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Abstract: Briareum stechei is proven to be a rich source of 3,8-cyclized cembranoids (briarane) with
a bicyclo[8.4.0] carbon core. In the present study, four previously unreported briaranes, briarenols
W–Z (1–4), along with solenolide A (5), briarenolide M (6), briaexcavatolide F (7), and brianolide
(8), were isolated and characterized through spectroscopic analysis, and the absolute configuration
of 8 was corroborated by a single-crystal x-ray diffraction analysis. Briaranes 2 and 5 were found
to induce significant inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 mouse
macrophage cells by enhancing the expression of the inducible nitric oxide synthase (iNOS) and
cyclooxygenase-2 (COX-2) proteins.

Keywords: Briareum stechei; briarane; briarenol; inflammation; iNOS; COX-2

1. Introduction

Since briarein A, a 3,8-cyclized cembranoid (briarane), was first reported from a
Caribbean octocoral Briareum asbestinum (Pallas, 1766) in 1977 [1], hundreds of marine origin
briarane diterpenoids with novel structures and extensive bioactivities have been obtained
from various octocorals [2,3], of which octocorals belonging to the genus Briareum have
been recognized as the most important source of briarane-type natural products [3]. In our
previous studies, a series of interesting briarane-type diterpenoids, including briarenols A–
T [4–12], were isolated from various octocorals belonging to the genera Briareum, Junceella,
and Ellisella, collected off the waters of Taiwan, and an anti-inflammatory assay was
employed to evaluate the activities of these compounds in reducing the release of inducible
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oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in an in vitro pro-inflammatory
macrophage culture model.

While most octocorals are classified as endangered species due to the exacerbating
destruction of reef habitats, studies on the chemical constituents from cultured, potentially
pharmaceutical, marine organisms have gained great attention [13]. Therefore, cultured
octocoral Briareum stechei (Kükenthal, 1908) [14], originally dwelling in the waters of Taiwan,
was selected for chemical investigation in our study. The results identified eight chlorine-
containing briaranes, including four new compounds, briarenols W–Z (1–4), together with
known briaranes, solenolide A (5) [15], briarenolide M (6) [16], briaexcavatolide F (7) [17],
and brianolide (8) [18] (Figure 1). This study carried out the isolation and identification of
the isolates as well as analyzing their bioactivity.
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Figure 1. Structures of briarenols W–Z (1–4), solenolide A (5), briarenolide M (6), briaexcavatolide F (7), brianolide (8), and
a picture of cultured B. stechei.

2. Results and Discussion
2.1. Chemical Identification of Isolated Briaranes

Freshly collected B. stechei were frozen and subsequently freeze-dried, powdered, and
extracted with a mixture of methanol (MeOH) and dichloromethane (DCM) (1:1). Silica
gel chromatography of the extract, followed by high performance liquid chromatography
(HPLC), yielded briaranes 1–8.

Briarenol W (1) was obtained as an amorphous powder. The positive mode elec-
trospray ionization mass spectrum ((+)-ESIMS) showed a pair of peaks at m/z 461/463
([M + Na]+/[M + 2 + Na]+) (3:1), with a relative intensity suggestive of a chlorine atom.
NMR data coupled with the [M + Na]+ peak in the (+)high-resolution ESIMS ((+)-HRESIMS)
at m/z 461.13377 suggested a molecular formula C22H27ClO7 (calculated for C22H27

35ClO7
+ Na, 461.13375) that indicated nine degrees of unsaturation. The IR spectrum indicated
the presence of hydroxy (νmax 3430 cm−1), γ-lactone (νmax 1780 cm−1), ester carbonyl
(νmax 1733 cm−1), and α,β-unsaturated ketonic (νmax 1670 cm−1) groups. The 13C NMR
spectrum of 1 (Table 1) showed signals of 22 carbons. The multiplicity of the carbon
signals was determined from the distortionless enhancement by polarization transfer
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(DEPT) and heteronuclear single quantum coherence (HSQC) spectra: four methyls, two
methylenes (one olefin), ten methines (five bearing a heteroatom and two olefins), and six
non-protonated carbons (three carbonyls, one olefin, and one bearing a heteroatom). From
the 13C and 1H NMR spectra (Tables 1 and 2), 1 was found to possess a γ-lactone (δC 175.3,
C-19), an acetoxy (δH 2.15, 3H, s; δC 21.1, acetate methyl; δC 170.6, acetate carbonyl), an
α,β-unsaturated ketonic (δH 6.95, 1H, d, J = 10.8 Hz, H-14; 5.95, 1H, d, J = 10.8 Hz, H-13; δC
205.6, ketonic carbonyl, C-12; 156.3, CH-14; 126.0, CH-13), and an exocyclic carbon–carbon
double bond (δH 5.34, 1H, d, J = 1.8 Hz; 5.48, 1H, d, J = 1.8 Hz, H2-16; δC 137.5, C-5;
116.1, CH2-16) moieties. Five double bonds accounted for five unsaturated degrees. The
remaining four degrees of unsaturation defined 1 as a tetracyclic molecule.

