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Abstract: Mucormycosis, a rare but highly fatal infection, is caused by fungi of the order Mucorales.
Due to their ubiquitous nature, reduced susceptibility to antifungals, acid tolerance, and ability to
infect immunocompromised patients through rapid dissemination, these fungi have been frequently
reported to infect the COVID-19 patients. In order to develop strategies to overcome mucormycosis, it
is essential to understand and identify novel Mucorales present in the environment. In this study, we
report the identification of four novel pathogenic Mucorales using the silkworm (Bombyx mori) model.
The strains’ phylogeny was analyzed using the genome sequence of the large subunit ribosomal
ribonucleic acid (LSU rRNA) and the internal transcribed spacer (ITS) region, where strains 1-3, 5-3,
and S286-1101 claded with Mucor orantomantidis, and strain 827-14 claded with Backusella lamprospora.
All the strains had a cold-sensitive phenotype with their inability to grow prominently at 4 ◦C. Mucor
sp. 1-3 and 5-3 were characterized by their filamentous and yeast-like growth under aerobic and
anaerobic conditions, respectively. The yeast colonies of Mucor sp. 5-3 had multipolar budding cells
often observed with cleaved cell surfaces under a scanning electron microscope. We further found
that these strains were able to kill immunocompromised mice suggesting their pathogenicity to
mammals. Our study established an invertebrate model-based screening system to identify novel
pathogenic Mucorales from the natural environment and provided a clue towards the rapid increase
in COVID-19 related mucormycosis.
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1. Introduction

Fungi help maintain the diversity of the ecosystem and are critical to nutrient-cycling
by degrading dead organic materials [1]. In nature, fungi with agricultural, ecological,
economic, biotechnological, and medical importance have been identified. On the other
hand, fungi can also cause human infections. Invasive fungal diseases account for a major-
ity of complications among immunocompromised patients worldwide [2]. Fungi of the
order Mucorales cause mucormycosis, a rare but highly fatal fungal infection. They can
cause cutaneous, rhino-orbital, pulmonary, rhino-cerebral, and disseminated bloodstream
infections; the severity and prognosis largely depend upon the infection type. The fatality
rate is very high [3] with 96% among patients with disseminated infections [4]. The inci-
dence of mucormycosis is rapidly increasing, especially in developing countries like India
and Nepal, where Mucorales were mostly found to cause rhino-orbito-cerebral infections.
The most recent incidences are observed in COVID-19 patients [5–7] or those who recently
recovered from COVID-19. Given that the incidence of mucormycosis has been associated
with preexisting conditions such as uncontrolled diabetes mellitus, malignancies, trauma,
or extended corticosteroids use [4], it is likely that the number of cases with mucormycosis
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will increase further due to the current COVID-19 pandemic. Primarily found in soil and
decaying vegetation, Mucorales are ubiquitous, have reduced susceptibility to most clini-
cally used antifungal agents, and thrive under high acid conditions. Their thermotolerance,
however, is greatly varying; some, such as Rhizopus microspores thrive at temperatures
as high as 50 ◦C [8], while some, such as R. sexualis cannot grow above 25 ◦C [8]. Based
on their thermotolerance, it was previously thought that Mucorales that cannot grow at
37 ◦C were medically not important. However, case reports and incidences of cutaneous
infections caused by M. hiemalis [9–12], which cannot grow at 37 ◦C [13,14], have been
observed. These cases of infections suggested that the fungi that do not grow at 37 ◦C are
capable of causing superficial infections. Furthermore, invasive mucormycosis rapidly
disseminates within the host tissues. Depending upon the infection site, Mucorales inter-
act with specific host receptors and take advantage of the host physiological conditions
to derive nutrients such as iron [15]. Furthermore, Mucorales can store iron in ferritins
besides siderophores, further depleting the host of iron and proliferating within the host
rapidly [16]. Therefore, patients with diabetes mellitus and COVID-19 are more prone
to mucormycosis as these patients have a higher level of free iron in their blood [17,18].
As mucormycosis has been increasingly common, studies on the understanding of their
pathogenesis as well as identifying emerging virulent strains is of top priority.

