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Abstract: Large deflection of rectangular plates under transverse pressure is described by Föppl–von
Kármán equations, which have only approximated solutions. One of these methods is the separation
into a small deflection plate and a thin membrane described by a simple third order polynomial
expression. The present study presents an analysis to obtain analytical expressions for its coefficients
by using the plate’s elastic properties and dimensions. To validate the non-linear relationship between
the pressure and the lateral displacement of the multiwall plate, a vacuum chamber loading test is
used to measure the plate’s response, with a large number of plates and length–width combinations.
In addition, to further validate the analytical expressions, several finite element analyses (FEA) were
performed. It has been found that the polynomial expression fairly describes the measured and
calculated deflections. This method allows the prediction of plate deflections under pressure as soon
as the elastic properties and the dimensions are known.

Keywords: rectangular plate large deflection; Föppl–von Kármán equations; multiwall plate;
nonlinear load–deflection curve; vacuum chamber loading test

1. Introduction

The problem of large deflection of plates has attracted much attention since the end
of the 19th century, due to its technical importance. Unfortunately, this problem has been
found to be difficult to solve. The difficulties were raised at an early stage with Föppl
equations for large deflections of membranes [1], where no closed-form solution was found
for the rectangular membrane case. In 1910, this equation set was enhanced by Theodor
von Kármán [2] to include the bending resistance of plates.

The Föppl–von Kármán equation set has challenged many researchers over the years.
Nevertheless, only approximated solutions were developed, most of which are rather
difficult to implement.

It was August Föppl himself who suggested an approximate approach. This approach
is mentioned in Timoshenko [3] (p. 423) footnote 1, which mentions Föppl’s “Drang und
Zwang” [4] (p. 345). The approach is that the transverse distributed load q on the plate
can be separated into two parts: q = q1 + q2. The first part q1 is balanced by the plate’s
bending and shearing resistance, which are calculated through the plate small deflection
linear theory. The second part q2 is balanced by the large deflections in-plane membrane
forces only. Using the mid-point deflection w, this approximation is written as:

q = q1 + q2 = A·w + B·w3 (1)

The plate’s small deflection coefficient A has been calculated in many previous studies,
with most of them using a summation of the Fourier series. The large deflection coefficient
B, however, has no exact solution, as it is ascribed to the difficult Föppl’s membrane
problem [1].
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This expression (1) for the load–deflection behavior is quoted by many sources, such
as Timoshenko [3] (p. 424) for square isotropic plates, Ugural [5] (p. 358), Wang and
El-Sheikh [6] (p. 816), as well as many others.

One of them is Riber [7], who had suggested a “combined analytical solution” (see
p. 71 in [7]) to find the constants in Equation (1). He used an energy method to obtain rather
complex expressions for the coefficients A and B (see Equation (1)). He also presented
simplified expressions for the constant B but with some internal inconsistencies. Riber [7]
assumed in-plane immovable edges, which is not the case to be presented in the present
study—see the BCs (Boundary Conditions) discussion later in the paper. Nevertheless, his
B equation has inspired the presentation of a better expression for the coefficient B later in
the present study.

Awrejcewicz et al. [8] present many efficient numerical methods that can be used to
calculate specific rectangular plates without orthotropic and transverse shear behaviors.

Battaglia et al. [9] analyze orthotropic membranes and show that the load is propor-
tional to w3, where the proportion coefficient can be compared to our cases.

Maier-Schneider et al. [10] found the membrane proportion coefficient with both the
improved analytic energy method and the finite element method with a good agreement.

Niyogi [11] solves the simply supported orthotropic plate problem with an approxi-
mate Galerkin–Bubnov procedure. The resulting q = Aw + Bw3 expression is verified for
the isotropic plate only. The edge in-plane BCs are immovable.

Wang et al. [12] also solve the static behavior of flat glass plate and present load–
deflection data graphically. No explicit mathematical expression is given for that, although
it can be extracted from the graph. Here, the in-plane BCs are totally immovable.

References [13–15] provide further theoretical elasticity basis on the present investi-
gated topic.

During the literature survey, several sources were found referring to tests and calcula-
tion methods of plates’ large deflection. In order to compare the results of these papers,
it was necessary to normalize the various data to a common comparable structure. The
structure was a thin square isotropic plate with movable edges and an evenly distributed
transverse load. The coefficients of Equation (1), A and B, were calculated considering the
plate dimensions and the material properties. The result of this comparison has shown the
considerable variability of the coefficient B. This variability was unexpected since most of
the data was based on real laboratory tests that should respond in a similar way. This may
demonstrate the fact that it is not easy to correctly measure this property. A full description
of the comparison with a suggested explanation is presented in Appendix B.

2. Multiwall Plates

The structure of multiwall plates consists of two thin face sheets separated by an
internal structure of ribs and walls. The plate is usually produced by extrusion, in which a
melted material is pressed through a die with the required shape. The materials used are
aluminum and various plastics. The result is a thick, endless plate with a fixed cross-section
shape along the extrusion direction and width according to the equipment size. The plate
is then cut to the desired length.

The plate is made of polycarbonate (PC), which is a tough transparent plastic. A
typical 16mm PC plate can be seen in Figure 1.

The main application of PC multiwall plates is the glazing of architectural spaces,
where both natural light and weather protection are required. As a result, the plates are
exposed to wind and snow loads, which they must safely resist.

Currently, no publication describes the general performance of these plates, except
manufacturer’s datasheets, which are very limited to specific products and specific applica-
tions. The available publications about latticed structures relate to specific shapes, such
as triangles and trapezoids, and not a general approach as presented here, which can be
considered novel.
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Figure 1. A 16 mm Multiwall PC Plate.

The available approximated solutions for large deflections of plates are generally
rather complicated, and in many cases, they involve a computational process, which is not
straight-forward for field engineers. The non-linear nature of load–deflection curves is not
easily represented in these solutions. Most of the research works already done do not cover
the full complexity of the multiwall plates, which are shear, deformable, and orthotropic.
Therefore, an engineer who needs to design a system with multiwall plates will probably
face serious difficulties. This situation justifies this paper, which yields a first rough guess
of these plates’ performance.

To calculate the multiwall plate response to distributed load, it is necessary to know
the plate’s equivalent elastic properties, its dimensions (length–width), and the boundary
conditions. Looking at the multiwall structure, it is obvious that the plate is orthotropic
for both bending and tension, and its cross-section is transverse shear deformable. In the
present study, it is assumed that all necessary equivalent elastic properties are already
known. One should note that a procedure to obtain these equivalent properties of the plate
is presented in Hakim and Abramovich [16].

3. Axes System

The axes directions are defined as shown in Figure 2, where axis x is the extrusion
direction and z axis is normal to the plate surface:
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The origin location of the axes may be set to any convenient place.
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4. Boundary Conditions (BCs)

For small deflections analysis, the assumption is that all in-plane stress, strains, and
deflections are negligible. Therefore, the BCs, here, ignore the in-plane conditions. The
most commonly used BCs are: Free (F)-no restrictions, Simply Supported (S)-no z deflection
but free rotation (no bending moments), and Clamped (C)-no z deflection and no rotations
(zero slope). S and C are the two extremes of the more complicated BC-flexible rotation
support, which is rarely used.

For large deflection analysis, the in-plane BCs must be considered. The two most
common BCs are: Immovable (I)-the plate edge is fixed to the support and Movable (M)-
the plate edges are allowed to move. It is necessary to specify both in-plane movement
directions: normal to the edge and parallel to the edge. The BC used later here is SSSS-M,
in which the four S stands for the four plate sides simply supported, and the M stands for
the movable edges in both normal and parallel directions.

The movable (M) condition requires additional attention. When the Föppl’s approx-
imation is used, the plate in a large deflection regime is a membrane. Its deflection on
movable boundary conditions should then be calculated. However, a well-known property
of a membrane is that it cannot sustain in-plane compression forces, as it immediately
wrinkles. However, a real plate does resist compression, as it has a bending rigidity. We,
therefore, have to analyze a membrane with movable edges, which may have compression
stress. Mathematically, it is possible (with the known difficulties of Föppl equations), but
other practical problems would appear. Since this transversely loaded M membrane is not
a common case in the literature and, perhaps, even physically not possible, no previous
scientific papers that would suggest a possible solution were found. Nevertheless, an
expression is suggested later in this paper.

