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Abstract: The genus Acaulospora has undergone many updates since it was first described; however,
there are some missing pieces in the phylogenetic relationships among Acaulospora species. The
present review aimed to: (i) understand the evolutionary meaning of their different spore wall
ornamentations; (ii) define the best molecular marker for phylogenetic inferences, (iii) address some
specific issues concerning the polyphyletic nature of Acaulospora lacunosa and Acaulospora scrobiculata,
and the inclusion of Kuklospora species; and (iv) update the global geographical distribution of
Acaulospora species. As such, the wall ornamentation of previously described Acaulospora species
was reviewed and phylogenetic analyses were carried out based on ITS and SSU-ITS-LSU (nrDNA).
Moreover, the already available type material of A. sporocarpia was inspected. According to the data
obtained, temperate and tropical zones are the richest in Acaulospora species. We also confirmed that
A. sporocarpia does not belong to Acaulospora. Furthermore, our phylogeny supported the monophyly
of Acaulospora genus, including the Kuklospora species, K. colombiana and K. kentinensis. The nrDNA
phylogeny presented the best resolution and revealed the homoplasic nature of many ornamentations
in Acaulospora species, pointing out their unfeasible phylogenetic signal. This review reinforces the
urgency of more molecular markers, in addition to the nrDNA sequences, for the definition of a
multi-locus phylogeny.

Keywords: biogeography; diversity; morphology

1. Introduction

Arbuscular mycorrhizal fungi (AMF) belong to Glomeromycota [1–3] and form an
obligatory symbiosis with approximately 80% of terrestrial plants [4] and aquatic plant
communities [5,6]. This ecological relationship brings several benefits for the plant host, in-
cluding greater mineral nutrition and increased resistance to biotic and abiotic stresses [4,7].
Said stresses (saline, hydrical, pathogens), as well as other general environmental factors
such as temperature, precipitation and agricultural activities, affect soil conditions, influ-
encing AMF sporulation and species establishment, shaping the geographic distribution of
these fungal species [4,8–13].

The cosmopolitan distribution of Glomeromycota [2,14–16] demonstrates that the estab-
lishment of this symbiosis is both widespread [4] and ancient, and thus extremely important
for the colonization of the terrestrial environment by plants [17].
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Description of the Glomeromycota species is mostly based on morphological characteri-
zation, which is still the basis of the AMF classification [11,14,16]. However, in some cases,
the same morphological characteristics can be shared by different species [16,18,19]. For
example, the species Acaulospora colombiana and Acaulospora koskei both present spores with
a smooth and hyaline outer wall. Additionally, the presence of non-viable or immature
spores in soil samples makes the morphological identification tricky [16,20]. Therefore,
the combination of molecular and morphological studies has been pointed out as the
most appropriate methodology for classifying the AMF and describing their geographical
distribution [15,16,20], as well as their phylogenetic relationships [19,21–26].

Among Glomeromycota genera, Acaulospora (class Glomeromycetes, order Diversisporales,
family Acaulosporaceae), described by Gerdermann and Trappe [27], is one of the most
widely distributed genera in the world, with several species having been described in
recent years [13,28–30].

Many studies have highlighted the ability of Acaulospora to develop under extreme
conditions, such as in highly saline soil [31,32], and also in soil contaminated with nickel [33]
and arsenic [34]. This resistance to different abiotic stresses indicates the biotechnological
potential of Acaulospora species for agricultural and bioremediation activities.

Furthermore, the genus Acaulospora has also been reported as the second most frequent
genus in disturbed areas, with high diversity indices, mainly in South America [28,35].
Together with Glomus (Tul. & C. Tul.) [29,30], the genus Acaulospora has an essential role in
the use and management of soil, especially in semiarid areas [13,28,30,36].

Taking into account the high diversity and wide distribution of the Acaulospora genus,
as well as its relevance for biotechnological applications and area conservation, this review
aims to revise the spore wall ornamentation patterns found in this genus, to update the
global geographical distribution of Acaulospora species, and to provide a robust phyloge-
netic analysis based on ITS and SSU-ITS-LSU (nrDNA) sequences of the nuclear rDNA.

2. Acaulospora: A Review of Its Taxonomy, Morphology and Molecular Markers

The articles used in this review were searched using the keywords: “Acaulospora + bio-
geographical”, “Acaulospora + description” and “Acaulospora + revision”, covering articles from
1974 to 2021, in order to gather historic and the most updated information on Acaulospora
biology. In addition to the literature review, some Acaulospora species were evaluated for
assessment of morphological characteristics, such as ornamentation.

Eighteen voucher specimens (spores permanently mounted in PVLG and a mixture of
PVLG and Melzer’s reagent (1:1, v/v) on slides) deposited at UFRN (Natal, Brazil) (Table 1)
and at Oregon State University (OSC), Oregon, USA (isotypes, types and other materials)
were morphologically analyzed and used as reference.

Morphological features of spores were categorized based on original species de-
scriptions and other related references. The preparation of spores for study and pho-
tography was carried out as previously described [37]. The types of spore wall lay-
ers were defined by Błaszkowski [37] and Walker [38]. Fungi nomenclature and the
authors of their descriptions were retrieved from the Index Fungorum website http:
//www.indexfungorum.org/AuthorsOfFungalNames.htm (accessed on 20 October 2020).
The term “glomerospores” was used for spores produced by AMF, as proposed by Goto
and Maia [39].

The classification and description of Acaulospora species is mainly based on the mor-
phology and ontogeny of their spores. The most important characteristic in distinguishing
Acaulospora from other Glomeromycota genera is the type of spore development, called
acaulosporoid, in which the glomerospores develop through the transfer of the content
from the sporiferous saccule, which is connected to a hypha [21,37,40]. When this saccule
is released from the spore, it leaves a single scar, which is used to differentiate species with
acaulosporoid development from species with other types of spore formation. However,
the acaulosporoid formation is also present in the genera Ambispora C. Walker, Vestberg &
A. Schüßler, Archaeospora J.B. Morton & D. Redecker, Otospora Oehl, Palenzuela & N. Ferrol
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and Palaeospora Oehl, Palenz., Sánchez-Castro & G. A. Silva [21,37,41–44]. When two scars
are produced, the spore formation is called entrophosporoid, which is present in the genera
Entrophospora R.N. Ames & R.W. Schneid., Intraspora Oehl & Sieverd., Kuklospora Oehl &
Sieverd., Sacculospora Oehl, Sieverd., G.A. Silva, B.T. Goto, I.C. Sánchez & Palenzuela and
Tricispora Oehl, Sieverd., G.A. Silva & Palenz. [21,37,45–47], although Acaulospora colliculosa
Kaonongbua, J.B. Morton & Bever has been described without the register of sporiferous
saccule, but with two distinct scars, suggesting an entrophosporoid spore development [48].

Table 1. Morphologically analyzed species and their reference numbers.

Species Reference Number

Acaulospora alpina UFRN-Fungos 3408
Acaulospora ignota UFRN-Fungos 3409

Acaulospora denticulata UFRN-Fungos 3410
Acaulospora excavata UFRN-Fungos 3411
Acaulospora elegans UFRN-Fungos 3412
Acaulospora foveata UFRN-Fungos 3413
Acaulospora herrerae UFRN-Fungos 3414
Acaulospora laevis UFRN-Fungos 3415

Acaulospora lacunosa UFRN-Fungos 3416
Acaulospora mellea UFRN-Fungos 3417

Acaulospora morrowiae UFRN-Fungos 3418
Acaulospora reducta UFRN-Fungos 3419
Acaulospora rugosa UFRN-Fungos 3420

Acaulospora scrobiculata UFRN-Fungos 3421
Acaulospora spinosa UFRN-Fungos 3422

Acaulospora spinosissima UFRN-Fungos 2965
Acaulospora sporocarpia OSC, Oregon, 47836 1

Acaulospora tuberculata UFRN-Fungos 3423
1 Isotype.