In our routine investigation of the environmental mycobiome using the silkworm
(Bombyx mori) model, we isolated fungi with morphological features similar to Mucorales.
In this manuscript, we report the detailed molecular phylogenic and morphological analysis
of four novel strains identified from plant sources.

2. Materials and Methods
2.1. Isolation and Growth of Fungal Strains

Fungal strains were isolated from plant seeds, dead and live plant leaves, and living
plant buds collected from Chiba and Saitama, Japan. The collected samples were stored in
sterile falcon tubes at 4 ◦C until used for analysis. The samples were washed with water
and resuspended in normal saline. Serial dilutions were then spread onto YPD agar plates
(yeast extract 10 g/L, tryptone 20 g/L, glucose 20 g/L, sodium propionate 2 g/L, and agar
15 g/L) supplemented with 100 µg/mL chloramphenicol. The plates were incubated at
30 ◦C overnight. Single colonies were selected, and pure cultures were regrown on YPD
agar plates at 30 ◦C. For the preparation of the spores, the pure culture of the strains was
spread onto PDA (Potato Starch (from infusion) 4 g/L, dextrose 20 g/L, agar 15 g/L) plate
and incubated at 30 ◦C for 2–5 days. After sporulation, the spores were then resuspended
in normal saline containing 0.05% Tween 80 and filtered through a 40 µm cell strainer
attached to a 50 mL falcon tube. The spores were washed again with normal saline, counted
using a C-Chip, and stored at 4 ◦C until use.

2.2. Morphological Studies

For growth analysis, 4.0 × 104 spores contained in 40 µL of normal saline were
spotted at the center of the YPD agar plate. The plates were allowed to dry under a clean
bench and incubated at different temperatures of 37 ◦C, 30 ◦C, and 4 ◦C. The growth
status was recorded at different time intervals. The strains were incubated using a sealed
rectangular jar containing AnaeroPack (Mitsubishi Gas Chemical, Tokyo, Japan) to examine
the anaerobic growth.

We adopted the slide culture technique for morphologic analysis of the fungi, followed
by the observation under a light microscope (BX53, Olympus, Tokyo, Japan). Fresh fungal
spores prepared on PDA were inoculated on a PDA agar block (ca 10 mm × 10 mm)
contained in a sterile glass slide. The agar block was then covered with a sterile coverslip
and transferred to a sterile Petri dish containing sterile water and incubated at 30 ◦C. On
day 4, fungal growth was observed, and morphological features were recorded using
a microscope.
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2.3. PCR Amplification, Sequencing, and Phylogenetic Analysis

Two loci: large subunit ribosomal RNA (LSU rRNA) and internal transcribed spacer re-
gion (ITS), were used for the phylogenetic placement of the fungal strains. Fragments of the
LSU rRNA gene and ITS region of the fungal strains were amplified using PCR primer pairs
28SF1: 5′-AAGCATATCAATAAGCGGAGG-3′ 635: 5′-GGTCCGTGTTTCAAGACGG-3′,
and ITS1F 5′-GTAACAAGGT(T/C)TCCGT-3′ ITS1R 5′-CGTTCTTCATCGATG-3′, respec-
tively. The PCR products were then purified and sequenced on the 3130 Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA) using the same primers. The sequence of the
ITS region of Mucor sp. 5-3 was obtained from the whole genome assembly. To perform
evolutionary analysis, the LSU rRNA and ITS region sequences of the TYPE fungal strains
were downloaded from NCBI, aligned using MUSCLE, and the evolutionary distances, in
the units of the number of base substitutions per site, were computed using the Maximum
Composite Likelihood method in MEGA X [19]. The reliability of internal branches was
assessed using 500 bootstrap replications.

