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Simple Summary: This is the first attempt to test the validity of morphological characters to diagnose
the tribes used in the conventional taxonomy of the pyrginae skippers. Current studies on the group
deal only with molecular phylogeny and its resulting classification without considering morphology.
The diagnostic characters currently used in distinguishing the two tribes cannot be adopted. When
a new taxonomic framework is proposed based on molecular data, reevaluation of morphological
characters is suitable.

Abstract: In this study, complete mitochondrial genomes of nine species representing three tribes
in the subfamily Pyrginae sensu lato were newly sequenced. The mitogenomes are closed double-
stranded circular molecules, with the length ranging from 15,232 bp to 15,559 bp, which all encode
13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes,
and a control region. The orientation and gene order of these nine mitogenomes are identical to the
inferred ancestral arrangement of insects. All PCGs exhibit the typical start codon ATN except for
cox1 (using CGA) and cox2 (using TTG) in Mooreana trichoneura. Most of the PCGs terminate with a
TAA stop codon, while cox1, cox2, nad4, and nad5 end with the incomplete codon single T. For the
different datasets, we found that the one comprising all 37 genes of the mitogenome produced the
highest nodal support, indicating that the inclusion of RNAs improves the phylogenetic signal. This
study re-confirmed the status of Capila, Pseudocoladenia, and Sarangesa; namely, Capila belongs to the
tribe Tagiadini, and Pseudocoladenia and Sarangesa to the tribe Celaenorrhini. Diagnostic characters
distinguishing the two tribes, the length of the forewing cell and labial palpi, are no longer significant.
Two populations of Pseudocoladenia dan fabia from China and Myanmar and P. dan dhyana from
Thailand are confirmed as conspecific.

Keywords: mitochondrial genome; comparative genomics; phylogeny; Tagiadini; Celaenorrhini;
Capila; Pseudocoladenia; Sarangesa

1. Introduction

The family Hesperiidae is one of species-richest groups of Lepidoptera, which account
for one-fifth of the world’s butterfly species, though the number is significantly underesti-
mated [1]. Traditionally, they had been classified into four or five subfamilies, and genus
group was adopted instead of tribe, until the groups were divided [2] and members were
re-classified based on molecular phylogeny [1,3]. Currently, as many as 10 subfamilies with
numerous tribes are proposed [4,5].

The conventional concept of the subfamily Pyrginae is considered polyphyletic be-
cause members of the subfamily Eudaminae, which are morphologically significant, are
often embedded within Pyrginae. As a result, Pyrginae is divided into three subfamilies:
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Tagiadinae (with the tribes Tagiadini, Netrocorynini, and Celaenorrhini), Pyrrhopygini
(with the tribes Pyrrhopygini and Jerini), and Pyrginae (with the tribes Pyrgini, Carcharo-
dini, Achlyodini, and Erynnini). These taxonomic arrangements, however, are purely or
almost exclusively based on molecular data, and subfamily- and tribe-level assignments are
arbitrary. On the one hand, biological taxonomy must reflect the phylogenetic relationship.
On the other hand, however, it is a general reference system, and such a splitting of groups
may result in taxonomic confusion. For this reason, herein we adopt conventional Pyrginae
sensu lato, the subfamily currently composed of 646 species in 86 genera worldwide [6–10].

Evans in 1949 divided Pyrginae into the Celaenorrhinus-, Tagiades-, and Pyrgus-group,
within the morphology-based taxonomic framework. He subsequently classified them into
two sections [11]. The first section, characterized by erect labial palpi and long forewing
cell, includes three genus groups: the Augiades-, Urbanus-, and Celaenorrhinus-group. The
second section, characterized by porrect labial palpus and short forewing cell, also includes
three genus groups: the Telemiades- (=Tagiades-), Erynnis-, and Pyrgus-group.

Most of the phylogenetic analyses of the family Hesperiidae rely on single-gene loci
analyses, both mitochondrial (such as cox1, cox2, and 16S rRNA) and nuclear (wingless
and EF-1α). Although the mitogenome, in whole or part, has been widely used as a
molecular marker in population genetics as well as evolutionary and phylogenetic studies,
relatively few studies have attempted to study the phylogeny of Hesperiidae using the
mitogenomes [12–14]. Data from a new perspective, such as complete mitogenomes, may
help improve phylogenetic resolution for these groups. In this study, we sequenced nine
additional mitogenomes of species belonging to nine genera in three tribes of the subfamily
Pyrginae. In addition, we analyzed the characteristics of the nine mitogenomes in detail.
Phylogenetic relationships of the family Hesperiidae were explored in combination with
all the available 90 complete Pyrginae mitogenomic sequences available in GenBank. This
enabled us to test the monophyly of Pyrginae, explore relationships within Pyrginae, and
examine the taxonomic status of some ambiguous genera in Pyrginae.

Due to the compositional heterogeneity of the mitochondrial genome of Lepidopteran
insects, most previous studies have attempted to address it by removing the third codon
position of protein-coding genes, as well as excluding rRNAs and tRNAs [12–17]. The
latest phylogenetic analysis by Ma et al. [18] established a dataset that contained RNAs
and produced the most consistent topologies and higher node support values [19,20].
Therefore, the RNAs increased the phylogenetic resolution. Among the RNAs, tRNA is
quite conservative, especially in the sequence of the stem area; its evolutionary rate is
slower than the rate of other components of mitochondrial genomes. rRNAs also have
higher conservatism and slower evolutionary rate. Thus, tRNA and rRNA are often used
in phylogenetic analysis of various taxa, which has a great influence on the phylogenetic
results [18,21–24]. Thus, we performed phylogenetic analysis of the family Hesperiidae
using several different datasets to explore the impact of the inclusion or exclusion of tRNA
on phylogenetic resolution.

