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Abstract: In sub-Saharan Africa, extreme poverty highlights the tension between development aid
and the environment. Foreign aid is considered one of the most important factors affecting forest
health in this region. Although many studies have empirically examined the effects of different kinds
of foreign aid on forests, few have investigated the potential impact of agricultural aid. This study
investigated the causal effects of agricultural aid on forests in Sierra Leone, a country that relies
heavily on agricultural products. We constructed a fine-grained (16-day) indicator of forest growth
from 2001 to 2015 by combining remotely sensed data of land cover and the Normalized Difference
Vegetation Index. The high frequency of forest growth data enables us to trace the dynamic causal
process. To reduce the confounding effects of heterogeneity, we applied a difference-in-difference
design with data at the sub-national level to estimate the causal effect. This study provides robust
empirical evidence that foreign agricultural aid harms forests both in the short term (i.e., 16 days)
and long term (i.e., years) in Sierra Leone. Agricultural aid projects with agricultural development as
their primary objective or aid projects without specific objectives lead to the highest levels of forest
degradation.

Keywords: agricultural aid; forest protection; remote sensing; environmental influence

1. Introduction

The reconciliation of environmental conservation and human development is chal-
lenging and difficult to achieve [1–4]. In 1992, during the Rio Earth Summit, developed
nations, such as the United States, the members of the European Community, Canada,
and Japan, announced that they would increase their financial assistance to developing
countries for the protection of the environment [5]. Over the last thirty years, many aid
agencies have made efforts to incorporate conservation objectives into their development
aid projects, promising to benefit both the environment and people [6–8]. In 2015, the UN
Sustainable Development Summit set up more than 17 Sustainable Development Goals
(SDGs) and addressed the necessity of reducing poverty, advancing social equity, and
simultaneously ensuring environmental protection. Thereafter, developing foreign aid
that is more environmentally friendly and avoids disrupting biodiversity in developing
countries has attracted increasing attention from scholars and policymakers in the field of
the global governance of aid [8–11].

Forests cover about a third of the Earth’s land area and are essential to the health
of the global environment [12]. Forest degradation is a reduction in tree density and/or
an increase in disturbance in a forest that can result in the loss of forest products and
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forest-derived ecological services [13]. It not only contributes to greenhouse gas emissions
and thus accelerates the pace of climate change, but it is also directly associated with the
decline of biodiversity [14–19]. The existing literature identifies a wide range of proximate
or direct drivers and underlying or indirect causes of forest degradation, such as selective
felling, fuelwood collection, shifting cultivation, road construction, and wildfires [20–23].
Foreign aid is a concern because it is an important resource for developing countries to
accelerate the process of economic development. Although many studies have empirically
examined the effects of different kinds of foreign aids on forests, such as development
aid [8,24], infrastructural aid [25], conservation aid [9,11], forestry aid [10], and bilateral
aid [10,26], fewer researchers have investigated the potential impact of agricultural aid.

More than 75% of the poor people in the developing world live in rural areas, and most
of them depend directly or indirectly on agriculture for their livelihood [27,28]. Numerous
studies have demonstrated that the development of agriculture is particularly effective in
reducing poverty [29,30]. However, a number of developing countries, especially countries
in sub-Saharan Africa, lack enough resources to provide the required investment to their
agricultural sectors and farmers [31,32]. As such, foreign agricultural aid is important for
developing countries to improve their agricultural growth and productivity. Since the
early 1970s, international donors have donated millions of dollars (USD) to farmers and
agricultural sectors in poor regions around the world [33]. However, in sub-Saharan Africa,
where much of agricultural aid is targeted, there is great pressure on forests due to cutting
for firewood, charcoal and logging, and the expansion of agriculture [19,20,34]. While the
effects of agricultural aid on agricultural development and poverty reduction have been
documented [35–37], the evidence of its impact on the environment is relatively sparse.

From a theoretical perspective, the predictions with respect to the effects of agricul-
tural aid on forests in sub-Saharan Africa are mixed. One set of hypotheses highlight
that agricultural aid has already incorporated environmental concerns [33], which could
encourage forest protection. Agricultural expansion is mainly caused by demand for more
cropland for food, fiber, and biofuel production at the expense of other land cover types,
such as forests [38], resulting in the diminishing of the provision of ecosystem goods and
services. However, since the mid-1990s, the aim of agricultural aid is no longer merely im-
proving total agricultural growth and output, but focusing more on increasing the growing
capacity of the agricultural land (i.e., intensification). The New Partnership for Africa’s
Development (NEPAD) clearly pointed out that sustainable agriculture could be achieved
by using a variety of techniques, such as crop rotation, soil enrichment, and natural pest
predators [39]. Agricultural aid aiming to improve soils, offer improved seeds, provide
more efficient irrigation (e.g., easier accessibility to water [33,35]), and supply farmers with
appropriate new technologies (e.g., agricultural machinery and equipment [33,35]) can
increase the productivity of a given size of farmland. For instance, studies have found that
specific types of irrigation (e.g., flood irrigation) positively increase soil water and soil nu-
trient concentrations in the upper soil layer [40,41]. These can increase croplands intensity
rather than expansion, discourage the cultivation of larger acreage, and thus benefit other
vegetation types, including forests. In sum, agricultural aid may benefit forests.