2.4. Genomic DNA Isolation, Whole Genome Sequencing, and Assembly

To isolate genomic DNA, Mucor sp. 5-3 was grown with aeration on 5-mL YPD
medium contained in a 50-mL falcon tube using a shaker maintained at 30 ◦C. To 0.5 mL
of full growth, 0.5 mL of zirconium-coated beads (Yasui Kikai YZB05, φ 0.5 mm, Osaka,
Japan) were added, and the supernatant was removed after centrifugation. Cells were then
lysed by vigorous agitation at 2400 RPM for 2 min using a multi-bead shocker MB455GU(S)
(Yasui Kikai). The genomic DNA from the lysate was then purified using a DNeasy
plant mini kit (Qiagen, Hilden, Germany). Next, the draft genome sequence of Mucor
sp. 5-3 was prepared using the Ion PGM System (ThermoFisher Scientific, Waltham, MA,
USA) as previously described [20,21]. Briefly, after confirming the quality and quantity
of genomic DNA using nanodrop, agarose gel electrophoresis, and Qubit, the barcoded
library of 400 base reads was prepared after fragmentation of 100 ng of the DNA using
the manufacturer’s recommended protocol of the Ion Xpress™ Plus Fragment Library Kit
(ThermoFisher Scientific). The prepared library was then enriched in an Ion 318™ Chip
v2 using Ion Chef (ThermoFisher Scientific) and sequenced to obtain 5 M reads (average
length 270 bp). The reads were then trimmed, and de novo assembled using CLC Genomics
Workbench ver. 20.0.4 (CLC bio, Aarhus, Denmark).

2.5. Scanning Electron Microscopy

The cell morphology of Mucor sp. 5-3 grown in aerobic and anaerobic cultures on YPD
agar plate was observed using a high-resolution field emission SEM system, JSM-7500F
(JEOL, Tokyo, Japan). First, the cells were fixed with 2.5% glutaraldehyde and postfixed
with 1% osmium tetroxide. Afterward, the samples were dehydrated with graded acetone,
freeze-dried in t-butyl alcohol, and coated with osmium tetroxide using an osmium plasma
coater OPC 60A (Filgen, Nagoya, Japan). Specimens were then observed under JSM-7500F
at an acceleration voltage of 1 kV.

2.6. Silkworm Pathogenicity Studies

Silkworm rearing was performed as previously explained [9]. Pathogenicity studies
of the spore suspensions were performed using fifth instar day 2 larvae. For the initial
pathogenicity test, the undiluted and one-eighth diluted spore suspension was injected
into the hemolymph of three silkworms, incubated at 27 ◦C, and survival was recorded at
20 h. Next, for the comprehensive evaluation of pathogenicity, the spore suspensions were
diluted using normal saline to a range of 5.0 × 106–2.1 × 104 spores/mL, and 50 µL of each
dilution was injected into the hemolymph of 5 silkworms, and the larvae were incubated
at 27 ◦C. The survival of the silkworms was examined at different time intervals, and the
survival curve was plotted.
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2.7. Mouse Pathogenicity Studies

All mouse experimental protocols were approved by the Animal Use Committee at
the Genome Pharmaceuticals Institute. Four-week-old, female ICR mice were caged in a
group of five in a cage and kept in a room maintained with a 12 h light/12 h dark cycle,
23–24 ◦C, and 55% humidity. Mice were immunocompromised with the intraperitoneal
injection of 200 mg/kg cyclophosphamide at −2, +3, and +6 days relative to infection.
Mice (n = 5) were intraperitoneally infected with spores equivalent to ca. 2.0 × 108

colony forming units contained in 0.2 mL normal saline. Mouse survival was recorded
at different time intervals, and the survival curve was plotted.

