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Abstract: Wilms’ tumors are pediatric malignancies that are thought to arise from faulty kidney
development. They contain a wide range of poorly differentiated cell states resembling various
distorted developmental stages of the fetal kidney, and as a result, differ between patients in a
continuous manner that is not well understood. Here, we used three computational approaches to
characterize this continuous heterogeneity in high-risk blastemal-type Wilms’ tumors. Using Pareto
task inference, we show that the tumors form a triangle-shaped continuum in latent space that is
bounded by three tumor archetypes with “stromal”, “blastemal”, and “epithelial” characteristics,
which resemble the un-induced mesenchyme, the cap mesenchyme, and early epithelial structures of
the fetal kidney. By fitting a generative probabilistic “grade of membership” model, we show that
each tumor can be represented as a unique mixture of three hidden “topics” with blastemal, stromal,
and epithelial characteristics. Likewise, cellular deconvolution allows us to represent each tumor in
the continuum as a unique combination of fetal kidney-like cell states. These results highlight the
relationship between Wilms’ tumors and kidney development, and we anticipate that they will pave
the way for more quantitative strategies for tumor stratification and classification.

Keywords: Wilms’ tumors; pareto task inference; topic modeling; cellular deconvolution

1. Introduction

Wilms’ tumor, also known as nephroblastoma, is a pediatric malignancy that develops
in children under age five. It is the most common type of kidney cancer in children,
with approximately 600 new cases diagnosed each year in the United States [1]. Wilms’
tumors are highly heterogeneous and contain varying proportions of cells resembling renal
progenitors and poorly differentiated structures. Therefore, it is thought that they arise from
genetic and epigenetic distortions during various stages of fetal kidney development [2].
There are currently two main protocols for treating Wilms’ tumors: the protocol of the
Children’s Oncology Group (COG), followed in North America, dictates primary surgery
followed by chemotherapy [3], while the protocol of the Société International d’Oncologie
Pédiatrique (SIOP) [4], followed in Europe and other countries, dictates preoperative
chemotherapy followed by surgery and then postoperative chemotherapy. Both protocols
recommend postoperative radiotherapy when there are indications for tumor spread or
incomplete tumor removal.

Wilms tumors are pathologically classified according to their cell type composition:
“Stromal” tumors contain a large fraction of cells that resemble the un-induced mesenchyme
(nephrogenic zone stroma) of the developing fetal kidney, and sometimes additional tissues
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such as muscle and cartilage that, like the un-induced mesenchyme, also originate from
the fetal mesoderm [2]. “Blastemal” tumors resemble the cap mesenchyme, which is a
transient cellular compartment in the fetal developing kidney that contains the nephron
progenitors. “Epithelial” tumors contain a significant fraction of poorly differentiated
epithelial structures. However, in many cases the tumors contain a mixture of all three
components and are classified as “mixed” or “triphasic”. The component proportions can
vary significantly, resulting in a continuous range of tumor appearances [5].

In a previous study [6], we performed Pareto task inference on a dataset of microarray
gene expression measurements from favorable histology Wilms’ tumors (FHWT’s). These
samples were collected by the Children’s Oncology Group [7–10] from tumors that were
surgically resected before chemotherapy—according to the COG protocol. We found that
the tumors fill a triangle-shaped continuum in gene expression latent space, of which the
vertices represent three idealized “archetypes”, and showed that these archetypes have
predominantly renal blastemal, stromal, and epithelial characteristics that correlate well
with the three major lineages of the developing fetal kidney. Moreover, we showed that
advanced stage tumors tend to shift towards the blastemal archetype in latent space.

However, the heterogeneity of tumors that were already treated with chemotherapy
before surgery—according to the SIOP protocol—might be quite different, since chemother-
apy is known to alter the tumor’s histological features and distribution of subtypes [4]. We
therefore set to characterize the transcriptional heterogeneity also in high-risk, blastemal
type, post-operative chemotherapy Wilms’ tumors using a dataset of microarray gene
expression measurements collected by Wegert et al. [11]. The tumors in this dataset were
treated with chemotherapy according to the SIOP protocol but still contained a signifi-
cant amount of remaining viable blastema after treatment, a situation that is known to be
associated with worse prognosis.

