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Abstract: Hexasubstituted benzenes are interesting platforms for the generation of functional materi-
als, whose applications span from supramolecular recognition to organic electronics. Their synthesis
is difficult to achieve by controlling multiple substitution steps of all hydrogen atoms on the aromatic
benzene skeleton, so, often, cycloaddition reactions from disubsituted alkynes are used. In this work,
we report a novel, straightforward route to C3-symmetrical hexasubstituted aromatic synthons with
a diverse and rich pattern of functionalities, and we report about their packing mode in the crystals,
in which, unprecedentedly, directional, strong halogen bonding interactions are capable of forming
bidimensional supramolecular weaving.
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1. Introduction

Benzene, the simplest aromatic organic structure, is one of the most common organic
structures, and is widely used, impacting both technology and society. In fact, benzene is
one of the most used building blocks in various functional organic materials, including
pharmaceuticals, agrochemicals, plastics, and organic electronic devices. Despite its sim-
plicity, the structural diversity that can be achieved by benzene derivatives is unexpectedly
wide: benzene has six hydrogen atoms that can be replaced by a variety of substituents.
For instance, according to Burnside’s counting theorem, the number of possible benzene
molecules with six different substituents is 4291 [1]. Because of the lack of a general
method to achieve multi-substituted benzenes and the inability to ensure regioselective
protocols independent from the stereo-electronic characteristic of preinstalled substituents,
the huge structural diversity allowed by substituted benzenes has not been fully exploited
in chemistry [2].

Hexasubstituted benzenes are an interesting platform for the generation of novel
functional materials with tailored properties. For instance, hexaarylbenzenes (Figure 1A),
whose synthesis is generally achieved via [4+2] cycloaddition or [2+2+2] co-trimeryzation
of alkynes [3–7], have unique applications in materials science, including as liquid crys-
tals [8,9], supramolecular electronic materials [10], organic electronics [11], molecular
rotors [12], and redox materials [13], to cite a few. C3-Symmetrical hexasubstituted ben-
zenes (Figure 1B) have been used as a platform for the construction of macrocycle systems
in molecular recognition and supramolecular chemistry [14–16]. Nonlinear optical materi-
als have been built on hexasubstituted benzene moieties (see Figure 1C) with a “push–pull”
arrangements of the substituents [17,18]. Hexakis(phenylselenyl)benzene, a benzene ring
with six phenylselenyl substituents, was studied as a platform to demonstrate the double
aromaticity arising from σ- and π-conjugations [19].
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We first became interested in hexasubstituted benzene substrates bearing an o-dibro-
modialdehyde substitution pattern, and with electron-donating alkoxy substituents in the 
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ent benzene scaffold, such as molecular target 6. In fact, our group developed a one-pot 
cascade process using ortho-bromoaldehyde substrates as starting materials, which in-
volves direct arylation followed by an intramolecular cross-aldol condensation. This 
method has been proven to be a highly scalable and sustainable methodology for the an-
nulation and rapid construction of conjugated compounds [20–27]. Some of these materi-
als have been utilized for the construction of conjugated oligomers and polymers with 
outstanding sustainability and scalability characteristics for functional applications [28–
36]. 

 
Figure 1. Schematic representation of hexa-substituted benzenes state-of-art. (A) hexaarylbenzenes; 
(B) C3-Symmetrical hexasubstituted benzenes; (C) Nonlinear optical materials built on hexasubsti-
tuted benzene moieties. 

Crystal motifs of terephthalate esters (p-disubstituted aromatic esters) bearing two 
ortho-hydroxyl groups have been reported to show different polymorphic forms, depend-
ing on the twist angles of the ester groups with respect to the mean plane of the benzene 
ring [37–40]. The polymorphs are a consequence of the different motifs of intramolecular 
and intermolecular hydrogen bond (HB) interactions characterizing these compounds in 
the solid state. 

In this work, we present the synthesis, characterization, and solid-state properties of 
novel hexasubstituted terephthalic esters 4 bearing halogen atoms and alkoxy groups. We 
demonstrate that our novel compounds pack through an ordered, bidimensional weaving 
of molecules in the solid state through specific halogen bonding (XB) interactions, to give 
millimeter-sized crystals, in which XB interactions are crucial for the packing [41–43]. Fur-
thermore, we report a straightforward synthetic access to hexasubstituted dialdehyde 6. 

