texture, and the overall mineral distribution in the rock [17]. The relative abundance of quartz and 
carbonate as brittle minerals is compared to the clay content. This equation leaves room to take other 
formation factors in consideration. Known information about the formation can be assigned to the 
equation. This equation is accessible if numerous information is provided, and if the mineral 
distribution is the main factor to derive the brittleness, while taking other properties in consideration 
as well.  

However, Jin et al. [19] reported, based on studies on the Barnett Shale, that other minerals 
contribute to the brittleness as well. Beside carbonate and quartz, the weight fraction of feldspar and 
mica are considered brittle minerals as well. All minerals including both brittle and non-brittle 
minerals should be considered in the denominator.  MBI = Q + F + M + Carbtot  (5)

where F is the feldspar and M is the mica in weight fraction, respectively, and tot is the total weight 
fraction.  

To prove the validity of this equation, Jin et al. [19] applied the result on the Woodford Shale, 
Barnett Formation, and Eagle Ford Shale. Considering overall carbonate and silica as brittle minerals 
and clay as a non-brittle mineral, this shows that the equation is applicable on individual formations. 
The Eagle Ford Shale contains most carbonate, while the Barnett Formation is dominated by silica 
and the Woodford Shale is rich in clay minerals. It shows that this equation is applicable for a wide 
range of lithologies with varying predominant minerals. 

Alzahabi et al. [20] found a new MBI for the Wolfcamp Formation, with Late Pennsylvanian to 
Permian age. The porosity of this formation is relatively high (~10%) and the TOC ranges at about 
2.3% [20]. This formation is highly heterogeneous in its mineralogy, TOC, and other reservoir 
properties. The weight fractions reported from XRD measurements indicate average values of 60% 
silicates, 20% carbonates, and 20% clay [21]. This formation varies strongly in its calcite content, which 
ranges from 0% to 84% [20]. It is, overall, mostly shale-rich, except the upper part, which is rich in 
carbonate [20]. Studies led to the following equation [20]. MBI = 1.09 × Q + F + PQ + F + P + Cal + D + Cly + 18.8  (6)

where P is indicating the pyrite weight fraction. 
This equation considers quartz, feldspar, and pyrite as brittle minerals. Calcite and dolomite are 

taken in account as non-brittle minerals. However, previous equations [16,19] have shown that the 
weight fraction of carbonates as brittle minerals lead to more accurate results in order to determine 
the MBI. Pyrite has a high bulk density as well as a very low compressional slowness, which indicate 
brittle properties. However, pyrite is not highly abundant in formations, which makes a correlation 
between MBI and pyrite hard to derive.  

Rybacki et al. [22] developed a new correlation based on shales in Europe (Posidonia Shale, 
Lower Jurassic age, Germany, Alum Shale, Lower Cambrian age, Denmark) and the Barnett Shale. 
The composition of the Alum shale is variable, containing 17–62 vol% clay (illite, illite-smectite, 
kaolinite), 0–50 vol% carbonates, 7–46 vol% quartz, 0–10 vol% feldspar, and 0–7 vol% pyrite [22]. 
Overall, most samples are poor in carbonates and rich in clay with a porosity of 1–4.1% and a TOC 
content of 2–20.7% [22]. The Posidonia Shale contains 40–60 vol% clay, 25–45 vol% carbonates, and 
10–25 vol% quartz, feldspar, and pyrite. The porosity ranges from 6.5% to 8% and the TOC ranges 
from 17% to 22.4%. The Barnett Shale samples in this study contain clay and TOC contents ranging 
from 40% to 65 vol%, carbonates ranging from 5% to 20 vol% and quartz, feldspar, and pyrite ranging 
from 30% to 50 vol% [22]. The porosity ranges from 0.5–1.2% and the TOC from 5.1–13.9%. 
Applications lead to the following equation.  MBI = Q + F + PQ + F + P + 0.5 × (Cal + D) + PHIT  (7)
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where PHIT is the total porosity.  
Each mineral should be taken into account as a volume percentage. Quartz, feldspar, and pyrite 

are considered as mechanically strong minerals, whereas carbonate is mechanically intermediate. 
Clay and TOC components are mechanically weak [22]. As the porosity affects the strength, it is 
considered in the denominator of the equation as well.  

Various equations to derive the MBI exist. These correlations take different minerals as brittle or 
non-brittle in account. As a brittle mineral, quartz [12], dolomite [8], calcite [6], feldspar , mica [19], 
and pyrite [20,22] were identified. However, brittle minerals have a different contribution in the 
prediction of BI, whereas quartz is more brittle, which is followed by dolomite and calcite [23]. 
Overall, different concepts of MBI lead to different results based on the consideration of the minerals 
as brittle or non-brittle. These equations have been summarized in Table 1. However, the mineral 
weight fraction is only an approximation in determining the BI. Two rocks with the same mineralogy 
can have different values of brittleness, as the mineralogy is not the only parameter that has an 
impact. Therefore, further parameters, such as Young’s modulus and Poisson’s ratio, should be taken 
in consideration as well.  

