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Abstract: R-type lectins are a widespread group of sugar-binding proteins found in nearly all
domains of life, characterized by the presence of a carbohydrate-binding domain that adopts a
β-trefoil fold. Mytilectins represent a recently described subgroup of β-trefoil lectins, which have
been functionally characterized in a few mussel species (Mollusca, Bivalvia) and display attractive
properties, which may fuel the development of artificial lectins with different biotechnological
applications. The detection of different paralogous genes in mussels, together with the description of
orthologous sequences in brachiopods, supports the formal description of mytilectins as a gene family.
However, to date, an investigation of the taxonomic distribution of these lectins and their molecular
diversification and evolution was still lacking. Here, we provide a comprehensive overview of the
evolutionary history of mytilectins, revealing an ancient monophyletic evolutionary origin and a
very broad but highly discontinuous taxonomic distribution, ranging from heteroscleromorphan
sponges to ophiuroid and crinoid echinoderms. Moreover, the overwhelming majority of mytilectins
display a chimera-like architecture, which combines the β-trefoil carbohydrate recognition domain
with a C-terminal pore-forming domain, suggesting that the simpler structure of most functionally
characterized mytilectins derives from a secondary domain loss.

Keywords: marine invertebrates; innate immunity; glycan-binding; lectins; pore-forming; β-trefoil

1. Introduction

Lectins are a large class of proteins nearly ubiquitously found in all living organisms,
ranging from unicellular prokaryotes to complex multicellular eukaryotes, which play a piv-
otal role in mediating carbohydrate–protein interactions. These glycan-binding molecules
display a remarkable molecular diversity, due to the presence of distinct Carbohydrate
Recognition Domains (CRDs) that exhibit specificity for carbohydrate moieties. The ex-
traordinary breadth of recognized ligands allows lectins to mediate fundamental biological
processes, from cell adhesion [1], to cell–cell recognition [2], apoptotic cell clearance [3],
embryogenesis [4], food particle recognition [5], and the discrimination between “self” and
“nonself”. In this context, lectins have a paramount importance for pathogen recognition,
which occurs thanks to the specific detection of molecular patterns associated with invading
pathogenic agents, such as bacteria and viruses, the so-called Microbe Associated Molecu-
lar Patterns (MAMPs) [6]. This carbohydrate-dependent immune recognition mechanism
elucidates how lectins participate in innate immune responses, triggering the activation of
downstream immune effectors upon the recognition of exogenous entities. In organisms
devoid of an immunoglobulin- and T-cell receptor-based adaptive immune system, lectins
gain a primary role as a first barrier to prevent microbial invasion. Hence, it is not sur-
prising that a significant number of lectin families underwent massive expansion during
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evolution in different lineages, fueled by tandem gene duplication events and subsequent
fast molecular diversification (and functional specialization) via positive selection [7–11].

R-type lectins (RTLs), which take their name from the plant toxin ricin, are one of
the many different structural superfamilies of lectins that have been described to date.
These lectins are characterized by a CRD that displays a unique β-trefoil structural or-
ganization, consisting of three homologous subdomains, which most likely derive from
the duplication of an ancestral smaller glycan-binding peptide [12]. Although this CRD
is often found associated with other domains in large proteins that carry out functions
linked with carbohydrate biosynthesis and metabolism [13], several RTLs displaying a
simple architecture, which only include a single CRD, have been previously described
in a few phyla of invertebrate animals [14–17]. Among these, a group of sequences that
display a highly divergent primary sequence from all other previously described RTLs
have attracted significant attention due to their glycan-binding specificity, which could
make them interesting targets for biotechnological applications. These molecules, which
are collectively known as mytilectins from the name of MytiLec-1 [18], have been so far
functionally characterized only in a small group of bivalve mollusks, all belonging to the
family Mytilidae [19–23]. Due to their marked binding specificity for globotriose (Gb3),
a glycan expressed at high levels by Burkitt lymphoma Raji cells, as well as due to the
cytotoxic effect exerted upon binding on these and other types of cancer cells [24–26] and
the ability to modulate macrophage activity in mice [27], mytilectins may find practical
applications in the context of cancer diagnosis and treatment. For this reason, mytilectins
have been the subject of mutagenesis studies aimed at better understanding their struc-
ture–function relationships to allow the design of molecules with improved glycan-binding
properties [28,29], and have been also used as a template for the in silico design of the
synthetic lectin Mitsuba [30].

While all functionally characterized mytilectins display a high primary sequence
homology with each other, being characterized by the presence of a single CRD, further
studies have revealed the existence of additional members of the same family in mussels.
These sequences display a higher molecular weight, due to the presence of a C-terminal
domain that shares a striking structural resemblance with aerolysin, a cytolytic toxin from
Aeromonas hydrophila [25]. This observation would suggest that these mytilectins, called
“chimera-type” to differentiate them from the aforementioned “proto-type” mytilectins,
may be involved in the formation of pores in target membranes through the formation of
oligomeric beta-barrels, as happens in other toxins that have acquired similar structural
features in a convergent manner [31–33].