2. Results and Discussion 
2.1. Synthesis 

The known synthesis of 6 implies the oxidation of 1,4-dibromo-2,5-dimethoxy-3,6-
dimethylbenzene, using the potassium salt of benzeneselenic acid as the oxidant [44]. This 
procedure was not reproducible because the starting material is not commercially availa-
ble and its preparation has not been reported in a detailed manner. 

Our synthetic approach is shown in Scheme 1 and consists of five synthetic steps 
using unexpensive reagents. The first two steps led to hexasubstituted benzene 3 accord-
ing to our modification of a literature protocol that requires a bromination of compound 
1, to give tetrasubstituted-1,4-benzoquinone 2 in a high yield (85%), followed by its reduc-
tion with HBr (65% yield) [45]. Compound 3 was methylated using iodomethane in the 

Figure 1. Schematic representation of hexa-substituted benzenes state-of-art. (A) hexaarylbenzenes;
(B) C3-Symmetrical hexasubstituted benzenes; (C) Nonlinear optical materials built on hexasubsti-
tuted benzene moieties.

We first became interested in hexasubstituted benzene substrates bearing an
o-dibromodialdehyde substitution pattern, and with electron-donating alkoxy substituents
in the remaining positions of the aromatic scaffold to complete the hexasubstitution of the
parent benzene scaffold, such as molecular target 6. In fact, our group developed a one-pot
cascade process using ortho-bromoaldehyde substrates as starting materials, which involves
direct arylation followed by an intramolecular cross-aldol condensation. This method
has been proven to be a highly scalable and sustainable methodology for the annulation
and rapid construction of conjugated compounds [20–27]. Some of these materials have
been utilized for the construction of conjugated oligomers and polymers with outstanding
sustainability and scalability characteristics for functional applications [28–36].

Crystal motifs of terephthalate esters (p-disubstituted aromatic esters) bearing two
ortho-hydroxyl groups have been reported to show different polymorphic forms, depending
on the twist angles of the ester groups with respect to the mean plane of the benzene
ring [37–40]. The polymorphs are a consequence of the different motifs of intramolecular
and intermolecular hydrogen bond (HB) interactions characterizing these compounds in
the solid state.

In this work, we present the synthesis, characterization, and solid-state properties of
novel hexasubstituted terephthalic esters 4 bearing halogen atoms and alkoxy groups. We
demonstrate that our novel compounds pack through an ordered, bidimensional weaving
of molecules in the solid state through specific halogen bonding (XB) interactions, to give
millimeter-sized crystals, in which XB interactions are crucial for the packing [41–43].
Furthermore, we report a straightforward synthetic access to hexasubstituted dialdehyde 6.

2. Results and Discussion
2.1. Synthesis

The known synthesis of 6 implies the oxidation of 1,4-dibromo-2,5-dimethoxy-3,6-
dimethylbenzene, using the potassium salt of benzeneselenic acid as the oxidant [44]. This
procedure was not reproducible because the starting material is not commercially available
and its preparation has not been reported in a detailed manner.