Table 1. Summary of MBI correlations based on the mineral composition. 

Correlation for MBI Formatio
n Age Lithology Φ 

(%) TOC (%) Reference QQ + Carb + Cly Barnett Carb. 
Shale bounded by 

limestone 
6 1–3  

Jarvie et al. 
[12] Q + DolQ + D + Cal + Cly + TOC Barnett Carb. 

Shale bounded by 
limestone 

6 1–3 
Wang and  

Gale [8] Q + Cal + DQ + Cal + D + Cly + TOC 

Neuquén 
Basin, 

Argentin
a 

Jur. Mudstones 8 2.5–3.5 
Glorioso 

and Rattia 
[16] (abM1 + abM2 … )(abM1 + abM2 + abM3 … ) 

Haynes- 
ville 

Jur. 
Calcite to silica-

rich shale 
8 3–6 

Buller et al. 
[17] Q + F + M + Carbtot  Barnett Carb. 

Shale bounded by 
limestone 

6 1–3 
Jin et al. 

[19] 1.09 × Q + F + PQ + F + P + Cal + D + Cly + 18.8  Wolf- 
camp  

Carb. - 
Perm.  

Shale, minor 
limestone 

10 2.3 
Alzahabi 
et al. [20] Q + F + PQ + F + P + 0.5 × (Cal + D) + PHIT  Shales in 

Europe 
and 

Barnett 

Camb. 
– Jur. 

Shale bounded by 
limestone 

0.6–
11 

15 
Rybacki et 

al. [22] 

2.2. Fracability Index Correlations 

The fracability index (FI) is a parameter that can be used to quantify the BI in terms of elastic 
properties. Differentiation was made between Log-based Brittleness Index (LBI) correlations and 
Elastic-based Brittleness Index (EBI) correlations.  

2.2.1. Log-Based Brittleness Index Correlations 

The LBI describes a method, which is empirically derived and only depends on the well log 
response such as total porosity and sonic logs. Porosity has a significant influence on flow ability 
through a rock mass and its strength and deformation behaviors [11]. Confining pressure and 
diagenetic processes yield to a lower porosity. However, the mineralogical brittleness is not 
correlated well with the density porosity (DPHI), while it is correlated well with the neutron porosity 
(NPHI) [13]. Jin et al. [13] reported empirical correlations for Woodford Shale, Barnett Shale, and 
Eagle Ford Shale as well as a global correlation.  

The Devonian-age Woodford Shale is an organic-rich, siliceous shale with 38% to 56% quartz 
and feldspar, 3% to 38% carbonate, 2% to 31% clay, and 2% to 3% pyrite [24,25]. It is considered a low 
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porosity (0.5% to 3%), low permeability formation [13] with a TOC content of 5.01% to 14.81% [26]. 
The following correlations were reported for this formation. LBI = −1.5314 × NPHI + 0.8575 (8)LBI = −0.012 × DTC + 1.4921 (9)

where NPHI is neutron porosity and DTC is a compressional slowness log response.  
As previously mentioned, the Barnett Shale has a high abundance of silicates and clay and 

contains only small amounts of carbonates. The following equation was derived for this formation. LBI = −1.4956 × NPHI + 0.9763 (10)LBI = −0.01104 × DTC + 1.4941 (11)

The Eagle Ford Shale contains the most carbonates in comparison to the Woodford Shale and 
the Barnett Shale. It can be described as a carbonate mudstone with stringers of dense calcite [27]. 
The porosity ranges from 2% to 9% and the TOC content from 2.1% to 6.86% [27]. The LBI can be 
empirically derived using the following equations. LBI = −2.3115 × NPHI + 1.0104 (12)LBI = −0.0116 × DTC + 1.6231 (13)

Jin et al. [13] found a global correlation for shale reservoirs using well logs from Woodford Shale, 
Barnett Shale, and the Eagle Ford Shale. LBI = −1.8748 × NPHI + 0.9679 (14)LBI = −0.0142 × DTC + 1.7439 (15)

The results were compared and verified with the MBI. The correlations, using the neutron 
porosity to predict the brittleness, can assist in developing the unconventional shale and tight 
carbonate plays, when neither mineral logging nor dipole sonic logging is available. 