Generally, spores produced by Acaulospora species are found as free spores, rarely in
aggregates or sporocarps [27,37,40], and have three walls [21]. When some ornamentation
is present, it is generally observed in the second layer of the outer wall and rarely in the
inner layer [49]. A granular germ layer with a “beaded” surface, which reacts to Melzer’s
reagent, is also observed in the spores [27,37,40].

There are many different types of spore wall ornamentations: projections (Acaulospora
brasiliensis, A. colliculosa, A. denticulata, A. endographis, A. elegans, A. entreriana, A. flavopapil-
losa, A. ignota, A. pustulata, A. rehmii, A. soloidea, A. spinosa, A. spinossissima, A. spinulifera, A.
tortuosa, A. tuberculata, A. walkeri and Kuklospora spinosa), depressions (Acaulospora alpina, A.
aspera, A. baetica, A. cavernata, A. excavata, A. foveata, A. herrerae, A. kentinensis, A. lacunosa,
A. minuta, A. nivalis, A. paulinae, A. punctata, A. scrobiculata, A. sieverdingii, A. taiwania, A.
terricola and A. verna) and double ornamentation (A. bireticulata and A. reducta). These
ornamentations can be uniform (ellipsoidal, circular, concave round), multiform (triangular,
circular, ellipsoidal, y-shaped, tooth-shaped), or irregular in shape, and densely or sparsely
distributed (Table 2, Figure 1).
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Table 2. Description and classification of ornaments of the Acaulospora species.

Species Ornate Type Shape Original Description

Acaulospora alpina Yes Depressions Pits regular conical pits

Acaulospora aspera Yes Depressions Pits irregular depressions

Acaulospora baetica Yes Depressions Pits pitted

Acaulospora bireticulata Yes Double depressions Depressed with central
stratum

polygonal reticulum depressed
central stratum; ridges

occasionally branched forming
irregular isolated projections

Acaulospora brasiliensis Yes Projections Pustules convex pustules irregular shape
and size

Acaulospora capsicula No — — —

Acaulospora cavernata Yes Depressions Pits evenly pitted deep depressions
separated by ridges

Acaulospora colliculosa Yes Projections Protuberances protuberances

Acaulospora colombiana No — — —

Acaulospora colossica No — — —

Acaulospora delicata No — — —

Acaulospora denticulata Yes Projections Teeth tooth-shaped projections circular
or oblong

Acaulospora dilatata No — — —

Acaulospora endographis Yes Projections Spines irregular spines

Acaulospora elegans Yes Projections Spines ornamented with crowded
densely organized spines

Acaulospora entreriana Yes Projections Teeth ornamented with teeth

Acaulospora excavata Yes Depressions Pits concave round pits

Acaulospora fanjing No — — —

Acaulospora flava No — — —

Acaulospora flavopapillosa Yes Projections Papillae fine papillae

Acaulospora foveata Yes Depressions Pits round to oblong and concave
depressions

Acaulospora fragilissima No — — —

Acaulospora gedanensis No — — —

Acaulospora herrerae Yes Depressions Pits rounded to elliptical pits some
pits vermiform or regulate

Acaulospora ignota Yes Projections Excrescences granular excrescences

Acaulospora kentinensis Yes Depressions Pits pits circular to subcircular deep
when observed in cross view

Acaulospora koreana No — — —

Acaulospora koskei No — — —

Acaulospora lacunosa Yes Depressions Pits irregularly distributed irregular
saucer-shaped pits

Acaulospora laevis No — — —

Acaulospora longula No — — —

Acaulospora mellea No — — —

Acaulospora minuta Yes Depressions Pits minute pit-like depressions
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Table 2. Cont.

Species Ornate Type Shape Original Description

Acaulospora morrowiae No — — —

Acaulospora nivalis Yes Depressions Pits irregular pits

Acaulospora papillosa No — — —

Acaulospora paulinae Yes Depressions Pits concave round pits of widest
diameter

Acaulospora punctata Yes Depressions Pits regular round pits

Acaulospora pustulata Yes Projections Blister pustulate projections

Acaulospora reducta Yes Depressions Pits irregularly-shaped small pits
sometimes dumbbell-shaped pits

Acaulospora rehmii Yes Projections Cerebriform cerebriform folds

Acaulospora rugosa No — — —

Acaulospora saccata No — — —

Acaulospora scrobiculata Yes Depressions Pits

ornamented with evenly
distributed pits, circular

ellipsoidal oblong triangular
Y-shaped to irregular

Acaulospora sieverdingii Yes Depressions Pits irregular pits

Acaulospora soloidea Yes Projections Bristle

ornamented with numerous
acellular fibrillose hairy

outgrowths forming a pile or
thick coat

Acaulospora spinosa Yes Projections Spines densely organized spines

Acaulospora spinosissima Yes Projections Spines short spiny projections

Acaulospora spinulifera Yes Projections Spines fine spines

Acaulospora splendida No — — —

Acaulospora sporocarpia No — — —

Acaulospora taiwania Yes Depressions Pits side pits ridges form mesh

Acaulospora tsugae No — — —

Acaulospora terricola Yes Depressions Pits minutely pitted

Acaulospora tortuosa Yes Projections Excrescences tortuous hyphae-like structures
on the surface

Acaulospora thomii No — — —

Acaulospora tuberculata Yes Projections Spines/Tubercles ornamented with evenly spines
or tubercles

Acaulospora viridis No — — —

Acaulospora verna Yes Depressions Pits

ornamented with evenly
distributed pits, circular to

subcircular frequently ellipsoidal
to oblong sometimes irregular

Acaulospora walkeri Yes Projections Excrescences finely ornamented

Kuklospora spinosa Yes Projections Spines fine spines
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Figure 1. Spore wall ornamentations in Acaulospora species. (A) Smooth outer layer in A. 
morrowiae. (B) Cerebriform ornamentation in A. rhemii. (C) Spinose ornamentation in A. tuberculata. 
(D) Double ornamentation in A. elegans. (E) Spinose projection of the inner layers in A. endographis. 
(F) Denticulate (teeth) ornamentation in A. denticulata. (G) Dense irregular pits in A. herrerae. (H) 
Pits in the A. foveata. (I) Double ornamentation in A. bireticulata. Scale bars in (A,C,D,G–I) 
represent 10 µm. Scale bars in (B,E,F) represent 5 µm. 

Figure 1. Spore wall ornamentations in Acaulospora species. (A) Smooth outer layer in A. morrowiae.
(B) Cerebriform ornamentation in A. rhemii. (C) Spinose ornamentation in A. tuberculata. (D) Double
ornamentation in A. elegans. (E) Spinose projection of the inner layers in A. endographis. (F) Denticulate
(teeth) ornamentation in A. denticulata. (G) Dense irregular pits in A. herrerae. (H) Pits in the A. foveata.
(I) Double ornamentation in A. bireticulata. Scale bars in (A,C,D,G–I) represent 10 µm. Scale bars in
(B,E,F) represent 5 µm.

At the time the order Glomerales was proposed, encompassing all AMF [40], Acaulospora
covered only 25 species and, when the phylum Glomeromycota was proposed, this number
changed little, with the addition of four species [1]. In the past 20 years, seven species
have been relocated to other genera and three have been transferred from other genera to
Acaulospora (Table 3). Additionally, a significant number of new AMF species have been
described as belonging to the Acaulospora genus, which currently comprises 60 species.

Table 3. Overview of the species transferred from Acaulospora to other genera.