5. Methods
5.1. A-B Analytical Prediction

The expressions that would predict the values for the coefficients A and B are displayed
next. The variables used are:

• a [m] Plate length
b [m] Plate width
h [m] Plate thickness
q [Pa] Distributed load
w [m] Mid-point deflection
m, n Summation indices

The plate equivalent properties are assumed to be known a priori:

• Dx [Nm] Plate x-direction bending rigidity
Dy [Nm] Plate y-direction bending rigidity
Dxy [Nm] Plate twist rigidity
νb

x, νb
y Bending Poisson’s ratios

Sx, Sy [N/m] Transverse shear rigidity in x and y directions
Et

x, Et
y [Pa] Equivalent plate tension E moduli in x and y direction

νt
x, νt

y Tension Poisson’s ratios

The x, y axes origin is set as shown in Figure 2b—at the plate corner.

5.2. Small Deflection Coefficient A

The expression in (2) was derived using the Libove and Batdorf NACA Report No.
899 [17].
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The complete analysis description is presented in Appendix A.

5.3. Large Deflection Coefficient B

As presented above, the coefficient B describes the plate’s large deflection response,
with the plate being considered as a thin membrane. Normal membranes cannot have a
movable (M) BC, so it is complicated to find previous publications displaying an expression
for the membrane deflection. Wang and El-Sheikh [6] (p. 816) have analyzed an isotropic
rectangular plate and have presented an approximated expression for q = Aw + Bw3 for
M BCs:

q =
π6

64

[
4Dw

(
1
a2 +

1
b2

)2
+

Ehw3

4

(
1
a4 +

1
b4

)]
(4)

Modifying this expression to an orthotropic plate and using only the B term suggests
the expression:

B = k·h·
(

Ex
t

a4 +
Ey

t

b4

)
(5)

where the coefficient k includes all the numerical factors.
Since (5) is based only on the first term of a multiple term series, the result is not

accurate enough to correctly represent the plates response. Therefore, finite element
analyses (FEA) of 80 plates with various lengths and widths were performed. The FEA
software was Femap with NX-Nastran version 2021.1 with its built-in non-linear static
analysis. The FEA results are given in Appendix C, while the FEA information is given in
Appendix D. Typical plate arrangements and mid-point load–deflection graphs are shown
in Figure 3.

The values of B in (1) were calculated with a least-squares regression from the FEA
results, and the following expression is suggested for B:

B = h

√
h

a + b

(
Et

x + Et
y

(a + b)4

)
K
( a

b

)p
(6)

Note that the sum of the moduli and the sum of the length–width represent its
averaged values, as the 2 division is included in K. The (a/b) is the aspect ratio of the plate.
The K and p unitless values are K = 201.44 and p = −0.17165, while the units of the variables
are: B: [Pa/m3], h: [m], a, b: [m], and E: [Pa]. Equation (6) describes multiwall plates well,
but it is not necessarily suitable for other types of orthotropic plates.
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6. Vacuum Chamber Test

To check the multiwall plate response to transverse distributed load, a vacuum cham-
ber test was used, as presented in Figure 4:

A 35 mm-thick wooden frame encloses a rectangular space with the required dimen-
sions. The multiwall plate is freely placed on the frame’s edges. A thin plastic sheet covers
the entire device and the floor near-by. A variable-speed vacuum cleaner is connected to
the internal space through a drilled hole. The vacuum created causes the plastic sheet to
seal all air leakages, allowing the vacuum level to gradually increase.

An electronic vacuum sensor measures the vacuum level through another hole in
the wooden frame. The sensor is connected to a controller, which displays the data.
Additionally, an ultrasonic distance sensor is placed 20 cm above the plate mid-point,
measures the plate deflection, and transmits it to the controller. The vacuum units are [Pa],
and the distance units are [mm].

The controller has a zero button to zero the vacuum and the distance values as the
test starts. During the test, the vacuum level is gradually increased, while both load and
deflection are recorded. Various local buckling phenomena are also closely monitored
and recorded.

The plate edges are free to move on the wood frame, creating the M movable BC. As
the vacuum level increases during the test, the thin plastic sealing sheet experiences tension
and presses the plate edge to the wood frame. This may change the BC from SSSS to be
somewhat closer to CCCC.

Several tests were performed at the Krumbein Structures Laboratory, Faculty of
Aerospace Engineering—Technion. Next, a typical test is presented.
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7. Results

There were two plates tested: length × width 1.5 × 0.8 m and length × width
0.8 × 1.5 m. The opening dimensions were 0.07 m less, i.e., 1.43 × 0.73 m.

8. Plate Details

• Type: 10 mm-PC double wall
• Nominal Area Weight 1700 g/m2

The measured results were least-squares fitted to the expression q = Aw + Bw3 and
were compared to the theoretical curves.

Part of the tested plates data are shown in the following Figure 5, Tables 1 and 2:

Table 1. The elastic constants of this multiwall plate.

Thickness h [mm] 10

Area Weight W [g/m2] 1713
Walls Thickness tw [mm] 1.154

Equivalent G Geq [MPa] 100.348
For small deflection coefficient A:

Dx [Nm] 70.12106
Bending: Dy [Nm] 54.10356

Dxy [Nm] 8.362
Shear: Sx [N/m] 59,890.03

Sy [N/m] 1662.076
νx

b 0.38
νy

b = Dy/Dx ∗ νx
b 0.293

For large deflection coefficient B:
Ex

t [MPa] 342.60
Tension: Ey

t [MPa] 276.96
νx

t 0.38
νy

t = Ey
t/Ex

t ∗ νx
t 0.307
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Table 2. Coefficients results.

Coefficient

Length 1.5 m, Width 0.8 m Length 0.8 m, Width 1.5 m

Measured Theoretical %
Difference Measured Theoretical %

Difference

A [Pa/m] 9602 11,487 (2) 16.4% 19,061 21,805 12.6%

B [Pa/m3] 5,370,163 3,475,816 (6) 35.3% 5,858,384 4,378,294 25.3%
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The coefficients A and B were theoretically calculated with the expressions (2), (6), and
they were compared to the measured values. The comparison is shown in Table 2:

As displayed in Table 2, the calculated coefficients comply to the measured one with
some differences.

9. FEA Results

To find the response of the plates to transversal uniform load, 80 finite element analyses
were performed: 4 plate types with 4 various widths and 5 different lengths (see in Figure 3
one of the tests). The coefficients A and B for each plate were both theoretically calculated
using Equations (2) and (6), respectively, and they were also found from the graphs drawn
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using Equation (1). A comparison of the theoretically calculated A and B coefficients and
the FEA-measured coefficients is presented in Figure 6. The legend at (b) applies to all
other graphs.
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The 45◦ lines represent the location of the perfect agreement between the theory and
measurements. As it is shown in Figure 6, a very good agreement between the theory and
analysis is found.

10. Large Number of Loading Tests

One of the manufacturers of PC multiwall plates is Plazit-Polygal (Plaskolite). During
the years 2001–2002, they performed a large number of vacuum loading tests similar to the
one described here. Plazit-Polygal has allowed the authors to use the test data for research
and publication purposes. This permission is very much appreciated.

From about 250 tests, 120 tests of plates 6–16 mm thick were chosen. Each test has a set
of measured load–deflection values for various width–length measurements. The analysis
of every test was a linear least-squares regression that calculated the coefficients A and B
in the expression q = Aw + Bw3. The results are listed in Appendix C. The coefficient of
determination R2 (goodness-of-fit) in all tested cases was above 0.99. These very good fits
support the validity of the suggested A, B large deflection approximation (Equation (1)).

The equivalent elastic constants and moduli of the plates were measured and given
with the test data in Appendix B. This information allows for the calculation of the A, B
coefficients according to the theory above. The measured and calculated A, B coefficients
are compared in Figures 7 and 8, where the unit of A is [Pa/m] and the unit of B is [Pa/m3].
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In Figures 7 and 8, the horizontal axes are the A and B measured coefficients, while the
vertical axes are the theoretically calculated coefficients. The 45◦ lines represent the location
of the perfect agreement between the theory and measurements. The various colors are for
various plate widths [m], as shown in the Figure 6b graph legend.

Generally, the theory–measurement agreements are better for the coefficient A over
the coefficient B, and they are also better for higher thickness over lower thickness.