Our synthetic approach is shown in Scheme 1 and consists of five synthetic steps using
unexpensive reagents. The first two steps led to hexasubstituted benzene 3 according to
our modification of a literature protocol that requires a bromination of compound 1, to give
tetrasubstituted-1,4-benzoquinone 2 in a high yield (85%), followed by its reduction with
HBr (65% yield) [45]. Compound 3 was methylated using iodomethane in the presence of
K2CO3 as a base in acetone, affording the new compound 4a with 90% yield. Surprisingly,
when this reaction was conducted in high dilution conditions (ca. 0.01 mol·L−1 instead
of 0.3 mol·L−1) the formation of a new product 4b, which was easy to separate from 4a
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by flash-chromatography, was observed in a low yield. The low substrate concentration
seemed to promote the partial substitution of bromine by the iodine atom of the methylating
reagent, confirming the tendence of these compounds to react in nucleophilic aromatic
substitution reactions [46]. In both the case of 4a and 4b, 13C NMR carbon resonances fall
in the region of substituted benzenes, demonstrating that, even in the presence, such as in
this case, of electron withdrawing and electron donating substituents, the aromaticity of
the system is not substantially perturbed, with no quinoidal behavior associated to such
compounds. NMR spectroscopy, single crystal XRD, and mass spectrometry analysis of
compound 4b confirm a structure with iodine atoms instead of bromine atoms. When
trying to obtain 6, the direct reduction with DIBAL starting from diester 4a or 4b failed,
as well as our attempts to reduce 4a or 4b to dialcohol 5 with LiAlH4, as the aromatic
dehalogenation took place concomitantly. Compound 4a was then successfully reduced to
alcohol 5 using an excess of DIBAL-H. Finally, compound 6 was oxidated with manganese
dioxide to give dialdehyde 6.
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Scheme 1. Synthesis of compounds 4a,b and 6.

We immediately noticed that compound 4a exhibited a strong tendency to form big
and well-defined single crystals through the slow evaporation of a CH2Cl2 solution; we
were also able to grow suitable single crystals from compound 4b.

2.2. X-ray Crystal Structures

Single crystals 1 mm in length were obtained by slow evaporation of the DCM solu-
tions of 4a and 4b. Both 4a and 4b compounds have an electrophilic region associated with
the halogen atom (X) and a nucleophilic region associated to the lone pair of the oxygen
atom of the carbonyl group (Y). Therefore, a typical R–X· · ·Y halogen bonding interaction
was expected to form, where R-X was the XB donor group and Y the XB acceptor [47–49].

The crystallographic study shows that 4a and 4b compounds occurred as two isostruc-
tural crystals; plots showing the thermal ellipsoids are reported in Figure 2. The two molecu-
lar compounds had a perfect Ci symmetry because an inversion center was placed at the cen-
ter of the aromatic ring and the asymmetric unit was only a half of the molecular compound.
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Figure 2. Thermal ellipsoids of the molecular compound 4a (left) and 4b (right) (ellipsoids are drawn
at the 50% probability level; atom names are reported only for the asymmetric unit and an inversion
center occurs at the center of the aromatic ring).

Both the ester groups and the methoxy arms were twisted out of the ring plane and
placed accordingly in an antiperiplanar arrangement, with the two terminal ethyl chains, as
well as the two terminal methyl arms, pointing towards opposite directions with respect to
the plane of the aromatic ring, to impose a center of symmetry located at the center of the
aromatic ring. The C atoms of the terminal ethyl groups were in the plane of the connected
–COO– ester groups: the out of plane distances for the atoms involved were within 0.05(1) Å
in 4a and 0.03(1) Å in 4b; the C(4)-O(2)-C(5)-C(6) torsion angle was 176.0(5)◦ in 4a and
179.0(5) in 4b. The ethyl-ester arms were almost perpendicular with respect to the plane
of the aromatic ring, with a dihedral angle of 88.0(3)◦ in 4a and 89.0(3)◦ in 4b. Similarly,
the methoxy groups were bent with respect to the best plane of the aromatic ring by
81.6(4)◦ in 4a and 85.3(4)◦ in 4b, as this resulted from the value of the dihedral angle be-
tween the best plane of the aromatic ring and the plane of the C(3)Ar-O(3)methoxy-C(7)methoxy
atoms. In both the molecular compounds, the C(1)′Ar-C(3)Ar-O(3)methoxy bond angle (sym-
metry code: (′) = 1-x, -y, 1-z) increased from the ideal value of 120◦ to 122.2(3) in 4a and
122.1(3)◦ in 4b, and this widening suggests a repulsive interaction between the Omethoxy
atom and the adjacent Br or I atoms.