Original Name Description Current Name Description Authors

≡Acaulospora appendicula 1984 Ambispora appendicula 2008 (Spain, Sieverd. & N.C. Schenck)
C. Walker

≡Acaulospora gerdemannii 1979 Ambispora jimgerdemannii 2008 (Spain, Oehl & Sieverd.) C. Walker

≡Acaulospora myriocarpa 1986 Archaeospora myriocarpa 2011
(Spain, Sieverd. & N.C. Schenck)

Oehl, G.A. Silva, B.T. Goto &
Sieverd.

≡Acaulospora nicolsonii 1984 Ambispora nicolsonii 2012
(C. Walker, L.E. Reed & F.E.

Sanders) Oehl, G.A. Silva, B.T.
Goto & Sieverd.

≡Acaulospora trappei 1976 Archaeospora trappei 2001 (R.N. Ames & Linderman) J.B.
Morton & D. Redecker

≡Acaulospora undulata 1988 Archaeospora undulata 2011 (Sieverd.) Sieverd., G.A. Silva, B.T.
Goto & Oehl

≡Ambispora brasiliensis 2008 Acaulospora brasiliensis 2011 (B.T. Goto, L.C. Maia & Oehl) C.
Walker, Krüger & Schüßler

≡Acaulospora polonica 1988 Polonospora polonica 2021 (Błaszk.) Błaszk., Niezgoda,
B.T. Goto & Magurno

In addition to these morphological characteristics for species differentiation, molecular
data have been broadly used for species descriptions and phylogenetic analyses [50]. For
instance, some species, such as A. scrobiculata and other species with similar ornamentations
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(pitted surface) are only distinguished by molecular analysis, along with morphological
description [21].

Forty-five (75%) Acaulospora species have one or more sequenced regions available
(Table 4) in NCBI, EMBL, GBIF, BLOYD SYSTEMS, MaarJAM and MYCOBANK databases,
most from multicopy nuclear ribosomal RNA genes, which are organized as an operon
containing the sequences for the Small Subunit 18S rRNA (SSU), 5.8S and Large Subunit 28S
rRNA (LSU) nrDNAs, separated by two internal transcribed spacers, ITS1 and ITS2. The
sequences corresponding to the rRNA genes are more conserved than the ITS regions and,
for this reason, the SSU and LSU may be used in comparing distant taxa (genus, families),
while ITS is more suitable for evolutionary analysis of very closely related species or
individuals from the same species [2,26,50,51]. Only eleven species have an additional gene
sequenced, which include Beta tubulin, Alpha tubulin, DNA-directed RNA polymerase II
subunit (RPB1), Chitin Synthase (CHS), Transcription Factor (Ste12), Heat-Shock Protein 60
(HSP60) and a Group I Intron (IGI) from the Cytochrome Oxidase 1 (COX1) gene (Table 4),
which is still insufficient for in-depth phylogenetic study. These other sequenced genes
have been proposed as secondary barcode markers, in addition to the ribosomal markers,
for multi-locus approaches [22,24,26].

Table 4. Global distribution of Acaulospora species and sequences available in online databases.
(Available in: NCBI, EMBL, GBIF, BLOYD SYSTEMS, MaarJAM, MYCOBANK).

N◦ AMF Species Occurrence Sequence Reference

1 Acaulospora alpina Oehl, Sýkorová &
Sieverd. England, Switzerland, India, Brazil SSU-ITS-LSU [52]

2 Acaulospora aspera Corazon-Guivin,
Oehl & G.A. Silva Peru SSU-ITS-LSU [53]

3 Acaulospora baetica Palenz., Oehl,
Azcón-Aguilar & G.A. Silva. Spain, Brazil SSU-ITS-LSU [54]

4 Acaulospora bireticulata F.M. Rothwell
& Trappe

Brazil, Argentina, England, South
Korea, Poland, Egypt, India, United

States, China, Italy
— [37,55]

5
Acaulospora brasiliensis (B.T. Goto,

L.C. Maia & Oehl) C. Walker, Krüger
& Schüßler

Brazil, Scotland, Argentina, South
Korea SSU-ITS-LSU [56,57]

6 Acaulospora capsicula Błaszk.
Australia, England, Poland, China,
Brazil, Egypt, India, United States,

Switzerland
— [58]

7 Acaulospora cavernata Błaszk. Poland, Brazil, Benin, China,
Switzerland SSU-ITS-LSU [59]

8 Acaulospora colliculosa Kaonongbua,
J.B. Morton & Bever United States, England LSU [48]

9
Acaulospora colombiana (Spain & N.C.
Schenck) Kaonongbua, J.B. Morton

& Bever

Colombia, Brazil, India, Philippines,
Benin, Germany, Switzerland

SSU-ITS-LSU; ORF1 gene
cox1; Beta Tubulin; gene CHS [48]

10 Acaulospora colossica P.A. Schultz,
Bever & J.B. Morton United States, Brazil SSU 1-ITS [60]

11 Acaulospora delicata C. Walker,
C.M. Pfeiffer & Bloss

Australia, Argentina, Brazil, China,
United States, Spain, Philippines,

Indonesia, Mexico, England,
Senegal, Venezuela, Poland, India,

Iceland

SSU-ITS-LSU [61]
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Table 4. Cont.

N◦ AMF Species Occurrence Sequence Reference

12 Acaulospora denticulata Sieverd. & S.
Toro

Argentina, Colombia, Mexico, Brazil,
South Korea, South Africa, China,

India, Canada, Kenya
ITS [62]

13 Acaulospora dilatata J.B. Morton
Argentina, United States, New

Zealand, South Atlantic, Venezuela,
Brazil, India

SSU; LSU; Beta tubulin [63]

14 Acaulospora endographis B.T. Goto Brazil — [49]

15 Acaulospora elegans Trappe & Gerd.
United States, Indonesia, Poland,
Brazil, South Korea, Argentina,

India, South Africa, Switzerland
LSU [27]

16 Acaulospora entreriana M.S.
Velázquez & Cabello Argentina, Brazil SSU-ITS-LSU [64]

17 Acaulospora excavata Ingleby & C.
Walker

Australia, Argentina, Ivory Coast,
Spain, New Zealand, Trinidad and

Tobago, Brazil
ITS [65]

18 Acaulospora fanjing R.J. He, L.M. Yao
& L. Jiang China SSU-ITS-LSU [66]

19 Acaulospora flava Corazon-Guivin,
G.A. Silva & Oehl Peru SSU-ITS-LSU [67]

20 Acaulospora flavopapillosa
Corazon-Guivin, G.A. Silva & Oehl Peru SSU-ITS-LSU [68]

21 Acaulospora foveata Trappe & Janos

Australia, Brazil, Costa Rica, Mexico,
England, Congo, Poland, Panama,
Indonesia, South Korea, Argentina,

India

SSU-ITS-LSU [69]

22 Acaulospora fragilissima D. Redecker,
Crossay & Cilia New Caledonia, Peru SSU-ITS-LSU; Beta tubulin;

ORF1 gene cox1 [70]

23 Acaulospora gedanensis Błaszk. Poland, Brazil, Austria, Switzerland — [71]

24 Acaulospora herrerae Furrazola, B.T.
Goto, G.A. Silva, Sieverd. & Oehl Brazil, Cuba, Peru LSU [72]

25 Acaulospora ignota Błaszk., Góralska,
Chwat & B.T. Goto Brazil SSU-ITS-LSU [73]

26 Acaulospora kentinensis (Wu & Liu)
Oehl & Sieverd. Taiwan, Brazil, Benin SSU-ITS-LSU; ORF1 gene

cox1; Beta Tubulin [48]

27 Acaulospora koreana E. H. Lee, S. H.
Park & A. H North Korea SSU-ITS-LSU [74]

28 Acaulospora koskei Błaszk.
Australia, Spain, Poland, Brazil,

Estonia, Egypt, India, Cameroon,
England

SSU-ITS-LSU; Beta tubulin [75]

29 Acaulospora lacunosa J.B. Morton
Argentina, United States, New

Zealand, Venezuela, Brazil, Poland,
Denmark, India, Kenya, China

SSU-ITS-LSU; Beta tubulin;
HSP60 gene [63]

30 Acaulospora laevis Gerd. & Trappe

Australia, Argentina, China,
Ecuador, United States, New

Zealand, England, Brazil, South
Korea, Egypt, India, Mexico, Iceland,

France, Germany, Greece, Benin,
Switzerland, Israel, South Africa

SSU-ITS-LSU; Beta tubulin;
RPB1; mRNA gene Ste12;

Alfa tubulin;ef1 Alpha
[27]
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Table 4. Cont.