Since Polygal’s tests were performed more than 20 years ago, the tested samples are
not available for verification anymore. Many dimensions of the plates were missing in
the records, so the standard values were taken from the plate’s data sheets. Nevertheless,
the actual real plate dimension values almost always deviate from the standard values, as
may occur in real manufacturing. These deviations can be rather significant and, for sure,
influence on the plate rigidities. This is probably the main source for the inconsistencies in
the reported data.

As the vacuum was measured at that time with a water manometer, which is not
accurate enough, it is very possible that errors do exist in the data. These errors can be seen
in Appendix C, Tables A4–A7, where the measured coefficients A should monotonically
increase while the length values decrease, but in several cases, they unexpectedly decrease.

By being very comprehensive, with a large number of length/width combinations,
the understanding of the plate response to transverse pressure still has some value, besides
proving the q = Aw + Bw3 response.

Note that the last plate test (10 mm Plate Faculty Lab) was performed more recently, un-
der a better-controlled environment, and therefore, it presents a more accurate agreement.

11. Conclusions

Large deflection of multiwall plates, under distributed transverse pressure and SSSS-M
boundary conditions, has been found to comply with the q = Aw + Bw3 approximation rule
with very good R2 (goodness-of-fit) values.

The suggested expressions for A and B coefficients have good agreement with FEA
results, while in actual tests, they appear to be more applicable for thicker plates.

The deviations in the presented experimental loading data may relate to the measure-
ment technique. Good laboratory practice would lead to more accurate results.
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Appendix A

Appendix A.1. Small Deflections Coefficient A—Libove’s and Reddy’s Solutions

A multiwall plate has considerable transverse shear flexibility in the width direction
y, while it is relatively rigid to shear in the length direction x. Nevertheless, the analysis
here considers both directions, omitting the shear in the length direction only at the end of
the derivation.

Appendix A.2. Libove’s Solution

In the following, Poisson’s ratios are designated µx, µy as they appear in the source,

while in the main paper, they are designated νb
x, νb

y .
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Libove’s NACA Report No. 899 [17] presents the PDEs describing this problem.
The three main equations are on page 144 of [17], between (12) and (13), without

numbers. The notations are shown in [17] on page 140.
The following Equations (A1)–(A3) are simply copied from [17]:(

Nx
∂2

∂x2 + Ny
∂2

∂y2 + 2Nxy
∂2

∂x∂y

)
w +

(
∂

∂x

)
Qx +

(
∂

∂y

)
Qy = −q (A1)

[
−Dxy

∂3

∂x∂y2 − Dx
1−µxµy

(
µy

∂3

∂x∂y2 +
∂3

∂x3

)]
w +

[
1
2

Dxy
DQx

∂2

∂y2 +
Dx

(1−µxµy)DQx

∂2

∂x2 − 1
]

Qx+[
1
2

Dxy
DQy

∂2

∂x∂y +
Dxµy

(1−µxµy)DQy

∂2

∂x∂y

]
Qy = 0

(A2)

[
−Dxy

∂3

∂x2∂y −
Dy

1−µxµy

(
µx

∂3

∂x2∂y + ∂3

∂y3

)]
w +

[
1
2

Dxy
DQx

∂2

∂x∂y +
Dyµx

(1−µxµy)DQx

∂2

∂x∂y

]
Qx+[

1
2

Dxy
DQy

∂2

∂x2 +
Dy

(1−µxµy)DQy

∂2

∂y2 − 1
]

Qy = 0
(A3)

In order to have it in a more readable form, we change the shear rigidity DQx to be Sx
and the DQy to be Sy. After opening the parenthesis, we get:

Nx
∂2w
∂x2 + Ny

∂2w
∂y2 + 2Nxy

∂2w
∂x∂y

+
∂Qx

∂x
+

∂Qy

∂y
= −q (A4)

−
[

Dxy +
µyDx

(1−µxµy)

]
∂3w

∂x∂y2 − Dx
(1−µxµy)

∂3w
∂x3 +

Dxy
2Sx

∂2Qx
∂y2 + Dx

(1−µxµy)Sx

∂2Qx
∂x2 −Qx+[

Dxy
2Sy

+
µyDx

(1−µxµy)Sy

]
∂2Qy
∂x∂y = 0

(A5)

−
[

Dxy +
µx Dy

(1−µxµy)

]
∂3w

∂x2∂y −
Dy

(1−µxµy)
∂3w
∂y3 +

[
Dxy
2Sx

+
µx Dy

(1−µxµy)Sx

]
∂2Qx
∂x∂y +

Dxy
2Sy

∂2Qy
∂x2 +

Dy

(1−µxµy)Sy

∂2Qy
∂y2 −Qy = 0

(A6)

Some simplification can be done by taking Nx, Ny, and Nxy to be zero because no
membrane forces exist in our problem.

After doing so and repeating Equations (A5) and (A6) in Equations (A8) and (A9),
we get:

∂Qx

∂x
+

∂Qy

∂y
= −q (A7)

−
[

Dxy +
µyDx

(1−µxµy)

]
∂3w

∂x∂y2 − Dx
(1−µxµy)

∂3w
∂x3 +

Dxy
2Sx

∂2Qx
∂y2 + Dx

(1−µxµy)Sx

∂2Qx
∂x2 +[

Dxy
2Sy

+
µyDx

(1−µxµy)Sy

]
∂2Qy
∂x∂y = Qx

(A8)

−
[

Dxy +
µx Dy

(1−µxµy)

]
∂3w

∂x2∂y −
Dy

(1−µxµy)
∂3w
∂y3 +

[
Dxy
2Sx

+
µx Dy

(1−µxµy)Sx

]
∂2Qx
∂x∂y +

Dxy
2Sy

∂2Qy
∂x2 +

Dy

(1−µxµy)Sy

∂2Qy
∂y2 = Qy

(A9)

Equations (A7)–(A9) are a linear set of three PDEs. It should be solved simultaneously
for the unknowns Qx, Qy, and w for the independent load q. All the other coefficients are
already known before.

According to [17], this set can be separated to be three dual variable PDEs for every
unknown in terms of the load q. One of them is for w, which is a sixth order equation, as
shown in [17] (13a):

[D]w = −[M]q (A10)
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where the operators [D] and [M], after the omission of N terms, are:

[D] =
DxyDx

2Sy
∂6

∂x6 +

(
DxyDx

2Sx
+

Dx Dy− 1
2 DxyDxµy− 1

2 DxyDyµx
Sy

)
∂6

∂x4∂y2 +(
DxyDy

2Sy
+

Dx Dy− 1
2 DxyDxµy− 1

2 DxyDyµx
Sx

)
∂6

∂x2∂y4 +
DxyDy

2Sx
∂6

∂y6 − Dx
∂4

∂x4−[
2Dxy

(
1− µxµy

)
+ Dxµy + Dyµx

]
∂4

∂x2∂y2 − Dy
∂4

∂y4

(A11)

[M] =
DxyDx
2SxSy

∂4

∂x4 +
Dx Dy− 1

2 DxyDxµy− 1
2 DxyDyµx

SxSy
∂4

∂x2∂y2 +
DxyDy
2SxSy

∂4

∂y4−(
Dxy(1−µxµy)

2Sx
+

Dy
Sy

)
∂2

∂y2 −
(

Dxy(1−µxµy)
2Sy

+ Dx
Sx

)
∂2

∂x2 +
(
1− µxµy

) (A12)

After replacing Dyµx with Dxµy in the above, according to [17] (8), Equation (A10)
becomes:

DxyDx
2Sy

∂6w
∂x6 +

(
DxyDx

2Sx
+

Dx Dy−DxyDxµy
Sy

)
∂6w

∂x4∂y2 +
(

DxyDy
2Sy

+
Dx Dy−DxyDxµy

Sx

)
∂6w

∂x2∂y4 +
DxyDy

2Sx
∂6w
∂y6 − Dx

∂4w
∂x4 − 2

[
Dxy

(
1− µxµy

)
+ Dxµy

]
∂4w

∂x2∂y2 − Dy
∂4w
∂y4 =

−DxyDx
2SxSy

∂4q
∂x4 −

Dx Dy−DxyDxµy
SxSy

∂4q
∂x2∂y2 −

DxyDy
2SxSy

∂4q
∂y4 +

(
Dxy(1−µxµy)