On the contrary, supramolecular interactions occur between the halogen species and
the oxygen of the carbonyl groups of the adjacent molecules. As both the bromine and
the iodine molecular compounds have two halogen species and two carbonyl groups
in the molecular moiety, each molecule is involved in four symmetrically equivalent
CAr-X· · ·Ocarbonyl halogen bonding interactions with four adjacent molecules; the CAr-X
group acts as the halogen bonding donor and the Ocarbonyl atom acts as the halogen bonding
acceptor. As for the bromide compound, the Br· · ·O separation of 3.147(3) Å is shorter than
the value of 3.37 Å, resulting from the sum of the van der Waals radii of bromine (1.85 Å)
and oxygen (1.52 Å) [50]. The normalized R parameter (defined as the ratio between the
observed X· · ·Y separation and the sum of the proper radii of the involved species) is 0.93
and this value, together with an almost linear CAr-Br· · ·Ocarbonyl angle of 172.1(1)◦, confirm
the presence of a well-established XB interaction.

As for the iodine compound, the I· · ·O separation of 3.154(3) Å needed to be compared
to a value of 3.50 Å, resulting from the sum of the iodine (1.98 Å) and oxygen radii [50].
The normalized R parameter decreased to 0.90 and suggests a stronger interaction, in
agreement with the assessed fact that the strength of XB interactions is directly related
to the polarizability of the XB donor atom, which follows the scale Br < I [47–49]. As a
further probe of a stronger XB interaction in compound 4b, the C-I· · ·O angle in the iodine
compound was more linear (174.7(1)◦) than in the bromine counterpart.

Interestingly, in the iodine compound 4b, an I· · ·C contact of 3.653(4) Å, occurred
between the halogen atom and the C(2) atom of the aromatic ring. This contact was a bit
shorter than the value of 3.68 Å resulting from the sum of the van der Waals radii of iodine
and carbon (1.70 Å) [50], thus suggesting that a weak halogen bond interaction occurred
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between the CAr-I halogen bond donor group and the aromatic ring, which acted as a
halogen bond acceptor. As stated above, the CAr-Br group was less prone to creating strong
halogen bond interactions, and in bromine compound 4a, the Br· · ·C contact involving the
C(2) atom resulted in 3.660(3) Å, which was significantly longer than the value of 3.55 Å
resulting from the sum of the van der Waals radii of the involved species.

In both compounds, the Ccarbonyl-Ocarbonyl· · ·X angle of 112(1)◦ emphasized that the
XB interaction involved the lone-pair of carbonyl oxygen in the nucleophilic (electron-rich)
region. The supramolecular XB interactions originated at the solid state a bidimensional
sheet of 4a or 4b molecules, extending parallel to the (100) plane. Figure 3 reports a
simplified view of the halogen-bonded molecular sheet forming in the crystal of bromine
compound 4a and the same motif occurred in the crystal of iodine compound 4b.
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Figure 3. A simplified view of the halogen-bonded molecular sheet forming in the crystal of bromine
compound 4a (hydrogens were omitted for clarity; dashed lines indicate the CAr-Br· · ·Ocarbonyl XB
interactions). The same supramolecular arrangement occurs in the isostructural crystal of iodine
compound 4b.

The comparison between the molecular structure of compound 4a and the different
polymorphic forms of the compound diethyl 2,5-dibromo-3,6-dihydroxyterephthalate [40],
in which the same terephthalate ester carried two ortho-hydroxyl groups, allowed for
establishing that the presence of an antiperiplanar arrangement for the ethyl-ester groups,
coupled to a coplanar arrangement for atoms of the ethyl-ester arms, were a prerequisite
for the establishment of XB interactions in the solid state.

As described above, in the 4a compound, both ethyl-ester arms were arranged in such
a manner and each molecule of 4a was involved in four CAr-Br· · ·Ocarbonyl XB interac-
tions with four adjacent molecules (Figures 3 and 4, top), leading to the formation of a
supramolecular sheet.



Materials 2023, 16, 1678 6 of 10Materials 2023, 16, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 4. Simplified sketches of the supramolecular Car-Br⋯Ocarbonyl XB interactions (drawn as 
dashed lines) in the terephthalate-based compound 4a, carrying two methoxy substituents on the 
aromatic ring (top), and in two polymorphic forms of diethyl 2,5-dibromo-3,6-dihydroxytereph-
thalate, carrying two hydroxy substituents: the form occurring in an ethanol solvate crystal (middle) 
and the form II (bottom). The XB motif on the top originates a supramolecular sheet, the one on the 
middle originates a supramolecular chain, the one on the bottom originates a supramolecular dimer. 