Alternatively, agricultural aid to sub-Saharan countries may harm forests. Agricultural
aid for the development of water resources is mainly directed towards large-scale projects
on irrigation, reservoirs, hydraulic structures, and groundwater exploitation [33]. However,
these projects can directly contribute to damaging forests. For example, hydroelectric dams
can change a river’s hydrological cycle, which in turn affects land cover and vegetation
outcomes, including forests, resulting in a change of the ecology of the floodplain and
the spatial distribution of flora and fauna [42,43]. Diverting water to a downstream area,
irrigation dams can intensify the conversion of forested land into land that is suitable for
agriculture production [44]. In addition, since fertilizer and pesticides are strategically
important in increasing agricultural productivity and ending hunger [35], international
donors continuously provide them for recipient countries [33,35]. Unfortunately, the fertil-
izers and pesticides used in agriculture have negative consequences for the environment.
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Additionally, they are not limited to agricultural systems since the residues of fertilizers and
pesticides can be dispersed through the air, leach into the soil, groundwater, and run-off
into surface water [45]. Various studies have found that the excessive use of fertilizers and
pesticides has led to biodiversity loss and ecosystem degradation [46,47]. Moreover, when
discussing the relationship between agricultural aid and forests, one cannot ignore the
reality of poverty in most sub-Saharan countries. Smallholders are the main driving force
of African agricultural expansion and forest losses [48,49]. Without sufficient off-farm jobs
in urban areas, people may continue to exploit forests. Harvesting for timber, firewood,
charcoal, grazing and even converting forests to agricultural land (e.g., cropland) to enlarge
planting area for crops (e.g., rice) are the major drivers of deforestation and forest degra-
dation [20,21]. These human activities may be accelerated with the continued financial
support from aid for agricultural development. Finally, governance quality has been found
to be critical in protecting forests [50–52]. However, the quality of governance in most sub-
Saharan countries is quite poor. Agricultural aid is mainly delivered by the central or local
governments of the recipient countries. If their overall governance capacities are low, aid to
those countries may be easily abused or misappropriated to conduct more commercially
valuable activities compared to agriculture, such as logging. All in all, agricultural aid may
harm forests.

As discussed above, the impacts of agricultural aid on forests in the sub-Saharan region
are quite ambiguous. It is unclear whether there is an intrinsic tension between agricultural
aid and forest protection. Furthermore, outcomes may depend heavily on how agricultural
aid is designed and implemented. We address this knowledge gap by empirically analyzing
the effects of foreign agricultural aid on forest growth using Sierra Leone as a case study.
Located in West Africa, Sierra Leone is one of the poorest countries in the world and has
long suffered from brutal poverty [53]. It is ranked 181 out of 189 countries in the 2019
Human Development Index Ranking. Although agriculture is the largest sector of the
economy and employs more than 80% of the population, which is about 7,092,113 as of the
2015 census [54], nearly half the population is food insecure and half of all child deaths are
attributable to malnutrition. This was once attributed partly to Sierra Leone’s poor soil.
Ferralsols, oxisols, inceptisols, entisols, spodosols, and ultisols are the primary soil types
in Sierra Leone [55,56]. The international soil reference and information center (ISRIC)
shows that soil organic carbon (SOC) contents in most regions of Sierra Leone are between
30–60 tons per hectare, with some regions in the northern and western parts of the country
containing between 75–105 tons per hectare [57]. The country is highly dependent on
foreign aid, including agricultural aid, especially after a ten-year civil war. Sierra Leone lost
about 1,710,000 hectares of tree cover between 2001 to 2020, equivalent to a 30% decrease in
tree cover and 808 million tons of CO2 emissions [58], which is alarming for its ecosystems
and biodiversity.

In order to explore the role of agricultural aid in forests in Sierra Leone, we first
developed a fine-grained indicator of forest growth at the chiefdom level, the lowest
administrative unit, measured at a 16-day frequency using satellite-based data of land
cover and the Normalized Difference Vegetation Index (NDVI) from 2001 to 2015. With this
dataset, we then applied the difference-in-difference (DID) design to estimate the causal
effect of agricultural aid on forests in order to rule out the influence caused by the potential
confounders, such as precipitation, temperature, governance quality, and poverty level. To
our knowledge, the study is the first attempt to explore the environmental consequences
of agricultural aid. The characteristics of high-frequency remotely sensed data with geo-
coded agricultural aid data not only make it possible to conduct a sub-national analysis,
leading to more rigorous findings, but also enable us to observe the dynamic influence of
agricultural aid on forests across time. There are three specific questions addressed in the
study: (1) Does agricultural aid benefit or harm forest growth? (2) Does the relationship
between agricultural aid and forest growth change over time? (3) Do different kinds of
agricultural aid have different effects on forest growth? These questions are significant
for forest protection since they could tell us whether or not additional interventions are
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needed during the implementation of agricultural aid, and if they are, when and how. In
addition, pioneered by Alexander Mather, research has applied forest transition models to
explain the evolution of forest land cover in developing countries, such as Vietnam [59],
Latin America [60], India [61], and China [61,62]. Lambin (2009) once summarized two
fundamental forces in general, i.e., socio-ecological feedbacks and socio-economic factors, in
understanding the reasons behind forest decline and recovery [59]. This study contributes
to this broad topic by focusing on the influence of an exogenous socio-economic factor, i.e.,
foreign agricultural aid, on forests in the sub-Saharan region.