The LBI presents an estimate of brittleness especially when only limited data are available. 
However, careful handling with these empirical equations is important for application on other 
formations. Jin et al. [13] suggested correlations for Woodford, Eagle Ford, and Barnett Shale [13]. 
The global correlation is derived from the combination of these formations. As unconventional 
reservoirs are strongly heterogeneous [2], it is key to evaluate every formation and its geo-mechanical 
and mineralogical properties. If the properties match the existing equations, they can be applied. 
Otherwise, new correlations should be developed for the formation of LBI use. A summary of the LBI 
correlations is shown in Table 2.  
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Table 2. Summary LBI correlations based on compressional wave travel time (DTC) and neutron 
porosity (NPHI). 

Correlation for LBI Formation Age Lithology Φ (%) 
TOC 
(%) 

Reference 

−0.012 × DTC + 1.4921 −1.5314 × ϕ + 0.8575 
Woodford Dev. 

Shale 
bounded by 

limestone  
0.5–3 

5.01-
14.81 

Jin et al. 
[13] −0.01104 × DTC + 1.4941 −1.4956 × ϕ + 0.9763 

Barnett Carb. 
Shale 

bounded by 
limestone 

6 1-3 Jin et al. 
[13] −0.0116 × DTC + 1.6231 −2.3115 × ϕ + 1.0104 

Eagle Ford Creta. Mudstones 2–9 
2.1- 
6.86 

Jin et al. 
[13] −0.0142 × DTC + 1.7439 −1.8748 × ϕ + 0.9679 

Global 
Correlation 

- - - - Jin et al. 
[13] 

2.2.2. Elastic-Based Brittleness Index Correlations 

The EBI depends on the Young’s modulus and Poisson’s ratio. The Young’s modulus measures 
the ratio of tensile or compressive stress to the corresponding strain. It essentially indicates the 
stiffness of a material. On the other hand, the Poisson’s ratio is the measure of the geometric change 
of shape under stress. In other words, it is the ratio of transverse to longitudinal strains. In general, 
the rock brittleness becomes higher with lower values of Poisson’s ratio, and higher values of Young’s 
modulus [28]. Furthermore, it was reported that the Young’s modulus has a greater impact on the BI 
prediction than Poisson’s ratio [23]. 

The compressional and shear wave velocities can be determined from sonic logging and the bulk 
density. The dynamic Young’s modulus and the dynamic Poisson’s are a function of dynamic shear 
and bulk modulus. The shear modulus G can be derived using the following relationship [29]. G = ρ × v  (16)

where ρb is bulk density in g/cm3 and vs is shear wave velocity in m/s. 
The bulk modulus can be derived using the following expression [29]. K = ρ × v − 43 v  (17)

where vp is the compressional wave velocity in m/s. 
Moving forward after the determination of the shear modulus (G) and the bulk modulus (K), it 

is possible to derive the dynamic Young’s modulus and Poisson’s ratio using the following equations, 
respectively [30]. E = 9 K × G3K + G  (18)

ν = 3 K − 2 G6 K + 2G  (19)

where the dynamic Young’s modulus is in MPa.  
Using the previously listed equations to derive Young’s modulus and Poisson’s ratio, Rickman 

et al. [28] derived a correlation between the elastic-based brittleness index (EBI) and the elastic 
properties. Studies on the Barnett Shale lead to the following assumption. EBI = E , + ν ,2  (20)

where Estat,norm and νstat,norm are the normalized static Young’s modulus and the normalized Poisson’s 
ratio, respectively. The values were normalized using the following relationship. 
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E , = E − EE − E  (21)

where Emin is the minimum Young’s modulus within the formation of interest and Emax is the 
maximum Young’s modulus [28].  

The obtained normalized numbers have a value between 0 and 1. The values for the static 
normalized Poisson’s ratio were determined using the same procedure. However, these values do 
only represent the static properties. Static properties are, as previously mentioned, obtained from 
laboratory testing such as triaxial testing. To convert the dynamic properties into static properties, 
empirical correlations were derived. Rickman et al. [28] used a correlation from Mullen et al. [31] as 
represented in the following equation. E = E3.3674 .

 (22)

where Edyn is the dynamic Young’s modulus. 
To derive this equation, Rickman et al. [28] performed testing on the Pinedale anticline area in 

Southwestern Wyoming. It is a tight gas, Late Cretaceous interbedded sand and shale deposited by 
a fluvial/alluvial system [32]. The validation of this equation was confirmed by comparison between 
the lab testing of core samples, dipole sonic logging, and the pressure history from the stimulation 
treatment. 