Current studies deal only with molecular phylogeny and its resultant classification
without reevaluating diagnostic morphological characters used in conventional taxonomy.
We examined the wing venation and labial palpi of five genera to test the validity of those
morphological characters as diagnostic features under the current phylogenetic framework.

2. Materials and Methods
2.1. Sample Collection and Genomic DNA Extraction

Mitochondrial genomes of nine species belonging to nine genera of Pyrginae were
sequenced. Of those nine genera, three (Satarupa, Mooreana, and Abraximorpha) were newly
sequenced genera and the rest were genera sequenced previously; therefore, we used
different species in those genera, except for Pseudocoladenia, to confirm the monophyly of
the genera. All the species/specimen used in this study are listed in (Table 1) and were
collected and stored in 100% ethanol at −20 ◦C in the Entomological Museum, NWAFU.
The specimens were initially examined using morphological characteristics, particularly
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the genitalia, and confirmed via cox1 barcoding using the BOLD database [15,25,26]. The
extraction of the Genomic DNA was done from the thoracic muscle (mitogenomes) using
the Biospin Insect Genomic DNA Extraction Kit (Qiagen, Hilden, Germany). The NGS
(Illumina HiSeq X; Biomarker Tech, Beijing, China) was employed to determine the nine
mitogenomes of Pyrginae.

Table 1. Species information and GenBank accession numbers.

Species Accession Number Collection Spot

Abraximorpha davidii MZ221157 Zhoushan, Zhejiang, China
Capila translucida MZ221158 Jianfengling, Hainan, China

Celaenorrhinus aspersus MZ221159 Guanyang County, Guangxi, China
Erynnis popoviana MZ221165 Huangling County, Shaanxi, China

Gerosis phisara MZ221160 Mountain Fengyangshan, Zhejiang, China
Mooreana trichoneura MZ221161 Yexianggu, Yunnan, China

Pseudocoladenia dan fabia MZ221162 Mengla County, Yunnan, China
Satarupa nymphalis MZ221163 Xianxialing, Zhejiang, China

Tagiades menaka MZ221164 Jianfengling, Hainan, China

2.2. Bioinformatics Analyses

The extraction of the complete mitogenome sequences of the nine Pyrginae species
was done using the Illumina HiSeq 2000 system by Genesky Biotechnologies Inc. (Shanghai,
China). The correct identification rate of bases was very high, reaching 99.9%. First, the raw
paired reads were retrieved and quality-trimmed using CLC Genomic Work bench v10.0
(CLC Bio, Aarhus, Denmark) with default parameters. The basic statistics of sequencing
for each mitochondrial genome are presented in the Supplementary Materials (Table S1).
The format of sequencing was Illumina, and the length of reads was 150 bp paired-ends.
Then, the clean paired reads were used for mitogenome reconstruction using MITObim
v1.7 software with default parameters and the mitogenome of Tagiades vajuna (KX865091) as
the reference [16,27]. We selected a mitogenome, T. vajuna, as the reference and compared
it with the nine mitogenomic sequences using MAFFT integrated into Geneious [28,29].
We conducted the annotation of the mitogenomes and comparative analyses following the
methodology outlined above. We selected the complete mitogenome sequence of T. vajuna
as a reference and used the Geneious 8.1.3 software to annotate all the various genomic
features. Protein-coding genes (PCGs) were found by searching for ORFs (employing
the invertebrate mitochondrial genetic code translation table5) and checking nucleotide
alignments against the reference genome in Geneious 8.1.3. All RNAs (rRNAs and tRNAs)
were identified using the MITOS Web Server (http://mitos.bioinf.uni-leipzig.de/index.py
(accessed on 1 July 2021)), and tRNA secondary structures were visualized according to
these results [27]. Finally, we used the Geneious software to visualize all gens by inspecting
against the reference mitogenome. Nucleotide composition, codon usage, comparative
mitogenomic architecture tables for the nine mitogenomes, and data used to plot RSCU
(relative synonymous codon usage) figures were all calculated using PhyloSuite [28]. The
nine newly sequenced mitogenome sequences were uploaded onto GenBank with the
accession numbers as specified in Table 1.

2.3. Sequence Read Archive (SRA) Data Extraction

We downloaded and extracted the raw data of mitochondrial genomes of 86 hesperiid
species from GenBank to reconstruct the phylogenetic relationships. The raw data were
assembled and annotated by Geneious 8.1.3 [26]. The SRA data used in this study were
obtained from GenBank and are listed in Table 2.

2.4. Phylogenetic Analysis

Phylogenetic analyses were conducted based on three datasets: (1) PCG: all codon
positions of 13 protein-coding genes; (2) PRT: all codon positions of 13 protein-coding genes,

http://mitos.bioinf.uni-leipzig.de/index.py
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2 rRNAs, and 22 tRNAs; and (3) 12PRT: the first and second positions of 13 protein-coding
genes, 2 rRNAs, and 22 tRNAs and two methods, (1) Bayesian inference (BI) and (2) max-
imum likelihood (ML), including 129 skipper species. The complete mitogenome genes
were extracted using PhyloSuite v1.2.2, and the sequences of 13 PCGs of the 129 species
were aligned in batches with MAFFT integrated into PhyloSuite. The best partitioning
schemes and models for the Bayesian inference (BI) method and maximum likelihood
(ML) method are specified in the Supplementary Materials (Tables S2 and S3). Nucleotide
sequences were aligned using the G-INS-i (accurate) strategy and codon alignment mode.
All rRNAs were aligned in the MAFFT with the Q-INS-i strategy [29]. Poorly matched sites
in the alignments were removed using Gblocks v0.91b [30]. Individual genes were also
concatenated using PhyloSuite v1.2.2.