2. Materials and Methods
2.1. Materials
2.1.1. Agricultural Aid Data

While most existing studies mainly focus on national level aid inflows, we concentrated
on sub-national level aid (chiefdom level) in this study. The total amount of aid received by
a country reveals nothing about how aid is actually allocated spatially, and how much aid is
provided to each part of the country. Aid, including agricultural aid, is eventually allocated
at local scales and generates local outcomes. Macro-scale findings may be misleading when
the actual distribution of aid is neglected. With more precise geographical information on
whether agricultural aid is present or absent in a specific area combined with the measures
of forest growth conditions, we can better investigate the possible causal relationship
between agricultural aid and forests.

Chiefdoms are the lowest formal administrative units in Sierra Leone [53,63]. Since
the land and other important resources, such as diamonds, are mainly regulated by the
authorities (i.e., chiefs) in chiefdoms [53,63], it is suitable to examine the impact of agricul-
tural aid on forests at the chiefdom level. Additionally, as other aid-recipient countries,
Sierra Leone receives agricultural aid projects at multiple administrative levels, from the
national level to the provincial and the district levels, and then further down to the lowest
level of chiefdoms. The hierarchical system of aid allocation denies the assumption that
agricultural aid is equally distributed. It in turn may generate false causal evidence when
agricultural aid is allocated in one area and forest degradation occurs in another area in
the same province or district. This provides further evidence that the best strategy for the
study is to focus on the lowest level of administration, i.e., chiefdoms.

We obtained the geo-coded agricultural aid data of Sierra Leone between 2001 and
2015 from the AidData project, which is managed by a research lab at the College of
William & Mary’s Global Research Institute in the United States [64]. Founded in 2009,
the AidData has provided access to aid activity records from more than 90 donors (e.g.,
the United States and EU member countries) and multilateral organizations (e.g., World
Bank and OECD) from 1945 to the present. The AidData records usually cover the name of
donors and recipients, name of aid projects, types of aid projects, purpose of aid projects,
amount of aid projects, start time of aid projects, end time of aid projects, among other
records. Cooperating with Uppsala University in Sweden, AidData also tags aid activities
with geographic coordinates to pinpoint aid projects to geographic locations [65]. This
is the major advantage of the AidData project compared to other official sources of aid
statistics, such as the Creditor Reporting System (CRS), which is the central database for
foreign aid compiled by OECD’s Development Assistance Committee (DAC). The AidData
database is publicly available to policymakers, practitioners, and academic researchers to
make development and foreign aid more transparent, accountable, and effective.

In this study, we investigated the impact of receiving agricultural aid projects on forest
growth. Thus, the treatment variable was dichotomous. In total, there were 149 chiefdoms
in Sierra Leone before August 2017. Among them, 58 received chiefdom-level agricultural
aid projects (Figure 1a). The number of agricultural aid projects received ranged from
1 to 5, and the majority of chiefdoms received 1 project (Figure 1a). The starting time of
these aid projects was concentrated around 31 December 2007, and the earliest one was
2 October 2006. The time period of implementation of these aid projects ranged from
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1 year to 7.7 years, but most of them were around 6.5 years (Figure 1b). The agricultural
aid type “Rural Finance and Community Improvement Project (RFCIP)” occupied the
largest proportion of agricultural aid to chiefdoms (Table 1). “Promoting Agriculture,
Governance and the Environment (PAGE)” was second, followed by “Sustainable Nutrition
and Agricultural Promotion (SNAP)” (Table 1). There is an obvious variation in the types
of agricultural aid projects received by each chiefdom (Figure 1c). This information makes
it possible to examine the overall impact of agricultural aid, the influence of agricultural
aid across time, and the effects of different kinds of agricultural aid on forests.
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Figure 1. Description of Sierra Leone’s chiefdom-level agricultural aid projects from 2001 to 2015.
(a) Number of agricultural aid projects received; (b) Time period of implementation of agricultural
aid projects received; (c) Types of agricultural projects received (locations in white are Western Area
Urban and Western Area Rural, which are not chiefdoms. ILCSSSDRC: Improving Living Conditions
and Strengthening of Social Stability and Decentralization in Rural Communities of Former Civil War
Areas in Southern Sierra Leone; PAGE: Promoting Agriculture, Governance and the Environment;
RRA: Refugees in Rural Areas in Sierra Leone; RFCIP: Rural Finance and Community Improvement
Project; SNAP: Sustainable Nutrition and Agricultural Promotion; EWSPD: Empowering Women for
Sustainable Peace and Development; DFP: Diversified Food Production; No: do not receive any types
of agricultural aid.)
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Table 1. Types of agricultural aid projects received in chiefdoms in Sierra Leone from 2001 to 2015.