Sharma and Chopra [33] used an approach combining the bulk density, which is directly derived 
from the logs, and the Young’s modulus. They considered Jurassic strata within the Western 
Canadian Sedimentary basin. The strata consist predominantly of siliceous-rich cherts and dolomites 
to carbonate-rich shale in the one formation [33]. The other formation encompasses fine grained 
siltstone grading to fine grained sandstone with limited shale content [33]. The following correlation 
was developed for the EBI. EBI = E × RHOB (23)

The correlation has proven that brittleness can be defined as the product of Young’s modulus 
and bulk density. For a brittle formation, both Young’s modulus and density are expected to be high, 
so the product serves as an indicator of high brittleness [33]. This equation is applicable for 
formations, where clay is not the dominant mineral fraction. The density of clay varies strongly 
depending on the clay minerals. Illite has a high bulk density, but acts ductile. The product would 
overestimate the BI, which leads to imprecise assumptions. However, in formations where silicates 
and carbonates are the dominant fraction, this equation leads to reasonable estimates for BI. 

Sun et al. [34] found a correlation for EBI based on studies in the Western Depression of the 
Liahoe Oilfield in China, which was formed during the Paleogene era. Due to its geologically young 
age, the burial depth is much shallower than other tested formations. The lithology can be described 
as shale containing 38.4–41.9% clay, 40.6–43.5% quartz, and 8.1–11.4% carbonate [34]. It is comparable 
with the Woodford Shale lithology. The TOC was found to be up to 2.39% [34]. EBI = 𝐸 × RHOBν  (24)

For the tested formation, the equation shows feasible results [34]. However, further testing 
should be conducted to verify the applicability of this equation by applying it on other formations. 

Chen et al. [35] derived an equation for EBI based on studies in tight sandstones and shales with 
porosity of less than 10% [35]. The following correlation for the EBI was found [35]. EBI = E λ (25)

where 𝜆  is Lame’s first parameter, which is an elastic modulus, and can be derived using the 
following expression. λ = RHOB × (𝑣 − 2𝑣 ). (26)
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It has been shown, that the EBI increases with an increasing quartz content and decreasing 
porosity [35]. This approach is more applicable for shale. The Young’s modulus is, according to Chen 
et al. [35], more sensitive to a high quartz content and low TOC, porosity, and fluid content. The 
properties match the criteria for unconventional reservoirs.  

Jin et al. [19] found various approaches in the prediction of BI. The models were applied on the 
Mississippian Barnett Shale. MBI and FI correlations were applied from well logging data. The 
fracture toughness (KIC), the strain energy release rate (GC), and three different EBI correlations were 
found and compared. Among those, the Barnett Formation, the Marble Falls, Upper Barnett, 
Forestburg Limestone, Lower Barnett, and Viola Limestone were distinguished in terms of pay zones 
and rock type [19].  

The KIC represents the resistance of rock to fracture propagation from pre-existing cracks [19]. 
It can either be derived from the tensile strength, uniaxial compressive strength, p-wave velocity, or 
Young’s modulus. The following equation shows the correlation between fracture toughness and 
Young’s modulus. KIC = 0.313 + 0.027 × E  (27)

where Estat is the static Young’s modulus in GPa.  
Data from the Woodford Shale were accounted by Jin et al. [19] to verify the existing correlations. 

As a linear correlation between the static and the dynamic Young’s modulus is assumed, the dynamic 
Young’s modulus was used [19]. The fracture toughness can be correlated to existing BI correlations. 
With increasing fracture toughness, the brittleness increases as well. Limitations of this equation are 
indicated by an error of 23.82% between the predicted and the measured KIC and a coefficient of 
determination of R² = 0.62 [19]. 

GC is the energy dissipation per unit area during the process of new fracture creation [19]. It 
combines the KIC with the dynamic Young’s modulus and the dynamic Poisson’s ratio, as indicated 
by the following equation. GC = 1 − ν × KICE × 10  (28)

However, it was found that GC does not always increase as the Young’s modulus increases [19]. 
This leads to difficulties in comparing the strain energy release rate to different FI correlations since 
it is assumed that the FI grows with an increasing Young’s modulus.  EBI = EBI Rickman et al. + GC2  (29)

where EBI (Equation (20)) is the normalized brittleness correlation from Rickman et al. [28] and 
GCnorm is the normalized strain energy release rate. Values were normalized, according to the 
following equations. EBI = EBI − EBIEBI − EBI  (30)

GC = GC − GCE − E  (31)

where GCmax and GCmin represent the maximum and minimum critical strain energy release rate for 
the investigated formation, respectively.  

Another approach from Jin et al. [19] is to combine the EBI from Rickman et al. [28] with the 
fracture toughness. EBI = EBI Rickman et al. + KIC2  (32)

where KICnorm is the normalized fracture toughness, according to Equation (27). 
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EBI = EBI Rickman et al. + E ,2  (33)

Overall, the different correlations do not show a uniform trend. Jin et al. [19] stated that these 
variations are due to differences in the fracture toughness. Therefore, a comparison between the 
different applications is essential in the prediction of effective fractured formations. 