More recently, sequences sharing high primary sequence homology with mytilectins
have been described in Lingula anatina, a marine invertebrate belonging to the phylum
Brachiopoda, distantly related with bivalve mollusks, implying a shared ancestry for
these molecules and strongly suggesting a taxonomic spread much broader than originally
thought [34]. Although mytilectins have been previously referred to as members of a novel
lectin family [35,36], the lack of any specific investigations concerning their evolutionary
origin, taxonomic spread, and relationships has prevented, to date, a formal description of
the “mytilectin family”. Here, with a comprehensive screening of available genomic and
transcriptomic resources, we provide a clear overview concerning these aspects, supporting
a monophyletic origin for mytilectins deeply rooted in the metazoan lineage, and reveal
that these lectins are present in an unexpectedly large number of animal phyla.

2. Results and Discussion
2.1. Taxonomic Distribution of Mytilecins

The large-scale screening of available metazoan–omic resources allowed the authors
to significantly expand the taxonomic range of distribution of mytilectins compared with
previous reports, as schematically displayed in Figure 1. The presence of members of this
lectin family in largely divergent animal phyla, ranging from Porifera to Echinodermata,
suggest an ancient evolutionary origin predating the acquisition of bilateral symmetry. At
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the same time, mytilectins display a highly discontinuous distribution, characterized by
their absence in several major phyla. This situation could be consistent with two alternative
and not mutually exclusive scenarios, namely (i) the very ancient origin of this lectin family,
preceding the acquisition of bilateral symmetry, followed by multiple independent gene
loss events occurring in different taxa; or (ii) a more recent origin traceable to a single
phylum, followed by several horizontal gene transfer events, which greatly expanded the
narrow original distribution of this lectin family. The plausibility of these two hypotheses,
in light of the recent report of the presence of SaroL-1, a lectin sharing striking structural
similarity with mytilectins, in the choanaoflagellate S. rosetta (Figure 1), will be discussed
after the comprehensive overview of the results of the comparative genomics analyses
conducted in this study outlined in the next sections.
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Figure 1. Schematic view of the distribution of mytilectins across the metazoan tree of life. Presence
or absence is displayed at the phylum level, with further indication of their distribution at lower
taxonomic ranks, whenever relevant. In this representation, presence indicates that some (but not all)
the members of a given phylum had mytilectin genes, whereas absence indicates that no mytilecin
sequences could be detected in any of the genomes or transcriptomes available for a given phylum.
In a few cases, evidenced with a question mark, available genomic data was insufficient to draw
definitive conclusions concerning the presence or absence of mytilectins. The phylogenetic placement
of the phylum Choanoflagellata at the base of the tree is marked due to the detection of SaroL-1, a
lectin sharing striking structural similarity with mytilectins, as discussed in Section 2.6.

2.1.1. Phylum Porifera

The most early branching metazoan phylum where mytilectins were detected was
Porifera. However, mytilectin genes were only present in a single one out of the 10 sponge
genomes available to date (as of November 2023), i.e., Agelas oroides, belonging to the
order Agelasida. This finding, together with the absence of orthologous sequences in
other genomes of the five species placed in the subclass Heteroscleromorpha (class Demo-
spongiae), allowed the authors to infer the lack of mytilectins in the orders Haplosclerida,
Spongillida, and Suberitida. However, further analysis of transcriptome data extended the
distribution of poriferan mytilectins to the order Axinellida (in detail, mytilectin transcripts
were found in Eurypon sp. 2 AS-2020 and Hymeraphia stellifera [37]). No evidence supporting
the presence of mytilectins could be collected in the three other extant classes of Porifera,
i.e., Calcarea, Hexactinellida, and Homoscleromorpha.
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2.1.2. Phylum Cnidaria

In the phylum Cnidaria, the presence of mytilectins was restricted to the class Antho-
zoa, where this gene family was represented across a broad range of orders belonging to
two out of three subclasses (Hexacorallia and Octocorallia; no genomic data is available for
Ceriantharia), with significant gaps across phylogeny, suggesting a complex evolutionary
history characterized by multiple independent losses. Namely, mytilectin genes were
detected in 7 out of 85 available genomes of Hexacorallia (8% of the total), i.e., Orbicella
faveolata, Montipora capitata [38], Montipora sp. Colony 1 RG-2022, Stylophora pistillata [39],
Palythoa heliodiscus [40], Palythoa grandis [40], and Ricordea florida. A few additional species
could be added to this list (Acropora tenuis [41], Montipora digitata [42], Alveopora japon-
ica [43], Parachrysogorgia stellata [44], and Fimbriaphyllia ancora [45]) thanks to transcriptomic
evidence. Most of these species belong to different families within the order Scleractinia (i.e.
Acroporidae, Chrysogorgiidae, Euphylliidae, Faviidae, Merulinidae, and Pocilloporidae),
but matches were also found in Corallimorpharia and Zoantharia.

The prevalence of mytilectins in available octocorallian genomes (2 out of 11) was
similar to that outlined above in Hexacorallia, with positive hits in Paramuricea clavata [46]
and Eunicella verucosa [47], both classified within the order Malacalcyonacea. Transcriptome
data, besides further matches in Eleutherobia rubra [48], Clavularia sp. cla_tr77125 [49], and
Scleronephthya gracillima, expanded the range of distribution of cnidarian mytilectins to
Scleralcyonacea (i.e., Heliopora coerulea [50]).

No evidence supporting of the presence of mytilectins could be collected in the other
cnidarian classes (i.e., Cubozoa, Hydrozoa, Myxozoa, Scyphozoa, and Staurozoa), neither
at the genomic nor at the transcriptomic level.