Table 1. 13C NMR data for briaranes 1–4.

Position 1 a 2 a 3 b 4 b

1 44.2, C c 40.4, C 39.1, C 38.4, C
2 76.3, CH 82.0, CH 76.2, CH 74.1, CH
3 35.4, CH2 25.3, CH2 60.5, CH 62.4, CH
4 76.6, CH 21.2, CH2 58.1, CH 56.1, CH
5 137.5, C 140.3, C 137.9, C 137.4, C
6 54.9, CH 64.9, CH 126.1, CH 63.2, CH
7 80.4, CH 76.3, CH 76.7, CH 83.0, CH
8 82.4, C 86.1, C 81.7, C 80.9, C
9 76.9, CH 71.8, CH 69.1, CH 69.5, CH

10 45.8, CH 33.9, CH 36.5, CH 35.9, CH
11 42.1, CH 36.8, CH 36.5, CH 36.0, CH
12 205.6, C 70.3, CH 71.6, CH 72.2, CH
13 126.0, CH 49.7, CH 57.2, CH 57.2, CH
14 156.3, CH 62.1, CH 62.1, CH 62.0, CH
15 16.2, CH3 20.2, CH3 15.2, CH3 15.3, CH3
16 116.1, CH2 118.6, CH2 44.1, CH2 121.2 CH2
17 50.2, CH 44.4, CH 43.6, CH 46.1, CH
18 8.2, CH3 7.2, CH3 6.3, CH3 6.0, CH3
19 175.3, C 176.4, C 175.5, C 173.8, C
20 15.4, CH3 14.5, CH3 9.7, CH3 9.4, CH3

OAc-2 170.6, C 168.3, C
21.1, CH3 20.9, CH3

OAc-9 169.5, C 169.9, C
21.8, CH3 21.8, CH3

n-butyrate-12 173.3, C 173.1, C 173.1, C
35.8, CH2 36.2, CH2 36.2, CH2
18.4, CH2 18.4, CH2 18.4, CH2
13.7, CH3 13.6, CH3 13.6, CH3

a 150 MHz, CDCl3, b 100 MHz, CDCl3, c Multiplicity deduced by 13C, distortionless enhancement by polarization
transfer (DEPT), and heteronuclear single quantum coherence (HSQC) spectra.

The H-2/H2-3/H-4, H-6/H-7, H-10/H-11, H-13/H-14, H-11/H3-20, H-17/H3-18,
and H-6/H2-16 (by allylic coupling) spin systems, measured in the 1H–1H correlation
spectroscopy (COSY) (Figure 2), were fit to the regiochemistry of vicinal couplings in 1.
The fused tetracyclic network was established by heteronuclear multiple bond coherence
(HMBC) experiments, particularly by the 2J- and 3J-1H–13C long-range correlations between
protons and non-protonated carbons such as H-9, H-10, H-13, H-14, H3-15/C-1; H-7, H-
16b/C-5; H-4, H3-18, OH-9/C-8; H-11, H-14, H3-20/C-12; and H-17, H3-18/C-19, thus
permitted elucidation of the main carbon skeleton of 1 (Figure 2). The Me-20, Me-18, and
Me-15 at C-11, C-17, and C-1 were confirmed by the HMBC correlations between H3-
20/C-10, C-11, C-12; H3-18/C-8, C-17, C-19; and H3-15/C-1, C-2, C-10, C-14, respectively.
An exocyclic double bond at C-5 was confirmed by the HMBC correlations between H2-
16/C-4, C-5, and C-6. The hydroxy proton signal at δH 2.84 was revealed by its 1H-1H
COSY correlation to H-9 (δH 4.53) and an HMBC correlation to C-9 (δC 76.9), indicating
its attachment to C-9. The acetate ester at C-2 was established by a correlation between
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H-2 (δH 4.86) and the acetate carbonyl at δC 170.6, observed in the HMBC spectrum. The
methine unit at δC 54.9 was more shielded than expected for an oxygenated C atom and
correlated with the methine proton at δH 5.52 in the HSQC spectrum. This proton showed
a 3J-correlation with H-7, in the 1H-1H COSY spectrum, confirming the attachment of a
chlorine atom at C-6. An HMBC correlation between H-4 (δH 4.87), an oxymethine proton,
and C-8, an oxygenated non-protonated carbon resonating at δC 82.4, suggested that the
remaining oxygen atom had to be positioned between C-4 and C-8 to form an ether bridge
in 1.