To characterize the continuous heterogeneity in this dataset of high-risk tumors, we
used an unsupervised machine learning algorithm called grade of membership (GOM)
or topic modeling, which is a form of “soft” clustering. As opposed to “hard” cluster-
ing algorithms, which seek to partition samples or genes into distinct subgroups [12,13],
soft clustering algorithms allow each sample to have memberships in multiple clusters
simultaneously. This method has been used for studying patterns of gene expression in
tissues, for example, Dey et al. [14] demonstrated the use of grade of membership modeling
in bulk gene expression data from 53 human tissues from the GTEx project. A similar
approach has been used in single cell deconvolution algorithms [15,16] to estimate the
proportions of different cell types in bulk gene expression profiles. In our study, we fit a
topic model to a bulk gene expression dataset of high-risk, blastemal type, post-operative
chemotherapy Wilms’ tumors, and show that each tumor can be modeled as a combination
of three “idealized” tumor types or “topics”. This demonstrates the potential of topic
models for characterizing continuous heterogeneity in cancer.

2. Results
2.1. Pareto Task Inference Shows That Blastemal Type, Post-Operative Chemotherapy Wilms’
Tumors Fill a Triangle-Shaped Continuum in Latent Space That Is Bounded by Archetypes with
Stromal, Epithelial, and Blastemal Characteristics

We first downloaded a dataset containing gene expression microarray measurements
from 53 high-risk, blastemal type, post-operative chemotherapy Wilms’ tumors that were
published by Wegert et al. [11]. After preprocessing and data standardization, we per-
formed principal components analysis (PCA) and found that the tumors form a triangle-
shaped continuum in latent space, rather than discrete separated clusters (Figure 1A–F).
Following the principle of Pareto task inference [17,18], we assume that the vertexes of
this triangle-shaped geometric configuration represent “idealized” tumor components or
cellular “archetypes” from which all the tumors within the triangle are composed. We
therefore used the ParTI Matlab package developed by Alon and colleagues [17,19] to find
these archetypes, which are the vertexes of the optimal fitting triangle encompassing the
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tumors in our dataset. The archetypes were then presented in the same space as the original
data points (Figure 1A–F).
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Figure 1. Pareto task inference shows that blastemal type, post-operative chemotherapy Wilms’
tumors fill a triangle shaped continuum in latent space that is bounded by archetypes with stromal,
epithelial, and blastemal characteristics. (A–E) Shown are PCA plots of the tumors in our dataset
along with the three calculated archetypes (the vertexes of the triangle). In order to identify the
archetypes, in each panel we selected a gene marking one of the three main lineages of the fetal
developing kidney and plotted the size and color of each point according to its expression level
(red large—high expression, green small—low expression). It can be seen than FN1, a marker for the
un-induced mesenchyme, is highly expressed towards the stromal archetype. Likewise, SLC12A1,
which marks the renal epithelium, is highly expressed near the epithelial archetype, and SIX2, a
marker for the cap mesenchyme, is predominantly expressed near the blastemal archetype. The genes
TOP2A and MKI67, which mark cycling cells, are also highly expressed near the blastemal archetype.
(F) A PCA plot of the tumors marked according to their reported histological type. It can be seen that
tumors with anaplastic histology (diffuse or focal), which is considered least favorable, tend to cluster
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in the vicinity of the blastemal archetype. (G) A gene expression heatmap of 102 genes that are
known from the literature to mark specific kidney lineages. The three arrowheads mark the genes
from panels (A–C). It can be seen that the stromal, blastemal, and epithelial archetypes over-express
genes that mark the un-induced mesenchyme, the cap mesenchyme, or renal epithelial tubular
structures, respectively. Hierarchical clustering was done using the Matlab clustergram function with
standardized rows (=genes), Euclidean distance metric, and average linkage.