N◦ AMF Species Occurrence Sequence Reference

31 Acaulospora longula Spain & N.C.
Schenck

Australia, Germany, Brazil,
Colombia, Spain, Philippines, Japan,

Indonesia, England, Uganda,
Venezuela, South Korea, India,

Switzerland

SSU; LSU; RPB1 [76]

32 Acaulospora mellea Spain & N.C.
Schenck

Germany, Argentina, Brazil,
Colombia, China, United States,
Mexico, Poland, India, Canada,

Denmark, Benin, Cameroon,
Switzerland

SSU-ITS-LSU; Beta tubulin;
ORF1 gene cox1 [76]

33
Acaulospora minuta Oehl, Tchabi,

Hount., Palenz., I.C. Sánchez & G.A.
Silva

Benin, Brazil SSU-ITS-LSU [77]

34 Acaulospora morrowiae Spain &N.C.
Schenck

Colombia, United States, Mexico,
Brazil, Poland, South Korea,

Namibia, India, Niger, Mali, France,
Germany, Switzerland, Benin,

Cameroon, China

SSU; LSU; SSU-ITS; ITS-LSU
1; Beta tubulin; glomalin

cDNA; HSP60 gene
[76]

35 Acaulospora nivalis Oehl, Palenz., I.C.
Sánchez, G.A. Silva & Sieverd. Switzerland, Brazil SSU-ITS-LSU [78]

36 Acaulospora papillosa C.M.R. Pereira
& Oehl Brazil, Norway SSU-ITS-LSU [79]

37 Acaulospora paulinae Błaszk. Brazil, Poland, United States, India,
Germany, France, Switzerland, Israel ITS2-LSU; SSU-ITS1; SSU-ITS [80]

38
Acaulospora punctata Oehl, Palenz.,
I.C. Sánchez, G.A. Silva, C. Castillo

& Sieverd.
Brazil, Switzerland, Chile SSU-ITS-LSU [81]

39 Acaulospora pustulata Palenz., Oehl,
Azcon-Aguilar & G.A. Silva Spain, Switzerland SSU-ITS-LSU [82]

40 Acaulospora reducta Oehl, B.T. Goto &
C.M.R. Pereira Brazil SSU 1-ITS-LSU 1 [83]

41 Acaulospora rehmii Sieverd. & S. Toro
Brazil, Mexico, South Korea,

Argentina, Poland, Colombia,
Taiwan, Egypt, India, China

— [62]

42 Acaulospora rugosa J.B. Morton Brazil, United States, South Korea,
Poland, India, Iran SSU-ITS-LSU [63]

43 Acaulospora saccata D. Redecker,
Crossay & Cilia New Caledonia SSU-ITS-LSU [70]

44 Acaulospora scrobiculata Trappe

Brazil, England, Mexico, Australia,
Indonesia, Trinidad and Tobago,

Spain, Argentina, Venezuela, United
States, Thailand, Japan, Philippines,
Poland, Canada, Israel, Greece, Italy,

Cameroon, China, Taiwan, South
Korea, India, Benin, Finland, Kenya,

Switzerland, Nepal

SSU-ITS-LSU; Beta tubulin;
gene CHS [84]

45 Acaulospora sieverdingii Oehl,
Sýkorová & Błaszk.

Brazil, Germany, Poland, Italy,
Northern Guinea, Southern Guinea,
Benin, France, Sudan, Switzerland

ITS [47]

46 Acaulospora soloidea Vaingankar &
B.F. Rodrigues India, Egypt — [85]



J. Fungi 2022, 8, 892 10 of 27

Table 4. Cont.

N◦ AMF Species Occurrence Sequence Reference

47 Acaulospora spinosa C. Walker &
Trappe

United States, Mexico, Argentina,
Brazil, South Korea, Ecuador, China,
India, Canada, Venezuela, Colombia,

Benin, Cameroon, Kenya, South
Africa, Switzerland, Nepal

SSU-ITS-LSU [86]

48
Acaulospora spinosissima Oehl,

Palenz., Sánchez-Castro, Tchabi,
Hount. & G. A. Silva

Sudan, South Africa, Northern
Guinea, Southern Guinea,
Switzerland, Benin, Brazil

SSU-ITS-LSU [53]

49 Acaulospora spinulifera Oehl, V.M.
Santos, J.S. Pontes & G.A. Silva Brazil LSU [87]

50 Acaulospora splendida Sieverd.,
Chaverri & I. Rojas

Costa Rica, India, Mexico, Egypt,
Brazil — [88]

51 Acaulospora sporocarpia S.M. Berch England, Switzerland, United States,
Pakistan, Egypt, India, Brazil — [89]

52 Acaulospora taiwania H.T. Hu Taiwan — [90]

53 Acaulospora tsugae T.C.Lin & Oehl Taiwan, Switzerland SSU 1-ITS-LSU 1 [91]

54 Acaulospora terricola Swarupa,
Kunwar & Manohar India — [92]

55 Acaulospora tortuosa Palenz., Oehl,
Azcon-Aguilar & G.A.Silva Spain, Switzerland SSU-ITS-LSU [82]

56 Acaulospora thomii Błaszk. Poland, Egypt, India, Switzerland — [71]

57 Acaulospora tuberculata Janos &
Trappe

Brazil, Venezuela, Argentina, Costa
Rica, Panama, China, Egypt, India LSU [69]

58 Acaulospora viridis Palenz., Oehl,
Azcón-Aguilar & G.A.Silva Spain SSU-ITS-LSU [93]

59 Acaulospora verna Błaszk. Poland — [37]

60 Acaulospora walker Kramad. &
Hedger Australia, Indonesia, Brazil — [94]

Kuklospora spinosa B.P. Cai, Jun Y.
Chen, Q.X. Zhang & L.D. Guo China — [95]

1 Short sequences with less than 50 bp.

SSU sequences have been widely used to infer the distribution of AMF species around
the world [11,14,96]. In said works, only a few species stood out as having a global
distribution, such as Acaulospora scrobiculata [15]. Considering that this might actually reflect
the conservative nature of the SSU marker, in our review, we analyzed these sequences
for Acaulospora species in order to address their potential for species resolution. The CD-
HIT [97–100] online system was used for clustering and comparison of SSU sequences
(53 sequences, belonging to 28 species), with different cut-offs of similarity. With a cut-
off of 94% similarity among sequences, five clusters were defined. One of these clusters
encompassed 20 different species, demonstrating that this threshold was not suitable for
separating species. By using a cut-off of 100% similarity, 25 clusters were formed, yet three
of them included more than one species; for example, the species A. ignota, A. baetica, A.
nivalis, A. cavernata and A. punctata were grouped together in the same cluster, showing
the conservative nature of this sequence and its inefficiency at distinguishing among
species. Another example of such inadequacy is the 98% similarity of the SSU sequence of
Acaulospora scrobiculata with other Acaulospora species (A. minuta and A. spinosa).