The review has shown that several BI correlations do exist. However, it leaves one question open. 
Which correlation results in the most accurate prediction for different formations in the sense of 
unconventional reservoirs? Furthermore, which correlation results in accurate predictions for 
different rock types within the same formation? Most correlations were applied on the Barnett Shale, 
but not every formation has similar lithological attributes as the Barnett. In addition, not every well 
has all the required data provided. For instance, if sonic log is not available, then the approach using 
the MBI should be taken. Essentially, the more information is available, the more accurate is the 
prediction for BI. An overview about the existing correlations can be found in Table 3. 

Table 3. Summary of EBI correlations based on elastic properties. 

Correlation Formation Age Lithology Φ (%) TOC (%) Reference EBI = E , + ν ,2  Barnett Carb. 
Shale bounded by 

limestone  
6 1–3 

Rickmann et 
al. [28] EBI = E × RHOB 

Western 
Canadian 

Basin 
Jur. 

Shale and 
Sandstone 

5- 10 - 
Sharma and 
Chopra [33] EBI = 𝐸 × RHOBν  Liahoe, 

China 
Paleo
gene 

Shale  2.39 Sun et al. [35] EBI = E λ - - 
Shale and 
Sandstone 

<10 - 
Chen et al. 

[36] KIC = 0.313 + 0.027 × E  Woodford Dev. 
Shale bounded by 

limestone 
0.5–3 5.01–14.81 Jin et al. [19] GC = 1 − ν × KICE× 10  

Barnett Carb. 
Shale bounded by 

limestone 
6 1–3 Jin et al. [19] 

EBI = FI + GC2  Barnett Carb. 
Shale, bounded by 

limestone 
6 1–3 Jin et al. [19] EBI = FI + KIC2  Barnett Carb. 

Shale bounded by 
limestone 

6 1–3 Jin et al. [19] 

EBI = FI + E ,2  Barnett Carb. 
Shale bounded by 

limestone 
6 1–3 Jin et al. [19] 

3. Methodology 

The review of the correlations has shown that the brittleness can be determined in different ways 
using the MBI, the LBI, or the EBI. To further understand the applicability of these correlations, the 
equations from the literature review were applied on four formations: the Marcellus, Chattanooga, 
Bakken, and Niobrara formations. Those formations are important unconventional plays in the 
United States. However, there are no specific correlations existing for those formations. The 
formations vary in their mineralogical components, so that a broad applicability of the correlations 
from the literature can be verified. The Marcellus Formation encompasses higher clay mineral 
content, while the Bakken Formation and Chattanooga Shale are dominated by silicates and the 
Niobrara Formation by carbonates.  

The Marcellus Formation was formed during the Early and Middle Devonian geological age. By 
analyzing well data from the Appalachian Basin in northern West Virginia, it is found that the 
Marcellus Formation consists primarily of black shale, which is brittle, soft, and carbonaceous with 
beds and a high Pyrite content with a TOC content ranging from 2 to 20 wt. % [36]. It is considered a 
low porosity, ultra-low permeability shale-gas reservoir [36]. The Bakken Formation is also from the 
Devonian-Mississippian geological age and consists of three members, which includes the lower, 
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middle, and upper Bakken. However, focus of this study is the middle Bakken Formation, which 
consists of calcareous sandstone and siltstone [37]. It is characterized as a low porosity and 
permeability formation (<0.1 mD) [12]. The Niobrara Formation, on the other hand, is mainly 
composed of a combination of chalk and marl layers with a TOC content in the marls ranging from 2 
to 8 wt.%, a low porosity (<10%), and low permeability (<0.001 mD) [38]. The Chattanooga Shale is 
the correlative Kansas equivalent to the Woodford Shale, which is mostly present in Oklahoma [39]. 
It was formed during the Late Devonian to Mississippian and is primarily a black to gray shale, which 
includes some dolomitic and calcareous shale [39]. 

As various minerals contribute in a different way to the MBI, it is important to divide the MBI 
and FI applications into three major categories, which are: clay dominated, silicate dominated, and 
carbonate dominated (Figure 2). 

 
Figure 2. Ternary diagram showing the average mineral content for the following formations: 
Niobrara Formation [40], Eagle Ford Shale [27], Marcellus Formation [41], middle Bakken Formation 
[42], Woodford/ Chattanooga Shale [25], Wolfcamp Formation [20,21] , and Barnett Formation [12]. 