2Sx
+

Dy
Sy

)
∂2q
∂y2 +

+

(
Dxy(1−µxµy)

2Sy
+ Dx

Sx

)
∂2q
∂x2 −

(
1− µxµy

)
q

(A13)

or in a shorter form:

K1
∂6w
∂x6 + K2

∂6w
∂x4∂y2 + K3

∂6w
∂x2∂y4 + K4

∂6w
∂y6 + K5

∂4w
∂x4 + K6

∂4w
∂x2∂y2 + K7

∂4w
∂y4 =

K8
∂4q
∂x4 + K9

∂4q
∂x2∂y2 + K10

∂4q
∂y4 + K11

∂2q
∂x2 + K12

∂2q
∂y2 + K13q

(A14)

where the coefficients Ki are:

K1 =
DxyDx

2Sy
; K2 =

DxyDx
2Sx

+
Dx Dy−DxyDxµy

Sy
; K3 =

DxyDy
2Sy

+
Dx Dy−DxyDxµy

Sx

K4 =
DxyDy

2Sx
; K5 = −Dx; K6 = −2

[
Dxy

(
1− µxµy

)
+ Dxµy

]
; K7 = −Dy

K8 = −DxyDx
2SxSy

; K9 = −Dx Dy−DxyDxµy
SxSy

; K10 = −DxyDy
2SxSy

K11 =
Dxy(1−µxµy)

2Sy
+ Dx

Sx
; K12 =

Dxy(1−µxµy)
2Sx

+
Dy
Sy

; K13 = −
(
1− µxµy

) (A15)

The following is a standard Fourier series solution of a linear PDE.
The deflection boundary conditions are all w = 0, so we can assume a double sine

series as the solution (Navier Solution):

w(x, y) =
∞

∑
n=1

∞

∑
m=1

Wmnsin
mπx

a
sin

nπy
b

(A16)

where Wmn are coefficients to be determined. Substituting (A16) into (A14) yields:

∞
∑

n=1

∞
∑

m=1

[
−K1

(mπ
a
)6 − K2

(mπ
a
)4( nπ

b
)2 − K3

(mπ
a
)2( nπ

b
)4

−K4
( nπ

b
)6

+ K5
(mπ

a
)4

+ K6
(mπ

a
)2( nπ

b
)2

+ K7
( nπ

b
)4

]
Wmnsin mπx

a sin nπy
b =

K8
∂4q
∂x4 + K9

∂4q
∂x2∂y2 + K10

∂4q
∂y4 + K11

∂2q
∂x2 + K12

∂2q
∂y2 + K13q

(A17)

This suggests that the equation’s right-hand side should also be expanded into a
double sine series:

q(x, y) =
∞

∑
n=1

∞

∑
m=1

qmnsin
mπx

a
sin

nπy
b

(A18)

So (A17) becomes:



Materials 2023, 16, 2041 15 of 27

∞

∑
n=1

∞

∑
m=1



[
−K1

(mπ
a
)6 − K2

(mπ
a
)4( nπ

b
)2 − K3

(mπ
a
)2( nπ

b
)4

−K4
( nπ

b
)6

+ K5
(mπ

a
)4

+ K6
(mπ

a
)2( nπ

b
)2

+ K7
( nπ

b
)4

]
Wmn

−
[

K8
(mπ

a
)4

+ K9
(mπ

a
)2( nπ

b
)2

+ K10
( nπ

b
)4

−K11
(mπ

a
)2 − K12

( nπ
b
)2

+ K13

]
qmn

sin
mπx

a
sin

nπy
b

= 0 (A19)

Since (A19) must exist at all points x, y in the domain, so the coefficients of sin mπx
a sin nπy

b
must be zero for every m and n. This yields:

Wmn =

[
K8
(mπ

a
)4

+ K9
(mπ

a
)2( nπ

b
)2

+ K10
( nπ

b
)4

−K11
(mπ

a
)2 − K12

( nπ
b
)2

+ K13

]
qmn[

−K1
(mπ

a
)6 − K2

(mπ
a
)4( nπ

b
)2 − K3

(mπ
a
)2( nπ

b
)4

−K4
( nπ

b
)6

+ K5
(mπ

a
)4

+ K6
(mπ

a
)2( nπ

b
)2

+ K7
( nπ

b
)4

] (A20)

For an evenly distributed load q(x,y) = qo, the coefficients qmn are:

qmn =
16q0

π2mn
m, n = 1, 3, 5, 7 . . . (A21)

We are interested in the deflection at the middle point of the plate wmax, where
x = a

2 ; y = b
2 , and sin mπx

a sin nπy
b = (−1)

m+n
2 −1.

The final solution is therefore:

wmax =
16q0

π6

∞

∑
n=1,3,5...

∞

∑
m=1,3,5...

[
π4K8

(m
a
)4

+ π4K9
(m

a
)2( n

b
)2

+ π4K10
( n

b
)4

−π2K11
(m

a
)2 − π2K12

( n
b
)2

+ K13

]
(−1)

m+n
2 −1

mn

[
−π2K1

(m
a
)6 − π2K2

(m
a
)4( n

b
)2 − π2K3

(m
a
)2( n

b
)4

−π2K4
( n

b
)6

+ K5
(m

a
)4

+ K6
(m

a
)2( n

b
)2

+ K7
( n

b
)4

] (A22)

where the coefficients Ki are given in (A15).
Equation (A22) presents the linear relationship between the load and the deflection in

a small defection case:
wmax = A·q0 (A23)

Appendix A.3. Reddy’s Solution

J.N. Reddy [18] (p. 368), has also solved this problem. The numerical results of
Reddy [18] are identical to those of Libove’s NACA 899 [17].

Nevertheless, to complete this comparison, the details of Reddy’s solution are repeated
here with their original notations.

The elastic constant definitions used by Reddy are in Libove’s terms:

D11 = Dx
1−µxµy

; D12 =
Dxµy

1−µxµy
; D22 =

Dy
1−µxµy

; D66 = 1
2 Dxy; KA44 = Sy ; KA55 = Sx ;

ν21 = µy ; ν12 = µx
(A24)

There are several easing assumptions that simplify the original Reddy’s expressions:

1. Deflections, strains, and rotations are small
2. No initial in-plane forces
3. Static state-no changes in time
4. No thermal loads
5. No elastic foundation

Under these assumptions, expressions [18] (10.1.31–35 at pp. 365–366) are:
(The original index 0, which represents middle plate value was omitted).
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A11

(
∂2u
∂x2 +

∂w
∂x

∂2w
∂x2

)
+ A12

(
∂2v

∂y∂x + ∂w
∂y

∂2w
∂y∂x

)
+ A66

(
∂2u
∂y2 + ∂2v

∂x∂y + ∂2w
∂x∂y

∂w
∂y + ∂w

∂x
∂2w
∂y2

)
= 0

A66

(
∂2u

∂y∂x + ∂2v
∂x2 +

∂2w
∂x2

∂w
∂y + ∂w

∂x
∂2w
∂y∂x

)
+ A12

(
∂2u

∂x∂y + ∂w
∂x

∂2w
∂x∂y

)
+ A22

(
∂2v
∂y2 +

∂w
∂y

∂2w
∂y2

)
= 0

Ks A55

(
∂2w
∂x2 + ∂φx

∂x

)
+ Ks A44

(
∂2w
∂y2 +

∂φy
∂y

)
+ q(x, y) = 0

D11

(
∂2φx
∂x2

)
+ D12

(
∂2φy
∂y∂x

)
+ D66

(
∂2φx
∂y2 +

∂2φy
∂y∂x

)
− Ks A55

(
∂w
∂x + φx

)
= 0

D66

(
∂2φx
∂x∂y +

∂2φy
∂x2

)
+ D12

(
∂2φx
∂x∂y

)
+ D22

(
∂2φy
∂y2

)
− Ks A44

(
∂w
∂y + φy

)
= 0

(A25)

The Navier solution with double Fourier series is:

q(x, y) =
∞

∑
n=1

∞

∑
m=1

Qmnsin
mπx

a
sin

nπy
b

(A26)

Substituting the solution and the load into the equations above yields [18] (10.2.9)
(p. 368):

ŝ11Wmn + ŝ12Xmn + ŝ13Ymn = Qmn
ŝ12Wmn + ŝ22Xmn + ŝ23Ymn = 0
ŝ13Wmn + ŝ23Xmn + ŝ33Ymn = 0