Likewise, an unconvincing pattern of clustering was observed when testing different
cut-offs for LSU sequences, which, although presenting a better species resolution than
SSU, is also a conservative marker when compared to ITS sequences. This low ability
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for species separation was also observed in preliminary phylogenies constructed only
with SSU or LSU sequences, which presented many polytomic branches as well as para
or polythyletic species (Supplementary Figures). On the other hand, when CD-HIT with
cut-offs of 98 and 100% were performed for ITS sequences, a larger number of groups
was formed, mostly containing sequences from the same species. However, some single
species were distributed in more than one cluster. This was observed for A. scrobiculata, A.
spinosa, A. laevis, A. minuta, A. mellea and A. delicata, indicating that, for these species, the
intraspecific variability of ITS marker may be greater than interspecifically, or that some
fungal isolates could have been erroneously identified. The best sequence clustering, for
which each species formed a different single group, was achieved by using the combination
of both regions (SSU/LSU plus ITS, here named nrDNA), indicating that this is the most
suitable molecular marker available for understanding the evolution of Acaulospora.

3. Diversity and Distribution of Acaulospora Species on the Globe

All sequences, species descriptions, and geographical occurrences were obtained
from the databases NCBI (National Center for Biotechnology Information [101]), EMBL
(European Molecular Biology Laboratory–European Bioinformatics Institute [102]), GBIF
(Global Biodiversity Information Facility [103]), BLOYD SYSTEMS (Barcode of Life Data
System [104]), MaarJAM [105], MYCOBANK Database [106], from November 2018 to
December 2020.

The geographic distribution of the 60 Acaulospora species reported so far encompasses
61 countries. The records of Acaulospora species richness are observed in the tropical region.
Brazil (43) presents the highest occurrence (Figure 2, Table 4), followed by: India (26),
Switzerland (22), Poland (18), United States (16), Argentina (16), China (15), South Korea
(12), England (11), and Benin (11). Brazil is considered one of the countries with the greatest
biodiversity in the world [12,16], which can be explained by its high degree of endemism,
vast territorial extension and diversification of ecosystems and biomes [16].
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This difference in Acaulospora diversity among different localities may also be ex-
plained, in part, by the scientific efforts in taxonomic studies in said regions. There is a
tendency for increased occurrences in countries where this type of research is emerging,
such as in Latin America [16,107], Africa and Asia [108–111]. The distribution profile of
Acaulospora species reviewed here seems to follow this trend. For instance, there were few
Acaulospora reports in India until 2014, when Gupta et al. [110] reviewed the diversity of
the genus, recording 45% of all known Acaulospora species in India. The same is valid for
Brazil, the richest country in Acaulospora species, and other AMF.
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The cosmopolitan distribution of Acaulospora genus was also pointed out by
Öpik et al. [96], who collected sequences of virtual taxa of Glomeromycota worldwide and
demonstrated that Acaulosporaceae was present on all continents, with a higher frequency in
Europe and South America. In relation to the climate, no virtual taxa were detected in the
Boreal zone, and the richness was higher in temperate and tropical zones. A tendency was
detected for some species to have a wider geographic distribution and a greater number of
hosts, although subsequent studies are needed to assess this condition [52].

Cofré et al. [16] defines the distribution of AMF species in the Atlantic Forest, Cerrado
and Chaco (Argentina), as a diagonal biodiversity because richness of AMF species is in
agreement with that observed for other fungi and plants in said biomes. The recent review
by Maia et al. [12] indicated that about 60% (192 species) of all AMF species are present in
Brazilian biomes, and this bias is also observed concerning the Acaulospora genus, as 71.6%
(43 species) of its species are found in Brazil, where the Cerrado and Atlantic Forest are
the richest biomes for this genus, with 33 and 31 species recorded, respectively. Stürmer
and Kemmelmeier [35] documented that, in Neotropical areas, Acaulospora is the most
frequent genus of AMF, followed by Glomus, Scutellospora C. Walker & F.E. Sanders, and
Funneliformis C. Walker & A. Schüßler, with 47, 29, 15, and 13 species recorded, respectively.

However, we cannot rule out the influence of vegetation diversity, soil condition
and environmental disturbance in shaping the AMF distribution [8–13,69]. For instance,
Vieira et al. [13] showed that acidity, carbon, and clay content in soil proved to be detrimen-
tal in the composition of fungi in the Brazilian semiarid region. In said work, the authors
observed that Glomus and Acaulospora were more frequent in clay rich soils than Gigaspora
Gerd. & Trappe. Interestingly, Baar et al. [4] and Sudová et al. [112] indicated that, in lake
areas, the AMF preference is over the plant symbiont, while the abiotic conditions of soil
had no effect on the composition of the fungal community.

According to Davison et al. [14], 34% of AMF species are cosmopolitan. Acaulospora
and Glomus are the most represented genera in several studies including different vegetation
types [5,6,12,13,15,96,113–115]. For example, A. scrobiculata is found on six continents, while
in Brazil, it is recorded in all biomes [12], evidencing the global distribution of AMF, when
SSU is used as a molecular marker [15].

Nevertheless, the inference of a global distribution of a certain species should be rean-
alyzed carefully; after all, the majority of available sequences are from rRNA (sequences
of SSU or LSU), which are considered conservative when compared with other genomic
sequences. Furthermore, for a phylogenetic species recognition, a multi-locus approach
presents a higher resolution power for species discrimination [116]. The use of few and
relatively conservative markers may give the wrong impression that everything is every-
where, which is an outdated view in mycology. There are many examples of cryptic species
distribution revealed by phylogeographic, mainly for pathogenic fungi, which, unlike
the AMF, count on a large number of genes and genomes sequenced [26,117]. In reality,
even using the SSU sequence as a marker, a certain level of endemism is observed among
Glomeromycota species [96,113].

The SSU marker is still one of the most available for AMF species, mainly for virtual
taxa, representing more than 77% of the sequences on the MaarjAM database [11,14,57].
Notwithstanding, we ought to rethink about what we are analyzing indeed: the distribution
of species or the distribution of a sequence that, due to its conservative nature, may
depreciate species diversity and, in turn, overestimate the geographic distribution of
some species.

The scarcity of distinct molecular markers available for species identification and
differentiation in AMF [19,21,24,57,118] may be explained due to the problematic DNA
extraction from spores. The quality of the collected spores in field may limit the yield of
DNA, demanding the development of trap cultures and/or pure cultures [16]. However,
once these cultures are acquired, there are other challenges to face, such as the maintenance
of a pure culture under controlled conditions, free of contaminant fungal species [16]. As a
consequence of these difficulties, most of the amplified sequences used for phylogenetic
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analyses are from the nrDNA multicopy region [2,3,16,18]. Furthermore, the search for
new markers is quite laborious and expensive, as it demands (i) genetic material from a
wide number of species, (ii) design of primers for gene amplification in all species, and
(iii) time-consuming steps of cloning and sequencing.

Poor estimations of species diversity caused by morphological species recognition [20,118,
119] or conservative molecular markers will certainly be overcome when variable sequences
become available. To date, few species of Glomeromycota have their genome (Acaulospora
colombiana and A. morrowiae) [120] or transcriptome (A. morrowiae) sequenced [121].

4. Phylogenetic Relationship among Acaulospora Species: Is There a Consensual Tree?

For the Acaulospora phylogeny we used an updated nrDNA sequence dataset. The
NCBI Nucleotide database was consulted to obtain all available ribosomal sequences for
Acaulospora. Using the keyword ((Acaulospora [Title]) OR Acaulospora [Organism]) AND
ribosomal [Title], 1836 sequences were found in the GenBank, of different lengths.