The same conformation for the ethyl-ester groups occurred in the form of compound 
diethyl 2,5-dibromo-3,6-dihydroxyterephthalate occurring in an ethanol solvate crystal 
[40], and in this case, each molecule of diethyl 2,5-dibromo-3,6-dihydroxyterephthalate 
was involved in four CAr-Br⋯Ocarbonyl XB interactions. However, in the ethanol solvate 
crystal of diethyl 2,5-dibromo-3,6-dihydroxyterephthalate, each molecular compound 
originated couples of XB interactions with two adjacent molecules (Figure 4 middle), lead-
ing to the formation of a supramolecular chain. 

On the contrary, in the form II of diethyl 2,5-dibromo-3,6-dihydroxyterephthalate 
[40], only one of the ethyl-ester arms was twisted out of the aromatic plane and only two 
CAr-Br⋯Ocarbonyl XB interactions occurred. These interactions (Figure 4 bottom) involved 
the bromide atom near the twisted ethyl-ester arm and the carbonyl oxygen of the twisted 
ethyl-ester arm of an adjacent molecule, creating a supramolecular dimer. As shown by 
the geometrical features reported in Figure 4, in all of the structures, similar XB interac-
tions with normalized R parameters ranging from 0.90 to 0.95 occurred. 

Interestingly, the form I of diethyl 2,5-dibromo-3,6-dihydroxyterephthalate [40] ex-
hibited an antiperiplanar arrangement of the two ester groups, but both the terminal ethyl 
chains were folded out of the plane of the COO ester atoms and in the solid state, XB 
interactions did not occur for such molecular conformations. Clearly, in this form of di-
ethyl 2,5-dibromo-3,6-dihydroxyterephthalate, as well as in the other two forms described 
above, additional HB interactions originated, with the OH group of the hydroxy substit-
uent able to act as a proton-donor group. 

  

Figure 4. Simplified sketches of the supramolecular Car-Br· · ·Ocarbonyl XB interactions (drawn as
dashed lines) in the terephthalate-based compound 4a, carrying two methoxy substituents on the
aromatic ring (top), and in two polymorphic forms of diethyl 2,5-dibromo-3,6-dihydroxyterephthalate,
carrying two hydroxy substituents: the form occurring in an ethanol solvate crystal (middle) and the
form II (bottom). The XB motif on the top originates a supramolecular sheet, the one on the middle
originates a supramolecular chain, the one on the bottom originates a supramolecular dimer.

The same conformation for the ethyl-ester groups occurred in the form of compound
diethyl 2,5-dibromo-3,6-dihydroxyterephthalate occurring in an ethanol solvate crystal [40],
and in this case, each molecule of diethyl 2,5-dibromo-3,6-dihydroxyterephthalate was
involved in four CAr-Br· · ·Ocarbonyl XB interactions. However, in the ethanol solvate crystal
of diethyl 2,5-dibromo-3,6-dihydroxyterephthalate, each molecular compound originated
couples of XB interactions with two adjacent molecules (Figure 4 middle), leading to the
formation of a supramolecular chain.

On the contrary, in the form II of diethyl 2,5-dibromo-3,6-dihydroxyterephthalate [40],
only one of the ethyl-ester arms was twisted out of the aromatic plane and only two CAr-
Br· · ·Ocarbonyl XB interactions occurred. These interactions (Figure 4 bottom) involved the
bromide atom near the twisted ethyl-ester arm and the carbonyl oxygen of the twisted
ethyl-ester arm of an adjacent molecule, creating a supramolecular dimer. As shown by the
geometrical features reported in Figure 4, in all of the structures, similar XB interactions
with normalized R parameters ranging from 0.90 to 0.95 occurred.