(A27)

where:

ŝ11 = Ks

(
A55αm

2 + A44βn
2
)

, ŝ12 = Ks A55αm, ŝ13 = Ks A44βn

ŝ22 = D11αm
2 + D66βn

2 + Ks A55, ŝ23 = (D12 + D66)αmβn, ŝ33 = D66αm
2 + D22βn

2 + Ks A44
(A28)

and αm = mπ/a, βn = nπ/b.
Coefficients b are now defined:

b0 = ŝ22 ŝ33 − ŝ23 ŝ23, b1 = ŝ23 ŝ13 − ŝ12 ŝ33, b2 = ŝ12 ŝ23 − ŝ22 ŝ13, bmn = ŝ11b0 + ŝ12b1 + ŝ13b2 (A29)

Fourier coefficients are [18] (10.2.14) (p. 369):

Wmn =
b0

bmn
Qmn, Xmn =

b1

bmn
Qmn, Ymn =

b2

bmn
Qmn (A30)

This the end of Reddy’s text, the rest is a consequential result.
For an evenly distributed load q(x, y) = q0, the coefficients Qmn are:

Qmn =
16q0

π2mn
m, n = 1, 3, 5, 7 . . . (A31)

At the plate′s mid-point at location x =
a
2

; y =
b
2

, exists sin
mπx

a
sin

nπy
b

= (−1)
m+n

2 −1 (A32)

The deflection at that point is the maximal deflection wmax which is:

wmax =
∞
∑

n=1

∞
∑

m=1
Wmn(−1)

m+n
2 −1 =

∞
∑

n=1

∞
∑

m=1

b0
bmn

Qmn(−1)
m+n

2 −1 = 16q0
π2

∞
∑

n=1,3,5...

∞
∑

m=1,3,5...

b0
bmn
· (−1)

m+n
2 −1

mn

wmax = 16q0
π6

∞
∑

n=1,3,5...

∞
∑

m=1,3,5...
π4 b0

bmn
· (−1)

m+n
2 −1

mn

(A33)

where

b0

bmn
=

ŝ22 ŝ33 − ŝ23 ŝ23

ŝ11b0 + ŝ12b1 + ŝ13b2
=

ŝ22 ŝ33 − ŝ23 ŝ23

ŝ11(ŝ22 ŝ33 − ŝ23 ŝ23) + ŝ12(ŝ23 ŝ13 − ŝ12 ŝ33) + ŝ13(ŝ12 ŝ23 − ŝ22 ŝ13)
(A34)
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As in Libove’s solution above, Reddy’s solution (A33) presents the linear relationship
between the load and the deflection in a small deflection case: wmax = A·q0.

Appendix A.4. Simplified Libove’s Solutions

In multiwall plates, the x-direction shear rigidity is often very high: Sx → ∞ .
This causes the coefficients Ki to change:

K1 =
DxyDx

2Sy
; K2 =

Dx Dy−DxyDxµy
Sy

; K3 =
DxyDy

2Sy

K4 = 0; K5 = −Dx; K6 = −2
[
Dxy

(
1− µxµy

)
+ Dxµy

]
; K7 = −Dy

K8 = 0; K9 = 0; K10 = 0

K11 =
Dxy(1−µxµy)

2Sy
; K12 =

Dy
Sy

; K13 = −
(
1− µxµy

) (A35)

This change simplifies the calculation a little bit:

wmax = 16q0
π6

∞
∑

n=1,3,5...

∞
∑

m=1,3,5...

[
−π2K11(m

a )
2−π2K12( n

b )
2
+K13

]
(−1)

m+n
2 −1

mn

 −π2K1
(m

a
)6 − π2K2

(m
a
)4( n

b
)2 − π2K3

(m
a
)2( n

b
)4

+K5
(m

a
)4

+ K6
(m

a
)2( n

b
)2

+ K7
( n

b
)4

 (A36)

For orthotropic plates, which are rigid for shear deformation in both directions, (A36)
reduces to:

wmax =
16
(
µxµy − 1

)
q0

π6

∞

∑
n=1,3,5...

∞

∑
m=1,3,5...

(−1)
m+n

2 −1

mn
[
−Dx

(m
a
)4 − 2

[
Dxy

(
1− µxµy

)
+ Dxµy

](m
a
)2( n

b
)2 − Dy

( n
b
)4
] (A37)

while, for isotropic plates, it further reduces to:

wmax = 16q0b4

Dπ6

∞
∑

n=1,3,5...

∞
∑

m=1,3,5...

(−1)
m+n

2 −1

mn
(

m2+( b
a )

2
n2
)2 (A38)

and for a square plate (a = b):

wmax =
16q0a4

Dπ6

∞

∑
n=1,3,5...

∞

∑
m=1,3,5...

(−1)
m+n

2 −1

mn(m2 + n2)
2 = 0.0040624

q0a4

D
(A39)

Appendix B

Large Deflection of Thin Square Isotropic Plate with Distributed Load and Movable Edges

Several sources present information describing the large deflection of these plates. In
order to compare the findings, it is necessary to normalize the results to a common format.
Many articles present the following normalization:

q = Aw + Bw3 = N1
D
a4 w + N3

Eh
a4 w3 (A40)

Which leads to:
qa4

Eh4 = N
1

1
12(1− ν2)

(w
h

)
+ N3

(w
h

)3
(A41)

where the notations are described in the article above.
This normalization allows for a comparison of the results of any plate’s material-

dimensions combination.
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CPT: Note that the small deflection linear Classical Plate Theory (CPT) of Navier’s
solution for this case, with large number of terms in the summation, has:

q = N1
D
a4 w = 246.16

D
a4 w

yields→ qa4

Eh4 =
246.16

12(1− ν2)

(w
h

)
(A42)

Timoshenko [3] (p. 110) states the first summation term coefficient only: N1 = 240.38.
Yankelevsky D. et al [19] (2017, Hebrew language) offer simple approximated solutions

for three BCs, including the one stated here. For a single degree of freedom model SDOF,
(p. 7), the plate deflection is:

q = 389.64
D
a4 w + 6.3238

Eh
a4 w3 (A43)

Walter D. Pilkey [20] (2005) p. 1001 offers an approximated solution for rectangu-
lar plate:

16a4q
π6D

=
(

1 + β2
)2

w0 +
3.88β2(1− ν2)(
β2 + 0.6 + 1

β2

)
h2

w0
3, β =

a
b

(A44)

Then for a square plate:

q = 240.35
D
a4 w + 7.4723

Eh
a4 w3 (A45)

Levy Samuel [21] (1942), in NACA Report 737, solved the problem with Fourier series,
creating an infinite system of non-linear algebraic equations to be solved. The truncation
makes the solution an approximated one. He did that (manually!) for the first several terms
for deflections up to 3.6 times the thickness. He also states that higher deflection requires
more terms in order to converge accurately enough. The process is rather complex and is
not easy to implement.

Using the data presented in [21] (Table 6 at p. 155), and in the graph at [21] (Figure 7
at p. 144) of the report, we have extracted the following load-deflection expression:

q = 240.475
D
a4 w + 8.95617

Eh
a4 w3 (A46)

Ishizaki Hatsuo [22] (1972) did many actual loading tests of flat glass deflections up
to 10 times the thickness or breakage. The results were transferred to an Excel sheet for
analysis, and the resulting expression is:

q = 220
D
a4 w + 1.7787

Eh
a4 w3 (A47)

The first number N1 (small deflection coefficient) is reasonable, but the membrane
coefficient N3 is rather low, indicating a more flexible plate than in other research.