2.1.3. Phylum Mollusca, Class Bivalvia

The class Bivalvia was the taxonomic group with the highest number of mytilectin
sequences identified, in part due to its high species richness and abundance of genomic
and transcriptomic resources, in part due to the fact that several species displayed multiple
paralogous gene copies.

Fully sequenced genomes are still lacking for the subclass Protobranchia, an early
offshoot of the Bivalve lineage. However, transcriptomic evidence supports the presence of
mytilectins in Solemya velum [51] and Ennucula tenuis [52], which belong to two different
protobranch orders, i.e., Nuculida and Solemyida. This finding indicates the likely presence
of a mytilectin gene in the latest common ancestor of all bivalves. As far as the second
bivalve subclass (i.e., Autobranchia), is concerned, mytilecin genes were identified both
in the infraclass Pteriomorphia and in the infraclass Heteroconchia. Nevertheless, the
distribution of mytilectins was sparse with significant gaps, mirroring the general situation
outlined at higher taxonomic ranks in Figure 1.

According to the current WoRMS classification, Pteriomorphia includes five orders: Ar-
cida, Limida, Mytilida, Ostreida, and Pectinida. Mytilectins were clearly missing in Ostreida,
as no significant homology could be detected in any of the 14 fully sequenced genomes
available to date. Although no genome data was available for Limida, a similar conclusion
could be drawn for this order based on the analysis of transcriptome data [53]. On the other
hand, mytilectins were present in one out of the two genomes of Arcida, i.e. Tegillarca gra-
nosa [54]. Mytilectins were present in the genomes of 6 out of 13 species belonging to the
order Mytilida. Five of these (Mytilus californianus, Mytilus chilensis, Mytilus coruscus, Mytilus
edulis, and Mytilus galloprovincialis) [55–59] are congeneric, confirming the previous reports
of MytiLec-1, CGL, and MTL in Mytilus and Crenomytilus spp. [20,26,60]. The sixth species
was Perna viridis [61], which also belongs to the subfamily Mytilinae. Mytilectin-encoding
transcripts were also detected in the congeneric species Perna perna [62] and Perna canalicu-
lus. The transcriptome of the ribbed mussel Geukensia demissa [63] allowed the authors to
expand the range of distribution of mytilectins to a second mytilid family, i.e., Brachidontinae.
Mytilectins were widespread in Pectinida, as evidenced by their presence in all the six species
with a fully sequenced genome available (Pecten maximus, Mizuhopecten yessoensis, Argopecten
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irradians, Argopecten purpuratus, and Mimachlamys varia) [64–68] and by their detection in the
transcriptomes of Adamussium colbecki and Nodipecten subnodosus [69,70].

In the infraclass Heteroconchia, mytilectins were clearly absent in the genomes of all
Palaeoheterodonta, which include the large majority of freshwater mussels and clams, and
likely absent also in Archiheterodonta. Despite being absent in the superorder Anomalodes-
mata, mytilectins were found in 5 out of 24 available fully sequenced genomes available
for the superorder Imparidentia, part of Euheterodonta, the largest group of heteroconch
bivalves. Three of these were members of the order Myida (Congeria kusceri, Dreissena
polymorpha, and Mya arenaria) [71,72] and the other two (Mercenaria mercenaria and Saxi-
modus purpurata) [73] belonged to the order Venerida. Nevertheless, several other species
classified as venerid clams lacked mytilectin genes. The abundance of available genomes
for the order Cardiida allowed ruling out the presence of mytilectins in this taxa. Although
-omic resources are still limited for other minor Imparidentia orders, neither genomic, nor
transcriptomic data supported the presence of mytilectins, with the lone exception of a
partial transcript sequence detected in Hiatella arctica (order Adapedonta) [53].

2.1.4. Other Mollusca

Despite their frequent occurrence in Bivalvia, mytilectins were absent in the over-
whelming majority of other mollusks. The lone exception was represented by the three
species of the family Peltospiridae (class Gastropoda) with a sequenced genome available,
i.e., Chrysomallon squamiferum [74], Dracogyra subfusca, and Gigantopelta aegis [75], which are
all deep-sea hydrothermal vent snails. The lack of genomic resources for sister taxa did not
allow the authors to ascertain whether mytilectins were restricted to Peltospiridae or more
broadly distributed in all the members of the order Neomphalida. Although over 50 other
gastropod genomes have been sequenced and assembled to date, none of these presented
mytilectin-encoding genes, indicating a highly reduced representation of this gene family
in the most species-rich molluscan class.

Albeit significant taxonomic gaps are still present for the minor molluscan classes (e.g.,
Monoplacophora, Scaphopoda, and Caudofoveata), no evidence supporting the existence
of mytilectins could be found in Solenogastres, Cephalopoda, and Polyplachophora.

2.1.5. Other Lophotrochozoa

The presence of mytilectins was previously reported in Lingula anatina, a member of the
phylum Brachiopoda [34]. Although this species remains to date the only brachiopod with
a sequenced genome, current evidence suggests that mytilectin distribution in this phylum
might be very narrow, due to the lack of orthologous sequences in the transcriptomes of
several other brachiopod species.

The only other lophotrochozoan phylum with compelling evidence supporting the
presence of mytilectins was Annelida. In detail, matches were identified, either at a
genomic or a transcriptomic level, in the family Nereididae, consisting of polychaete
worms (subclass Errantia, order Phyllodocida). Namely, mytilectin sequences were found
in Alitta virens [76], Perinereis aibuhitensis [77], and Platynereis dumerilii [78]. The absence of
mytilectins in several genomes belonging to the same order, but different families, points
to a distribution restricted to nereidid polychaete worms.