Group of Agricultural Aid Type of Agricultural Aid Number of Projects

Agricultural aid without
specific objectives Sustainable Nutrition and Agricultural Promotion, SNAP 18

Agricultural aid with agricultural
development as major objectives

Diversified Food Production, DFP 1
Rural Finance and Community Improvement Project, RFCIP 36

Agricultural aid with
environmental concerns

Improving Environmental Management and Mitigating Land-Use Conflicts in
alluvial Diamond Field in Sierra Leone, IEMM 3

Promoting Agriculture, Governance and the Environment, PAGE 19

Agricultural aid with local
governance concerns

Improving Living Conditions and Strengthening of Social Stability and
Decentralization in Rural Communities of Former Civil War Areas in
Southern Sierra Leone, ILCSSSDRC

1

Agricultural aid concerning
specific social groups

Local Integration of Liberian Refugees, LILR
Empowering Women for Sustainable Peace and Development, EWSPD

3
4

Refugees in Rural and Urban Areas in Sierra Leone, RRUA 4
Refugees in Rural Areas in Sierra Leone, RRA 5

Total 94

Data Source: AidData project. Types of agricultural aid projects are based on the names and purposes of
agricultural aid projects categorized by AidData.

2.1.2. Forest Cover and Vegetation Index Data

To identify forest cover in Sierra Leone, we used the Moderate-resolution Imaging
Spectroradiometer (MODIS) land cover dataset (MCD12Q1) from 2001 to 2015. MODIS
MCD12Q1 has been widely used to detect land cover and land use change, including forest
dynamics [66,67]. The MODIS MCD12Q1 comprises annual maps of land cover and land
use with a spatial resolution of 500 m [68]. The classification system of MCD12Q1 used in
this study was the International Geosphere-biosphere Program (IGBP) classification system,
which includes 17 classes: water bodies, evergreen needleleaf forests, evergreen broadleaf
forests, deciduous needleleaf forests, deciduous broadleaf forests, mixed forests, closed
shrublands, open shrublands, woody savannas, savannas, grasslands, permanent wetlands,
croplands, urban and built-up, cropland and natural vegetation mosaic, snow and ice,
and barren or sparsely vegetated. Following previous studies [69], we aggregated all
forest types, including evergreen needleleaf forests, evergreen broadleaf forests, deciduous
needleleaf forests, deciduous broadleaf forests, and mixed forests, as one forest type and
excluded non-forest classes.

To measure forest growth conditions, we used the Normalized Difference Vegetation
Index (NDVI) data from the MODIS Vegetation Indices product (MOD13A1) from 2001
to 2015. NDVI was calculated from the visible red and near-infrared light reflected by
Earth’s surface [70]. The range of NDVI is from −1 to +1. Water is generally associated
with negative NDVI values, and bare soil with values near zero (0.1 or less). Sparse
vegetation, such as grasslands, may result in moderate NDVI values (~0.2 to 0.5), while
dense vegetation, such as forests, show high NDVI values (~0.6 to 0.9) [71,72]. A number
of studies have used NDVI to monitor forest growth conditions [73–77]. Yet, NDVI values
tends to saturate in dense canopies, such as temperate and tropical forests [78]. Fortunately,
it did not show this saturation in our study area (Figure A1). The 16-day MOD13A1 product
had a spatial resolution of 500 m, which is consistent with MODIS land cover data. Based
on the quality layer along with the NDVI data, we excluded the MODIS NDVI values with
a low quality that may be contaminated by cloud cover.

2.2. Methods
2.2.1. MODIS Data Pre-Processing

Based on MODIS land cover data, we retained the forest areas and excluded the non-
forest areas in Sierra Leone each year from 2001 to 2015. We then extracted the NDVI values
for each grid cell only within the forest areas, and sum the NDVI values over all forest grid
cells (sum f orest NDVI , hereafter) in a given chiefdom based on the administrative boundaries.
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We chose the summation of NDVI values rather than mean values to take account of the
cases where forests in an entire grid cell are degraded to/restored from other land cover
types. As MODIS NDVI has a temporal resolution of 16 days, we obtained 23 sum f orest NDVI
values for each chiefdom each year. As such, we obtained 345 sum f orest NDVI values from
2001 to 2015. Forest degradation (restoration) occurring in a chiefdom was identified by
the decrease (increase) in the sum f orst NDVI value at the same time across years in that
chiefdom. As there was no forest cover shown in MODIS land cover data for 14 chiefdoms
during 2001 and 2015, we obtained sum f orst NDVI values for 135 out of 149 chiefdoms.
Figure 2 is an example that shows the summation of 23 values of sum f orest NDVI over a year
for each of 135 chiefdoms in Sierra Leone. Our analyses focused on these 135 chiefdoms.
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2.2.2. Difference-in-Difference Approach