ASTM E 1300 [23] (2009) “Standard Practice for Determining Load Resistance of Glass
in Buildings” supplies data for flat glass under load. Using the same thicknesses and glass
properties as in Ishizaki above, as well as deflections up to five times the thickness, we get
the following load expression:

q = 243.2
D
a4 w + 2.29

Eh
a4 w3 (A48)

Scholes A. [24] (1969) performed several actual tests that were said to agree well with
other real tests done by Kaiser Rudolf (1936) and Stippes M. (1959). He tested 3.25 mm
thick aluminum plate and deflections up to 3.3 times the thickness.
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The expression found in his work is:

q = 260.3
D
a4 w + 3.547

Eh
a4 w3 (A49)

Kaiser Rudolf [25] (1936) performed an actual test on 600 × 600 × 3.15 mm steel plate
up to 2.57 times the thickness. Although only one load–deflection point is declared, some
intermediate points are implicitly given. After correcting the wrong reported load data
with the supplied water manometer information, the following expression was calculated:

q = 251.98
D
a4 w + 3.366

Eh
a4 w3 (A50)

Chia Chuen-Yuan [26] (1980) (p. 64 expression 2-46, p. 65 expression 2-50) is similar to
Levy [21], using the first term only (a) and eight terms (b), and shows expressions, for this
case, with deflections up to two times the thickness:

(a) q = 240.35
D
a4 w + 3.7972

Eh
a4 w3 (A51)

(b) q = 240.35
D
a4 w0 + 3.9008

Eh
a4 w0

3 (A52)

Brown, J.C. [27] (1969) performed several actual experiments with rectangular alu-
minum plates of 0.81, 1.02, 1.29, and 1.63 mm thickness, with deflections up to 4.6 times the
thickness. The reported results were converted to the standard form:

q = 307.9
D
a4 w + 2.799

Eh
a4 w3 (A53)

Present study: to complete this comparison, the expression found in the present
study is:

q = 246.16
D
a4 w0 + 18.6

√
h
a
·Eh

a4 w0
3 (A54)

Table A1 summarizes the coefficients found by the various authors and presented in
the literature.

Table A1. Summary of the N1 and N3 coefficients found in the literature.

No. Ref. Source N1 N3

1 [3] Navier’s linear CPT 246.16 -

2 [19] Yankelevsky D. et al. 389.64 6.3238

3 [20] Walter D. Pilkey 240.35 7.4723

4 [21] Levy Samuel 240.475 8.9562

5 [22] Ishizaki Hatsuo 220 1.7787

6 [23] ASTM E 1300 243.2 2.29

7 [24] Scholes A. 260.3 3.547

8 [25] Kaiser Rudolf 251.98 3.366

9 [26] Chia Chuen-Yuan 240.35 3.7972

10 [27] Brown J. C. 307.9 2.799

11 - Present study-for h/a = 0.025 246.16 2.94

It is obvious that, although most of data is based on actual experiments, a considerable
variability exists here, especially in the large deflection coefficient N3. The N3 variability
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may be explained with the suggested h/a ratio. This should be further checked for other
possible explanations.

Appendix C

Plates Properties, Loading Test and FEA Data

Table A2. Properties of plates used in vacuum chamber tests.

Polygal Polygal Polygal Polygal Faculty Lab

Thickness h [mm] 6 8 10 16 10
Area Weight W [g/m2] 1305 1492 1683 2712 1713
Walls Thickness tw [mm] 0.76 0.981 1.055 1.745 1.154
Equivalent Gt Gt

eq [MPa] 110.14 106.63 91.739 94.837 100.35
Equivalent Gb Gb

eq [MPa] 157.61 135.14 121.96 122.83 124.13
For small deflection coefficient A:
Dx [Nm] 18.438 40.896 70.421 234.91 70.121

Bending: Dy [Nm] 14.374 38.000 58.298 205.04 54.104
Dxy [Nm] 2.8370 5.7662 10.163 41.925 10.344
Sx [N/m] 10,272 51,480 70,445 244,549 59,890
Sy [N/m] 3956.9 2201.8 2365.4 3335.3 1662.1
νx

b 0.38 0.38 0.38 0.38 0.38
νy

b = Dy/Dx ∗ νx
b 0.296 0.353 0.315 0.332 0.293

For large deflection coefficient B:
6/1300 8/1500 10/1700 16/2700 10/1700

Ex [MPa] 435.00 373.00 336.60 339.00 342.60
Tension: Ey [MPa] 304.00 294.30 253.20 261.75 276.96

νx
t 0.38 0.38 0.38 0.38 0.38

νy
t = Ey/Ex ∗ νx

t 0.266 0.300 0.286 0.293 0.307

Table A3. Properties of plates used in the FEA.

Thickness h [mm] 6 8 10 16

Area Weight W [g/m2] 1300 1500 1700 2700
Walls Thickness tw [mm] 0.76 0.981 1.055 1.745
Equivalent Gt Gt

eq [MPa] 110.14 106.63 91.739 94.837
Equivalent Gb Gb

eq [MPa] 157.00 135.87 123.19 122.28
For small deflection coefficient A:
Dx [Nm] 16.3625 35.4086 62.0025 205.3052

Bending: Dy [Nm] 12.7562 32.9011 51.3292 179.2000
Dxy [Nm] 2.8261 5.7971 10.2657 41.7391
Sx [N/m] 288,060 230,560 294,700 407,840
Sy [N/m] 3840 2240 2400 3200
νx

b 0.38 0.38 0.38 0.38
νy

b = Dy/Dx ∗ νx
b 0.296 0.353 0.315

For large deflection coefficient B:
6/1300 8/1500 10/1700 16/2700

Ex [MPa] 433.33 375.00 340.00 337.50
Tension: Ey [MPa] 304.00 294.30 253.20 261.75

νx
t 0.38 0.38 0.38 0.38

νy
t = Ey/Ex ∗ νx

t 0.266 0.267 0.298 0.283

In the following tables, the unit of width/length is [m], the unit of A is [Pa/m], and
the unit of B is [Pa/m3].
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Table A4. The 6 mm plate Polygal vacuum tests A, B and theory calculated A, B.

Width [m] Length [m] A B Cal A Cal B

1.12 2.32 452.9958 2,675,924.5 838.0078 235,076.9
1.12 1.92 600.2268 3,624,304.7 947.2736 423,544.7
1.12 1.42 6495.11 3,478,986.3 1340.64 1001,306
1.12 1.17 6866.385 5,022,146.1 1892.093 1,650,043
1.12 0.92 8989.318 9,007,183.6 3341.16 2,892,938
0.97 2.32 1805.044 689,141.94 1394.157 280,299.7
0.97 1.92 3589.357 1,571,819.9 1510.433 518,885.1
0.97 1.42 9345.895 2,682,268.9 1947.39 1,284,722
0.97 1.17 11,092.35 5,344,922.6 2553.413 2,183,605
0.97 0.92 14,659.1 9,617,604.9 4106.67 3,979,952
0.9 2.32 2846.633 1,042,440.4 1833.756 304,838
0.9 1.92 3992.159 2,319,479.3 1950.029 572,014.2
0.9 1.42 8516.378 6,275,772.6 2409.381 1,449,841
0.9 1.17 9318.191 7,315,412.6 3048.365 2,503,720
0.9 0.92 30,982.47 7,447,190.6 4668.252 4,656,408

0.72 2.32 7953.529 2,283,356.5 4250.167 380,062.2
0.72 1.92 9081.767 3,334,754.5 4334.273 740,756.6
0.72 1.42 15,608.04 6,558,901 4830.433 2006,872
0.72 1.17 17,281.05 10,784,310 5576.681 3628,605
0.72 0.92 21,693.31 23,693,730 7445.51 7,160,451
0.72 0.72 30,733.39 32,097,457 11,636.92 13,408,479
0.52 2.32 17,991.24 4,017,196 14,732.46 488,196
0.52 1.92 19,992.22 7,342,052.5 14,648.92 998,573.1
0.52 1.67 18,881.28 12,322,531 14,669.48 1,663,546
0.52 1.42 20,924.37 34,600,895 14,902.81 2,951,309
0.52 1.17 31,266.07 32,159,471 15,684.94 5,676,341
0.52 0.92 39,697.58 44,985,911 17,947.36 12,157,585
0.52 0.72 41,093.97 110,628,017 23,031.12 24,851,580

Table A5. The 8 mm plate Polygal vacuum tests A, B and theory calculated A, B.