Table 2. Species information and GenBank accession numbers.

Subfamily Tribes Species Accession Number References

Coeliadinae Burara striata NC_034676 [31]
Choaspes benjaminii NC_024647 [32]

Hasora anura KF881049 [33]
Hasora vitta NC_027170 [34]
Hasora badra NC_045249 Unpublished

Euschemoninae Euschemon rafflesia NC_034231 [35]
Heteropterinae Carterocephalus silvicola NC_024646 [32]

Heteropterus morpheus NC_028506 Unpublished
Leptalina unicolour MK265705 [36]

Barcinae Apostictopterus fuliginosus NC_0339946 [24]
Barca bicolor NC_0339947 [24]

Hesperiinae Lerema accius NC_029826 [37]
Ochlodes venata HM243593 Unpublished
Parnara guttata NC_029136 [38]
Potanthus flavus KJ629167 [32]

Astictopterus jama MH763663 [18]
Isoteinon lamprospilus MH763664 [18]
Notocrypta curvifascia MH763665 [18]

Agathymus mariae mariae KY630504 [39]
Megathymus beulahae beulahae KY630505 [39]

Megathymus cofaqui cofaqui KY630503 [39]
Megathymus streckeri streckeri KY630501 [39]

Megathymus ursus violae KY630502 [39]
Megathymus yuccae yuccae KY630500 [39]

Eudaminae Achalarus lyciades NC_030602 [40]
Lobocla bifasciata KJ629166 [32]

Pyrginae Celaenorrhini Celaenorrhinus maculosus NC_022853 [41]
Celaenorrhinus syllius SRR7174479 [5]

Celaenorrhinus aspersus MZ221157 This study
Eretis melania SRR7174485 [5]

Pseudocoladenia dan fabia MZ221162 This study
Sarangesa dasahara SRR7174486 [5]

Netrocorynini Netrocoryne repanda SRR7174483 [5]
Tagiadini Abraximorpha davidii MZ221157 This study

Capila translucida MZ221157 This study
Capila zennara SRR7174484 [5]

Ctenoptilum vasava JF713818 [42]
Tagiades (=Daimio) tethys KJ813807 [43]

Gerosis bhagava SRR7174473 [5]
Gerosis phisara MZ221157 This study

Mooreana trichoneura MZ221162 This study
Satarupa nymphalis MZ221162 This study

Tagiades menaka MZ221157 This study
Tagiades vajuna KX865091 [16]
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Table 2. Cont.

Subfamily Tribes Species Accession Number References

Pyrrhopygini Croniades pieria auraria SRR7174434 [5]
Jera tricuspidata SRR7174433 [5]

Metardaris cosinga cedra SRR7174435 [5]
Odontoptilum angulatum MW381783 [44]

Oxynetra aureopecta SRR7174437 [5]
Passova gellias SRR7174439 [5]

Pyrrhopyge hadassa SRR7174436 [5]
Zonia zonia panamensis SRR7174438 [5]

Erynnini Anastrus sempiternus SRR7174507 [5]
Camptopleura auxo SRR7174462 [5]

Clito sp. SRR7174503 [5]
Chiomara georgina SRR7174467 [5]
Ebrietas anacreon SRR7174464 [5]

Ephyriades brunnea brunnea SRR7174465 [5]
Erynnis brizo brizo SRR7174469 [5]
Erynnis montanus NC_021427 [32]
Erynnis popoviana MZ221162 This study

Gesta gesta SRR7174466 [5]
Gorgythion begga SRR7174468 [5]

Helias cama SRR7174506 [5]
Mylon lassia SRR7174502 [5]

Potamanaxas melicertes SRR7174504 [5]
Sostrata nordica SRR7174505 [5]

Timochares trifasciata SRR7174461 [5]
Achyodini Aethilla lavochrea SRR7174432 [5]

Achlyodes pallida SRR7174366 [5]
Atarnes sallei SRR7174338 [5]

Charidia lucaria SRR7174567 [5]
Doberes anticus SRR7174369 [5]

Eantis tamenund SRR7174365 [5]
Eburuncus unifasciata SRR7174345 [5]
Eracon sarahburnsae SRR7174373 [5]
Gindanes brontinus SRR7174337 [5]
Grais stigmaticus SRR7174368 [5]

Haemactis sanguinalis SRR7174339 [5]
Milanion marciana SRR7174344 [5]

Mimia cf. chiapaensis SRR7174372 [5]
Morvina fissimacula SRR7174367 [5]

Myrinia cf. binoculus SRR7174371 [5]
Ouleus salvina SRR7174340 [5]

Paramimus stigma SRR7174568 [5]
Pseudodrephalys atinas SRR7174341 [5]
Pythonides amaryllis SRR7174336 [5]

Quadrus cerialis SRR7174343 [5]
Spioniades abbreviata SRR7174370 [5]

Tosta tosta SRR7174431 [5]
Zera sp. SRR7174342 [5]

Carcharodini Arteurotia tractipennis tractipennis SRR7174564 [5]
Austinus heroica SRR7174561 [5]

Bolla brennus SRR7174539 [5]
Carcharodus alceae SRR7174533 [5]

Cornuphallus problematica SRR7174563 [5]
Cyclosemia anastomosis SRR7174565 [5]

Gorgopas trochilus SRR7174532 [5]
Hesperopsis alpheus texana SRR7174536 [5]
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Table 2. Cont.