To investigate the impact of agricultural aid on forests, the study used a difference-
in-difference (DID) approach, which is a quasi-experimental design that makes use of
longitudinal data from treatment and control groups to obtain an appropriate counterfactual
to estimate a causal effect [79–83]. The treatment group receives a specific intervention,
while the control group does not. The effect of the intervention is estimated by comparing
the changes in outcomes over time between the treatment and control groups (Figure 3).
The advantage of the DID approach is that it applies the logic of natural experiment, thus
makes it possible to avoid the interference of omitted or unobserved variables and prevent
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endogeneity problems, such as reverse causation caused by a selection bias. In this study,
receiving or not receiving agricultural aid projects was a quasi-experimental intervention.
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Unlike random experimental designs, which rely on an exchangeability between the
treatment and control groups, DID is based on a less strict exchangeability assumption,
i.e., in the absence of intervention, and the differences between the treatment and control
groups are similar over time. That is to say, in a DID design, the treatment and control
groups are not randomly assigned so that the group-specific means might differ in the
absence of treatment. However, as long as the two groups are changing in the same way
over time, or in other words, the differences between two groups are constant across time,
it can be distinguished by deducting group-specific means of the outcome of interest. Thus,
the remaining difference between these group-specific differences can reflect the causal
effect of interest [83]. Because of this less strict requirement on the treatment and control
groups, DID designs have been widely applied in social science to estimate the impact
of institutions and policies [79–83]. To satisfy the parallel time trend requirement, many
studies use the geographically closest approach to match treatment groups with control
groups [84,85]. The idea behind this strategy is simple, following Tobler’s first law of
geography [86,87]. It states that everything is related to everything else, but near things
are more related than distant things [86]. Therefore, this study took chiefdoms receiving
agricultural aid projects as the treatment group, and the geographically closest chiefdoms
not receiving agricultural aid projects in the same district were the control groups. The
reasons include the followings: Firstly, forests are strongly affected by regional variation
in climate, landforms, and soils. These variations in natural conditions in geographically
adjacent chiefdoms are likely to remain relatively constant over the time span we are
examining. Neighboring chiefdoms may also experience similar economic shocks and other
human activities that affect forests. Thus, geographic adjacency is important for the parallel
time trend assumption to hold. Secondly, chiefdoms in different districts are more likely
to experience different time trends. It may be due to the possibility of the district-level
changes of politics and policies, variation of the district- and upper-level agricultural aid
reception, and other endogenous or exogenous district-level shocks. Hence, choosing the
control chiefdom for each treated one from the same district was a better strategy.
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2.2.3. Models

Because sum f orest NDVI is time series data repeated every 16 days, we calculated the
mean sum f orst NDVI value of the same time period (nth 16-day) across five years before
the treated years as the before outcome. The five-year window for the before outcome is
chosen to consider the stability of forest growth conditions before treatment. The after
outcome is the sum f orst NDVI of the same time period (nth 16-day) across the treated years.
As mentioned previously, for those chiefdoms that receive chiefdom-level agricultural
aid projects, many received multiple projects, raising the problem of repeated treatments.
However, in all the cases that multiple chiefdom-level projects are received by the same
chiefdom, these projects have overlapping treatment periods. This means that the start time
of some agricultural aid projects overlap with the end time of the other agricultural aid
projects in those chiefdoms, or vice versa. This makes it difficult to investigate the impact
of the amount of agricultural aid to different chiefdoms on forest cover. However, since
the purpose of the paper was to examine whether the presence or absence of agricultural
aid projects makes a difference in forest cover, we counted the multiple projects as one
treatment lasting for the combined duration. The following is the mathematical expression
of the difference-in-difference approach for this study:

δit = ∆YT
i,t+p − ∆YC

j,t+p (1)

=
(

YT
i,t+p − YT

i,t

)
−

(
YC

j,t+p − YC
j, t

)
(2)

where chiefdom i is the chiefdom that received chiefdom-level agricultural aid project
at the pth time period after time t, while chiefdom j is the chiefdom that did not receive
chiefdom-level agricultural aid project before and after time t. YT

i,t+p is the outcome of
sum f orst NDVI in chiefdom i at t + p, the pth period since it has received agricultural aid.
YT

i,t is the outcome before aid (i.e., the average sum f orst NDVI over the same time in the
previous five years before treatment). YC

j,t+p is the sum f orst NDVI of chiefdom j at time t + p,

and YC
j,t is the average sum f orst NDVI of the same time in the previous five years before

chiefdom i’s treatment. Our data allowed us to estimate δi,t+p for p = 1st, 2nd, 3rd, 4th, . . .
345th 16-day.

We specified the following regression models of the difference-in-difference approach
to estimate the causal effect of agricultural aid on forests:

Model 1 Yit = β0 + β1Di + β2Tt + γ(Di ∗ Tt) + αi + ηt + εit (3)

α ∼ N(0, σα2) (4)

η ∼ N(0, ση2) (5)

εit ∼ N
(

0, σ2
ε

)
(6)

where i refers to chiefdom i, and t is the indicator of time (in this study, the frequency is
16 days). Di is an indicator of whether chiefdom i is treated, and Di = 1 if the chiefdom is
treated (i.e., receiving agricultural aid project); otherwise, it is 0. Tt is also a binary variable
with Tt = 1 if time t is after the treatment time and Tt = 0 otherwise. The parameter of γ
is the quantity of interest as the DID estimator. αi and ηt control unobserved chiefdom-
specific and time-specific characteristics that may affect the assignment of agricultural aid
in different chiefdoms and time periods, and also be related to forest growth. We regard
Model 1 based on Equation (3) with a more general hierarchical model (or mixed-effect
model) and apply a restricted maximum likelihood (REML) approach to estimate the
parameters using the R package lme4.

To trace the time-varying causal effect of agricultural aid on forests, we specified a
varying-coefficient specification as follows:

Model 2 Yit = β0 + β1tDi + β2tTt + γt(Di ∗ Tt) + αi + ηt + εit (7)
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β1t ∼ N
(

β1, σ2
β

)
(8)

β2t ∼ N
(

β2, σ2
β

)
(9)

γt ∼ N
(

β1, σ2
γ

)
(10)

α∼N (0, σα2) (11)

η∼N (0, ση2) (12)

εit ∼ N
(

0, σ2
ε

)
(13)

where γt is the DID estimators of the causal effects of agricultural aid on forests across time.
Model 2 is similar to Model 1, except for β1, β2, and γ varying with time T. We also use
REML to estimate the model. As climate is highly relevant to forest growth, we also added
addition control variables of temperature and precipitation data in Model 1 and Model 2.
The results are consistent with our original conclusions (Tables A1 and A2, and Figure A2
in Appendix A).