In order to characterize and identify the three archetypes, we first chose a set of genes
that mark the three main lineages in the developing kidney (the un-induced mesenchyme,
the cap mesenchyme, and early renal epithelial structures) and examined their pattern of ex-
pression in latent space (Figure 1A–C). We found that FN1, a gene that is known to be highly
expressed in the un-induced mesenchyme, is highly expressed near the first archetype. The
membrane transporter gene SLC12A1, that is known to mark epithelial tubules in the de-
veloping kidney, is over expressed near the second archetype. The gene SIX2, which marks
the cap mesenchyme, is highly expressed near the third archetype. We therefore labeled the
three archetypes as “stromal”, “epithelial”, and “blastemal”, respectively. Moreover, we
found that TOP2A and MKI67, genes that are known to be over-expressed in proliferating
cells, are highly expressed near the blastemal archetype (Figure 1D,E), which is consistent
with the proliferative and “aggressive” nature of blastemal tumors after chemotherapy [11].

To confirm our characterization of the three archetypes, we selected a set of 102 genes
(Table S3) that are known from the literature to mark specific cell populations in the
developing kidney. Then, we performed hierarchical clustering of the tumors in our dataset
and their archetypes with respect to these genes (Figures 1G and S1–S12). Indeed, it can be
seen that markers for the un-induced mesenchyme (COL1A1, COL3A1, COL5A2, FN1, and
SERPINE1) are over-expressed in the stromal archetype, markers of the cap mesenchyme
(SIX2, CITED1, EYA1, and SALL2) are over-expressed in the blastemal archetype, and
markers for the renal epithelial tubules (SLC12A1, AQP2, LRP2, and UMOD) are over-
expressed in the epithelial archetype. We noticed that the stromal archetype also over-
expresses genes characteristic to immune cells (C1QA, C1QB, CCL2, CD14, CD93, and
CXCL2), which is consistent with the fact that the un-induced mesenchyme contains a
relatively large number of infiltrating immune cells (e.g., macrophages). We also note
that the stromal archetype over-expresses genes characteristic to muscle cells (DES, MYL1,
MYH3, and MYOG), which is consistent with the fact that some stromal tumors have been
known to contain muscle-like cells.

We further characterized the archetypes using GO enrichment analysis (Figure 2). For
each of the three archetypes, we found a list of genes that are over-expressed (log2FC > 2)
with respect to both of the other two archetypes (Figure 2A–C, Tables S4–S6). We then
inserted the three lists of genes into Toppgene [20]. We found that the stromal archetype is
enriched for genes typical to the un-induced mesenchyme, for example, components of the
extracellular matrix (Figure 2D). The blastemal archetype is enriched for genes involved in
maintenance of nephron progenitors and the mesenchymal to epithelial transition (MET),
which are characteristic of the cap mesenchyme. Finally, genes enriched in the epithelial
archetype are involved in cell–cell junctions, transport, and renal epithelial differentiation,
which are typical to the early epithelial structures in the developing kidney.

We also checked the relation between the reported tumor histology and clinical param-
eters to its location in latent space (Figure 1F and Figure S13–S23). We observed that tumors
with anaplastic histology (diffuse or focal), which is considered least favorable [11], as well
as tumors with mutations in the genes SIX1, SIX2, or DROSHA, tend to cluster in the vicin-
ity of the blastemal archetype. This agrees with the higher incidence of SIX1/2 mutations
in tumors with chemotherapy-resistant blastema that was observed by Wegert et al. [11].
Likewise, we observed that the single blastema-only xenograft in the dataset is also located
closest to the blastemal archetype more than any other tumor. This is consistent with
previous observations that patient-derived xenografts significantly increase the percentage
of their blastemal component from their first passage [21].
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Figure 2. GO enrichment analysis shows that the stromal, blastemal, and epithelial archetypes are
enriched for genes that are characteristic of the un-induced mesenchyme, the cap mesenchyme, and
renal epithelium of the fetal developing kidney, respectively. (A–C) For each of the three archetypes,
we selected a set of genes for which the log2-fold change was larger than two, with respect to the
other two archetypes. These genes were used as input to Toppgene. (D) It can be seen that the
stromal archetype over-expresses genes that are characteristic of the un-induced mesenchyme, for
example, genes responsible for creating and maintaining the extracellular matrix. The blastemal
archetype over-expresses genes that are characteristic of the cap-mesenchyme; for example, genes
responsible for maintaining nephron progenitors and for the mesenchymal to epithelial transition
(MET). Likewise, the epithelial archetype over-expresses genes that are characteristic of the fetal
renal epithelium; for example, genes responsible for nephron epithelial differentiation and genes
responsible for creation and maintenance of renal proximal tubules, S-shaped bodies, cell–cell
junctions, and membrane transporters.
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2.2. Topic Modeling Shows That Each Tumor Can Be Represented as a Unique Mixture of Three
Hidden Topics with Blastemal, Stromal, and Epithelial Characteristics