3. Results
3.1. Taxonomy and Phylogenetic Analysis

We isolated four fungal strains from plant sources and attempted to identify them
(Table 1). BLAST analysis of the LSU rRNA region showed that strains 1-3, 5-3, and
S286-1101 were related to Mucor orantomantidis (accession no: NG_067828.1) with the
percentage identity of 95.4% (641/672 bp), 95.4% (641/672 bp), and 97.2% (651/670 bp),
respectively. Strain 827-14 was 96% (624/650) identical to Backusella lamprospora CBS
118.08 (accession no: NG_058650.1). This result was consistent with the constructed
phylogenetic tree using MEGA X [19], where we found that strains 1-3, 5-3, and S286-1101
were claded with M. orantomantidis, and strain 827-14 was claded with B. lamprospora
(Figure 1). These findings suggested that these strains were novel species belonging to
Mucor (1-3, 5-3, and S286-1101) and Backusella (827-14). The taxonomic assignment of
these strains was further confirmed by the phylogenic tree using ITS sequences, another
locus used frequently for the taxonomic demarcation of Mucorales [13]. ITS analysis
showed that Mucor strains were claded with M. orantomantidis (Figure 2a) and Backusella
sp. 827-14 claded with B. lamprospora (Figure 2b). The phylogenetic tree was reconstructed
using MAFFT [22] and RAxML [23] to reveal similar results (Supplementary Figure S1a–c).
Among four strains, we randomly selected Mucor sp. 5-3 for whole genome sequencing
and SEM analysis.

Table 1. Source and the growth of novel fungi at different temperatures.

Strain Source (Location)
Growth at

37 ◦C (4 Days) 30 ◦C (4 Days) 4 ◦C (10 Days)

Mucor sp. 1-3 Plant bud (Chiba, Japan) − +++ −
Mucor sp. 5-3 Plant seed (Chiba, Japan) + +++ −

Mucor sp. S286-1101 Plant leaf (Saitama, Japan) + +++ −

Backusella sp. 827-14 Dead plant leaf (Chiba,
Japan) − +++ −

+: growth, +++: prominent growth, −: no prominent visible growth.

3.2. Analysis of the Mucor Genome Assembly

We have previously used the next-generation sequencing tool for the genomic anal-
ysis of various bacteria [21,24] and fungi [20] and have found that compared to the
bacterial genome, the fungal genome contains a large number of repeats and is difficult
to assemble. We sequenced the Mucor sp. 5-3 genome using the Ion PGM System and
found that its genome size was 30.8 Mb in size, had a G+C content of 39.26%, and divided
into about 17,079 contigs (Table 2). This indicated a presence of a large number of repeat
elements in the genome. Of note, the same sequencing approach, used for Candida albicans
TIMM1768 resulted in about 3400 contigs for a 14.5 Mb genome [20]. Besides, combined
with a previous study [25], it can be expected that the Mucor genome is diverse with a
genome size ranging between 30–47 Mb.
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Figure 1. LSU rRNA-based phylogenetic analysis of Mucorales. The LSU rRNA sequence was utilized to infer the
evolutionary relationship of the strains. The optimal tree, drawn to scale, with branch lengths in the same units as those
of evolutionary distances, with the sum of branch length = 2.44139183, is shown. The percentage of replicate trees in
which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches. After the
ambiguous positions were removed for each sequence pair, there were a total of 1552 positions in the final dataset. The
novel strains are written in boldface with a larger font size. Sequence alignment of the four strains identified is presented in
Supplementary Figure S2.
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Figure 2. ITS-based phylogenetic analysis of Mucorales. The ITS sequence was utilized to infer the evolutionary relationship
of the strains. The optimal tree, drawn to scale, with branch lengths in the same units as those of the evolutionary distances,
with the sum of branch lengths of (a) 4.16205042 and (b) 1.37992789 for Mucor and Backusella, respectively, is shown. The
percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown
next to the branches. After the ambiguous positions were removed for each sequence pair, there were a total of 1064 (a) and
975 (b) positions in the final dataset. The novel strains are written in boldface with a larger font size.
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Table 2. General features of Mucor sp. 5-3 draft genome.