Table 2. 1H NMR data (J in Hz) for briaranes 1–4.

Position 1 a 2 a 3 b 4 b

2 4.86 d (7.2) 5.17 d (7.2) 3.11 dd (9.6, 2.8) 3.58 dd (8.8, 4.0)

3α 1.46 dd (15.6,
4.2) 1.66 m

β
3.32 ddd (15.6,

13.2, 7.2) 2.41 m 3.38 dd (9.2, 4.0) 3.33 dd (8.8, 4.4)

4α 2.08 m

β
4.87 dd (13.2,

4.2) 2.01 m 4.14 dd (4.0, 2.0) 3.91 d (4.4)

6 5.52 m 5.02 br s 6.03 ddd (9.2, 1.2,
1.2) 4.92 d (10.4)

7 4.65 d (3.0) 5.35 d (1.8) 5.28 d (9.2) 4.71 d (10.4)
9 4.53 d (6.0) 3.57 dd (7.2, 7.2) 5.29 d (8.0) 5.33 d (8.4)
10 2.08 d (12.0) 2.63 br s 1.77 dd (8.0, 2.8) 1.82 dd (8.4, 2.4)
11 2.72 dq (12.0, 7.2) 2.15 m 2.14 m 1.95 m
12 4.74 dd (5.4, 1.8) 4.71 d (4.8) 4.58 d (4.8)
13 5.95 d (10.8) 3.47 dd (5.4, 3.6) 3.19 dd (3.6, 0.8) 3.24 d (4.0)
14 6.95 d (10.8) 2.88 d (3.6) 3.29 d (3.6) 3.27 d (4.0)
15 1.39 s 1.30 s 1.19 s 1.16 s

16a/b 5.34 d (1.8); 5.48
d (1.8) 5.72 s; 5.89 s 4.19 d (12.4); 4.09

d (12.4) 5.40 s; 5.64 s

17 2.53 q (7.2) 3.11 q (7.2) 2.42 q (7.2) 2.76 q (7.2)
18 1.22 d (7.2) 1.14 d (7.2) 1.19 d (7.2) 1.18 d (7.2)
20 1.30 d (7.2) 1.05 d (7.8) 1.03 d (7.2) 1.01 d (7.2)

OH-2 2.43 s 2.35 d (4.0)
OH-8 2.86 br s 3.12 s 3.06 s
OH-9 2.84 d (6.0)
OAc-2 2.15 s 2.19 s
OAc-9 2.22 s 2.23 s

n-butyrate-12 2.34 t (7.2) 2.35 t (7.2) 2.35 t (7.2)
1.69 sext (7.2) 1.67 sext (7.2) 1.67 sext (7.2)

0.99 t (7.2) 0.96 t (7.2) 0.96 t (7.2)
a 600 MHz, CDCl3, b 400 MHz, CDCl3.
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The relative stereochemistry of 1 was established using a nuclear Overhauser effect
spectroscopy (NOESY) experiment (Figure 2) and was found to be compatible with that of
1 offered by basic MMX study which justifies the NOESY experiments [19]. In naturally
occurring briaranes, proton H-10 and Me-15 at C-1 are α- and β-oriented, respectively [3].
H-9, H-10, and H3-20 protons were proven to be located on the same face of the molecule.
These protons, as a result of being correlated together, were assigned as α protons, as Me-15
was a β-substituent at C-1. Correlated with H-10, the H-2 proton had an α-orientation at
C-2. Also, H3-18 was found to be associated with H-10, suggesting that the C-18 methyl
in the γ-lactone moiety had an α-orientation. One of the methylene protons at C-3 (δH
3.32) exhibited a correlation with H3-15 and was assigned as H-3β, while the other was
denoted as H-3α (δH 1.46). The correlations observed between H-3β/H-6, H-6/H-7, and
H-7/H-17 reflected the β-orientation of both protons at C-6 and C-7. The cis geometry of
the C-13/14 double bond was indicated by a 10.8 Hz coupling constant between H-13 (δH
5.95) and H-14 (δH 6.95), and further confirmed by a NOESY correlation between these
two olefinic protons. Furthermore, H-3α showed a correlation with H-4, demonstrating
the S*-configuration of stereogenic center C-4. The remaining stereogenic carbon, C-8,
lacked a proton but there were correlations between H-9/H-17 and H-7/H-17, indicating
that C-8 was in an R*-configuration, as evidenced by modeling analysis. Based on the
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above findings, the configuration of the stereogenic centers of 1 was assigned as (1S*,2S*,
4S*,6S*,7R*,8R*,9S*,10S*,11S*,17R*) (Supplementary Materials, Figures S1–S11).