The fact that the tumors in our dataset create a triangle-shaped continuum in latent
space suggests that each tumor can be represented as a unique mixture of three “idealized”
tumor components. Therefore, in order to provide a more quantitative interpretation, we
fitted a topic model with k = 3 hidden “topics” to our dataset [22] (see Materials and
Methods). This allowed us to infer both the three latent topics (that presumably represent
the “idealized” tumor components) and also the proportions of topics from which every
single tumor is composed. We observed that, indeed, tumors located near each of the three
vertexes of the triangle-shaped continuum are predominantly composed one out of the
three topics (Figure 3A), whereas tumors located in-between the vertexes of the triangle or
near its center are composed of multiple topics (Figures S24–S29 and Supplementary Data).
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topics (center and right panels) for selected tumors that are located near each of the three archetypes
in latent space (left panels). The topic model predicts that each one of these tumors was generated
primarily from a single topic. In particular, tumors near the epithelial topic contain a high fraction of
topic no. 1 (top panels), tumors near the stromal topic contain a high fraction of topic no. 2 (middle
panels), and tumors near the blastemal topic contain a high fraction of topic no. 3 (bottom panels). It
can also be seen that the geometry of the topic simplex (right panels) resembles that of the PCA latent
space (left panels). (B) The posterior probabilities of the three topics given the expression of specific
genes show that the three topics have stromal, blastemal, and epithelial characteristics. The posterior
probability of a topic given the expression of a specific gene represents the association between over-
expression of that specific gene and the probability of that topic being represented in a tumor. It can
be seen that over-expression of markers for the renal epithelial tubules (e.g., CDH1, SLC12A1, LRP2,
and UMOD) is associated with high probability for the epithelial topic (topic no. 1), over-expression
of markers for the un-induced mesenchyme (COL1A1, COL1A2, COL5A2, FN1, and SERPINE1) is
associated with high probability for the stromal topic (topic no. 2), and over-expression of markers
for the cap mesenchyme (SIX2, CITED1, EYA1, and SALL2) is associated with high probability for the
blastemal topic (topic no. 3). (C) A heatmap of the topic composition of each tumor. It can be seen
that, tumors with anaplastic histology (diffuse or focal), which is considered least favorable, as well
as the single blastemal xenograft in the dataset, all contain a large fraction of the blastemal topic.

We next set out to identify the three topics (Figure S27). We observed that topic no.
1 over-expresses markers for the renal epithelial tubules (e.g., CDH1, SLC12A1, LRP2,
and UMOD) and we therefore labeled it the “epithelial” topic. Likewise, topic no. 2
over-expressed markers for the un-induced mesenchyme (e.g., COL1A1, COL1A2, TWIST1,
ZEB2, and SERPINE1) and we therefore labeled it the “stromal” topic, and topic no. 3
over-expressed markers for the cap mesenchyme (e.g., SIX2, CITED1, EYA1, and SALL2)
and we therefore labeled it the “blastemal” topic.

We showed this also by calculating the posterior probabilities p(topic|gene) over all
the genes for each of the three topics (Figure 3B). The posterior probability of a specific topic
given the expression of a specific gene represents the association between expression of a
transcript from that specific gene and the probability of that specific topic being represented
in each of the tumors of our dataset. Indeed, we observed that that over-expression
of markers for the renal epithelial tubules (e.g., CDH1, SLC12A1, LRP2, and UMOD) is
associated with high probability for the epithelial topic (topic no. 1), over-expression of
markers for the un-induced mesenchyme (COL1A1, COL1A2, COL5A2, FN1, and SERPINE1)
is associated with high probability for the stromal topic (topic no. 2), and over-expression
of markers for the cap mesenchyme (SIX2, CITED1, EYA1, and SALL2) is associated with
high probability for the blastemal topic (topic no. 3). To further confirm this, we selected
a list of genes characterizing each topic, that is, genes for which the posterior probability
p(topic|gene) > 0.5 . Using GO enrichment analysis as before, we found that indeed, the
three hidden topics over-express genes related to epithelial (resembling early renal tubular
epithelium), stromal (un-induced mesenchyme-like), or blastemal (cap mesenchyme-like)
cell types (Tables S7–S9).