Width [m] Length [m] A B Cal A Cal B

1.12 2.32 10,615.63 1,714,038 1998.142 326,809.6
1.12 1.92 9658.971 3,702,746 2240.471 588,822
1.12 1.67 12,600.17 3,940,898 2546.095 887,351.3
1.12 1.42 12,449.55 5,276,544 3126.229 1,392,040
1.12 1.17 11,817.76 6,953,640 4378.486 2,293,929
1.12 0.92 14,593.63 11,593,336 7702.517 4,021,832
1.12 0.72 17,232.15 13,744,086 15,946.62 6,673,482
0.97 2.32 12,245.53 2,858,078 3233.376 389,679.3
0.97 1.92 12,727.31 6,404,959 3482.44 721,366.5
0.97 1.67 16,119.69 7,413,828 3812.679 1,110,141
0.97 1.42 18,888.9 12,222,746 4445.654 1,786,052
0.97 1.17 18,311.34 15,101,302 5799.834 3,035,700
0.97 0.92 23,887.15 22,780,661 9315.615 5,533,025
0.97 0.72 30,987.88 27,779,780 17,806.58 9,546,048
0.9 2.32 12,629.23 2,398,253 4174.936 423,793
0.9 1.92 8274.929 3,639,945 4417.666 795,227.9
0.9 1.67 8759.203 4,771,837 4756.228 1,236,838
0.9 1.42 17,964.97 8,229,842 5415.468 2,015,603
0.9 1.17 12,983.75 14,426,740 6827.399 3,480,732
0.9 0.92 18,981.43 17,899,379 10,459.87 6,473,451
0.9 0.72 24,429.51 35,284,855 19,115.65 11,400,203

0.72 2.32 22,097.52 3,652,679 8994.497 528,371.7
0.72 1.92 24,121.8 4,877,503 9143.279 1,029,818
0.72 1.67 14,853.55 15,352,886 9456.951 1,650,391
0.72 1.42 16,587.32 10,589,949 10,156.51 2,790,001
0.72 1.17 15,934.62 8,425,231 1,1731.1 5,044,573
0.72 0.92 21,440.99 29,554,347 15,759.63 9,954,631
0.72 0.72 21,748.56 33,151,357 25,043.26 18,640,790
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Table A6. The 10 mm plate Polygal vacuum tests A, B and theory calculated A, B.

Width [m] Length [m] A B Cal A Cal B

1.12 2.32 5279.765 892,109.2 2897.421 403,685.8
1.12 1.92 6410.03 1,607,430 3286.038 727,332
1.12 1.67 5226.576 4,155,473 3775.575 1,096,085
1.12 1.42 10,148.55 4,496,982 4709.153 1,719,493
1.12 1.17 14,394.48 6,498,713 6742.018 2,833,536
1.12 0.92 19,032.32 11,718,453 12,205.65 4,967,897
1.12 0.72 28,726.07 21,991,590 25,938.38 8,243,301
0.97 2.32 5008.443 1,513,391 4596.355 481,344.5
0.97 1.92 7734.193 1,955,618 4997.688 891,055.2
0.97 1.67 7097.357 4,643,788 5523.879 1371,281
0.97 1.42 12,476.48 5,000,107 6532.75 2,206,189
0.97 1.17 14,198.68 10,234,183 8706.231 3,749,795
0.97 0.92 20,930.16 15,246,556 14,421.05 6,834,571
0.97 0.72 37,527.73 19,321,951 28,430.69 11,791,587
0.9 2.32 8175.153 1,308,174 5870.023 523,482.9
0.9 1.92 9144.266 2,979,196 6264.635 982,291.3
0.9 1.67 13,540.09 2,623,564 6804.076 1,527,783
0.9 1.42 14,152.08 4,766,794 7850.599 2,489,738
0.9 1.17 11,179.3 16,477,742 10,103.28 4,299,513
0.9 0.92 20,422.31 43,633,063 15,970.46 7,996,216
0.9 0.72 27,507.29 48,216,872 30,171.04 14,081,899

0.72 2.32 9764.093 1,210,446 12,210.72 652,661.8
0.72 1.92 11,121.45 2,057,851 12,480.63 1,272,064
0.72 1.67 11,484.15 3,560,990 12,994.57 2,038,616
0.72 1.42 15,098.11 3,883,557 14,105.48 3,446,300
0.72 1.17 15,530.53 10,511,290 16,582.48 6,231,220
0.72 0.92 28,161.24 16,177,794 22,962.68 12,296,282
0.72 0.72 21,112.22 91,644,642 37,902.26 23,025,708
0.52 2.32 19,650.88 1,438,809 34,293.65 838,354.4
0.52 1.92 18,181.98 4,628,025 33,972.7 1,714,799
0.52 1.67 22,336.73 5,604,267 34,048.95 2,856,725
0.52 1.42 21,800.6 8,182,871 34,814.92 5,068,134
0.52 1.17 27,381.58 14,058,050 37,255.82 9,747,694
0.52 0.92 43,811.35 19,654,856 44,249.42 20,877,610
0.52 0.72 40,750.83 78,821,611 60,519.49 42,676,370

Table A7. The 16 mm plate Polygal vacuum tests A, B and theory calculated A, B.

Width [m] Length [m] A B Cal A Cal B

1.12 2.32 8933.279 1,421,073 8242.064 832,170.8
1.12 1.92 9052.37 1,657,316 9467.222 1499,345
1.12 1.42 12,481.09 6,361,606 13,963.99 3,544,618
1.12 1.17 16,163.43 11,237,602 20,463.26 5,841,141
1.12 0.92 35,908.31 13,121,229 38,217.02 10,240,980
0.97 2.32 9890.783 1,140,765 12,333.83 992,258.9
0.97 1.92 10,953.37 2,569,300 13,586.46 1,836,850
0.97 1.42 16,100.85 7,337,956 18,328.21 4,547,908
0.97 1.17 21,039.46 11,380,187 25,112.24 7,729,946
0.97 0.92 42,337.42 16,439,904 43,280.84 14,089,003
0.9 2.32 13,151.49 1,481,442 15,239.14 1,079,124
0.9 1.92 17,183.46 2,547,259 16,475.18 2,024,927
0.9 1.42 21,875.81 11,601,028 21,323.35 5,132,426
0.9 1.17 32,690.09 21,102,044 28,261.72 8,863,153
0.9 0.92 48,325.19 27,733,684 46,679.89 16,483,654

0.72 2.32 21,365.54 1614,211 28,516.63 1,345,418
0.72 1.92 19,605.54 3,484,898 29,481.13 2,622,273
0.72 1.42 27,959.72 8239,599 34,419.8 7,104,312
0.72 1.17 32,710.82 14,309,190 41,783.57 12,845,236
0.72 0.92 48,831.18 21,922,037 61,033.98 25,347,948
0.52 2.32 40,168.46 122,204.1 68,615.16 1,728,210
0.52 1.92 39,558.79 12,311,136 68,271.49 3,534,942
0.52 1.42 34,807.32 18,890,827 71,902.62 10,447,613
0.52 0.92 56,908.98 48,134,886 99,778.62 4,3037,770
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Table A8. The 10 mm plate faculty lab vacuum tests A, B and theory calculated A, B.

Width [m] Length [m] A B Cal A Cal B

1.13 2.33 3658.214 648,934.7 2479.251 413,461.1
0.73 1.43 9602.007 5,370,164 11,487.23 3,475,817
1.43 0.73 19,061.98 5,858,385 21,805.59 4,378,295
0.73 0.73 27,613.32 36,089,724 32,835.42 22,731,859

Table A9. The 6 mm plate FEA A, B and theory calculated A, B.

Width [m] Length [m] A B Cal A Cal B

1.2 2.4 1352.5 195,200.78 583.00495 192,742.6
1.2 2 1690.6 342,476.002 664.74488 337,874.6
1.2 1.5 2435.8 771,141.611 943.8827 762,498.9
1.2 1 3780.8 2,096,942.96 2237.456 2,054,472
1.2 0.8 5459.8 3,230,529.03 4304.5028 3,277,946
1 2.4 2020.9 237,038.006 1106.511 241,597.5
1 2 2427.3 432,414.367 1196.5063 437,817.7
1 1.5 3415.9 1,046,885.37 1517.8621 1,044,852
1 1 5436.3 3,136,751.28 2956.0945 3,057,565
1 0.8 7312.3 5,186,080.43 5156.837 5,104,099

0.8 2.4 3697.7 286,277.87 2538.5252 305,448.5
0.8 2 4208 537,577.951 2619.1872 574,768.8
0.8 1.5 5508.9 1,396,552.89 2984.2191 1,463,440
0.8 1 8723.5 4,727,916.95 4665.1049 4,727,700
0.8 0.8 11,347 8,469,456.9 7125.0737 8,345,855
0.6 2.4 7826.7 440,304.645 7656.8973 388,706.2
0.6 2 8547.9 767,570.33 7650.9892 763,622.2
0.6 1.5 10,104 2,014,716.54 7949.0107 2,097,575
0.6 1 14,283 7,744,919.53 9969.4304 7645,229
0.6 0.8 18,211 15,310,356.5 12,938.884 14,487,347

Table A10. The 8 mm plate FEA A, B and theory calculated A, B.