The downloaded sequences were classified and divided by region: partial sequence
SSU, ITS (=ITS1-5.8S-ITS2), partial sequence LSU and SSU-ITS-LSU (here designated as
nrDNA). The separation of these sequences was carried out with reference sequences from
Krüger et al. [118]. Highly incomplete and falsely annotated sequences were excluded
after CD-Hit analysis and those addressed as Acaulospora spp., in GenBank annotation,
had their species identified by accessing the original article of their description. Sequences
from uncultured or not morphologically described species were not included in our phy-
logenetic analysis, as our objective was to compare the phylogenetic relationships of the
previously described species concerning the spore wall ornamentation distribution in
Acaulospora genus.

As the CD-HIT analysis and preliminary phylogenies using only SSU or LSU had a
low resolution when distinguishing some species in monophyletic clusters (Supplementary
Figures), we carried out three additional phylogenetic analyses: one utilizing SSU-ITS-LSU
(nrDNA), one simply with ITS region and another with all the available sequences of
ribosomal genes, as a concatenated analysis. The access numbers of the sequences used in
each phylogeny are listed on Table 5.

Table 5. Sequences used in phylogenetic analyses.

Access Number Sequence Concatenated Analysis SSU-ITS-LSU ITS1-5.8S-ITS2

KX355819_Sacculospora_baltica x x x
KX355818_Sacculospora_baltica x x x
KX355821_Sacculospora_baltica x x x

KX345938_Sacculospora_felinovii x x x
KX345939_Sacculospora_felinovii x x x
KX345941_Sacculospora_felinovii x x x

FR681927_Acaulospora_alpina x x x
FR681928_Acaulospora_alpina x x x
FR681930_Acaulospora_alpina x x x

MN080998_Acaulospora_aspera x x x
MN081001_Acaulospora_aspera x x x
MN080999_Acaulospora_aspera x x x
LN810999_Acaulospora_baetica x x x
LN811001_Acaulospora_baetica x x x
LN811002_Acaulospora_baetica x x x

FN825910_Acaulospora_brasiliensis x x x
FR681934_Acaulospora_brasiliensis x x x
FR681933_Acaulospora_brasiliensis x x x
FM876789_Acaulospora_cavernata x x x
FM876790_Acaulospora_cavernata x x x
FM876788_Acaulospora_cavernata x x x
AF133764_Acaulospora_colossica x x x
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Table 5. Cont.

Access Number Sequence Concatenated Analysis SSU-ITS-LSU ITS1-5.8S-ITS2

AF133768_Acaulospora_colossica x x x
AF133776_Acaulospora_colossica x x x

GU326339_Acaulospora_colliculosa x
GU326346_Acaulospora_colliculosa x
GU326352_Acaulospora_colliculosa x
FR750063_Acaulospora_colombiana x x x
FJ461804_Acaulospora_colombiana x

KX168435_Acaulospora_colombiana x
JF439093_Acaulospora_delicata x x x
JF439203_Acaulospora_delicata x x x

MT832212_Acaulospora_dilatata x
FJ461792_Acaulospora_dilatata x

AJ239115_Acaulospora_denticulata x x
MT112118_Acaulospora_denticulata x x
FR750173_Acaulospora_entreriana x x x
FR750171_Acaulospora_entreriana x x x
FR750169_Acaulospora_entreriana x x x
KM057069_Acaulospora_excavata x x
KM057074_Acaulospora_excavata x x
KM057076_Acaulospora_excavata x x

KY362433_Acaulospora_fragilissima x x x
KY362432_Acaulospora_fragilissima x x x
KY362431_Acaulospora_fragilissima x x x

LN736022_Acaulospora_foveata x x x
LN736026_Acaulospora_foveata x x x
LN736025_Acaulospora_foveata x
JX135571_Acaulospora_herrerae x
JX135569_Acaulospora_herrerae x
JX135573_Acaulospora_herrerae x
KP191468_Acaulospora_ignota x x x
KP191471_Acaulospora_ignota x x x
KP191472_Acaulospora_ignota x x x

FM876830_Acaulospora_kentinensis x x x
FM876822_Acaulospora_kentinensis x x x
FN547520_Acaulospora_kentinensis x x x

KP191475_Acaulospora_koskei x x x
KP191474_Acaulospora_koskei x x x
KP191476_Acaulospora_koskei x x x

KY565428_Acaulospora_koreana x x x
KY565427_Acaulospora_koreana x x x
KY565429_Acaulospora_koreana x x x
KP756438_Acaulospora_laevis x x x
KP756447_Acaulospora_laevis x x x
FN547512_Acaulospora_laevis x x x

KP756427_Acaulospora_lacunosa x x x
KP756435_Acaulospora_lacunosa x x x
KP756584_Acaulospora_lacunosa x x x
AM040291_Acaulospora_longula x
AM040292_Acaulospora_longula x
AJ510228_Acaulospora_longula x
AF389007_Acaulospora_longula x
KP756453_Acaulospora_mellea x x x
KP756456_Acaulospora_mellea x x x
KP756471_Acaulospora_mellea x x x
FR869691_Acaulospora_minuta x x x
FR821675_Acaulospora_minuta x x x
FR821674_Acaulospora_minuta x x x

AJ242500_Acaulospora_morrowiae x x
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Table 5. Cont.

Access Number Sequence Concatenated Analysis SSU-ITS-LSU ITS1-5.8S-ITS2

HE603641_Acaulospora_nivalis x x x
HE603643_Acaulospora_nivalis x x x
HE603644_Acaulospora_nivalis x x x
AJ891120_Acaulospora_paulinae x x
AJ891119_Acaulospora_paulinae x x
AY639265_Acaulospora_paulinae x x
LN884304_Acaulospora_papillosa x x x
LN884303_Acaulospora_papillosa x x x
LN884302_Acaulospora_papillosa x x x
FR846382_Acaulospora_punctata x x x
FR846384_Acaulospora_punctata x x x
FR846385_Acaulospora_punctata x x x
HF567941_Acaulospora_pustulata x x x
HF567939_Acaulospora_pustulata x x x
HF567938_Acaulospora_pustulata x x x
KM057064_Acaulospora_reducta x x
KM057066_Acaulospora_reducta x x
KM057063_Acaulospora_reducta x x
LN881566_Acaulospora_rugosa x x x
LN881565_Acaulospora_rugosa x x x
LN881564_Acaulospora_rugosa x x x
KY362428_Acaulospora_saccata x x x
KY362430_Acaulospora_saccata x x x
KY362429_Acaulospora_saccata x x x

FR692352_Acaulospora_scrobiculata x x x
FR692354_Acaulospora_scrobiculata x x x
FR692350_Acaulospora_scrobiculata x x x
AM076384_Acaulospora_sieverdingii x x
AM076382_Acaulospora_sieverdingii x x

FR750153_Acaulospora_spinosa x x x
FR750156_Acaulospora_spinosa x x x
FR750152_Acaulospora_spinosa x x x

HG422734_Acaulospora_spinosissima x x x
HG422733_Acaulospora_spinosissima x x x
HG422732_Acaulospora_spinosissima x x x
KY413817_Acaulospora_spinulifera x
KY413815_Acaulospora_spinulifera x
KY413814_Acaulospora_spinulifera x

HF567933_Acaulospora_tortuosa x x x
HF567937_Acaulospora_tortuosa x x x
HF567936_Acaulospora_tortuosa x x x
MH045497_Acaulospora_tsugae x x
MH045498_Acaulospora_tsugae x x
MH333280_Acaulospora_tsugae x x