We also checked the relation between the topic composition of each tumor to its
histology and clinical parameters (Figures 3C and S28). We found that tumors with anaplas-
tic histology (diffuse or focal), which is considered least favorable, as well as the single
blastemal xenograft in the dataset, and also tumors with mutations in the genes SIX1, SIX2,
or DROSHA, all contain a larger fraction of the blastemal topic.

2.3. Cellular Deconvolution Indicates That Each Tumor Is Composed of a Unique Mixture of Cell
Populations Resembling Those of the Fetal Kidney

We next used cellular deconvolution [16] to infer a more detailed cellular composition
of each tumor. Since cells in Wilms’ tumors closely resemble those of the fetal kidney,
we used a previously published single-cell gene expression dataset from a mouse fetal
developing kidney [23] as reference. The cellular deconvolution algorithm was used to
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predict the proportions of ten cell types from the developing kidney within each of the
tumors and archetypes (Figure 4 and Figures S30–S32).
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dataset from the developing mouse fetal kidney that was used for the deconvolution. The size and
color of each point (=single cell) corresponds to the proportion of that cell in the specific de-convolved
tumor (red large—high expression, green small—low expression). The middle panels highlight the
relevant tumor or archetype in the PCA latent space. The right panels show bar plots of the predicted
proportions of each of the 10 cell types in the reference single-cell matrix. It can be seen that the stromal
archetype is composed primarily from cells resembling the un-induced mesenchyme (UM) and
macrophages, the epithelial archetype is composed mainly of epithelial tubular cells resembling those
of the fetal proximal tubule (PROX_2), the Loop of Henle (LOH), and the distal tubule (DIST_CD),
and the blastemal archetype is composed primarily from cells resembling the cap mesenchyme (CM),
along with some very early epithelial tubular structures (PROX_1). (B) The different cell populations
marked on a tSNE plot of the reference single cell RNAseq dataset from the developing mouse fetal
kidney that was used for cellular deconvolution (CM—cap mesenchyme, DIST_CD—distal tubule and
collecting duct, ENDO—endothelial, LOH—loop of Henle, MACROPHAG—macrophages, PODO—
podocytes, PROX_1—early epithelial structures such as C/S-shaped bodies, PROX_2—proximal
tubule, UM—un-induced mesenchyme). (C) A heatmap of the cell type proportions from which each
tumor is composed, as predicted by cellular deconvolution. It can be seen that most of the tumors
with reported blastemal histology contain a significant proportion of cells resembling those of the cap
mesenchyme (CM), as expected. Likewise, tumors with anaplastic histology (diffuse or focal), as well
as the single blastemal xenograft in our dataset, also contain a significant fraction of cells resembling
the cycling cap mesenchyme cells (CM_DIV).

We observed that the stromal archetype is composed primarily of cells resembling the
un-induced mesenchyme (UM) and macrophages, the epithelial archetype is composed
mainly of epithelial cells resembling those of the fetal proximal tubule (PROX_2), the
Loop of Henle (LOH), and the distal tubule (DIST_CD), and the blastemal archetype is
composed primarily of cells resembling the cap mesenchyme (CM), along with some cells
resembling very early epithelial tubular structures (PROX_1). Tumors that are near the
archetypes in latent space are likewise composed primarily from these cell types, while
tumors in between the archetypes or in the middle of the triangle shaped continuum are
composed of more heterogeneous mixtures of the different cell populations (Figure S31 and
Supplementary Data).