Subfamily Tribes Species Accession Number References

Noctuana haematospila SRR7174535 [5]
Pellicia arina SRR7174570 [5]

Pholisora mejicanus SRR7174538 [5]
Polyctor polyctor SRR7174562 [5]

Spialia orbifer SRR7174534 [5]
Staphylus hayhurstii SRR7174537 [5]

Tiana niger SRR7174566 [5]
Viola violella SRR7174571 [5]

Pyrgini Anisochoria polysticta SRR7174531 [5]
Antigonus erosus SRR7174496 [5]

Burnsius albescens SRR7174499 [5]
Burnsius phIletas SRR7174498 [5]

Carrhenes canescens SRR7174490 [5]
Chirgus limbata SRR7174488 [5]

Heliopetes ericetorum SRR7174500 [5]
Heliopetes sublinea SRR7174501 [5]

Plumbago plumbago SRR7174495 [5]
Paches loxus SRR7174494 [5]

Pyrgus malvae SRR7174492 [5]
Pyrgus scriptura SRR7174487 [5]

Pyrgus maculatus NC_030192 Unpublished
Timochreon satyrus SRR7174493 [5]

Trina geometrina SRR7174491 [5]
Xenophanes tryxus SRR7174489 [5]
Zopyrion sandace SRR7174530 [5]

Outgroup
Papilionidae Papilio machaon NC_018047 Unpublished

Papilio helenus NC_025757 [45]
Graphium timur NC_024098 [46]
Parnassius apollo NC_024727 [47]

2.5. Morphological Comparison

For the morphological comparison, we chose two types of the diagnostic characters
one of which is the wing venation of five species representing five tribes. Another diagnostic
characters is the lateral view of the head, showing the labial palpus of the five species
representing five tribes. First, we rinsed the scales of Celanorrhinus maculosus and Saranges
dasahara with 10% sodium hypochlorite and then traced the structure of the wing venation
with digital boards, finally obtaining pictures with a simplified drawing. We examined the
labial palpus of the five species using an electron microscope. Then, we constructed all the
lateral views of head showing the labial palpus through freehand drawings.

3. Results and Discussion
3.1. Genome Organization and Base Composition

The mitogenome of nine species are a single, covalently closed circular double-
stranded DNA molecule (Figure 1) composed of 37 coding genes [48–50]. The mitogenome
sizes are shown in Table 3. Including the newly sequenced mitogenomes of nine species in
the present study, 49 species of Hesperiidae have mitogenome data public available, with
the length ranging from 15,232 bp (M. trichoneura) to 15,559 bp (Erynnis popoviana).
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Figure 1. Circular maps of the mitogenomes of nine species.

All the nine mitogenomes contain 13 protein coding genes (PCGs), 22 transfer RNA
genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and an AT-rich region. Like many other
insect mitogenomes, its major strand codes for 23 genes (9 PCGs and 14 tRNAs), while
the minor strand codes for the remaining 14 genes (4 PCGs, 8 tRNAs, and 2 rRNA genes).
The orientation and gene order of these mitogenomes of nine species are identical to the
hypothesized ancestral arthropod arrangement found in the insect Drosophila yakuba [51].

The nucleotide composition of the nine mitogenomes is significantly biased towards A
and T, with a relative A + T content of 79.5% to 82.4% in the whole genome, 77.5% to 80.9%
in the PCGs, 81.2% to 83% in the transfer RNAs, and 84.3% to 86% in the ribosomal RNAs.
Nearly all AT-skew and GC-skew are negative, except for the AT-skew in Ce. aspersus
(0.003) and Sat. nymphalis (0.026), showing that there are more TC than AG across the whole
mitogenome (Table 3).
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Table 3. Nucleotide composition and skewness of the nine mitogenomes.

Species

Whole Genome PCGs rRNA tRNA A + T-Rich Region

Size
(bp) AT% AT

Skew
GC

Skew
Size
(bp) AT% AT

Skew
GC

Skew
Size
(bp) AT% AT

Skew
GC

Skew
Size
(bp) AT% AT

Skew
GC

Skew
Size
(bp) AT% AT

Skew
GC

Skew

A. davidii 15,388 81.4 −0.018 −0.211 1480 82.5 0.025 0.181 11,190 79.7 −0.16 0.009 2121 85.2 0.028 0.327 278 96.1 −0.086 −0.273
Ca. translucida 15,376 82.4 −0.027 −0.186 1467 83 0.015 0.165 11,181 80.9 −0.15 0.038 2143 85.5 0.027 0.327 333 96.3 −0.022 −0.333

Ce. aspersus 15,266 80.4 0.003 −0.22 1458 81.7 0.013 0.184 11,178 78.9 −0.146 0 2165 84.6 −0.016 0.373 333 93.6 0.019 −0.333
E. popoviana 15,559 81.8 −0.003 −0.168 1465 82.1 0.013 0.172 11,190 80.3 −0.146 0.032 2156 86 0.009 0.307 368 93 −0.023 −0.231

G. phisara 15,429 80.4 −0.02 −0.212 1467 81.5 −0.001 0.14 11,199 78.6 −0.151 0.003 2144 85.2 0.058 0.308 391 94.9 −0.024 −0.2
M. trichoneura 15,232 81.7 −0.023 −0.191 1465 83 0.02 0.157 11,190 80.2 −0.152 0.011 2162 85.2 0.015 0.312 355 94.6 −0.06 −0.368