The only other instance of detection of partial sequences with a clear homology with
mytilectins was Pedicellina cernua (Entoprocta, Pedicellinidae) [79]. However, the lack
of –omic resources for this neglected minor lophotrochozoan phylum impeded further
confirmation of this finding at the genome level and the exploration in other species
belonging to closely related taxa.

2.1.6. Ecdysozoa

Mytilectins were largely absent in Ecdysozoa, which include the most species-rich
group of animals, i.e., arthropods. In fact, only a single out of the nearly 2700 arthropod
genomes available to date (most of which are from Insecta) carried mytilectin genes. This
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surprising finding was made in the Antarctic krill Euphausia superba, whose recently se-
quenced genome is one of the largest ever reported in the animal kingdom [80]. Further
transcriptomic investigations confirmed this finding and allowed the auhtors to detect
mytilectins in the transcriptome of a second species belonging to the family Euphausiidae,
i.e., Meganyctiphanes norvegica [81]. The absence of sequences bearing detectable homology
in the genomes of about 90 other crustacean species clearly marked the restricted presence
of mytilectins in krill as a unique case in Ecdysozoa.

2.1.7. Phylum Echinodermata

Within Deuterostomata, Echinodermata was the only phylum where mytilectin se-
quences could be unambiguously identified and confirmed both at a genomic and at a
transcriptomic level. Nevertheless, like other previously described cases, mytilectins were
detected just in a restricted number of taxa.

In detail, mytilectin genes were found only in two out of the three extant echinoderm
subphylums, i.e. Asterozoa and Crinozoa, thereby pointing out their absence in both sea
urchins and sea cucumbers. The presence of mytilectins could be only confirmed in a
subgroup of asterozoans, i.e., those belonging to the class Ophiuroidea. In detail, complete
or partial sequences were recovered in Amphiura filiformis [82], Ophiothrix exigua [83],
Ophiothrix spiculata [84], and Ophioderma brevispina [85]. Albeit these four species belong
to the subclass Myophiuroida, the lack of genomic data for the other ophiuroid species
prevented a more precise assessment of taxonomic delimitation in this case. Mytilectin
genes were also detected in a single crinoid species, i.e., Nesometra sesokonis [86], and further
investigations failed to identify orthologous sequences in the transcriptomes of several
other crinoids, suggesting a narrow taxonomic distribution within this subphylum.

2.1.8. Other Deuterostomes

No significant matches supporting the presence of mytilectins were found in the
genomes of deuterostome phyla other than Echinodermata. These comprised all represen-
tatives of the phyla Hemichordata and Chordata, including cephalochordates and tunicates.
This was strongly supported by transcriptomic evidence, even though a few assembled tran-
scripts linked to Sardinops melanostictus (Actinopterygii) matching mytilectins are present
in the TSA repository. However, upon further inspection of their phylogenetic placement,
these sequences were found to bear close similarity with bivalve mytilectins. Taking into
account that bivalve larvae are usual components of the diet of sardines [87], we could
safely classify this finding as a false positive linked to the ingestion of an unidentified
bivalve species by the fish.

2.2. Structural Features of Mytilectins

We had previously described the presence of two distinct types of mytilectins [88],
defined as “proto-type” and “chimera-type”, respectively, characterized by markedly differ-
ent length and domain architecture. Proto-type mytilectins, which include all functionally
characterized mytilectins to date (i.e. CGL, MTL and MytiLec-1), display a single β-trefoil
CRD with no accessory domains, being approximately 150 aa long. On the other hand,
other mytilectins identified in M. galloprovincialis and L. anatina were significantly longer
due to the presence of a C-terminal extension encoding an additional 140 aa-long domain,
whose three-dimensional structure was predicted to resemble that of Aeromomas hydrophyla
aerolysin and other pore-forming toxins [34,89]. The presence of these two distinct domain
architectures leaves an open question concerning the ancestral structural configuration
of mytilectins, due to the existence of two alternative evolutionary scenarios: indeed, the
CRD/pore-forming domain combination observed in chimera-type mytilectins could be
the result of a gene fusion event involving an ancestral proto-type mytilectin gene, or,
alternatively, proto-type mytilectins could be the result of the secondary loss of the pore-
forming domain present in the ancestral chimera-type gene. To provide an answer to
this question, we collected over one hundred mytilectin sequences from multiple phyla,
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significantly expanding the repertoire of both mytilectin types. The multiple sequence
alignment displayed in Figure 2 reports a representative group of the mytilectins recovered
in this study.
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The data we collected strongly support the second out of the two aforementioned
evolutionary scenarios, due to the presence of chimera-type mytilecins in all early branching
metazoan phyla, such as Porifera and Cnidaria. Moreover, chimera-type mytilectins were
far more widespread than proto-type mytilectins, as the latter were only detected in Mytilus
spp., in the brachiopod L. anatina and in all pectinid bivalves. Nevertheless, while both
domain architectures were simultaneously present in mussels and brachiopods, scallops
were the only species to uniquely display proto-type sequences. Moreover, within bivalves,
proto-type mytilectins were absent in Arcida and Heteroconchia, further supporting a
secondary domain loss in the proto-type mytilectins of mussels and scallops.