We also correlated the reported histology with the cell type repertoire inferred by
cellular deconvolution (Figures 4C and S32). We found that most of the tumors with
reported blastemal histology contain a significant proportion of cells resembling those of
the cap mesenchyme (CM_ALL), as expected. Likewise, tumors with anaplastic histology
(diffuse or focal), as well as the single blastemal xenograft in our dataset, and also tumors
reported to contain mutations in the genes SIX1, SIX2, or DROSHA, contained a significant
fraction of cells resembling the cycling cap mesenchyme cells (CM_DIV) in the fetal kidney.
This is in agreement with the findings of Wegert et al. [11] that blastemal-type Wilms
tumors with mutations in SIX1 or SIX2 have a gene expression signature of proliferation
and kidney progenitors.

3. Discussion

In this study, we found that high-risk blastemal-type Wilms’ tumors, that is, tumors
that were treated with chemotherapy according to the SIOP protocol but still contained a
significant amount of remaining viable blastema after treatment, form a triangle shaped
continuum in the latent space spanned by the first two principal components. Using Pareto
task inference and GO enrichment analysis, we showed that the vertices of this triangle
represent “stromal”, “blastemal”, and “epithelial” cellular archetypes that correspond
to the three main lineages in the developing fetal kidney—the un-induced mesenchyme,
the cap mesenchyme, and the renal tubular epithelium. We then used topic modeling to
fit a generative probabilistic model to our dataset and showed that each tumor can be
represented as a unique mixture of three hidden “topics” with blastemal, stromal, and
epithelial characteristics. We complemented this by performing cellular deconvolution
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with respect to an independently measured single-cell gene expression dataset from a fetal
kidney in order to represent each tumor along the continuum as a unique combination of
fetal kidney-like cell states. All three approaches yielded consistent results, thus further
highlighting the relationship between Wilms’ tumors and kidney development.

We observe similar triangle-shaped formations in latent space and similar archetypes
in both favorable histology Wilms’ tumors (FHWT’s) [6], that were surgically resected
before chemotherapy according to the COG protocol, as well as in high-risk blastemal type
Wilms’ tumors, that were treated with chemotherapy according to the SIOP protocol. This
indicates that the triangle-shaped continuum formed by Wilms’ tumors in latent space
is a conserved and intrinsic property of Wilms’ tumor heterogeneity. Note that in high-
risk blastemal type Wilms’ tumors we were not able to observe a shift of advanced-stage
tumors towards the blastemal archetype, as we observed in favorable histology Wilms’
tumors. This indicates that chemotherapy alters the proportions of cell populations in each
tumor such that the dominant predictor for clinical outcome is the presence or absence of a
blastemal component, whereas other features become relatively less important. Another
possibility is that the number of samples in the present study is too small to observe this
phenomenon. We also note that integration of both datasets is difficult since the studies
were performed with microarrays of different types and there is a large technical bias
between them. We believe that this problem will be mitigated in the future as more and
more tumors are analyzed using RNA sequencing at the bulk and single-cell levels.

4. Materials and Methods
4.1. Gene Expression Datasets

A total of 53 CEL files were downloaded from the GEO database (accession number
GSE53224). We also received a table connecting the microarray ID’s from the GEO database
(GSM1287918_dkfz1079, GSM1287919_dkfz1080, . . . ) to the tumor identifiers from Table S2
in the original publication by Wegert et al. [11] (WT055, WT056, . . . ), from Prof. Man-
fred Gessler, who is one of the authors of the original study (see data and metadata in
Tables S1 and S2).

4.2. Data Preprocessing

Microarray data preprocessing was performed with the “affy” R package using the
“rma” function with default parameters. We created a gene expression table by choos-
ing, for each gene, the probe-set with maximal mean value across all arrays using the
“collapseRows” R function from the WGCNA package.

After performing PCA, three of the samples (GSM1287965, GSM1287967, and GSM1287968)
were observed to be clear outliers in the latent space formed by the first three principal
components. Since the heterogeneity that these tumors represent cannot be effectively
modeled with only three samples, combined with the fact that the algorithms we employed
might be susceptible to these outliers, we decided to remove these samples from the rest of
the analysis.