Features Characteristics

Total reads 5,016,222
Average length (bp) 270

Coverage 44×
Genome size (bp) 30,813,178

Contigs 17,079
Contigs > 1000 bp 6792

Longest contig (bp) 37,105
N50 4436
L50 2075

G + C (%) 39.26

3.3. Morphological Studies

We found that all the strains grew well on the YPD agar plate at 30 ◦C when grown
under aerobic conditions. However, they had a difference in their growth status at 4 ◦C
and 37 ◦C. Mucor sp. 5-3, and S286-1101 could grow, although slowly, while the other two
strains could not grow at 37 ◦C. At 4 ◦C, Mucor spp. did not show a visible sign of growth;
however, Backusella showed a faint growth (Figure 3, Supplementary Figure S3). Next,
we used Mucor sp. 1-3 and Mucor sp. 5-3 to check their ability to grow under anaerobic
conditions. Incubation for two days at 30 ◦C after streaking on YPD agar showed that the
cells grew as yeast under anaerobic conditions; however, mycelial growth was observed
under aerobic conditions (Figure 4). Besides, we found that the colony morphology—when
visualized with the naked eye—of these two strains on agar plates was similar. When
sporangia were observed under a light microscope, a difference was observed among
Mucor spp. and Backusella spp. (Figure 5a–d).

Figure 3. Temperature-specific growth of novel Mucorales. 4.0 × 104 spores contained in 40 µL of
normal saline were spotted at the center of the YPD agar plates, dried, and incubated at different
temperatures for the designated duration before taking a picture. Everyday pictures of the plates
incubated at 30 ◦C are included in Supplementary Figure S3.
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Figure 4. Aerobic and anaerobic growth of Mucor sp. 1-3 and 5-3.

Figure 5. Photomicrographs of Mucorales grown on slide culture. Mucor sp. 1-3 (a), 5-3 (b), S286-1101 (c), and Backusella sp.
827-14 (d). Mucorales were grown aerobically for 4 days. Bars = 20 µm.

3.4. Mucor Morphology under High Resolution

Using Mucor sp. 5-3, cell morphology of mycelial growth under aerobic conditions and
yeast growth under anaerobic conditions were studied by Scanning Electron Microscope
(SEM). Aerobic culture resulted in hyphal growth, where long elongated aseptate hyphae
and sporangium were observed (Figure 6a,b). Inside the matured sporangium, a large num-
ber of sporangiospores were observed (Figure 6c). The tip of sporangiophore harbored col-
umella and collarette (Figure 6d). The yeast colonies formed under anaerobic growth were
made up of spherical cells of various sizes ranging from 2 to 30 µm in diameter (Figure 6e).
Multipolar budding cells were observed in large cells (Figure 6e,f). Some budding cells had
smooth surfaces, whereas some had small golf ball-like shapes (Figure 6f). Furthermore,
strange cells with cleaved cell surfaces were often observed in large cells (Figure 6g). The
existence of cells with cleaved surface layers has never been reported before. The signifi-



J. Fungi 2021, 7, 995 9 of 13

cance of these cells in the growth of yeast cells needs to be investigated in more detail in
the future.
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phore. (e) Yeast-like colonies are composed of spherical cells of various sizes. (f) Multipolar budding found in large cells.
(g) Cleavage of surface structure is observed in large cells. Mucor sp. 5-3 was grown aerobically (a–d) and anaerobically
(e–g) on a YPD agar plate for 2 days. Bars: (a) = 100 µm, (b–g) = 10 µm.

3.5. Pathogenicity of Newly Isolated Mucorales

Although various vertebrates and invertebrates are used as animal models to study
mucormycosis [26], silkworms were not used to test the pathogenicity of mucoralean fungi
so far. Given that the use of the silkworm infection model for the test of pathogenicity of
several bacteria and fungi is well established [27–30], we aimed to evaluate the pathogenic-
ity of novel Mucorales using a silkworm infection model. First, we prepared a suspension
of spores and examined the pathogenicity of the suspension without dilution. We found
that all silkworms died at 20 h (Supplementary Table S1). Next, we prepared a 1/8—fold
dilution of spore suspension, injected it into the silkworm, and checked the survival at
15 and 20 h. We found that at 15 h, most of the silkworms were surviving; however, the
lethality of these Mucorales was high at 20 h, indicating the ability of these fungi to rapidly
kill silkworms (Supplementary Table S1). These results indicated the pathogenicity of
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the spores of newly identified fungi against silkworms. Next, for a quantitative evalua-
tion of pathogenicity, we serially diluted the spores and injected them into the silkworm
hemolymph so that each silkworm received 2.5 × 105–1.0 × 103 spores. To confirm the
establishment of infection, silkworms were inoculated with 2.5 × 105 heat-killed spores
of each strain. Whereas the heat-killed spores were nonpathogenic to silkworms, a dose-
dependent killing by live spores was observed (Figure 7a–d). We found that with the same
dose injected, Backusella were more pathogenic compared to Mucor.
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Figure 7. Pathogenicity of Mucorales spores in silkworm. Fifty microliters serially diluted spore
suspensions of Mucor sp. 1-3 (a), Mucor sp. 5-3 (b), Mucor sp. S286-1101 (c), and Backusella sp. 827-14
(d) were injected into the silkworm hemolymph (n = 5). Silkworms were incubated at 27 ◦C and
survival was recorded at various time points.