Briarenol X (2) had the molecular formula C26H37ClO9 on the basis of (+)-HRESIMS at
m/z 551.20198 (calculated for C26H37ClO9 + Na, 551.20183). The IR spectrum of 2 showed
bands at 3484, 1777, and 1729 cm−1, consistent with the presence of hydroxy, γ-lactone,
and ester carbonyl groups, respectively. 13C NMR and DEPT spectroscopic data (Table 1)
revealed that 2 contained an exocyclic carbon–carbon double bond (δC 140.3, C-5; 118.6,
CH2-16) and three carbonyl resonances (δC 176.4, 173.3, and 168.3). Two esters were
identified as acetate and n-butyrate respectively by the presence of resonances in the 1H
NMR spectrum of 2 at δH 2.19 (3H, s), 0.99 (3H, t, J = 7.2 Hz), 1.69 (2H, sext, J = 7.2 Hz),
and 2.34 (2H, t, J = 7.2 Hz) (Table 2).

In the HMBC spectrum of 2 (Figure 3), the n-butyrate positioned at C-12 was confirmed
from the long-range coupling between H-12 (δH 4.74) with the carbonyl carbon (δC 173.3) of
the n-butyroxy group. The HMBC correlation also revealed that one acetate was attached
to C-2. These data, together with the other 1H-13C long-range correlations, unambiguously
established the molecular framework of 2. According to the above observations, metabolite
2 seemed to be very similar to solenolide A (5) [15], which was previously isolated from
an octocoral Solenopodium sp. By means of 1D and 2D NMR data it was found that the
n-hexanoate group at C-12 position in solenolide A (5) was replaced by an n-butyrate
group in 2.Mar. Drugs 2021, 19, x 7 of 16 
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The relative configuration of 2 was determined by NOESY analysis (Figure 3). The
NOESY correlations between H-10/H-11 and H-10/H-2 required that all of these groups
were in α-face and correlations of H3-15/H-14, H-14/H-13, and H-13/H-12 indicated
β-disposition for these groups. The correlations between H-9/H-11, H-9/H3-18, and
H-9/H-7 suggested that H-9 and H3-18 were α-oriented and H-7 was β-oriented from
modeling analysis. A correlation between H-6 and H-7 reflected the β-orientation of
protons at C-6. The negative optical rotation value of 2 ([α]20

D −14 (c 0.05, CHCl3))
was similar to that of 5 (solenolide A) ([α]20

D −28 (c 0.04, CHCl3); reference [15], [α]20
D

−56 (c 0.63, CHCl3)) that was also obtained in this study, suggesting that 2 and 5 had
1S*,10S*-configurations in the ring junction. Based on the above findings, the structure
of 2, including the relative configuration, was elucidated ambiguously, and its stere-
ogenic centers were assigned as (1S*,2S*,6S*,7R*,8R*,9S*,10S*,11R*,12S*,13S*, 14R*,17R*)
(Supplementary Materials, Figures S12–S22).

Briarane 3 (briarenol Y) was isolated as an amorphous powder that showed two
sodiated adduct ion peaks in (+)-HRESIMS at m/z 565.18106 [M + Na]+ and 567.17800
[M + 2 + Na]+ (3:1), which accounted for a chlorine atom in the molecular formula,
C26H35ClO10 (calculated for C26H35

35ClO10 + Na, 565.18110). Its absorption peaks in
the IR spectrum showed ester carbonyl, γ-lactone, and broad OH stretching at 1738, 1778,
and 3459 cm–1, respectively. From the 13C and 1H NMR (Tables 1 and 2), three carbonyl
resonances at δC 175.5 (C-19), 173.1, and 169.5 confirmed the presence of a γ-lactone and
two ester groups; an acetate methyl (δH 2.22, 3H, s) and an n-butyrate (δH 2.35, 2H, t,
J = 7.2 Hz; 1.67, 2H, sext, J = 7.2 Hz; 0.96, 3H, t, J = 7.2 Hz) were also observed. Two
disubstituted epoxy groups were deduced from the signals of four oxymethine carbons
at δC 62.1 (CH-14), 60.5 (CH-3), 58.1 (CH-4), and 57.2 (CH-13). The chemical shifts of
oxymethine protons at δH 3.29 (1H, d, J = 3.6 Hz, H-14), 3.38 (1H, dd, J = 9.2, 4.0 Hz, H-3),
4.14 (1H, dd, J = 4.0, 2.0 Hz, H-4), and 3.19 (1H, dd, J = 3.6, 0.8 Hz, H-13) further confirmed
the presence of these two groups. Based on the 13C NMR data and degrees of unsaturation,
3 was established as a pentacyclic diterpenoid. It was found that the 1H and 13C NMR data
of 3 resembled those of a known briarane, briarenolide M (6) (Figure 1) [16], except that
the signals corresponding to the C-12 acetoxy group in 6 were replaced by signals for an
n-butyroxy group in 3. Locations of the functional groups were confirmed by other HMBC
and COSY correlations (Figure 4).