Another interesting structural feature which has been likely acquired in a convergent
manner by distinct phyla concerns the N-terminal region of mytilectins. As previously
reported [88], mussel mytilectins lack a detectable signal peptide for secretion, thereby being
targeted to the extracellular environment though a non-canonical secretion pathway. This
peculiarity is shared by the overwhelming majority of the mytilectins detected in this study
and clearly represents the ancestral status of the mytilectin precursor gene, as suggested
by the lack of signal peptides in the sequences of sponges and anthozoans (Figure 2).
Nevertheless, three notable exceptions were identified: brachiopods (as previously reported
in [34]), nereidid polychaetes, and krill. Indeed, these three taxa displayed well-supported
signal peptides, which would support the secretion of these mytilectins following the
canonical route mediated by signal recognition particles.

2.3. Gene Architecture Strongly Supports a Monophyletic Origin for all Mytilectins

As briefly discussed above, the highly discontinuous taxonomic distribution of mytilectins
summarized in Figure 1 could be consistent with two alternative scenarios, the likelihood of
which will be here evaluated using phylogenetic inference and gene architecture information.
The conservation of exon/intron boundaries and splicing sites among genes from distantly
related phyla is generally considered as strong evidence of orthology [90–92], to the point that
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this factor is often incorporated in gene prediction algorithms [93]. On the other hand, conver-
gent independent intron gain in the same position, with the very same phase, is considered
unlikely [94] and the presence of a reduced number of introns, or their entire lack, has been
previously reported as a typical feature of eukaryotic genes recently acquired by horizontal
gene transfer [95]. Hence, the detection of shared intron positions by mytilectin genes of
distantly related phyla would provide strong evidence supporting an ancient monophyletic
origin for mytilectins, which would be consequently inferred to be already present in the
latest common ancestor of all metazoans. We will here report the intron/exon architecture
of mytilectins with regard to the coding sequence only, even though some mytilectin genes
most certainly include an exon in the 5’end, before the ATG start codon [88]. This is necessary
due to the focus placed by standard genome annotation pipelines on coding sequences, which
may therefore often entirely miss or mis-annotate 5’ and 3’ UTR regions. At the same time,
we will here mostly focus on the gene architecture of proto-type mytilectins, as the genes
encoding proto-type mytilectins are significantly shorter due to the lack of the pore-forming
domain (see Section 2.2).

The complete analysis of the available genomic data revealed that the full ORF of
mytilectins was contained within a single exon in poriferan and cnidarian genes, as well
as in those from Peltospiridae gastropods. Due to the basal placement of sponges and
cnidarians in the animal tree of life (see Figure 1), this data would suggest that the ancestral
metazoan mytilectin gene was intronless. However, mytilectin genes acquired introns in
several other taxa during evolution, leading to slightly more complex splicing patterns,
which may split the ORF between either two or three coding exons. Interestingly, despite
the presence of lineage-specific losses and acquisitions, the placement of splicing sites
was often conserved across largely divergent phyla, thereby strongly supporting a shared
monophyletic evolutionary origin for animal mytilectins (Figure 3).
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Figure 3. Schematic view of the architecture of mytilectin genes in the major animal taxa where this
lectin family was identified. Colored bars indicate the full-length sequence of mytilectin precursor
proteins, with indication of the position of introns relative to the N-terminal CRD (subdivided among
the three subdomains of the β-trefoil fold) and to the C-terminal pore-forming domain. Please note
that only the mytilectins of Brachiopoda, Annelida, and Arthropoda display a signal peptide, which
determines a slight extension of the protein sequence at the N-terminal end. As discussed in the text,
introns located in the 5’ and 3’ UTR were disregarded due to the frequent lack of accurate annotations
of these regions in available genome assemblies.

In detail, the ORF of chimera-type mytilectins from echinoderms (including both
ophiurids and crinoids), bivalves, and krill was interrupted by the presence of an intron
in the very same position, i.e., roughly breaking in two equal parts the C-terminal pore-
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forming domain. Echinoderms and heteroconch bivalves also shared an additional intron
in the N-terminal region, within the third subdomain of the β-trefoil CRD. This exon was
missing in krill, mussels, and ark shells, but also in scallops (which only have shorter
proto-type mytilectin genes), which nevertheless displayed a single intron in a different
position, i.e., after the end of the CRD.

Additional independent lineage-specific intron gain events could be inferred in nerei-
did polychaetes, which displayed two introns, placed roughly between the first and the
second CRD subdomains, and in the region connecting the CRD to the pore-forming
domain, respectively, and in Brachiopoda, where the ORF was interrupted close to the
N-terminal end. Interestingly, the placement of this intron may explain the acquisition of a
signal peptide by brachiopod mytilectins, perhaps due to exon shuffling phenomena (see
Section 2.2).

2.4. Phylogeny of Mytilectins

We investigated the evolutionary relationships among the mytilectins identified in this
study through maximum likelihood phylogenetic inference, revealing a complex picture
which did not fully mirror the well-established taxonomic placement of the taxa where
mytilectin genes were present (Figure 4).
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Figure 4. Maximum likelihood phylogeny of mytilectins, represented as an unrooted tree. Individual
sequences are displayed as circles, colored based on the major taxonomic groups discussed in the
main text (i.e. Brachiopoda, Cnidaria, Porifera, Echinodermata, Crustacea, and Mollusca, further
subdivided among Gastropoda and three taxonomic groups of Bivalvia, i.e., Protobranchia, Hetero-
conchia, and Pteriomorphia). Further lower-rank classifications discussed in the main text are also
indicated close to the relevant clades. For the sake of simplicity, statistical support for major basal
nodes is reported with squares, whose color indicates bootstrap values. Proto-type mytilectins are
marked with an asterisk.