P. dan fabia 15,378 81.4 −0.024 −0.186 1460 82.2 0.01 0.131 11,190 79.9 −0.149 0.03 2151 84.7 0.018 0.331 466 94.7 −0.02 −0.2
Sat. nymphalis 15,359 79.5 0.026 −0.227 1481 81.2 0.024 0.151 11,190 77.5 −0.149 0.01 2143 84.3 −0.021 0.335 332 95.2 0 −0.375

T. menaka 15,294 80.2 −0.012 −0.215 1448 81.6 0.015 0.173 11,184 78.4 −0.175 0.007 2147 84.5 0.028 0.345 355 94.7 0.024 −0.263
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3.2. Protein-Coding Genes

Of all the 13 PCGs in the nine mitogenomes of the subfamily Pyrginae, nine were
located on the majority strand (J-strand), and the other four PCGs were located on the
minority strand (N-strand). The total length of the 13 PCGs of nine species is 11,178 bp to
11,199 bp. The A + T content of the third codon positions of the PCGs (88–96.2%) was much
higher than either the first (72.8–75.4%) or second codon positions (69.6–71.3%) (Table 4).

Table 4. Base content of protein-coding gene.

Species Regions Size (bp) T (U) C A G AT (%)

A. davidii PCGs 11,190 46.2 10 33.5 10.2 79.7
1st 3730 37.7 10.1 36.7 15.5 74.4
2nd 3730 48.4 16.2 22.4 12.9 70.8
3rd 3730 52.5 3.8 41.4 2.2 93.9

Ca. translucida PCGs 11,181 46.5 9.2 34.4 9.9 80.9
1st 3727 38.2 9.6 36.9 15.3 75.1
2nd 3727 48.6 15.8 22.7 12.9 71.3
3rd 3727 52.7 2.3 43.5 1.6 96.2

Ce. aspersus PCGs 11,178 45.2 10.6 33.7 10.6 78.9
1st 3726 36.9 10.3 37.1 15.7 74
2nd 3726 48.2 16.5 22.1 13.2 70.3
3rd 3726 50.5 4.9 41.8 2.8 92.3

E. popoviana PCGs 11,190 46 9.5 34.3 10.2 80.3
1st 3730 38.1 9.4 37.3 15.3 75.4
2nd 3730 48.3 16.4 22.3 13 70.6
3rd 3730 51.6 2.8 43.3 2.2 94.9

G. phisara PCGs 11,199 45.2 10.7 33.4 10.8 78.6
1st 3733 37.1 10.1 36.9 15.9 74
2nd 3733 48.1 16.7 22.2 13 70.3
3rd 3733 50.4 5.3 41 3.3 91.4

M. trichoneura PCGs 11,190 46.2 9.8 34 10 80.2
1st 3730 37.9 9.7 37.5 14.9 75.4
2nd 3730 48.3 15.9 22.8 13 71.1
3rd 3730 52.4 3.8 41.8 2.1 94.2

P. dan fabia PCGs 11,190 45.9 9.8 34 10.4 79.9
1st 3730 37 10.2 37 15.8 74
2nd 3730 48.2 16.4 22.3 13.1 70.5
3rd 3730 52.4 2.7 42.8 2.1 95.2

Sat. nymphalis PCGs 11,190 44.5 11.1 33 11.3 77.5
1st 3730 37.1 10.4 36.8 15.7 73.9
2nd 3730 48.3 16.2 22.4 13.1 70.7
3rd 3730 48.2 6.7 39.8 5.3 88

T. menaka PCGs 11,184 46.1 10.7 32.3 10.9 78.4
1st 3728 37.7 10.7 35.1 16.4 72.8
2nd 3728 47.9 16.8 22 13.3 69.9
3rd 3728 52.6 4.6 39.8 3 92.4

Most PCGs are initiated by a typical ATN as the start codon; the cox1 of nine species
have CGA as the start codon, and cox2 in M. trichoneura is started with TTG. The canonical
TAN stop codon occurs in most PCGs. In most of the nine species, cox1, cox2, nad4, and
nad5 genes use T as a truncated stop codon, except for the nad4 gene of P. dan fabia, and
nad5 gene of E. popoviana, M. trichoneura, and P. dan fabia—all use TAA as a stop codon.
Truncated stop codons are common in insect mitogenomes and might be completed by
post-transcriptional polyadenylation [52].

Relative synonymous codon usage (RSCU) values for the nine mitogenomes are
calculated and summarized in Figure 2. A + T bias is also reflected in the relative codon
usage by the PCGs. The amino acid frequencies, excluding stop codons, are similar amongst
the different skipper mitogenomes. The most frequently used codons across all the species
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are UUU (Phe), UUA (Leu), AUU (Ile), AUA (Met), and AAU (Asn), all of which are
composed wholly of A or T. The results indicate a preference for NNU and NNA codons in
skipper mitogenomes, which has been observed before [18,24,32].
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3.3. Transfer and Ribosomal RNA Genes

All 22 standard tRNAs of the mitogenomes of the arthropod were found in the nine
mitogenomes. The total length of tRNAs in the nine mitogenomes was 2121 bp (A. davidii)
to 2165 bp (Ce. aspersus) (Table 3). Most tRNAs could be folded into the canonical cloverleaf
structure, except for trnS1 (AGN), with its dihydrouracil (DHU) arm forming a simple loop
(all the secondary structure of tRNAs are shown in Supplementary Material Figures S1–S9),
which was considered a typical feature in metazoan mitogenomes (Wolstenholme 1992).
Fourteen tRNA genes were encoded by J-strand and the remaining eight were encoded by
N-strand. There were base pair mismatches in the receptor arm, DHU arm, anticodon arm,
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and TΨC arm on the tRNAs of the nine mitogenomes, most of which were G-U mismatches,
followed by U-U mismatches, and U-C, A-C, A-A, and A-G pairs (Table 5).