The relative configuration of 3 was determined from the NOESY spectrum (Figure 4),
which showed NOESY correlations among the corresponding protons similar to those
of 6 [16]. The negative optical rotation value of 3 ([α]24

D −73 (c 0.1, CHCl3)) was similar
to that of 6 ([α]25

D −58 (c 0.7, CHCl3)) [16] in direction and magnitude, suggesting that 3
and 6 had 1S*,10S*-configurations in the ring junction. Thus, briarenol Y was assigned
as the structure of 3 and the configurations of the stereogenic carbons were elucidated
as (1S*,2R*,3S*,4R*,7S*,8R*,9S*, 10S*,11R*,12R*,13S*,14R*,17R*) (Supplementary Materials,
Figures S23–S33).

Briarane 4 (briarenol Z) was isolated as an amorphous powder and had the molecular
formula C26H35ClO10 on the basis of (+)-HRESIMS (see Materials and Methods section).
The IR spectrum of 4 showed bands at 3450, 1777, and 1736 cm–1, consistent with the pres-
ence of hydroxy, γ-lactone, and ester carbonyl groups. It was found that the spectroscopic
data of 4 were very similar to those of a known briarane metabolite, briaexcavatolide F
(7) [17]. However, a comparison of the 1H and 13C NMR chemical shifts of C-6 methine
(δH 4.92, 1H, d, J = 10.4 Hz; δC 63.2), C-7 oxymethine (δH 4.71, 1H, d, J = 10.4 Hz; δC 83.0),
and C-5 sp2 non-protonated carbon (δC 137.4) of 4 (Tables 1 and 2) with those of 7 (δH
5.83, 1H, d, J = 3.3 Hz; δC 61.8, CH-6; δH 5.73, 1H, d, J = 3.3 Hz; δC 79.8, CH-7; δC 138.7,
C-5) [17] showed that H-6 in 4 was α-oriented. The NOESY spectrum exhibited a strong
correlation from H-7 to H-4, but not with H-6 (Figure 5), and a large vicinal proton coupling
constant (J = 10.4 Hz) was detected between H-7 and H-6, indicating that the dihedral
angle between H-6 and H-7 was approximately 180◦, that H-6 was α-oriented in 4, and that
this compound should possess a structure as represented by formula 4. The structure of 4
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was further confirmed by 2D NMR experiments (Figure 5) and its stereogenic centers were
assigned as (1S*,2R*,3S*,4R*,6R*,7R*,8R*,9S*,10S*,11R*,12R*,13S*,14R*, 17R*) by NOESY
experiment (Figure 5) (Supplementary Materials, Figures S34–S44).
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Known briaranes 5–8 were found to be identical with briarenolide solenolide A [15],
briarenolide M [16], briaexcavatolide F [17], and brianolide [18], respectively by comparison
of the spectroscopic data with those reported previously.

A single-crystal x-ray diffraction was used to confirm the structure of brianolide 8.
The Oak Ridge Thermal Ellipsoid Plot (ORTEP) diagram (Figure 6) showed that the abso-
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2.2. Bioactivity of Isolated Briaranes

It is well documented that the microbial lipopolysaccharide (LPS) can activate toll-
like receptor-4 (TLR-4), located in the mammal cell membrane surface, which triggers
inflammatory responses through the activation of intracellular signal transduction and
the upregulation of pro-inflammatory proteins inducible nitric oxide synthase (iNOS)
and cyclooxygenase-2 (COX-2) [20]. It is well known that inhibition of the expression
of pro-inflammatory proteins iNOS and COX-2 in LPS-stimulated macrophage cells can
be used as for in vitro screening of anti-inflammatory compounds [21–23]. The massive
production of inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2) via
pro-inflammatory proteins iNOS and COX-2, respectively, plays an important pathophysio-
logical role in inflammation. There are two COX isozymes, COX-1 (cyclooxygenase-1) and
COX-2, catalyzing the prostaglandin synthesis. COX-1 is constitutively expressed in nor-
mal physiological conditions. Unlike COX-1, COX-2 is an inducible enzyme that increases
following injury or inflammation [24,25]. COX-2 plays a more vital role in pathology than
COX-1 under inflammatory processions.