AF378440_Acaulospora_tuberculata x
FJ461799_Acaulospora_tuberculata x x x

MT832207_Acaulospora_tuberculata x x x
HG421736_Acaulospora_viridis x x x
HG421738_Acaulospora_viridis x x x
HG421737_Acaulospora_viridis x x x

Alignments were carried out using Mafft online with the E-INS-I parameter. The align-
ment was viewed and manually edited (when required) using Mega 5.2. CD-HIT was used
for all datasets (SSU, ITS, LSU and SSU-ITS-LSU fragment) to compare DNA sequences,
with cut-off points of 94%, 98% and 100% similarity. These four datasets were grouped sepa-
rately using CD-HIT to avoid repeating identical sequences and to exclude the incongruent
sequences. The alignments used for all analyses are available in Supplementary Material.
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Bayesian inference (BI) and maximum likelihood (ML) phylogenetic analyses were
performed using CIPRES Science Gateway 3.3 [122]. GTR + G + I was used as a substitution
model for both phylogenies, as well as both partitioned analyses: SSU/ITS1/5.8S/ITS2/
LSU/indel and ITS1/5.8S/ITS2/indel. For ML, 1000 quick bootstrapping runs were deter-
mined using RAxML-NG 1.0.1 [123]; for the BI, a million generations were run in MrBayes
3.2 [124]. The topologies of the ML and BI trees were compared. A consensus tree was
produced, showing the significant supporting values from both analysis (0.95 for BI, 70
for ML). After previewing in FigTree v. 1.4.4 [125], the phylogenetic tree was exported to
Inkscape (v 0.91) for further editing, diligently honoring the scale.

The tree topology was essentially the same for our three phylogenies (nrDNA, ITS
and concatenated), and for all analyses we observed that, in some cases, different se-
quences from the same species did not cluster together. In the nrDNA phylogeny (Figure 3),
this was the case for only two species, A. scrobiculata (FR692352, FR692354, FR692350)
and A. lacunosa (KP756427, KP756435, KP756584), while in the ITS phylogeny (Figure 4),
this occurred for three species, A. delicata (JF439093, JF439203), A. lacunosa (KP756427,
KP756435, KP756584), and A. scrobiculata (FR692352, FR692354, FR692350), and in the
concatenated analysis, three species had their sequences clustered with others: A. lacunosa
(KP756427, KP756435, KP756584), A. longula (AM040291, AM040292, AJ510228), A. scrobicu-
lata (FR692352, FR692354, FR692350). Aside from this problem of “polyphyletic” species,
the concatenated and ITS (Figures 4 and 5) analysis also presented polytomic branches
between some sister species.

Therefore, the nrDNA dataset (Figure 3) provided the best phylogeny as, in this tree,
the clades presented the highest number of bootstrap supports and the lowest number of
polytomic branches, as well as fewest polyphyletic species.

The polytomy observed for A. lacunosa and A. scrobiculata in all analyses (Figures 3–5)
suggests that these sequences are from different species with similar morphology, or
perhaps, in these lineages, the nrDNA region has some convergent sites (homoplasy). A
possible explanation for this is that A. lacunosa and A. scrobiculata form two complexes of
crypt species, with very similar morphological characteristics.

Aside from A. lacunosa and A. scrobiculata, other polytomic incongruities were observed.
For example, in the ITS tree, one of the sequences of A. delicata was grouped with A. rugosa,
and in the concatenated tree, A. longula was shown to be paraphyletic.

The resulting data suggest that, for some groups, the phylogenetic signal of the ITS is
insufficient for discriminating among different species. Taken together, said incongruities
reinforce the urgency of more molecular markers and a multi-locus sequencing analysis,
as, to date, most phylogenies in AMF reconstruct the evolutionary history of one single
gene or sequence, and not species. As pointed out by Taylor et al. [126], real phylogenetic
species recognition is carried out by the concordance of genealogies from different loci.



J. Fungi 2022, 8, 892 17 of 27J. Fungi 2022, 8, x FOR PEER REVIEW 17 of 28 
 

 

 
Figure 3. Phylogenetic tree of Acaulospora species using nrDNA sequences (partial SSU, ITS1, 5.8S, 
ITS2 and partial LSU). The alignment was performed and contained twenty-nine Acaulospora 
species and two Sacculospora species as outgroups. The support values are Bayesian inference (BI) 
and maximum likelihood (ML), respectively, with values equal to or higher than 0.95 for BI and 70 

Figure 3. Phylogenetic tree of Acaulospora species using nrDNA sequences (partial SSU, ITS1, 5.8S,
ITS2 and partial LSU). The alignment was performed and contained twenty-nine Acaulospora species
and two Sacculospora species as outgroups. The support values are Bayesian inference (BI) and
maximum likelihood (ML), respectively, with values equal to or higher than 0.95 for BI and 70 for ML
considered significant. Sacculospora baltica and Sacculospora felinovii were included as outgroups. Blue—
smooth spores; Green—projection-shaped ornamentation; Red—depression-shaped ornamentation;
Grey—outgroup.
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Figure 4. Phylogenetic tree using complete ITS1-5.8S-ITS2 sequences from thirty-five Acaulospora
species and two Sacculospora species as outgroups. The support values are Bayesian inference (BI)
and maximum likelihood (ML), respectively, with values ≥0.95 for BI and ≥70 for ML considered
significant.
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Figure 5. Phylogenetic tree using all available nrDNA sequences (partial SSU, ITS, partial LSU,
SSU-ITS-LSU) in a concatenated analysis. Forty-three Acaulospora species were included, along with
Sacculospora baltica and Sacculospora felinovii, as outgroups. The support values are Bayesian inference
(BI) and maximum likelihood (ML), respectively, with values ≥0.95 for BI and ≥70 for ML considered
significant.
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4.1. Is Kuklospora a Different Genus?

One of the objectives in reconstructing the Acaulospora phylogeny was to reconsider
the relationship between Acaulospora and Kuklospora, a genus described by Sieverding
and Oehl [46], based on morphology and spore ontogeny. The authors proposed two
new genera, Kuklospora and Intraspora, and the transfer of Entrophospora colombiana and
Entrophospora kentinensis to Kuklospora, which was placed as a sister genus of Acaulospora.
Later, Kaonongbua et al. [48] proposed the transfer of these species to Acaulospora according
to 28S analysis, suggesting that the spore development (acaulosporoid or entrophosporoid)
is not of monophyletic character.

In all phylogenies (Figures 3–5), the monophyletic nature of Acaulospora genus was
confirmed, including the species Kuklospora colombiana, as sister species of A. koskei (both
are species without ornamentation) and Kuklospora kentinensis as sister species of A. aspera
and A. spinosissima, corroborating the analysis of 28S by Kaonongbua et al. [48], Krüger
et al. [127] and other authors, such as Corazon-Guivin et al. [67], Crossay et al. [70], Lin
et al. [91], Lee et al. [74] and Corazon-Guivin et al. [53], when they described A. flava, A.
saccata and A. fragilissima, A. tsugae, A. koreana, and A. aspera, respectively.

Additionally, in our alignment, the difference in identity percentage between Kuk-
lospora and its closest Acaulospora species was very low (21%) compared to differences
among other genera, which reinforces that Kuklospora does not stand as a different genus.

Once K. colombiana and K. kentinensis are transferred to Acaulospora and the genus
Kuklospora becomes invalid, the third species, K. spinosa [95] should also be relocated to
Acaulospora; however, this will create a problem of homonyms with the specific epithets
between A. spinosa and K. spinosa. Because A. spinosa was the species described first, it has
nominal priority. Moreover, the absence of sequences from any molecular marker for K.
spinosa makes a robust phylogenetic analysis still pending for its accurate phylogenetic
positioning.