Width [m] Length [m] A B Cal A Cal B

1.2 2.4 2831.98 209,943 1391.957 268,758.5
1.2 2 3318.587 382,338.8 1571.233 471,129.2
1.2 1.5 4829.209 836,190.2 2188.248 1,063,221
1.2 1 8415.004 2,126,931 5050.915 2,864,736
1.2 0.8 12,239.55 3,542,515 9634.085 4,570,738
1 2.4 3826.083 282,870.4 2576.69 336,881.3
1 2 4546.522 509,018.9 2766.492 610,488.9
1 1.5 6349.96 1,214,195 3460.85 1,456,932
1 1 10,850.79 3,487,875 6598.992 4,263,441
1 0.8 15,045.61 6,025,413 11,425.3 7,117,108

0.8 2.4 6466.841 378,227.5 5618.453 425,914.5
0.8 2 7303.275 683,105.1 5771.521 801,452.3
0.8 1.5 9412.111 1,737,764 6521.063 2,040,607
0.8 1 15,196.44 5,805,936 10,074.37 6,592,261
0.8 0.8 20,606.35 10,550,171 15,335.99 11,637,383
0.6 2.4 13,854.28 637,013.4 15,284.07 542,008.4
0.6 2 14,604.9 1,072,049 15,231.35 1,064,788
0.6 1.5 16,662.53 2,699,289 15,760.38 2,924,839
0.6 1 22,717.44 10,523,348 19,741.63 10,660,436
0.6 0.8 29,149.22 21,212,249 25,735.51 20,201,022
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Table A11. The 10 mm plate FEA A, B and theory calculated A, B.

Width [m] Length [m] A B Cal A Cal B

1.2 2.4 3471.776 266,698.2 2074.733 332,895.2
1.2 2 4277.692 464,471 2367.607 583,559.8
1.2 1.5 6167.916 1,034,814 3378.928 1,316,949
1.2 1 11,004.35 2,840,307 8155.409 3,548,379
1.2 0.8 16,640 5,287,136 15,925.41 5,661,502
1 2.4 5041.094 342,169.1 3752.39 417,274.8
1 2 5969.138 613,404.1 4063.639 756,176.4
1 1.5 8251.718 1,477,673 5190.444 1,804,615
1 1 14,203.62 4,449,369 10,353.93 5,280,871
1 0.8 20,480.89 8,169,863 18,434.41 8,815,540

0.8 2.4 8484.767 470,300.6 7924.851 527,555.1
0.8 2 9522.598 841,360.8 8188.214 992,711.5
0.8 1.5 12,163.73 2,145,383 9403.726 2,527,578
0.8 1 19,432.33 7,450,490 15,143.81 8,165,442
0.8 0.8 26,721.05 14,272,233 23,786.57 14,414,536
0.6 2.4 18,260.27 779,447.6 20,585.35 671,353.6
0.6 2 19,010.76 1,319,853 20,543.94 1,318,889
0.6 1.5 21,417.6 3,330,184 21,477.9 3,622,825
0.6 1 29,186.41 13,096,619 27,827.71 13,204,450
0.6 0.8 38,296.02 26,541,955 37,407.44 25,021,808

Table A12. The 16 mm plate FEA A, B and theory calculated A, B.

Width [m] Length [m] A B Cal A Cal B

1.2 2.4 7300.703 539,625.82 6043.828 680,603.8
1.2 2 8756.195 962,335.5 6968.5 1,193,087
1.2 1.5 12,494.57 2,256,154.1 10,164.26 2,692,501
1.2 1 25,073.1 7,181,867.8 25,486.15 7,254,656
1.2 0.8 48,174.93 10,714,430 50,808.47 11,574,934
1 2.4 10,234.71 754,218.1 10,192.25 853,117.9
1 2 11,604.14 1,394,012.3 11,158.47 1,546,002
1 1.5 15,309.64 3,595,719.6 14,616.61 3,689,533
1 1 29,275.91 11,815,887 30,707.89 10,796,736
1 0.8 52,687.53 18,995,236 56,414.56 18,023,361

0.8 2.4 18,117.44 910,655.82 19,449.97 1,078,586
0.8 2 19,822.02 1,640,282.7 20,303.23 2,029,597
0.8 1.5 24,555.24 4,306,897.9 23,945.99 5,167,631
0.8 1 40,674.54 15,820,108 41,107.7 16,694,237
0.8 0.8 64,001.02 29,188,219 67,574.55 29,470,502
0.6 2.4 37,083.77 1,376,602.7 43,775.8 1,372,582
0.6 2 37,921.72 2,428,218.6 43,952.9 2,696,468
0.6 1.5 41,970.62 6,360,732.5 47,090.34 7406,861
0.6 1 59,121.26 25,612,031 65,386.7 26,996,483
0.6 0.8 83,851.03 52,164,977 93,201.39 51,157,057

Appendix D

Appendix D.1. FEA Description

Appendix D.1.1. The Analysis

The FEA (Finite Element Analysis) software is the Siemens Simcenter Femap with
Nastran Ver. 2021.1. The FEA process has three basic steps: model preparation, running the
solver, and post-processing.

Appendix D.1.2. The Model Preparation

To get correct results, we use a consistent system of units:
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• Length-mm
• Force-N
• Stress, Elastic Modulus-MPa [N/(mm)2]
• Shear Rigidity-N/mm

Appendix D.1.3. Materials and Property

In Femap, the 2D plate element Property allows for the definition of a different material
for every one of the four elastic response modes:

• In-plane tension/compression and shear
• Out-of-plane bending and twist
• Cross-section transverse shear deformation
• Coupling of membrane-bending due to asymmetric structure

This ability is suitable to correctly represent the multiwall plate equivalent elastic
constants. In our case, however, since the multiwall plate is orthotropic symmetric, the last
coupling material is not necessary, and therefore, it is left ignored.

We define three 2D Orthotropic Materials: TensionMat, BendingMat, ShearMat, and
we fill their elastic moduli fields with the values found before (see Appendix C).

Appendix D.2. Geometry, Boundary Conditions (BC), Load

The geometry in use is rectangular surfaces, length in x-direction, and width in y-
direction. The edges BCs (constraints) are simply supported, in-plane movable on all
edges, and designated SSSS-M. In Femap, these constraints are designated “3” for z transla-
tion only.

The plate is loaded with an evenly distributed load realized as pressure on the surface.
This pressure load is operating perpendicular to the surface, which means that it slightly
changes its direction while the plate deflects, i.e., it is a follower force. This type of load is
best used to simulate wind load or vacuum chamber test.

Appendix D.3. Meshing

Next, we mesh the model with the Plate Property. A relatively small number of
elements is enough here, as the equivalent element only considers the major response,
neglecting all of the plate’s small features. A 50 × 50mm element was used, resulting in
various numbers of square Quad 4-noded elements. The default direction of the orthotropic
element x-direction is naturally x, so no explicit definition of the orientation is necessary.

Appendix D.4. More BCs after Meshing

The analysis program requires that all rigid body degrees of freedom (DOFs) will be
eliminated. Therefore, virtual BCs (not participating in the analysis) should be added to
cancel these DOFs. The plate midpoint node gets 12 (no translation in x,y). One plate edge
midpoint also gets a constraint that eliminates the free rigid body z rotation around the
plate’s midpoint and also eliminates z deflection (13 or 23).

Appendix D.5. Running the Solver

Large deflections with a non-linear response are expected, so it is necessary to use the
non-linear static solution method. The solver uses the NX-Nastran SOL-106 routine.

Appendix D.6. Post-Processing

Femap allows us to obtain the load–deflection graphs at the requested nodes. The
graph data are then transferred to Excel, which produces graphs as shown in Figure 3.
The Excel sheet also performs theoretical least-squares regression analyses to find the
coefficients A and B for each plate.

Figure A1 below shows a typical FEA screen where the mesh, BCs, loads, and deflec-
tions are presented.
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