The MBI can be derived either from wireline logging using tools such as the LithoscannerTM or it 
can be calculated from well logs using matrix inversion techniques. Therefore, gamma ray, bulk 
density, neutron density, formation resistivity, and compressional slowness were applied to derive 
the weight fraction for both methods using inversion techniques. The minerals expected in the 
formation need to be determined in advance. This information can be obtained from X-ray diffraction 
(XRD) measurements or from the literature. Given the properties for the minerals from the literature 
and the log responses, the authors used matrix inversion to calculate the weight fraction for each 
mineral, respectively, over depth. As the mineralogy changes over depth, lithofacies were assigned 
and matrix inversion was conducted for each facies, respectively. The mineral weight fraction of each 
formation was applied to derive the MBI. 

For the FI correlations, two approaches were used. The first one is the LBI, which can be derived 
from wireline logging using compressional slowness, shear slowness, and bulk density. The EBI, on 
the other hand, can be divided into two subcategories, which are the static FI and the dynamic FI. 
The static FI is determined from laboratory testing such as triaxial testing. However, the Young’s 
modulus that is obtained by the dynamic methods is greater in value than the static ones, due to a 
decreasing porosity during the static testing [43]. Since the lithology is mostly strongly 
heterogeneous, several tests should be performed to get a reasonable estimation for the brittleness, 
which are costly and time-consuming. Therefore, the EBI uses the dynamic elastic properties such as 
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Young’s modulus and Poisson’s ratio to derive the brittleness of the entire formation when well logs 
exist.  

Brittleness is also influenced by the porosity [8]. With increasing porosity, the BI tends to 
decrease [9]. Therefore, the MBI correlations from Glorioso and Rattia [16] as well as Jin et al. [19] 
were modified. Two modifications were made: first, instead of the mineral weight fraction, these 
correlations use the volume fraction of each mineral, respectively. Second, the total porosity is added 
in the denominator, as can be seen in Table 4.  

Table 4. Modified MBI correlations showing the total porosity (PHIT) as an additional parameter in 
the denominator, which decreases the brittleness. 

Formula Reference Q + Cal + DQ + Cal + D + Cly + TOC + PHIT Modified Glorioso and Rattia [16] Q + F + M + Carbtot + PHIT  Modified Jin et al. [19] 

4. Results and Discussion 

It has been shown that different concepts of brittleness follow different trends. High quartz and 
carbonate content results in a high brittleness [17]. The correlation from Glorioso and Rattia [16] was 
applied on the Marcellus Formation (Figure 3). Quartz is showing higher values of MBI for a higher 
mineral weight fraction. Carbonate indicates the same trend with a higher MBI for higher mineral 
content. Therefore, applications on the Marcellus Formation has proven that quartz and carbonate 
play the most important role in shaping the trend for MBI. However, the results indicate that a 
correlation between mineral content and MBI is only applicable for weight fractions higher than 0.1. 

(a) (b) 

Figure 3. Comparison between the MBI derived using the Glorioso and Rattia [16] correlation and the 
mineral weight fraction applied on the Marcellus Formation. (a) Comparison with a quartz weight 
fraction. (b) Comparison with a carbonate (calcite and dolomite) weight fraction. 

Application on the Marcellus Formation has shown that the clay content has a strong impact on 
the brittleness (Figure 4). The higher the clay content, the lower the values of the MBI using the 
correlations from Glorioso and Rattia [16]. Small amounts of clay influence the MBI significantly and 
lead to smaller values of MBI.  

Overall, the MBI, LBI, and EBI correlations were applied on the Marcellus, Bakken, Niobrara, 
and Chattanooga formations. It was found that the MBI correlations from Glorioso and Rattia [16] 
and Jin et al. [19] lead to the most accurate results for all four formations when compared to the LBI 
and EBI results. 
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Figure 4. Correlation between the clay (illite) content and the MBI based on the correlation from 
Glorioso and Rattia [16] applied on the Marcellus Formation. The data are derived from the Marcellus 
Formation in West Virginia. 

The Marcellus Formation shows varying BI correlations (Figure 5). It was found that, at depths 
with high MBI values, the quartz content is very high, too. EBI correlations show no clear trend for 
formations, which are strongly heterogeneous. 

 

 
Figure 5. BI correlations from the Marcellus Formation applied over depth. Black colors show LBI 
correlations and red colors show MBI correlations. 