4.2. The Homoplasic Nature of Acaulospora Ornamentations

The ornamentations of the spore wall, illustrated in the nrDNA phylogenetic tree
(Figure 3), do not follow the evolutionary history established by the molecular markers
here used. The homoplasic nature of this morphological characteristic is observed in many
groups of species in our trees. For instance, A. kentinensis (regular depression), A. spinossis-
sima (projection) and A. aspera (irregular depression) are sister species and do not share the
ornamentation type, as well as A. foveata and A. lacunosa, which have the depression type
of ornamentation (irregular and regular, respectively) and form a monophyletic group with
A. koreana and A. mellea, which are species without ornamentation.

The noted observations make it clear that spore wall ornamentations, at least in the
Acaulospora genus, ought not to be applied for phylogenetic inferences, as they are exclu-
sively used for morphological description of species. Furthermore, these evolutionary
convergences ought to have their meaning investigated to better address questions such as:
(i) is it possible the same species express different phenotypes, concerning ornamentation,
depending on environmental conditions? (ii) Different ornamentations evolve indepen-
dently in response to the same environmental pressures (climate, soil, plant host, etc.)?
Indeed, a great deal of research must be undertaken in terms of molecular and biochemical
interaction of these AMF with their substrate, but the starting point for all these studies
must be a robust, well-supported, and multi-locus evolutionary analysis.

5. Morphological Characteristics of Acaulospora Species Shared with Other Genera

Once K. colombiana and K. kentinensis (now A. colombiana and A. kentinensis) are in-
cluded in the Acaulospora genus [37,48], two types of spore formation, acaulosporoid and
entrophosporoid, with one or two scars, respectively, should be considered as diagnostic
characteristics of the genus.

Concerning the spore walls, as mentioned above, most Acaulospora species present
three walls, with a Melzer reaction and a “beaded” layer, with few exceptions, as is the case
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with A. colliculosa, for which the inner wall is smooth, not beaded, and shows an absence of
Melzer’s reagent.

The analysis of type collection for A. sporocarpia demonstrates a very distinct spore
wall structure, different from the spore wall organization detected in Acaulospora species.
Spores of A. sporocarpia present only two walls (vs. three in Acaulospora) and the inner wall
is hyaline to light yellow, with laminated layers. Therefore, our findings suggest that A.
sporocarpia does not belong to the Acaulospora clade, as well as A. splendida, A. gedanensis
and Polonospora polonica (Acaulospora polonica, recently transferred to Polonospora genus). In
all species, the spores present only two walls [37,62,64,71]. Notably, in our phylogeny, the
species A. entreriana, which also presents only two walls, was grouped as an Acaulospora
species. Therefore, additional phylogenetic analysis of isolates from the type location
species ought to be investigated to verify this hypothesis.

Species with two spore walls, such as Archaoespora trappei, represent a very good
example of species complexes with several sequences representing distinct clades of species
ranking in Archaeospora [128]. Said data suggest that several isolates with similar mor-
phology to A. trappei may represent new species in Glomeromycota, but the absence of
sequences from type location isolates prevents the description of new species and makes
the phylogeny ambiguous.

Acaulospora brasiliensis was originally described as Ambispora brasiliensis in Brazil [95];
however, according to the analysis of a variant Scottish isolate with similar morphology,
Kruger et al. [96] transferred A. brasiliensis to Acaulospora (Diversisporales). Phylogenetic
analysis of the Brazilian fungus is not available; however, its morphology does indeed
resemble Ambispora species, not Acaulospora. Additional analyses of the fungus isolated in
Brazil are necessary to clarify this inconsistency between the morphologies of Brazilian and
Scottish isolates.

Acaulospora terricola represents another problematic case that invites further scrutiny.
The available morphological description in protologue does not allow conclusions regarding
its membership to Acaulospora [92]. Unlike other Acaulospora species with molecular data
available, A. terricola presents ornamentation in the inner layer of its spore wall. The closest
morphological species is A. endographis, which, similar to other Acaulospora species, has
three walls and beaded layers, and, as ornamentations, the inner layer of outer wall of
spore wall presents dense spine projections. However, A. terricola presents a much more
complex structure, with 10 layers in the spore wall, while A. endographis presents only four.

Acaulospora walkeri, in addition, requires elucidation regarding its spore wall structure.
Originally, the fungus was described with only four layers distributed in two walls, but the
pictures presented in protologue suggest three walls [94].

Taking all these exceptions into account, we can rule out any morphological character-
istic, to date, as being a real apomorphy of the Acaulospora genus. The molecular markers
appear to present a better resolution. Our analyses showed a robust resolution for the
monophyly of this genus, because, as stated previously, a few sparse cases in our analyses
remained polyphyletic.

Poor-quality or insufficiently annotated sequences in GenBank may present another
problem that would corroborate the occurrence of polyphyletic species in phylogenies. By
applying a similarity cut-off of 98% for all downloaded sequences, we concluded that some
may present entirely different nucleotides for the SSU and LSU regions. Indeed, in our first
phylogenies, these sequences did not group even within the Acaulospora genus (data not
shown). We call them “contaminating sequences”, as they completely altered our alignment.
The access number of these sequences in GenBank are as follows: Z14006.1, NG_062371.1,
HE610427.1, Y17633.2, AJ306439.1, FJ009670.1, NG_062381.1, Z14005.1, corresponding to
the species A. colombiana, A. cavernata, A. lacunosa, A. laevis, A. longula, A. mellea, A. spinosa
and A. rugosa, respectively. It is possible that they are sequences from other genera of
Glomeromycota that have mistakenly been identified as Acaulospora.

Therefore, the aforementioned discrepancies warrant further investigation when study-
ing Acaulospora species. Despite the high phylogenetic support of the genus, the resolution
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of some species relationships is still a challenge, perhaps due to factors such as cryptic
speciation, phenotypic plasticity and genetic homoplasic polymorphism. To solve this
enigma, more genes, such as RPB1, Alfa tubulin and Beta tubulin, should be sequenced and
used in a multi-locus approach.

6. Conclusions

Acaulospora species are found in 61 countries around the world, foremost in temperate
and tropical zones with the greatest record of diversity of this genus. Brazil is the country
with the highest recorded diversity (43/60), showcasing a great potential for describing
new species of Acaulospora and other AMF.

For the Acaulospora genus, the nrDNA tree containing SSU, ITS1, 5.8S, ITS2 and LSU
gene sequences proved to be superior as compared to the concatenated analysis and the
ITS-only tree, due to the lowest number of polyphyletic species found in this phylogeny.
This polyphylism may be due to the occurrence of morphospecies or the poorly annotated
sequences in the databases.

The phylogenetic trees revealed the homoplasic nature of the spore wall ornamentation
in Acaulospora genus, indicating that it ought not to be used as a phylogenetic marker. We
supported the inclusion of Kuklospora species as belonging to Acaulospora, using a robust
phylogenetic analysis of the nrDNA region. Further molecular analysis is required to clarify
the position and phylogenetic relationship of K. spinosa.

Lastly, we emphasize the importance of genome sequencing of more AMF species, as
well as the sequencing of other markers for robust multi-locus phylogenies and, therefore,
a better understanding of the evolution of these fungi as a starting point for clarifying the
possible ecological meanings of morphological convergences, such as the ornamentation
found among the species from the Acaulospora genus studied here.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8090892/s1, Figure S1: Preliminary phylogenetic tree of the
species of Acaulospora, using partial SSU. The support values are maximum likelihood (ML), and
the outgroup are species Sacculospora baltica and Sacculospora felinovii; Figure S2: Preliminary
phylogenetic tree of the species of Acaulospora, using partial LSU. The support values are maximum
likelihood (ML), and the outgroup are species Sacculospora baltica and Sacculospora felinovii;
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