Table 5. Mismatch among the tRNAs of the nine mitogenomes.

Species
Acceptor Arm DHU Arm Anticodon Arm TΨC Arm

G-U U-U U-C G-U U-U G-U U-U A-C U-C A-A A-G G-U A-C U-U

A. davidii 5 2 1 3 2 1 2 1 2
Sat. nymphalis 3 3 6 3 2 2 1
M. trichoneura 3 4 6 2 2 2 1 2 1

P. dan fabia 5 3 3 2 2 2
G. phisara 4 2 7 3 3 2 1
T. menaka 5 2 8 5 2 1 1 2

E. popoviana 4 3 6 1 3 2 1 1 3
Ca. translucida 3 3 6 1 3 2 1 1 1

Ce. aspersus 6 3 7 1 1 3 2 3

The two rRNA genes, rrnL and rrnS, were located between trnL (CUN) and trnV,
and trnV and the A + T-rich region, respectively (Table 6). In the nine newly sequenced
mitogenomes, the lengths ranged from 1347 bp (A. davidii) to 1390 bp (M. trichoneura) for
the rrnL, and from 772 bp (T. menaka) to 788 bp (M. trichoneura) for the rrnS (Table 6). The
A + T content of total rRNA genes was 84.3% (Sat. nymphalis) to 86% (E. popoviana), which
was higher than that in the whole genome, indicating a moderate A + T preference in the
total rRNA genes.

The control region (A + T-rich region) was located between rrnS and trnM, which
ranged from 278 bp to 466 bp. This region contained the highest proportion of A and
T, ranging from 92.7% to 96.3%. The high A+T could be involved in the regulation of
transcription and replication of the mitogenome [52,53]. Both the AT-skew and GC-skew
were negative in the control region of most species (except for the AT-skew of Ce. aspersus,
Sat. nymphalis), indicating a clear bias towards the utilization of T and C.

3.4. Phylogenetic Relationships

Only one phylogenetic hypothesis based on PRT datasets and using the BI method was
proposed here (Figure 3); the rest are shown in the Supplementary Materials (Figures S10–S14).
The resulting tree topologies are all congruent at the subfamily level, and nodal support
values vary slightly for different analyses (Figure S15). The phylogenetic relationship
among subfamilies is (Coeliadinae + (Euschemoninae + (Eudaminae + Pyrginae sensu lato)
+ (Heteropterinae + (Barcinae + Hesperiinae)))).

The monophyly of the subfamily Pyrginae is strongly supported (nodal support
value is 0.867) as is the monophyly of Eudaminae + Pyrginae (nodal support value is
0.914), which means that these two subfamilies are not necessarily divided if based on this
phylogeny. There are some differences in the phylogenetic topological structures obtained
based on different datasets and different methods in this study, which are mainly reflected
in the positional relationships of the subfamily Eudaminae, and the tribe Tagiadini and
the phylogenetic relationships among the tribes Erynnini, Achlyodidini, Carcharodini, and
Pyrgini. Since the BI tree based on PRT datasets has the high nodal support, only BI trees
of PRT datasets are shown in this paper.

All the nine samples are placed within the subfamily Pyrginae sensu lato (Figures 3 and 4).
As in the traditional taxonomy of the group, Abraximorpha, Gerosis, Mooreana, and Tagiades
are placed in Tagiadini, Celaenorrhinus in Celaenorrhini, and Erynnis in Erynnini.
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Table 6. Mitogenomic organization of the nine mitogenomes.

Gene Size Intergenic Nucleotides
Codon

Strand
Start Stop

T. menaka/A. davidii/Ca. translucida/Ce. aspersus/E. popoviana/G. phisara/M. trichoneura/P. dan fabia/Sat. nymphalis

trnM 68/68/67/68/68/68/69/68/67 +

trnI 64/70/67/64/65/64/64/65/67 7/-/-/-/6/8/-/-1/10 +

trnQ 69/69/69/69/69/69/69/69/69 -3/-3/-3/1/-3/-3/8/-3/9/-3 -

nad2 1014/1014/1014/1014/1014/1014/1014/1014/1014 59/90/97/62/60/66/65/61/62/101 ATT/ATT/ATT/ATT/ATT/ATT/ATC/ATT/ATC TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA +

trnW 67/67/68/67/67/67/68/67 -2/-2/-2/-2/-2/-2/1/-1/-2/-2 +

trnC 67/65/63/66/67/69/66/69/68 -8/-8/-8/-8/-8/-8/-8/-8/-8/-8 -

trnY 65/66/64/66/65/67/66/65/75 -/3/8/11/1/1/26/2/3/8 -

cox1 1531/1531/1531/1531/1531/1531/1531/1531/1531 5/3/9/2/5/6/11/8/18/8 CGA/CGA/CGA/CGA/CGA/CGA/CGA/CGA/CGA T/T/T/T/T/T/T/T/T +

trnL2 67/67/67/67/67/67/70/67/67 +

cox2 676/673/676/676/679/676/673/676/676 -/-/-/-/-/-/1/-/-/- ATT/ATG/ATG/ATG/ATG/ATG/TTG/ATG/ATG T/T/T/T/T/T/T/T/T +

trnK 71/71/71/71/71/71/70/71/71 +

trnD 67/73/71/67/69/71/66/67/67 7/7/19/22/4/2/7/-/26/17 +

atp8 168/165/159/162/162/171/159/162/159 ATC/ATT/ATT/ATT/ATT/ATC/ATC/ATT/ATT TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAG/TAA +