3. Results and Discussion
3.1. Overall Impact of Agricultural Aid on Forests

We estimated the general effect of agricultural aid on forests with the whole sample.
The remote sensing technique provides the forest growth conditions at a 16-day frequency.
We grouped data according to chiefdom (i.e., whether a chiefdom receives treatment or not)
and time (i.e., before or after treatment). By doing so, we created a dataset with a 16-day
frequency that contained more than 30,000 observations in total.

Table 2 shows the DID estimates and their uncertainties with control variables, i.e.,
unobserved chiefdom-specific and time-specific characteristics that may affect the impact
of agricultural aid. Model 1 demonstrates that the causal effect of agricultural aid on
sum f orest NDVI is negative and highly significant. The negative impact is around −0.071,
which indicates that, if an agricultural aid project in a specific chiefdom increases one unit,
sum f orest NDVI will decrease around 0.071 unit. This shows that the effect of agricultural
aid on forests is quite obvious, and agricultural aid to chiefdoms is responsible for forest
degradation. All of these imply that strengthening the linkages between poverty reduction
and the management of forest conservation is a key challenge to reducing poverty in
Sierra Leone.

Table 2. Causal effect of agricultural aid on forests.

Model 1

Estimate Std. Error

Fixed effects

D (receive aid) 0.159 0.269
T (Time) 0.032 *** 0.004
D × T (receive aid × Time) −0.071 *** 0.006
Intercept −0.205 0.239

Random effects
Variance Std. Dev

Chiefdom 0.856 0.925
Time 0.007 0.085
Residual 0.077 0.278

Number of Observation 31,164
Note: *** p < 0.01.
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3.2. Dynamic Impact of Agricultural Aid on Forests

We further explored the impact of agricultural aid on forests to answer whether there
is a shift in the relationship between agricultural aid and forest growth. We conducted a
sub-sample analysis with 16-day frequency after the agricultural aid was introduced. Since
the longest chiefdom-level agricultural aid lasts around 7.7 years, we examined the impact
of agricultural aid on forests from the first 16-day period (i.e., 0.5 months) to 178th 16-day
period (i.e., 84 month).

Figure 4 presents the results from the difference-in-difference analyses based on
Model 2 for each 16-day time point. We found that there is no shift in the relationship
between agricultural aid and forest growth. Agricultural aid negatively and significantly
influences forest growth in both the short term (i.e., 16-day frequency) and long term (i.e.,
years). After about 70 months, the error bounds (i.e., the shaded green areas) are slightly
larger than earlier time periods. This may be due to the fact that the number of observations
is not large enough to reveal reliable empirical evidence about the causal effect since not
many agricultural aid projects last this long. In sum, our results show that the impact
of agricultural aid on forest growth is negative and highly significant across time, and a
turning point does not appear at least during the period of implementation of agricultural
aid from 2001 to 2015.
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3.3. Impacts of Different Types of Agricultural Aid on Forests

The goals of agricultural aid vary greatly. They range from food security and agri-
cultural production to rural finance support and governance policy on administration
and environmental protection. Since the purposes of different types of agricultural aid
are different, their impacts on forests may be also diverse. Do agricultural aid projects
with more social and environmental concerns damage forests less than those that have
agricultural development as their sole purpose? In this section, we investigate the effects
of different types of agricultural aid on forests. We distinguish types of agricultural aid
based on the names and purposes of agricultural aid projects categorized by AidData. In
the matched data, there were 30 chiefdoms that receive only one type of agricultural aid.
More specifically, 14 chiefdoms receive RFCIP, 9 chiefdoms receive SNAP, 2 chiefdoms
receive PAGE, 1 chiefdom receives RRA, 1 chiefdom receives ILCSSSDRC, 2 chiefdoms
receive EWSPD, and 1 chiefdom receives DFP. With this information, we could explore the
influence of seven different types of agricultural aid on forest growth.

Table 3 presents the results of our data analysis of the different types of agricultural
aid from Model 1. Agricultural aid named ILCSSSDRC positively influences forest growth
conditions. The impact is around 0.031, which means that with an increase of one unit of
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ILCSSSDRC, the sum f orest NDVI will increase by 0.031 units, indicating an improvement in
forest growth conditions. ILCSSSDRC’s purpose is to improve the quality of governance in
rural communities. The results therefore suggest that agricultural aid can benefit forests
through supporting rural governance. This is consistent with the findings of many other
studies on governance quality and forest protection [46–48]. The most negative impact on
forests comes from the agricultural aid of DFP and SNAP. DFP aims at promoting diversified
food production. Additionally, SNAP mainly focuses on some unspecified objectives on
agricultural promotion, such as education and basic nutrition. RFCIP, which provides
specific supports for agricultural development of rural communities, has a moderate
negative impact on forest growth. Its impact is about −0.035. PAGE, EWSPD, and RRA
have the smallest negative impacts on forest growth conditions. PAGE aims at promoting
agricultural development with a view on governance and the environment. RRA has a
rather specific purpose to provide clean water and sanitation to refugees. Additionally,
EWSPD’s purpose is to empower women in rural areas in Sierra Leone. As a whole,
agricultural aid with social and environmental concerns degrades forests less than those
that have agricultural development as the major goal.