4.3. Data Visualization and Clustering

PCA was performed in Matlab using the “pca” function with the default SVD al-
gorithm and centered features. For hierarchical clustering we used the Matlab function
“clustergram” with standardized rows (=genes or features), Euclidean distance metric, and
average linkage, except when otherwise specified.

4.4. Archetype Analysis

The archetypes and best fitting simplex containing the data points (=tumors) were
calculated using the “ParTI_lite” matlab function (https://www.weizmann.ac.il/mcb/
UriAlon/download/ParTI, accessed on 15 January 2022). Pareto Task Inference (ParTI),
is a method for inferring biological tasks from high dimensional data [17]. The function
finds the shape of the best fitting polytope (triangle, tetrahedron, etc.) which encompasses

https://www.weizmann.ac.il/mcb/UriAlon/download/ParTI
https://www.weizmann.ac.il/mcb/UriAlon/download/ParTI
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the data points. The vertices of this polytope, or “archetypes”, represent biological tasks,
and data points specialize at each task according to their distance from the archetypes. The
identity of the tasks can be inferred from features enriched near the archetypes. We first
log-transformed the expression data and used the default Sisal [24] algorithm to find the
best fitting simplex.

For Gene Ontology Enrichment analysis, lists of genes found to be over-expressed in
each of the archetypes were used as inputs to ToppGene [20]. Venn diagrams were prepared
using the matplotlib function “Venn2” in Python with default parameters.

4.5. Topic Modeling

“Topic models” or “grade of membership models” are used in natural language
processing to model documents that contain words from different “topics” [25]. Given a
set of documents and an assumed number of topics, k, from which they are composed,
it is possible to infer the best fitting parameters of the model by using the Expectation
Maximization (EM) algorithm, and thus discover both the k latent topics as well as their
proportions in each individual document. Other applications are in population genetics to
model individuals with mixed ancestry, and in gene expression datasets to model samples
with partial memberships in multiple biologically-distinct clusters [14].

A type of topic model called the Latent Dirichlet Allocation (LDA) model assumes
that the given set of documents can be characterized by a Dirichlet distribution with
concentration parameters α1, α2, . . . , αk. Each individual document in the set is generated
by mixing k latent topics with proportions described by the random numbers θ1, θ2, . . . , θk
(whose sum equals to one) that are chosen from the Dirichlet distribution. Each word in
the document is independently generated by first selecting one of these topics (according
to the probabilities θ1, θ2, . . . , θk) and then sampling a word from the dictionary (that is, the
distribution over words) associated with the chosen topic.

In our case, each document corresponds to a tumor, each topic corresponds to an
“idealized” tumor, each word in the vocabulary (“word bag”) corresponds to a gene, and
the number of occurrences of a specific word in given document (or topic) corresponds to
the number of mRNA molecules, or the expression level, of that specific gene in the specific
tumor (or “idealized” tumor). Thus, fitting a topic model to a dataset of gene expression
profiles from a set of tumors enables us to infer the latent topics (that presumably represent
“idealized” tumors) as well as the proportions of topics from which every single tumor
is composed.

In this study, the parameters of the topic model were learned using the “fit_topic_model”
function from the R package “fastTopics” [22] (version 0.4-11). The number of latent topics
was set between k = 2, 3, . . . , 10. The “fastTopics” package estimates the parameters of
the topic model by using non-negative matrix factorization (NMF) based on maximizing
a Poisson log-likelihood function. Using default settings, the “fit_topic_model” function
performs 100 iterations of the expectation maximization (EM) algorithm followed by 100 it-
erations of the coordinate descent (CD) algorithm. The outputs of the learning algorithm
are: (1) The “Loadings” L matrix which contains the proportions of the k topics θ1, θ2, . . . , θk
in each tumor; (2) The “Factors” F matrix which contains the probability p(gene|topic) of a
transcript from a given gene being expressed in each one of the k topics. Log-fold changes
between topics were computed using the “fastTopics” function “de_analysis”.