Next, we tested the ability of these strains to infect mammalian hosts using an im-
munocompromised mouse model. The result showed that three out of four strains could
kill the mouse within four days of the infection suggesting their pathogenicity to mammals
(Figure 8).
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Figure 8. Pathogenicity of Mucorales spores in mice. Four weeks old ICR female mice (n = 5) were
immunocompromised by injecting cyclophosphamide (cpm) and injected with 2.0 × 108 colony-
forming units of Mucorales spores through the intraperitoneal route and survival was recorded at
various time points.
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4. Discussion

Mucormycosis, previously referred to as zygomycosis, is one of the most common
mold infections in immunocompromised patients, caused by a group of fungi belonging to
the order Mucorales. There are several genera within Mucorales that are capable of infecting
humans, such as Rhizopus and Mucor [31]. Rhizopus and Mucor were previously categorized
under the Mucoraceae family; however, recent advancements in taxonomic studies have
kept them under two separate families Rhizopodaceae and Mucoraceae, respectively [32].
Mucormycosis is characterized by tissue necrosis and vascular invasion and has a high
mortality rate. Compared to other opportunistic molds, mucormycosis causing Mucorales
are characterized by their ability to infect a broader and more heterogeneous host [33,34]. As
they exist in the environment as spores, people develop the risk of infection after inhaling
or ingesting the spores or acquiring them through ruptured skin surfaces. Although
considered rare previously, in recent days, there has been a tremendous increase in the
number of infections [35]. Various mammalian pathogenic fungi are dimorphic in response
to temperature, but the fungi that cause mucormycosis are non-thermally dimorphic and
show a dimorphic nature in response to O2 and CO2 tensions [36]. Consistent with this, we
found that our Mucor strains displayed a dimorphic nature based on O2 availability.

Understanding the habitat, physiology, and pathogenicity of Mucorales would pro-
vide information that can broaden our knowledge about emerging virulent Mucorales and
might help design prevention and treatment strategies for mucormycosis. In this study,
we identified four new pathogenic Mucorales from the environment using silkworms,
three of which, were pathogenic to mice suggesting the applicability of the silkworm
model in identifying fungi pathogenic to mammals. Mucorales are ubiquitously present,
highly resistant to commonly used antifungals [37], and can cause opportunistic infections
among immunocompromised individuals. With the immunocompromised condition of
COVID-19 patients due to prolonged use of corticosteroids, there has been an increase
in the incidences of COVID-19 associated mucormycosis. The presence of pathogenic
Mucorales in natural environments emphasizes the need for proper preventive and treat-
ment strategies to combat mucormycosis in this situation of the COVID-19 pandemic.
Besides, the infectivity of Mucorales to both the silkworms and mice suggested that the
silkworm model of mucormycosis could be utilized to identify new pathogenic fungi and
their virulence determinants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof7110995/s1, Figure S1: LSU rRNA (a) and ITS (b,c) based phylogenetic analysis of novel
Mucorales analyzed using MAFFT and RAxML, Figure S2: Sequence alignment of LSU of newly
identified Mucorales, Figure S3. Growth of novel Mucorales, Table S1. Pathogenicity of Mucorales
spores in silkworm.
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