Table 3. Causal effect of agricultural aid on sum f orest NDVI by types of agricultural aid.

Model 1

ILCSSSDRC PAGE RRA RFCIP SNAP EWSPD DFP

Fixed effects

D (Receiving
aid) −0.005 −0.008 * −0.008 0.493 −0.178 −0.001 −0.612

(0.004) (0.003) (0.007) (0.671) (0.113) (0.007) (0.879)
T (Time) −0.013 *** 0.023 *** 0.003 *** 0.004 0.134 *** 0.014 *** 0.186 ***

(0.001) (0.001) (0.001) (0.012) (0.004) (0.001) (0.016)
D × T
(Receiving
aid × Time)

0.031 *** −0.021 *** −0.005 *** −0.035 ** −0.125 *** −0.018 *** −0.193 ***

(0.001) (0.001) (0.001) (0.016) (0.006) (0.001) (0.023)
Constant −0.453 −0.456 *** −0.456 *** −0.074 −0.203 * −0.452 *** 0.163

(0.003) (0.002) (0.005) (0.555) (0.113) (0.004) (0.622)

Random effects

Chiefdom 6.642 × 10−6 5.900 × 10−6 2.238 × 10−5 2.150 0.051 4.664 × 10−5 0.386
(0.003) (0.002) (0.005) (1.467) (0.225) (0.006) (0.621)

Time 6.009 × 10−6 6.467 × 10−6 7.290 × 10−7 0.038 0.003 4.515 × 10−6 0.006
(0.002) (0.003) (0.001) (0.196) (0.053) (0.002) (0.078)

Residual 1.482 × 10−5 1.012 × 10−4 3.653 × 10−6 0.148 0.011 4.153 × 10−5 0.021
(0.004) (0.010) (0.002) (0.385) (0.103) (0.002) (0.143)

Number of
Observation 460 920 92 8940 4140 792 648

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. ILCSSSDRC: Improving Living Conditions and Strengthening of Social
Stability and Decentralization in Rural Communities of Former Civil War Areas in Southern Sierra Leone; PAGE:
Promoting Agriculture, Governance and the Environment; RRA: Refugees in Rural Areas in Sierra Leone; RFCIP:
Rural Finance and Community Improvement Project; SNAP: Sustainable Nutrition and Agricultural Promotion;
EWSPD: Empowering Women for Sustainable Peace and Development; DFP: Diversified Food Production.

4. Conclusions

How to make foreign aid more environmentally friendly and to avoid disrupting
biodiversity in the recipient countries are critical issues, yet they have not been discussed
widely enough in the global governance of aid. This study empirically explored the effects
of agricultural aid on forests by conducting a sub-national analysis based on remotely
sensed data of Sierra Leone. Firstly, the findings demonstrate that agricultural aid overall
degrades forests in Sierra Leone. The results highlight the conflict between food production
and nature conservation, and thus the need to balance development and environmental
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preservation in the sub-Saharan region. This may be partially explained by the reality of
poverty and the low quality of governance in Sierra Leone. For most of the population, rice
harvested during harvesting period (from September to January) is highly insufficient to
meet the needs of their family for the whole year. For instance, in 2015, only 4% of farmers
are able to meet their rice needs for twelve months, while more than 66% of farmers can only
meet their rice needs for six or less than six months (CFSV, 2015). Without additional non-
farm jobs for earning a living and with a low quality of governance, agricultural aid may
be mainly used or abused to conduct more commercially valuable activities, such as cutting
trees for timber, firewood, and charcoal, which are major drivers of forest degradation
and deforestation.

Secondly, the relationship between agricultural aid and forest growth does not change
greatly over time. We do not find a shift in the relationship between agricultural aid and
forest growth. Agricultural aid negatively and significantly influences forest growth both in
the short term (i.e., 16-day frequency) and long term (i.e., years), and a turning point does
not appear at least during the period from 2001 to 2015. All together, these results indicate
that the negative impact of agricultural aid on forests will not diminish automatically
over time. Continued interventions are needed to prevent agricultural aid from driving
forest degradation.

The results also show that different kinds of agricultural aid have different impacts on
forests. Agricultural aid without specific objectives (SNAP), and with agricultural growth
and production as the major goal (DFP and RFCIP) damage forests the most. Unfortunately,
these three types of aid make up the largest proportion of all aid to agricultural and
rural development (Table 1). On the contrary, those few aid projects that take account of
social and environmental concerns (ILCSSSDRC, PAGE and EWSPD) are found to damage
forests less. The agricultural aid of ILCSSSDRC, which aims to improve the quality of
governance, benefited the forests significantly. According to Lambin’s work (2009) on
forest transition, endogenous socio-ecological feedbacks seem to better explain a slowing
down of the deforestation and stabilization of forest cover, and exogenous socio-economic
factors better explain reforestation [59], while our findings demonstrate that agricultural
aid as an exogenous factor accounts for both forest decline and recovery. This implies that
the causal relationship between agricultural development and forests is not based on an
intrinsic tension, so that we do not have to sacrifice one for the other. Rather, how the
policies are made and how agricultural aid is implemented can make a real difference in
forest outcomes.