The applied BI correlations on the Bakken Formation show a clear separation between the upper, 
middle, and lower Bakken (Figure 6). LBI correlations show the lowest values for BI for the middle 
Bakken. It has been shown that the LBI correlations that were proposed for the Woodford Formation 
lead to the most accurate results. Both formations have a high content in silicates. Higher values were 
found using the modified MBI correlations (Table 4) from Glorioso and Rattia [16] and Jin et al. [19]. 
The highest values were found for the EBI correlations using the correlation from Sharma and Chopra 
[19,39]. The EBI correlations show great sensitivity, which indicates the highest values of BI for the 
middle Bakken and the lowest values for the upper and lower Bakken.  
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Figure 6. BI correlations from the middle Bakken formation applied over depth. Black colors show 
LBI correlations, green colors modified MBI correlations (Table 4), and blue colors indicate EBI 
correlations. The interval from 3087.5 to 3102 m depth shows the middle Bakken formation. It shows 
a clear trend to the upper and lower Bakken since the clay content in these formations is significantly 
higher [42]. 

The results of the BI correlations for the Niobrara Formation indicate overall high values of 
brittleness. This formation is dominated by brittle carbonates (Figure 7). The LBI correlations are used 
from the Eagle Ford Shale correlation from Jin et al. [13]. LBI and MBI show agreement in BI over 
depth. However, the MBI and EBI correlations show more lateral fluctuations. The Niobrara 
Formation encompassed alternating chalk and marls [38], which would lead to different values of BI. 

 
Figure 7. BI correlations from the Niobrara Formation applied over depth. Black colors show LBI 
correlations, red colors show MBI correlations, and blue colors indicate EBI correlations. The EBI is 
overall significantly lower than LBI and MBI correlations. 

The Chattanooga Shale is separated into two parts, which are separated through an increase in 
brittleness. The upper part is dominated by siltstones, and the lower part is dominated by dolomite, 
which increase the values of BI significantly. The values for MBI show the highest values of BI (Figure 
8). It has been shown that the global correlation from Jin et al. [13] leads to higher conformity in the 
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results compared to EBI and MBI, for formations with high clay content like the Chattanooga Shale, 
and for strongly heterogeneous formations like the Marcellus Formation. 

 
Figure 8. BI correlations from the Chattanooga Shale applied over depth. Black colors show LBI 
correlations, red colors show MBI correlations, and blue colors indicate EBI correlations. The sharp 
change at 1506 m depth is due to a change in lithology from a silt dominated lithology with lower BI 
values to a dolomite dominated lithology with significantly higher values for BI. 

The proposed brittleness evaluation in this study is based on the idea that brittleness is strongly 
dependent on the lithology. Different indexes of brittleness lead to different results when it comes to 
selecting frackable zones. The mineralogy and the identification of brittle minerals have a significant 
impact on the brittleness. Quartz and carbonate were identified as brittle minerals. The overall 
mineral distribution of brittle minerals is pivotal. On the other hand, the clay content has a great 
influence on the brittleness, even in small weight fractions. Therefore, non-brittle minerals are more 
sensitive and have a greater impact in deriving the brittleness. Apart from clay, the TOC is anticipated 
to decrease the brittleness as well [15]. It was found that the porosity influences the brittleness 
negatively. Hence, the porosity lowers the brittleness.  

This review paper demonstrated that using a universal index to represent LBI, MBI, or EBI 
results in misleading results related to selecting zones for perforation. Therefore, it is recommended 
for each rock type to be assigned an index based on its lithology and mineralogy.  

5. Summary 

It has been shown that the rock brittleness is a complex function of lithology. Several correlations 
to derive the brittleness exist in the literature (Table A1). However, these correlations were derived 
for different formations with varying mineral content and varying elastic properties. There is no 
universal correlation to derive the brittleness since it is a function of lithology. Therefore, it is 
important to understand the lithology, before applying a BI correlation. Formations can be divided 
into four classes: silicate dominated formations, carbonate dominated formations, clay dominated 
formations, and strongly heterogeneous formations, which are not primarily dominant in either 
silicates, nor carbonates or clay.  

An effective hydraulic fracturing candidate consists overall of high amounts of silicates and 
carbonates. TOC is anticipated to lower the brittleness while a mature source rock is also important 
for a proper oil and gas production. Depending on the available data, the MBI, LBI, and EBI can be 
used to estimate the brittleness. If elastic properties are unknown, it is recommended to use the MBI 
correlations. Two correlations lead to reasonable results. Glorioso and Rattia’s [16] equation is 
applicable, when the TOC content is known. If the TOC is unknown, it is recommended to use the 
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correlation proposed from Jin et al. [19]. If only NPHI or DTC are known, it is recommended to apply 
the empirical correlations from Jin et al. [13]. Depending on the predominant minerals in the targeted 
formation, the Woodford, Eagle Ford, or the Global correlations should be applied.  

An overview about the significant dependency of correlations with the predominant mineral 
weight fraction can be found in Table 5. Overall, a summary of all findings can be found in Table 5. 

Table 5. Summary of MBI correlations based on the mineral composition. 