Mar. Drugs 2023, 21, 614 10 of 19

For example, even though sponge and cnidarian sequences were placed in the same
monophyletic clade with maximum statistical support (bootstrap value = 100), thereby
reflecting the early branching position of these phyla in the animal tree of life, neither
protostome nor deuterostome mytilectins were grouped in monophyletic clades, as would
have been expected in the case mytilectin evolution closely following the evolutionary
relationships among species. Nevertheless, while considering lower taxonomic ranks, a
high number of sequence groups matched highly supported monophyletic clades: this
was the case with Pectinida (bootstrap support = 100), Arcida (bootstrap support = 100),
Crustacea (bootstrap support = 100), Brachiopoda (bootstrap support = 100), Annelida
(bootstrap support = 100), and Gastropoda (bootstrap support = 100).

On the other hand, this was not the case for the sequences of Mytilida, which, as
reported in Section 2.2, are highly diversified from a structural point of view. These
sequences were indeed grouped in two clades, also highlighted in Figure 4: the poorly
supported clade I (bootstrap support = 22), included a mixture of mytilid proto-type and
chimera-type sequences, together with the two sequences from Solemyida (Protobranchia).
On the contrary, the better supported clade II (bootstrap support = 61) exclusively included
mytilid sequences (both proto- and chimera-type). A second large clade of sequences
characterized by high statistical support (bootstrap support = 100) included a subgroup
of bivalve sequences (i.e., those from Heteroconchia) and all echinoderm mytilectins.
Although the bootstrap support for the internal nodes of this branch of the tree were low,
hindering further investigation into the detailed relationships between the mytilectins of
these two phylogenetically distant taxa, their high primary sequence similarity, strongly
supported by ML inference, would point to an interesting case of convergent evolution.

The scattered position of proto-type mytilectins in the phylogenetic tree (marked by
asterisks in Figure 4) further supports the previously hypothesized independent origin for
these modified mytilectins in Mytilida, Pectinida, and Brachiopoda, as outlined in Section 2.2.
Similarly, the mytilectins that display a signal peptide (i.e., those from Branchiopoda, Crus-
tacea, and Annelida) would create a polyphyletic group, thereby strongly supporting the
independent acquisition of a signal for canonical secretion in these three taxa.

Overall, the molecular phylogeny of mytilectins opens several interesting evolutionary
questions, which can only be partially solved at the moment due to the current lack of
information concerning the functional specialization (if any) of proto-type and chimera-
type mytilectins. The significant discrepancies between gene and species phylogeny in this
case may have several different explanations. Undoubtedly, mytilectins are relatively short
proteins (i.e., the total size of the multiple sequence alignment analyzed with phylogenetic
inference was 268 amino acids), which often display limited primary sequence homology
(with p-distances in the range of 0.7–0.8 in inter–phyla pairwise comparisons), and the
low number of phylogenetically informative sites may have led to the incorrect or poorly
supported relative placement of some sequence groups, fundamentally altering the ordering
of some nodes of the tree. Nevertheless, as highlighted above, mytilectins display several
convergent features, which include the independent loss of the pore-forming domain, as
well as the independent acquisition of a signal peptide in different phyla. For similar
reasons, one might expect to observe the independent occurrence of other convergent
sequence features, whose weight on such a short MSA may have understandably led to
unexpected branching patterns. Moreover, the lack of non-metazoan sequences showing
high homology with mytilectins to be used for rooting purposes, together with the low
number of available mytilectins from the most basal animal group (i.e. Porifera, with just
two sequences available) represented another limitation for phylogenetic inference. Finally,
it needs to be considered that the unusual and highly discontinuous taxonomic distribution
of mytilectins in extant species is most likely the product of massive gene loss events, which
resulted in the availability of a particularly low number of sequences in a few key taxa.
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2.5. Optimization of Mytilectin-Specific Hidden Markov Models

The β-trefoil and pore-forming domains of mytilectins share a significant structural
homology with several R-type lectins and aerolysin-like toxins from multiple organisms,
thereby allowing the identification of these conserved domains using Hidden Markov
Models (HMM). For example, the presence of the mytilectin β-trefoil domain would
allow the recognition of mytilectins as members of the Ricin B-like lectins homologous
superfamily (IPR035992) in InterPro [96], as well as members of the CATH superfamily
2.80.10.50 [97]. Nevertheless, such classifications are extremely generic, as to date over
93 and 184 thousand protein sequences fit within these large superfamilies. Similarly,
the pore-forming domain of chimera-type mytilectins matches the CATH superfamily
G3DSA:2.170.15.10, which includes over 7000 different sequences.

Taking this into account, we investigated the possibility of generating HMM profiles that
could be used to specifically identify mytilecins by separately detecting the two structural
units found in chimera-type sequences. The performance of the two resulting profile HMMs,
obtained as described in Section 3, and named “mytilectin N-terminal domain” and “mytilectin
C-terminal domain”, respectively, was tested against the full set of mytilectins described in
this manuscript and all the protein sequences deposited in UniProt.