The effects of briaranes 1–7 on the release of iNOS and COX-2 from LPS-stimulated
RAW 264.7 macrophage cells were assessed (Table 3). Briaranes 2 and 5 at 10 µM en-
hanced the release of iNOS (142.03 and 134.11%, respectively) and COX-2 (159.21 and
196.03%, respectively) as compared to results for the cells stimulated with LPS only. It is
interesting to note that these findings seem to be contrary to results claimed to show that
most briarane-type natural products from octocorals are anti-inflammatory [26]. Structure–
activity relationships among these marine diterpenoids will be evaluated if enough materi-
als are obtained.



Mar. Drugs 2021, 19, 77 10 of 14

Table 3. Effects of briaranes 1–7 on lipopolysaccharide (LPS)-induced pro-inflammatory inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in macrophages.

Compound iNOS COX-2 β-Actin

10 µM Expression (% of LPS)

Control 2.88 ± 0.86 0.94 ± 0.10 107.01 ± 2.73
Vehicle 100.00 ± 1.84 100.00 ± 3.98 100.00 ± 1.66

1 88.18 ± 12.38 103.23 ± 5.20 101.63 ± 4.23
2 142.03 ± 18.44 159.21 ± 13.41 97.81 ± 3.15
3 99.71 ± 13.77 89.20 ± 1.40 98.31 ± 5.33
4 103.25 ± 16.72 96.92 ± 4.72 99.46 ± 3.75
5 134.11 ± 14.70 196.03 ± 12.35 106.56 ± 1.98
6 86.20 ± 11.20 85.98 ± 2.47 104.50 ± 2.01
7 92.55 ± 10.52 91.71 ± 1.90 104.80 ± 2.53

Dexamethasone 61.24 ± 11.09 18.17 ± 2.65 104.70 ± 3.83
Data were normalized to those of cells treated with LPS alone and cells treated with dexamethasone were used
as a positive control. Data are expressed as the mean ± SEM. The β-actin of Western blotting was used for
loading/internal control.

3. Materials and Methods
3.1. General Experimental Procedures

A digital polarimeter (model P-1010; JASCO Corp., Tokyo, Japan) was used to deter-
mine optical rotations of the samples. IR spectra were collected using a spectrophotometer
(model Nicolet iS5 FT-IR; Thermo Fisher Scientific, Waltham, MA, USA). 1H and 13C NMR
spectra were recorded on ECZ-400 or ECZ-600 spectrometers (Jeol Ltd., Tokyo, Japan)
for solutions in CDCl3 (with residual CHCl3 (δH 7.26 ppm) and CDCl3 (δC 77.0 ppm) as
internal standards). For coupling constants (J), the results were given in frequency units
(Hz). For positive mode ESIMS and HRESIMS, the results were obtained using a SolariX
FTMS mass spectrometer (7 Tesla; Bruker, Bremen, Germany). The extracted samples were
separated by column chromatography with silica gel (between 230 and 400 meshes; Merck).
Thin-layer chromatography plates with silica gel coated with fluorescent indicator F254
were employed. For visualization, the plates were charred with 10% (v/v) aqueous sulfuric
acid solution, then heated at 105 ◦C until spots were seen. For normal-phase HPLC separa-
tion, a system containing a pump (Hitachi model L-7110; Tokyo, Japan) and an injection
interface (No. 7725; Rheodyne) was employed, equipped with a semi-preparative column
with dimensions of 250 × 20 mm and a 5-µm particle size (Sigma). For reverse-phase
HPLC separation, a system composed of a pump (Hitachi model L-2130) and a diode-array
detector (LaChrom L-2455, Hitachi) was used, equipped with a column with dimensions of
2.1 × 25 cm and a 5-µm particle size (Phenomenex).

3.2. Animal Material

Specimens of B. stechei used for this study were collected from an 80-ton culturing
tank equipped with a flow-through seawater system located in the National Museum of
Marine Biology and Aquarium (NMMBA) in April 2016. Identification of the species of
this organism was performed by comparison, as described in previous studies [14]. Living
reference specimens are maintained in the authors’ marine organism culturing tanks and a
voucher specimen was deposited with the NMMBA (voucher no.: NMMBA-TW-GC-2016-
031), Taiwan.