These findings clearly have implications for policy opportunities in protecting forests
in the sub-Saharan region when implementing agricultural aid. In 2018, the World Bank
issued a specific report in which scholars and experts proposed that improving the quality
of governance is one of the two foundational ways to accelerate growth, poverty reduction,
and shared prosperity in Sierra Leone [50]. The implications from this study are in line
with the World Bank’s suggestion. Our findings show that among seven different kinds
of agricultural aid, only the one focusing on social stability and decentralization in rural
communities (ILCSSSDRC) positively influenced forest growth conditions. This implies
that better governance is of key importance for forest protection in contemporary Sierra
Leone. Therefore, increasing agricultural aid to rural governance may benefit forests in
the long run. Additionally, although agricultural aid with environmental and other social
concerns harms forests (i.e., PAGE and EWSPD), their impacts are smaller compared to
that of agricultural aid with agricultural development and poverty reduction as major
objectives or without specific objectives (i.e., DFP, RFCIP, and SNAP). As such, forests will
benefit from increases in the proportion of social- and environment-oriented agricultural
aid projects. Currently, these programs are not a priority.

Several areas of future work seem promising. Firstly, in this study, we assessed the
impact of agricultural aid on forests by examining only one country as a case study. More
analyses over a broader geographic region are required to better understand the relation-
ships between agricultural aid and forests. Secondly, we differentiated different types of
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agricultural aid based on the names and purposes of agricultural aid projects categorized
by AidData. However, because an agricultural aid project may involve several objectives,
merely relying on projects’ name and purposes may not perfectly distinguish the types of
agricultural aid. Further research is needed to differentiate distinct types of agricultural aid
more reliably. Thirdly, this study only investigated the impact of exposure to agricultural
aid on forest growth. However, the effect may vary by the amount of agricultural aid to
different chiefdoms. More research is required to assess the environmental outcomes of
agricultural aid. Lastly, the difference-in-differences design is a valuable tool in evaluating
various development policies, but its key assumption of parallel trends, which justifies that
the DID estimator is unbiased, is difficult to perfectly satisfy in many applications. This
study tries to address this challenge by matching the geographically closest chiefdoms in
the same district and controlling for chiefdom-specific and time-specific characteristics.
With more high frequency data at the chiefdom level (e.g., precipitation, area in cultiva-
tion, level of agricultural development), studies can further improve the DID design for
characterizing the relationship between agricultural aid and forest degradation.
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Appendix A

Table A1. Causal effect of agricultural aid on forests with control variables of temperature and
precipitation.

Model 1

Estimate Std. Error

Fixed effects

D (Receiving aid) 0.139 0.294
T (Time) 0.040 *** 0.005
D × T (Receiving aid × Time) −0.079 *** 0.006
Temperature −0.011 *** 0.001
Precipitation −0.001 *** 0.000
Intercept −0.216 0.269

https://www.aiddata.org/datasets
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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Table A1. Cont.

Model 1

Estimate Std. Error

Random effects
Variance Std. Dev

Chiefdom 0.903 0.950
Time 0.003 0.058
Residual 0.076 0.275

Number of Observation 29,790
Note: *** p < 0.01.
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(0.000) (0.000) (0.000) (0.000) (0.003) (0.000) (0.001)

Precipitation −1.15 × 10−5

***

−9.611 ×
10−6

***

−3.743 ×
10−6

***

−8.084 ×
10−4

***

−2.611 ×
10−4

***

−4.774 ×
10−6

***

−4.036 ×
10−4

***
(0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

Constant −0.453 −0.462 *** −0.459 *** 0.340 −0.203 * −0.460 *** 0.040
(0.003) (0.008) (0.009) (0.663) (0.113) (0.012) (0.362)

Random effects

Chiefdom 1.600 × 10−5 5.247 × 10−6 2.517 × 10−5 2.347 0.051 4.587 × 10−5 0.109
(0.004) (0.002) (0.005) (1.532) (0.225) (0.007) (0.330)

Time 1.766 × 10−6 4.182 × 10−6 1.450 × 10−8 0.014 0.001 2.791 × 10−6 0.000
(0.001) (0.002) (0.001) (0.119) (0.033) (0.002) (0.000)

Residual 1.497 × 10−5 1.010 × 10−4 3.710 × 10−6 0.162 0.011 4.145 × 10−5 0.020
(0.004) (0.010) (0.002) (0.403) (0.103) (0.006) (0.141)
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Table A2. Cont.

Model 1

ILCSSSDRC PAGE RRA RFCIP SNAP EWSPD DFP

Number of
Observation. 460 920 92 8046 4140 792 648

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. ILCSSSDRC: Improving Living Conditions and Strengthening of Social
Stability and Decentralization in Rural Communities of Former Civil War Areas in Southern Sierra Leone; PAGE:
Promoting Agriculture, Governance and the Environment; RRA: Refugees in Rural Areas in Sierra Leone; RFCIP:
Rural Finance and Community Improvement Project; SNAP: Sustainable Nutrition and Agricultural Promotion;
EWSPD: Empowering Women for Sustainable Peace and Development; DFP: Diversified Food Production.
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