These tests confirmed the high specificity of both HMMs. In detail, the N-terminal
HMM could positively identify all mytilecins, with e-values ranging from 6.7e−70 to 3.6e−31,
with the worst results usually obtained for the detection for mytilectins from polychaete
worms, crustaceans, and ark shells. The C-terminal HMM was also able to identify all
mytilectins, with e-values ranging from 1.7e−54 to 1.3e−28. In this case, the worst results
were observed for the mytilectins of brachiopods, crustaceans, and gastropods. These
good performances were accompanied by a lack of false-positive detections in UniProt: as
expected, the non-target hits achieving the best scores for the two HMMs (i.e. the mucoricin
RLT1_RHIO9 and the monalysin MONAL_PSEE4, respectively) belonged to the same
structural superfamilies. However, their e-values (2.9 and 0.097, respectively) remained far
below the detection threshold.

2.6. On the Occurrence of the β-Trefoil/Aerolysin-like Pore-Forming Domain Combination in
Non-Metazoan Phyla: Convergent Evolution or Shared Ancestry?

Although our recursive homology search strategy (see Section 3.1) was limited to
Metazoa, we noticed the presence of statistically significant similarities between a few
animal mytilectins and a single sequence recently described in the choanoflagellate S.
rosetta, belonging to a sister group of Metazoa within Opisthokonta. This sequence was
Sarol-1, characterized as a pore-forming protein from this unicellular marine eukaryote
in 2022 [98]. As previously noted by Notova and colleagues, the N-terminal region of
Sarol-1, corresponding to the β-trefoil domain, displayed a significant homology, both at
the primary sequence and at the structural level, with MytiLec-1, CGL, and MTL. Most
importantly, unlike functionally characterized mytilectins, Sarol-1 also displayed a long
C-terminal extension which structurally resembled aerolysin, thereby completely matching
the domain architecture of chimera-type mytilectins (see Section 2.2). In light of this
observation and of our novel identification of mytilectins in the phylum Porifera (see
Section 2.1), one might wonder whether the evolutionary origins of mytilectins might be
pushed further back deeply into the Opisthokonta lineage, at the very least to the latest
common ancestor of the Metazoa and Choanoflagellata lineages.

While the remarkable primary sequence similarity (i.e. up to 30–35%) between the
β-trefoil domains of Sarol-1 and some mytilectins may support this view, a much higher diver-
gence was observed between the aerolysin domains of Sarol-1 and chimera-type mytilectins.
This was fully consistent with the results obtained with the analysis of the Sarol-1 sequence
with mytilecin-specific profile HMMs described in Section 2.5. Indeed, the β-trefoil domain
of Sarol-1 could be recognized with a highly significant e-value (i.e., 1e−30), whereas the
aerolysin-like domain could not be recognized at all. Hence, although Sarol-1 could be rea-
sonably considered as a mytilectin-related sequence that most likely shares ancestry with
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metazoan mytilectins, its primary sequence does not fully conform with that of chimera-type
mytilectins. Based on the available sequence data, it is therefore unclear whether the pore-
forming domain was acquired independently in the choanoflagelate and metazoan lineages,
or whether the significant divergence observed between Sarol-1 and mytilectins in this domain
is due to rapid evolution that made the presence of homology unrecognizable.

As a side note, it needs to be remarked that structural similarity-based detection
methods, such as HHPRED [99], allowed the identification of other proteins sharing the
very same domain combination of chimera-type mytilectins and Sarol-1 in other phyla,
even though, in these cases, primary sequence similarity was too low to allow the detection
of homology through BLAST. As highlighted by Figure 5, this was the case with LSL, a
toxin produced by the mushroom Laetiporus sulphureus [31], and with the insecticidal toxins
Tpp80Aa1 and BinAB from Bacillus thuringiensis and Lysinibacillus sphaericus [100,101].
Since the possibility of detecting such structural convergence is currently restricted to
protein sequences whose three-dimensional structure has previously been experimentally
determined, the number of proteins found in nature that have acquired the very same
domain combination in a convergent manner is likely much higher.
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Figure 5. Comparison between the three-dimensional structures of M. galloprovincialis mytilectin-3,
selected as a representative member of metazoan chimera-type mytilectins (panel (A)), S. rosetta
Sarol-1 (panel (B), PDB ID: 7QE4), and L. sulphureus LSL (panel (C), PDB ID: 1W3F).

3. Materials and Methods
3.1. Retrieval of Mytilectin Sequences from Public Databases

Mytilectin sequences were retrieved through a recursive homology search approach
using BLASTp [102], which used the previously described sequences of M. galloprovincialis
(MytiLec-1, -2, and -3) [18,88] and L. anatina [34] as initial queries. In the first round
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of analysis, homology searches were carried out against the NCBI nr database and all
hits with e-values lower than 0.05 were extracted and manually inspected to verify the
reliability of protein sequences, with particular attention to those deriving from automated
gene annotation pipelines. The sequences displaying unusual features (e.g., missing N-
and C-terminal ends or with significant internal gaps) were marked as suspicious and
subjected to manual confirmation as briefly described below. All newly recovered sequences
were clustered by pairwise similarity with CD-HIT [103] based on an arbitrary similarity
threshold of 0.5. The representative sequences of each cluster were then selected as queries
for a second round of sequence homology searches. The process was performed recursively
until no novel hits could be recovered.