3.3. Extraction and Isolation

Sliced bodies (wet/dry weight = 3980/1860 g) of the specimen were grounded and
extracted with a mixture of MeOH and CH2Cl2 (1:1) to provide an extract (104 g). The
extract was then applied to a silica gel column chromatography (Si C.C.) and eluted with
gradients of n-hexane/EtOAc (stepwise from 50:1–1:2) to furnish fractions A–L. Fractions
H and I were combined (19.0 g) and washed with acetone to obtain an undissolved
material brianolide (8) (2.59 g). The dissolved material was separated with Si C.C. using
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n-hexane/EtOAc (stepwise from 50:1−pure EtOAc) to obtain fractions H1−H8. Fraction
H6 was chromatographed with Si C.C. using n-hexane/EtOAc/acetone to obtain fractions
H6A−H6K. Fraction H6E was separated by Si C.C. using a mixture of CH2Cl2 and acetone
(4:1) to obtain fractions H6E1−H6E6. Fraction H6E1 was repurified by RP-HPLC using a
mixture of MeOH and H2O (7:3) to yield fractions H6E1A–H6E1K. H6E1K was separated
by RP-HPLC using a mixture of MeOH and H2O (8:2; at a flow rate = 4.0 mL/min) to yield
briarenol X (2) (0.9 mg). Fraction H6E2 was separated by NP-HPLC using a mixture of
CH2Cl2 and acetone (8:1) to yield fractions H6E2A−H6E2E. Fraction H6E2A was repurified
by RP-HPLC using a mixture of MeOH and H2O (7:3) to yield fractions H6E2A1−H6E2A6.
Fraction H6E2A5 was further separated by RP-HPLC with a mixture of MeOH and H2O
(7:3) to yield fractions H6E2A5A−H6E2A5E. Fraction H6E2A5E was separated by RP-
HPLC with a mixture of MeOH and H2O (8:2; at a flow rate = 4.0 mL/min) to yield
solenolide A (5) (0.6 mg). Fraction H6E3 was repurified by NP-HPLC using a mixture of
CH2Cl2 and acetone (9:1) to yield fractions H6E3A−H6E3G. Fraction H6E3D was separated
by RP-HPLC using a mixture of MeOH and H2O (7:3; at a flow rate = 5.0 mL/min) to yield
briarenols W (1) (0.6 mg), Y (3) (2.8 mg), and Z (4) (1.2 mg), respectively. Fraction H6E4
was separated by NP-HPLC using a mixture of CH2Cl2 and acetone (6:1) to obtain fractions
H6E4A−H6E4I. Fraction H6E4E was repurified by NP-HPLC using a mixture of n-hexane
and acetone (5:2) to obtain fractions H6E4E1−H6E4E10. Fraction H6E4E8 was separated
by RP-HPLC with a mixture of MeOH and H2O (7:3; at a flow rate = 5.0 mL/min) to yield
briarenolide M (6) (4.5 mg). Fraction H6F was separated by RP-HPLC with a mixture of
MeOH and H2O (7:3; at a flow rate = 5.0 mL/min) to yield briaexcavatolide F (7) (8.9 mg).

Briarenol W (1): amorphous powder; [α]24
D −29 (c 0.1, CHCl3); IR (KBr) νmax 3430,

1780, 1733, 1670 cm−1; 13C (150 MHz, CDCl3) and 1H (600 MHz, CDCl3) NMR data, see
Tables 1 and 2; ESIMS: m/z 461 [M + Na]+, 463 [M + 2 + Na]+; HRESIMS: m/z 461.13377
(calculated for C22H27

35ClO7 + Na, 461.13375).
Briarenol X (2): amorphous powder; [α]24

D −14 (c 0.05, CHCl3); IR (ATR) νmax 3484,
1777, 1729 cm−1; 13C (150 MHz, CDCl3) and 1H (600 MHz, CDCl3) NMR data, see
Tables 1 and 2; ESIMS: m/z 551 [M + Na]+, 553 [M + 2 + Na]+; HRESIMS: m/z 551.20198
(calculated for C26H37

35ClO9 + Na, 551.20183).
Briarenol Y (3): amorphous powder; [α]24

D −73 (c 0.1, CHCl3); IR (KBr) νmax 3459, 1778,
1738 cm−1; 13C (100 MHz, CDCl3) and 1H (400 MHz, CDCl3) NMR data, see Tables 1 and 2;
ESIMS: m/z 565 [M + Na]+, 567 [M + 2 + Na]+; HRESIMS: m/z 565.18106 (calculated for
C26H35