atp6 678/678/678/678/678/678/678/678/678 -7/-7/-7/-7/-7/-7/-7/-7/-7/-7 ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA +

cox3 786/786/786/786/786/777/786/786/786 -1/-1/-1/-1/-1/-1/-1/-1/-1/-1 ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA +

trnG 66/67/68/66/65/66/66/65/67 2/2/2/2/2/2/2/2/2/2 +

nad3 354/354/354/354/354/354/354/354/354 ATT/ATT/ATT/ATT/ATT/ATT/ATT/ATT/ATT TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA +

trnA 64/64/65/66/68/69/65/67/67 19/-/17/9/4/16/11/5/6/3 +

trnR 64/67/62/63/63/64/66/67/66 7/1/-/-1/1/3/-1/-1/-1/19 +

trnN 66/67/66/66/63/66/65/66/67 -/6/-/30/-/29/-1/-3/-/-1 +

trnS1 61/62/62/60/67/61/62/60/62 14/9/112/3/3/21/5/4/-/2 +

trnE 66/70/69/68/68/66/66/66/67 -/9/5/1/9/9/15/2/-/8 +

trnF 67/68/67/63/66/66/67/65/67 18/-2/4/22/-2/-2/24/-2/-/-2 -

nad5 1747/1750/1750/1738/1743/1756/1755/1743/1741 2/-/-/-/-/121/-/3/1/- ATT/ATT/ATT/ATT/ATT/ATA/ATT/ATT/ATA T/T/T/T/TAA/T/TAA/TAA/T -

trnH 65/70/72/65/68/67/66/66/68 -

nad4 1339/1339/1339/1339/1339/1339/1336/1341/1339 -/-/-/-/-/-/-/-/-1/- ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG T/T/T/T/T/T/T/TAA/T -

nad4L 282/282/282/285/285/282/285/285/282 2/-/-1/6/2/2/-1/-7/4/-1 ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA -
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Table 6. Cont.

Gene Size Intergenic Nucleotides
Codon

Strand
Start Stop

trnT 64/65/64/65/66/64/65/64/65 8/5/16/50/13/6/2/2/2/5 +

trnP 65/65/65/67/65/66/65/65/66 -

nad6 522/537/528/531/534/534/531/528/540 2/2/2/2/2/2/2/2/2/2 ATT/ATT/ATA/ATT/ATT/ATC/ATT/ATT/ATA TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA +

cytb 1152/1146/1149/1152/1152/1149/1152/1152/1152 8/-1/7/-1/6/30/-1/-1/-1/7 ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG/ATG TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAA +

trnS2 63/65/68/69/65/66/69/66 -1/1/6/6/5/-2/4/2/-2/-2 +

nad1 939/939/939/936/936/942/939/942/942 -2/17/17/17/17/56/17/19/17/26 ATG/ATG/ATA/ATA/ATA/ATG/ATT/ATG/ATG TAG/TAA/TAA/TAA/TAA/TAA/TAA/TAA/TAG -

trnL1 67/68/68/68/68/69/68/67/69 9/1/1/-/3/3/1/-/-/1 -

rrnL 1359/1347/1359/1386/1379/1367/1390/1377/1363 49/18/14/-25/14/21/37/-21/-19/16 -

trnV 65/66/65/66/65/64/68/67/66 -/-/2/47/1/-/-2/2/-/2 -

rrnS 788/774/784/779/777/777/772/774/780 -1/-1/-1/-/-1/-/-1/-2/-/-1 -
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In the tribe Tagiadini, Tagiades menaka forms a monophyletic clade with T. vajuna.
Our results support the view that the genus Daimio Murray, 1587, is a synonym of the
genus Tagiades Hübner, 1819 [54]. The genus Abraximorpha is a sister group of the genus
Odontoptilum. Gerosis phisara forms a monophyletic clade with G. bhagava. The genus
Ctenoptilum and the genus Gerosis are sister groups with high nodal support and a stable
relationship. Abraximorpha, Odontoptilum, and Ctenoptilum share a significant character,
asymmetric genitalia. Based on our phylogeny, the character was lost secondarily in
Gerosis. Another character also lost in Gerosis is a hair tuft at the tip of the female abdomen.
The genus Satarupa forms a monophyletic clade with the genus Mooreana. In the tribe
Celaenorrhini, Celaenorrhinus aspersus forms a monophyletic clade with C. maculosus and
C. syllius with strong support. In the tribe Erynnini, Erynnis popovina forms a monophyletic
clade with E. montanus and E. brizo brizo.

This study re-confirmed the status of Capila, Pseudocoladenia, and Sarangesa. Capila
belongs to the tribe Tagiadini, and Pseudocoladenia and Sarangesa belong to the tribe Celaen-
orrhinini [5].

Capila translucida forms a monophyletic clade with C. zennara in the tribe Tagiadini. In
Celaenorrhini, Sarangesa forms a monophyletic clade with Eretis. The intergeneric relationship
within the tribe Celaenorrhinini is (Celaenorrhinus + ((Sarangesa + Eretis) + Pseudocoladenia)).
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Evans (1949) adopted the length of the forewing cell and labial palpi to distinguish his
Celaenorrohinus-group and Tagiades-group. Then, Evans (1952) more precisely stated that
the forewing cell is equal to two-thirds of the length of the costa and equal to or longer than
the dorsum in Pyrginae Section I, including current Celaenorrhini. In contrast, the forewing
cell of Celaenorrhinus maculosus (Figure 6c) is equal to the dorsum but much shorter than
two-thirds of the costa. On the other hand, in Tagiades vajuna (Figure 6a), the forewing
cell is shorter than two-thirds of the length of the costa but equal to the dorsum. In Capila
omeia (Figure 6b), which is shifted from Celaenorrhini to Tagiadini, the forewing cell is not
equal to or longer than two-thirds the length of the costa or dorsum. This is also the case in
Sarangesa dasahara (Figure 6d) and Pseudocoladenia dan (Figure 6e), both of which are shifted
from Tagiadini to Celaenorrhinni. To summarize, the length of the forewing cell cannot be
adopted as a diagnostic character to distinguish the tribes Celaenorrhini and Tagiadini.