Interestingly, the form I of diethyl 2,5-dibromo-3,6-dihydroxyterephthalate [40] exhib-
ited an antiperiplanar arrangement of the two ester groups, but both the terminal ethyl
chains were folded out of the plane of the COO ester atoms and in the solid state, XB
interactions did not occur for such molecular conformations. Clearly, in this form of diethyl
2,5-dibromo-3,6-dihydroxyterephthalate, as well as in the other two forms described above,
additional HB interactions originated, with the OH group of the hydroxy substituent able
to act as a proton-donor group.
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3. Conclusions

We developed a novel synthetic route for the synthesis of a functionality-rich, C3-
symmetrical hexasubstituted benzenes 4 and 6. The synthesis of dialdehyde 6, while
involving five synthetic steps, was simple to implement, as the reaction conditions were
always mild, and the intermediate products were obtained without the need to resort to
purification by chromatography. Furthermore, we demonstrated, with a thorough crys-
tallographic study, the possibility of both derivatives 4a and 4b to form a well defined,
two-dimensional supramolecular weaving in the crystal. The introduction of protected
methoxy functionalities, instead of the unprotected hydroxy functionalities reported in the
literature, activated the unicity of XB interactions, and provided very useful data for the
construction of elaborated synthons for crystal engineering and, eventually, metal organic
frameworks. The applicability of molecule 6 in the framework of scalable synthetic annu-
lation strategies, for the expansion of the π-scaffold, and their integration into functional
π-conjugated oligomers and polymers is currently under investigation in our laboratories.

4. Experimental Part

All commercially available reagents and solvents were used as received. The starting
material and reagents were bought from Sigma Aldrich, TCI, Alfa Aesar, and Fluorochem.
Analytical thin layer chromatography (TLC) was performed on chromophore loaded,
commercially available Silica gel 60 F254 plates (Merck). Flash chromatography was carried
out using Merck silica gel (pore size 60 Å, 230–400 mesh). 1H and 13C NMR spectra were
recorded from solutions in CDCl3 on AC-200 or AMX-300 Bruker spectrometers using
the solvent residual proton signal or tetramethylsilane (TMS) as the internal standard.
Chemical shifts were expressed in ppm downfield from TMS in δ units. Samples for
the mass spectrometry were analyzed with GC-MS and ESI-MS Agilent conventional
instrumentation. Diffraction data for 4a and 4b were collected by means of an Enraf-Nonius
CAD4 conventional diffractometer (Enraf-Nonius, Delft, The Netherlands), working at
ambient temperature with graphite-monochromatized Mo Kα X-radiation (λ = 0.7107 Å).
Data reductions were performed with the WinGX package [51]; the absorption effects
were evaluated with the ψ-scan method [52], and absorption correction was applied to
the data. All crystal structures were solved using direct methods (SIR 97) [53] and refined
by full-matrix least-squares procedures on F2 using all reflections (SHELXL 2018/3) [54].
Anisotropic displacement parameters were refined for all non-hydrogen atoms; hydrogens
were placed at calculated positions with the appropriate AFIX instructions and refined
using a riding model. Crystal data for the studied molecular compounds are reported in
Table S1. CCDC 2235890 and 2235891 contained the supplementary crystallographic data
for this paper. These data can be obtained free of charge from the Cambridge Crystallo-
graphic Data Centre.

Preparation of compound 2. A solution of Br2 (6.7 mL, 130 mmol) in AcOH (60 mL)
was added dropwise to a solution of diethyl 2,5-dihydroxyterephthalate (3.3 g, 13 mmol)
in AcOH (70 mL). H2O (40 mL) was finally added. The resulting mixture remained
under magnetic stirring for 24 h, and was then filtered to give diethyl 2,5-dibromo-3,6-
dioxocyclohexa-1,4-diene-1,4-dicarboxylate (4.56 g, 86%) as a yellow powder. 1H NMR
(200 MHz, CDCl3) δ: 4.45 (q, J = 7.1 Hz, 4H), 1.39 (t, J = 7.1 Hz, 6H).