35ClO10 + Na, 565.18110).
Briarenol Z (4): amorphous powder; [α]24

D −12 (c 0.2, CHCl3); IR (KBr) νmax 3450, 1777,
1736 cm−1; 13C (100 MHz, CDCl3) and 1H (400 MHz, CDCl3) NMR data, see Tables 1 and 2;
ESIMS: m/z 565 [M + Na]+, 567 [M + 2 + Na]+; HRESIMS: m/z 565.18137 (calculated for
C26H35

35ClO10 + Na, 565.18110).
Solenolide A (5): amorphous powder; [α]25

D −28 (c 0.04, CHCl3) (reference [15], [α]20
D

−56 (c 0.63, CHCl3)); the 1H and 13C NMR data of 5 are in full agreement with those
reported previously [15]; ESIMS: m/z 579 [M + Na]+, 581 [M + 2 + Na]+.

Briarenolide M (6): amorphous powder; [α]24
D −81 (c 0.3, CHCl3) (reference [16], [α]25

D
−58 (c 0.7, CHCl3)); the 1H and 13C NMR data of 6 are in full agreement with those reported
previously [16]; ESIMS: m/z 537 [M + Na]+, 539 [M + 2 + Na]+.

Briaexcavatolide F (7): amorphous powder; [α]26
D −14 (c 0.1, MeOH) (reference [17],

[α]25
D −21 (c 0.1, MeOH)); the 1H and 13C NMR data of 7 are in full agreement with those

reported previously [17]; ESIMS: m/z 565 [M + Na]+, 567 [M + 2 + Na]+.
Brianolide (8): colorless prisms; [α]26

D −25 (c 2.3, CHCl3) (reference [18], [α]23
D −15

(c 0.1, MeOH)); the 1H and 13C NMR data of 8 are in full agreement with those reported
previously [18]; ESIMS: m/z 537 [M + Na]+, 539 [M + 2 + Na]+.

3.4. Single-Crystal X-Ray Crystallography of Brianolide (8)

Suitable colorless prisms of 1 were obtained from a solution of MeOH. The crys-
tal (0.158 × 0.108 × 0.108 mm3) belongs to the tetragonal system, space group P41212
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(#92), with a = 10.9478(4) Å, b = 10.9478(4) Å, c = 46.0277(15) Å, V = 5516.6(4) Å3, Z = 8,
Dcalcd = 1.317 Mg/m3, λ (Cu Kα) = 1.54178 Å. Intensity data were measured on a Bruker
D8 Venture diffractometer up to θmax of 75.0◦. All 24,967 reflections were collected. The
structure was solved by direct methods and refined by a full-matrix least-squares proce-
dure [27,28]. The refined structural model converged to a final R1 = 0.0578; wR2 = 0.1667
for 5687 observed reflections (I > 2σ(I)) and 348 variable parameters. The absolute configu-
ration was determined by the Flack parameter x = 0.095(8) [29,30]. Crystallographic data
for the structure of brianolide (8) were deposited with the Cambridge Crystallographic
Data Center (CCDC) under supplementary publication number CCDC 1966097 [31].

3.5. Molecular Mechanics Calculations

The MM2 force field [19] in CHEM3D PRO software from CambridgeSoft Corporation
(version 15.0, Cambridge, MA, USA) was used to calculate the molecular models.

3.6. In Vitro Inflammatory Assay

The inflammatory assay was employed to evaluate the activities of briaranes 1-7
related to the release of iNOS and COX-2 from macrophage cells, as reported in the
literature [32].

4. Conclusions

Eight chlorinated briarane diterpenoids, including four new briaranes—briarenols
W-Z (1-4)—as well as four known analogues—solenolide A (5), briarenolide M (6), briaex-
cavatolide F (7), and brianolide (8)—were identified from a cultured octocoral B. stechei,
originally flourishing in Taiwanese waters where the Kuroshio current and South China
Sea surface current converge to provide high biodiversity. The structures of new briaranes
1-4 were elucidated on the basis of spectroscopic analysis and the absolute configuration of
8 (brianolide) was determined by a single-crystal x-ray diffraction analysis. As briaranes
1-7 were isolated along with brianolide (8) from the same target organism, B. stechei, it is
reasonable on biogenetic grounds to assume that 1-7 have the same absolute configuration
as that of 8, while the protons H-10 and Me-15 at C-1 in briaranes 1-8 are α- and β-oriented,
respectively, and these compounds have 1S,10S- configurations in the ring junction. Bri-
aranes 2 (briarenol X) and 5 (solenolide A) displayed enhancing effects on the production
of iNOS and COX-2 at a concentration of 10 µM.
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