The other diagnostic character that Evans (1949, 1952) used is the labial palpi. In
Section I in America or the Celaenorrhinus-group in Asia, the labial palpi are erect. In other
words, the second segment is appressed to the face, and the third segment is not protruding
in front of the second segment. However, in Section II in America or the Tagiades-group
in Asia, the labial palpi aren’t erect, and the third segment is protruding. The character is
obviously applicable for Celaenorrhinus (Figure 5c) and Tagiades (Figure 5a), respectively.
In Capila (Figure 5b), shifted from Celaenorrhini to Tagiadini, the third segment protrudes
in front of the second segment, but this is also the case in Sarangesa (Figure 5d) and
Pseudocolodenia (Figure 5e), shifted the other way. Therefore, in conclusion, the character
cannot be adopted for either. Thus, we were not successful in finding a good diagnostic
character for distinguishing between these two tribes.

Evans (1949) classified Coladenia (now Pseudocoladenia) dan into 11 subspecies in four
groups. Subsequently, because of their sympatric distribution and the differences in male
and female genitalia, Huang and Xue (2004) raised the taxonomic status of two taxa
from China to distinct species. In order to clarify the species limitation of some taxa, we
calculated p-distance between our sample, P. dan fabia from Yunnan Province, China, and
that from Myanmar (GenBank #SRR7174480) and P. dan dhyana from southern Thailand
(#KY019868). The distance between P. dan fabia from the two different localities was 0.022,
whereas the distance between P. dan fabia from China and P. dan dhyana was 0.027. Though
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the latter number reaches around the border of species and subspecies [55], we retained the
taxonomic status, pending inclusion of the nominate subspecies dan from South India in
our analysis.
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Figure 6. Wing venation of (a) Tagiades vajuna, (b) Caplia omeia, (c) Celanorrhinus maculosus, (d) Saranges
dasahara, and (e) Pseudocoladenia dan. The blue dashed line denotes the length of the dorsun, and the
red dashed line denotes 2/3 the length of the costa. (a,b,e) are reproduced from Chou (1998) [56].
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13010068/s1, Figure S1: Predicted secondary cloverleaf
structure for the tRNAs of A. davidi. Lines (-) indicate Watson-Crick base pairings, whereas dots (·)
indicate unmatched base pairings. Figure S2: Predicted secondary cloverleaf structure for the tRNAs
of Ca. translucida. Lines (-) indicate Watson-Crick base pairings, whereas dots (·) indicate unmatched
base pairings. Figure S3: Predicted secondary cloverleaf structure for the tRNAs of Ce. aspersus. Lines
(-) indicate Watson-Crick base pairings, whereas dots (·) indicate unmatched base pairings. Figure S4:
Predicted secondary cloverleaf structure for the tRNAs of E. popoviana. Lines (-) indicate Watson-Crick
base pairings, whereas dots (·) indicate unmatched base pairings. Figure S5: Predicted secondary
cloverleaf structure for the tRNAs of G. phisara. Lines (-) indicate Watson-Crick base pairings, whereas
dots (·) indicate unmatched base pairings. Figure S6: Predicted secondary cloverleaf structure for
the tRNAs of M. trichoneura. Lines (-) indicate Watson-Crick base pairings, whereas dots (·) indicate
unmatched base pairings. Figure S7: Predicted secondary cloverleaf structure for the tRNAs of P. fabia.
Lines (-) indicate Watson-Crick base pairings, whereas dots (·) indicate unmatched base pairings.
Figure S8: Predicted secondary cloverleaf structure for the tRNAs of Sat. nymphalis. Lines (-) indicate
Watson-Crick base pairings, whereas dots (·) indicate unmatched base pairings. Figure S9: Predicted
secondary cloverleaf structure for the tRNAs of T. menaka. Lines (-) indicate Watson-Crick base
pairings, whereas dots (·) indicate unmatched base pairings. Figure S10: Phylogenetic tree produced
by Bayesian inference analysis of the PCG dataset. Bayesian posterior probability (BPP) support
values are indicated above the branches. Figure S11: Phylogenetic tree produced by maximum
likelihood analyses of PCG dataset. Bootstrap support values (BS) are indicated above the branches.
Figure S12: Phylogenetic tree produced by maximum likelihood analysis of the PRT dataset. Bootstrap
support values (BS) are indicated above the branches. Figure S13: Phylogenetic tree produced by
Bayesian inference analysis of the PCG12RT dataset. Bayesian posterior probability (BPP) support
values are indicated above the branches. Figure S14: Phylogenetic tree produced by maximum
likelihood analyses of PCG12RT dataset. Bootstrap support values (BS) are indicated above the
branches. Figure S15: Phylogenetic tree produced by Bayesian inference analysis of the PRT dataset.
Bayesian posterior probability (BPP) support values are indicated above the branches. Table S1: The
basic statistics of sequencing for nine mitochondrial genomes. Table S2: The best partitioning schemes
and models for Bayesian inference (BI) method based on the three datasets selected by PartitionFinder.
Table S3: The best partitioning schemes and models for Maximun likelihood (ML) method based on
three datasets selected by PartitionFinder.
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