Preparation of compound 3. A 33% w/w solution of HBr in AcOH (1.39 mL) was added
dropwise at 85 ◦C, under magnetic stirring, to a suspension of compound 2 (815 mg,
2 mmol) in AcOH (1.5 mL). The Br2 vapors that developed were occasionally removed by
means of an air stream. After 2 h, the reaction mixture was extracted with Et2O. The organic
phase was washed with H2O, sat. aq. NaHCO3 and H2O, dried on Na2SO4, filtered, and
concentrated under reduced pressure to give the crude product, which was recrystallized
in CH2Cl2/hexane. Filtration and washing of the solid with a little hexane gave the pure
product diethyl 2,5-dibromo-3,6-dihydroxyterephthalate (3) as a white solid (528 mg, 64%).
1H NMR (300 MHz, CDCl3) δ: 8.97 (s, 2H), 4.50 (q, J = 7.1 Hz, 4H), 1.45 (t, J = 7.1 Hz, 6H).
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Preparation of compound 4a. MeI (4.69 mL, 74.67 mmol) was added to a solution of
compound 3 (3.08 g, 7.47 mmol) and K2CO3 (6.19 g, 44.8 mmol) in acetone (25 mL). The
resulting mixture was kept under stirring at 60 ◦C for 24 h, then the solvent was removed
under reduced pressure. The obtained solid was dissolved in DCM. The organic phase
was washed with H2O and brine, dried on Na2SO4, filtered, and concentrated under
reduced pressure to give the crude product, which was filtered through silica gel to give
the pure product diethyl 2,5-dibromo-3,6-dimethoxyterephthalate as a yellow crystalline
solid (2.95 g, 90%). 1H NMR (300 MHz, CDCl3) δ: 4.45 (q, J = 7.1 Hz, 4H), 3.88 (s, 6H),
1.41 (t, J = 7.1 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ: 164.27, 150.94, 134.02, 113.78, 62.58,
62.39, 13.99. Preparation of compound 4b. MeI (0.23 mL, 3.7 mmol) was added to a solution
of compound 3 (0.15 g, 0.37 mmol) and K2CO3 (0.31 g, 2.24 mmol) in acetone (30 mL). The
resulting mixture was kept under stirring at 60 ◦C for 24 h, then the solvent was removed
under reduced pressure. The obtained solid was dissolved in DCM. The organic phase was
washed with H2O and brine, dried on Na2SO4, filtered, and concentrated under reduced
pressure to give the crude product, which was filtered through silica gel to give both 4a
and 4b (80% overall yield) in a 2:1 ratio. The NMR spectra of the two products were
superimposable.

Preparation of compound 5. A 1M solution of DIBAL-H in hexane (6.8 mL, 6.8 mmol)
was added dropwise, at −78 ◦C, to a solution of compound 4a (600 mg, 1.36 mmol) in
anhydrous DCM (13 mL). After 1 h at −78 ◦C, the reaction mixture remained under stirring
at room temperature for 3 days, and was then quenched with HCl conc., stirred for 1 h,
and finally diluted with H2O and extracted with DCM. The organic phase was dried on
Na2SO4, filtered, and concentrated under reduced pressure to give the pure product (2,5-
dibromo-3,6-dimethoxy-1,4-phenylene)dimethanol 5 as a white solid (472 mg, 98%). 1H
NMR (300 MHz, CDCl3) δ: 4.88 (s, 4H), 3.91 (s, 6H), 1.85 (s, 2H). 13C NMR (75 MHz, CDCl3)
δ: 153.14, 135.55, 119.82, 62.43, 60.64. GC-MS (ESI) m/z: 355 [M + H]+.

Preparation of compound 6. MnO2 (1.10 g, 12.6 mmol) was added to a solution of
compound 5 (450 mg, 1.26 mmol) in toluene (20 mL). The reaction mixture remained under
stirring, at 100 ◦C, for 24 h, and was then filtered on celite and evaporated under reduced
pressure to give the crude product. The latter was purified by a short silica gel pad (eluent
Hexane:AcOEt 8:2) to give the pure product 2,5-dibromo-3,6-dimethoxyterephthalaldehyde
as a yellow crystalline solid (203 mg, 46%). 1H NMR (200 MHz, CDCl3) δ: 10.27 (s, 2H),
3.94 (s, 6H). 13C NMR (75 MHz, CDCl3) δ: 189.14, 156.23, 133.65, 119.48, 63.53.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma16041678/s1. Table S1: crystal data for investigated
crystals. Figures S1–S9: copies of NMR and GC spectra of the compounds.
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