One way to visualize the association between a specific gene and each of the k topics
is to calculate the “posterior probabilities” p(topic|gene) for each topic and compare them.
The term p(topic|gene) is the probability of a specific topic being represented (in any
sample of our dataset) given the expression of a single transcript from that specific gene.
To calculate the posterior probabilities, we used Bayes’ theorem:

p(topic|gene) =
p(gene|topic)·p(topic)

∑topic p(gene
∣∣∣topic)·p(topic)
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where, for simplicity, we set the prior p(topic) = 1/3 for each topic. Using this method,
we were able to find sets of genes that are most associated with each of the k = 3 inferred
topics and deduce their biological identity.

Choosing k, the number of topics for topic modeling, is often a “thorny” issue. In gen-
eral, there is no one “true” value for k, and sometimes different values can even complement
each other [14]. In our case, we chose k = 3 topics since the tumors form a triangle in latent
space which indicates that they can be modeled as mixtures over three topics.

4.6. Cellular Deconvolution

Single-cell deconvolution algorithms estimate the proportion of different cell types
present in a heterogeneous mixture bulk sample. In this study we used the Cell Population
Mapping (CPM) algorithm [16] which uses both a reference single-cell expression matrix
and the “cell-state space” of this reference matrix. The “cell-state space” contains the
coordinates of each single-cell in latent space [26] and is obtained using algorithms such
as PCA, tSNE, or UMAP. This latent space is used by the CPM algorithm to visualize cell
trajectories and cell type information inside each bulk sample.

CPM consists of two steps: a deconvolution, or inference, step, and an extrapolation
step. In the deconvolution step, the unknown abundance of each reference cell in the bulk
expression sample is inferred using linear support vector regression (SVR). This step is
repeated N different times, where each time a randomly chosen subset (of size “modelSize”,
default value = 50) of the reference single cell matrix is used for the regression. The number
of repetitions, N, is chosen such that each cell will be sampled at least a pre-selected number
of times (“minSelection”, default value = 5). At the end of the deconvolution step, the
predicted abundance values of each single cell in the bulk sample are obtained by averaging
over the N runs. In the extrapolation step, CPM infers the abundance of each candidate
cell-state in the bulk sample. This is done by averaging the cell abundance values inferred
earlier over each cell’s Nd (“neighborhoodSize”, default size = 10) nearest neighbors in
the reference cell-state space, thus creating a cell abundance that is “smoothed” over the
reference cell-state space.

In this study, we used the “scbio” R package which accompanies the CPM paper (https:
//github.com/amitfrish/scBio, accessed on 28 January 2022), using a reference single-
cell dataset from the mouse fetal kidney [23] and this dataset’s tSNE embedding for the
reference cell-state space. We used scbio’s default values for the modelSize, minSelection,
and neighborhoodSize parameters. We also set the parameter “quantifyTypes” = T to
quantify the proportions of the different cell types in each bulk matrix in addition to the
abundance values of each reference single-cell.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24043532/s1.
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database (GSM1287918_dkfz1079, GSM1287919_dkfz1080, . . . ) to the tumor identifiers from Table S2
in the original publication by Wegert et al. [11] (WT055, WT056, . . . ), from Prof. Manfred Gessler,
who is one of the authors of the original study (see Tables S1 and S2).

Acknowledgments: We wish to thank Manfred Gessler, Jenny Wegert, Dudi Feldman, Noam Ko-
rngut, Amit Frishberg, Naomi Pode-Shakked, and all members of our lab for helpful comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Servaes, S.E.; Hoffer, F.A.; Smith, E.A.; Khanna, G. Imaging of Wilms tumor: An update. Pediatr. Radiol. 2019, 49, 1441–1452.

[CrossRef] [PubMed]
2. Hohenstein, P.; Pritchard-Jones, K.; Charlton, J. The yin and yang of kidney development and Wilms’ tumors. Genes Dev. 2015, 29,

467–482. [CrossRef] [PubMed]
3. Dome, J.S.; Fernandez, C.V.; Mullen, E.A.; Kalapurakal, J.A.; Geller, J.I.; Huff, V.; Gratias, E.J.; Dix, D.B.; Ehrlich, P.F.; Khanna,

G.; et al. Children’s Oncology Group’s 2013 blueprint for research: Renal tumors. Pediatr. Blood Cancer 2013, 60, 994–1000.
[CrossRef] [PubMed]
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