BI Silicate Dominated Carbonate Dominated Clay Dominated Strongly Heterogeneous 

MBI 
MBI =  [16] MBI =  [19] 

LBI 
[13] 

−0.012 × DTC + 1.4921 −2.3115 × ϕ + 1.0104  −0.0142 × 𝐷𝑇𝐶 + 1.7439 −1.5314 × ϕ + 0.8575 

EBI 
E × RHOB [33] 0.313 + 0.027 × E  [13] 

, ,   [28]  

Author Contributions: K.M. analyzed the data and wrote the first draft of the manuscript with support from 
M.A. and R.B. R.B. conceived the original idea, the main conceptual ideas, and supervised the project. M.A. 
revised the second draft and contributed to the interpretation of the results.  

Funding: This research received no external funding. 

Acknowledgments: The authors would like to thank the Marcellus Shale Energy and Environment Laboratory 
(MSEEL), the Wyoming Oil and Gas Conservation Commission, Slawson Exploration Company Inc., and the 
Kansas Geological Survey for the provided data.  

Conflicts of Interest: The authors declare no conflict of interest. 

  



Geosciences 2019, 9, 319 17 of 21 

 

Appendix A 

Table A1. Overall summary of existing correlations for the brittleness index. 

Correlations for BI Formation Geologic Age Lithology Φ (%) TOC (%) Reference 𝑀𝐵𝐼 = QQ + Carb + Cly Barnett  Carboniferous Shale bounded by LS 6 1–3  Jarvie et al. [12] 𝑀𝐵𝐼 = Q + DolQ + D + Cal + Cly + TOC Barnett Carboniferous Shale bounded by LS 6 1–3 
Wang and  

Gale [8] 𝑀𝐵𝐼 = Q + Cal + DQ + Cal + D + Cly + TOC Neuquén Basin, 
Argentina 

Jurassic 
Mud- 
stones 

8 2.5–3.5 Glorioso and Rattia [16] 𝑀𝐵𝐼 = (abM1 + abM2 … )(abM1 + abM2 + abM3 … ) 
Haynes- 

ville  
Jurassic Calcite to silica-rich 

shale 
8 3–6 Buller et al. [17] 𝑀𝐵𝐼 = Q + F + M + Carbtot  Barnett Carboniferous Shale bounded by LS 6 1-3 Jin et al. [19] MBI = 1.09 × Q + F + PQ + F + P + Cal + D + Cly + 18.8  Wolf- 

camp  
Carboniferous 

- Permian.  Shale, minor LS 10 2.3 Alzahabi et al. [20] 𝑀𝐵𝐼 = Q + F + PQ + F + P + 0.5 × (Cal + D) + PHIT  Shales in Europe 
and Barnett 

Cambrian – 
Jurassic 

Shale bounded by LS 0.6–11 15 Rybacki et al. [22] LBI = −0.012 × DTC + 1.4921 LBI = −1.5314 × NPHI + 0.8575 
Woodford Devonian Shale bounded by LS 0.5–3 5.01–14.81 Jin et al. [13] LBI = −0.01104 × DTC + 1.4941 LBI = −1.4956 × NPHI + 0.9763 

Barnett Carboniferous Shale bounded by LS 6 1–3 Jin et al. [13] LBI = −0.0116 × DTC + 1.6231 LBI = −2.3115 × NPHI + 1.0104 
Eagle Ford Cretaceous Mudstones 2–9 2.1–6.86 Jin et al. [13] LBI = −0.0142 × DTC + 1.7439 LBI = −1.8748 × NPHI + 0.9679 

Global 
Correlation 

- - - - Jin et al. [13] EBI = E , + ν ,2  Barnett Carboniferous Shale bounded by LS 6 1–3 Rickman et al. [28] EBI = E × RHOB Western 
Canadian Basin 

Jurassic Shale and Sandstone 5–10 - Sharma and Chopra [33] EBI = 𝐸 × RHOBν  Liahoe, China Paleogene Shale  2.39 Sun et al. [35] EBI = E λ - - Shale and Sandstone <10 - Chen et al. [36] KIC = 0.313 + 0.027 × E  Woodford Devonian Shale bounded by LS 0.5-3 5.01–14.81 Jin et al. [19] 
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Correlations for BI Formation Geologic Age Lithology Φ (%) TOC (%) Reference GC = 1 − ν × KICE × 10  Barnett Carboniferous Shale bounded by LS 6 1–3 Jin et al. [19] EBI = FI + GC2  Barnett Carboniferous Shale, bounded by LS 6 1–3 Jin et al. [19] EBI = FI + KIC2  Barnett Carboniferous Shale bounded by LS 6 1–3 Jin et al. [19] EBI = FI + E ,2  Barnett Carboniferous Shale bounded by LS 6 1–3 Jin et al. [19] 
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