A similar strategy was used to recover mytilectin sequences from the de novo assem-
bled transcriptomes deposited in the NCBI TSA database, using tBLASTn [102]. In this case,
positive matches were translated in silico using the Expasy translate tool [104]. Incomplete
sequences (i.e., those lacking the initial ATG codon or the stop codon), as well as those
characterized by obvious mis-assembly or encoding identical proteins (e.g., those encoded
by redundant assembled contigs) were removed.

Finally, the homology search approach was extended to all assembled genomes de-
posited in the NCBI Whole Genome Shotgun database, with particular attention to genomes
devoid of gene annotation. Here, mytilectin genes were manually annotated, by combining
the identification of High Scoring Segment Pairs (HSPs) via tBLASTn and the prediction of
canonical donor and acceptor splicing sites via Genie [105]. All the amino acid sequences
of the mytilectins described in this manuscript are reported in Supplementary Material S1.

3.2. Protein Sequence Analysis

All the protein sequences obtained as described in the previous section were subjected
to signal peptide prediction with SignalP v.6.0 [106] and analyzed with InterProScan
v.5 [107] to verify the identification of a complete profile HMM attributable to the Ricin
B-like lectins homologous superfamily (IPR035992). The sequences that only displayed this
structurally recognizable domain were classified as proto-type mytilectins, according to
previously suggested nomenclature [88], whereas those displaying an additional match in
the C-terminal region, consistent with the CATH superfamily 2.80.10.50 [64], were classified
as chimera-type mytilectins. The reliability of all proto-type mytilectin protein sequences
derived from automated gene prediction pipelines was evaluated through the comparison
of these sequences with assembled RNA-sequencing data, whenever available.

The presence of structural similarities with proteins with experimentally determined
three-dimensional structures deposited in the Protein DataBank (PDB) database was in-
vestigated with HHPRED [99]. The three-dimensional structure of M. galloprovincialis
mytilectin-3 was predicted with Alphafold v2.3.0 [108], using CASP14-like settings.

3.3. Phylogenetic Analysis

All mytilectin protein sequences were aligned with MUSCLE [109], obtaining a mul-
tiple sequence alignment (MSA) file that was used as an input for subsequent analyses.
To reduce background noise and only keep phylogenetically informative sites, poorly
alignable positions were removed. In detail, the MSA was trimmed by removing the signal
peptide region (whenever present) and all residues located at the N-terminal side of the
CRD. Similarly, all residues located at the C-terminal side of the pore-forming domain were
also removed. Moreover, all alignment positions characterized by missing data (i.e., gaps)
in >50% sequences were deleted. The resulting clean MSA, including 274 positions, was
analyzed with ModelFinder [110] to detect the best-fitting model of molecular evolution
for this dataset, which was determined to be a WAG + R5 model [111], according to the
Bayesian Information Criterion [112]. A Maximum Likelihood (ML) phylogenetic inference
analysis was subsequently run with IqTree [113]. The reliability of the generated tree was
tested with 1000 ultrafast bootstrap replicates. Due to the lack of suitable outgroups, the
tree was graphically represented as an unrooted tree.
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3.4. Creation and Validation of Mytilectin-Specific Profile HMMs

The MSA of all mytilectins was modified to remove highly similar sequences (those
displaying pairwise homology > 90%) to reduce the bias linked with the over-representation
of mytilectin sequences from phylogenetically close taxa. The MSA was split in two parts,
reflecting the position of the N-terminal β-trefoil and C-terminal pore-forming domains,
respectively, as previously defined by other studies [88]. N-terminal and C-terminal
extensions were removed, whenever present. The two profile HMMs were built with
the HMMer hmmbuild module [114], and the hmmsearch module was used for testing
their performance against two distinct datasets. Dataset (a) included all the mytilectin
sequences previously described in the literature [20,21,26,88,115], and dataset (b) included
the complete Uniprot sequence database [116]. Positive matches were detected using
default e-value thresholds.

The “mytilectin N-terminal domain” and “mytilectin C-terminal domain” HMMs are
available as Supplementary Materials S2 and S3, respectively.

4. Conclusions

Although previous studies have already highlighted the potential biotechnological
use of mytilectins [26,30,115], so far, all available functional data concern a small number
of sequences isolated from bivalve mollusks, whose biological role in the context of innate
immunity still remains rather elusive. We reported here an overview of the distribution
of this type of lectins in the animal kingdom, formally defining a widespread gene family.
We noted a very ancient evolutionary origin and a complex distribution pattern character-
ized by a great number of gene loss events that occurred independently of each other in
different phyla, also identifying the chimera-type architecture as the most ancestral one,
from which proto-type mytilectins likely derived following the loss of the pore-forming
domain. Although unusual, this patchy taxonomic distribution mirrors that previously
described for other effectors of innate immunity in invertebrate organisms [117]. Under-
standing which evolutionary factors underlie the maintenance and loss of mytilectins in
different taxa is a prerequisite for better understanding their biological role and improving
their functional study, which will be made easier with the availability of profile HMMs
specifically developed for their identification in large sequence databases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/md21120614/s1, File S1: amino acid sequences of all the mytilectins
reported in this study (note that “G” and “T” indicate sequences identified from genomes and
transcriptomes, respectively); File S2: profile HMM for the mytilectin N-terminal domain; File S3:
profile HMM for the mytilectin C-terminal domain.
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