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Abstract: A novel dual-phase PHSS consisting of lath martensite plus allotriomorphic δ ferrite (ALF)
with nanoprecipitates was characterized by high-resolution field emission transmission electron
microscopy for quenched, solid-solution-treated, and aged stainless steel. The effects of aging at
various durations prior to H2O or liquid N2 quenching were investigated. Cu-rich nanoprecipitates
evolve from body-centered cubic clusters to 9R Cu under quenching to 3R Cu and subsequently to
face-centered cubic ε-Cu at various aging durations. Maximum hardness was observed after aging
at 600 ◦C for 1 h. However, after this aging, both reversed austenite and Cu-rich nanoprecipitates
coexisted in the martensite matrix. The segregation and diffusion of austenite-stabilizing elements
promoted the nucleation of reversed austenite.

Keywords: dual phases; allotriomorphic δ ferrite (ALF); Cu-rich nanoprecipitates; precipitation-
hardened stainless steel

1. Introduction

Precipitation-hardened (PH) alloy 17-4 PH (AISI type 630 or UNS S17400) is a marten-
sitic stainless steel (SS) containing approximately 3~5 wt.% Cu strengthened by the precipi-
tation of highly dispersed Cu-rich particles inside the tempered lath martensitic matrix and
a small fraction of delta ferrite [1–5]. Since 17-4 PH stainless steel has the characteristics of
anticorrosion, resistance to abrasion, and high strength, it is usually used in environments
with high temperature and high pressure [6]. Stainless steels of 17-4 PH have been used
for a variety of applications in steam turbines, marine construction, the chemical industry,
and power plants [7] due to its proper combination of mechanical properties and corrosion
resistance [8]. After solution treatment, 17-4 PH exhibits a martensitic microstructure but
insufficient hardness. Subsequent precipitation aging treatment at temperatures between
480 ◦C and 620 ◦C results in a submicroscopic, copper-rich phase and increases hardness
and strength [8].

In general, the maximum strength and hardness values can be obtained after initial
aging at 450 ◦C~510 ◦C, during which the precipitation of coherent copper-rich clusters
occurs [8]. Aging at a temperature above 540 ◦C results in the precipitation of incoherent
fcc copper-rich precipitates, lower strength and hardness, and enhanced toughness [8].
At higher aging temperatures, around 580 ◦C and above, a lamellar-like matrix structure
and the formation of a reversed austenite phase are observed [9].

The formation of delta ferrite during the high-temperature process can be examined in
the carbon phase diagram and thermal Calc predictions of the 17-4 PH stainless steel [10–12].
The phase diagram shows that the formation reaction of delta ferrite is strongly affected
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by the carbon content. Lower amounts of carbon increase the quantity of delta ferrite [12].
The δ phase, originating from homogenization treatment at 1290 ◦C, was located within the
region in which phases δ + γ coexisted [10,11].

Allotriomorphic ferrite (ALF) and idiomorphic ferrite (IDF) have been categorized as
the products of diffusional decomposition from austenite, and their distinct morphological
difference is believed to be highly related to their nucleation sites. For ALF, the nucleus first
forms on the prior austenite grain (PAG) boundary, and then growth follows, either along
or normal to this boundary, with the former obviously occurring at a much higher rate.
On the other hand, IDF has been reported to form within PAG, and the nucleation of this
intragranular ferrite has been assumed to be closely related to inclusions or carbides [13].
The main factors affecting δ ferrite formation were inclusion characteristics, cooling rate,
PAG size, etc. After the target temperature was above 1200 ◦C, the average grain size of
prior austenite increased rapidly [14]. With the increase in target heating temperature,
the PAG size increased, and the grain boundary area per unit volume decreased, which
resulted in the nucleation sites of boundary ferrite (i.e., ALF) being reduced, while the
volume fraction of intragranular ferrite (i.e., IDF) began to rise [14–16].

Reversed austenite, which forms during aging at temperatures above 550 ◦C [17,18],
also plays a crucial role. The mechanism of its formation is still not clearly understood, but
it has been postulated that the localized segregation of austenite-stabilizing elements such
as Cu, Ni, and carbon reduces the austenitizing temperature [2,4]. It also leads to a decrease
in the Ms temperature in a localized region in the material, resulting in the stabilization
of reversed austenite at room temperature [2,4]. The slower rate of heating results in the
precipitation of copper-rich phases and carbides and in the segregation of these atoms
towards lath boundaries. Consequently, the bulk of the martensite laths become depleted
in copper, an austenite stabilizer, and as a result, the austenite start temperature (As) is
raised. The lath boundaries, in contrast, become enriched with copper; consequently, the
temperature in these regions is depressed, facilitating austenite formation. Since this steel
is used in high-temperature applications, evaluating their microstructures and mechanical
properties at different age hardening times with 600 ◦C is important.

2. Materials and Methods

The precipitation-hardened stainless steel UNS S17400 (AISI 630), commonly known
as 17-4 PH, in the form of as-received solid-solution-treated 17-4 PH round bars with a
diameter of 17 mm, was used as an experimental material. The chemical composition of
17-4 PH, analyzed by glow discharge spectrometer (GDS), is listed in Table 1. All the steel
bars were sealed in vacuum quartz tubes and homogenized at 1290 ◦C, the dual-phase
(δ + γ) region [10], for 72 h (Figure 1), and then quenched in water. For the bulk material,
prior-homogenized specimens were solid-solution-treated at 1145 ◦C of the dual-phase
region and held for 2 h (Figure 1) before being quenched in H2O and liquid N2, respectively.
Subsequently, the specimens underwent isothermal aging at 600 ◦C for 1, 3, and 5 h,
respectively, as illustrated in Figure 1. Coupons of 3 mm (W) × 5 mm (L) × 4 mm (H)
were cut from the half-radius of the round bar for analysis by optical microscopy (OM) and
high-resolution transmission electron microscopy (TEM). The observed plane was normal
to the rolling direction (RD). The samples were prepared for metallography through a
series of mechanical polishing with grit papers of various numbers, then further polished
to 0.05 µm thickness with alumina powder. Samples were immersed for 3–5 min in the
reagent Beraha’s sulfamic acid etchant, 100 mL H2O, 3 g K2S2O5, 1 g NH2SO3H, 0.5–1 g
NH4FHF [19]. The optical images and area fraction of ferrite were measured based on color
metallographic photos and Image J software (1.54b).

Table 1. Chemical composition of 17-4 PH SS (wt.%) by GDS.

Element C Si Mn P S Ni Cr Mo Cu Al N Nb Fe

Wt.% 0.03 0.37 0.65 0.03 0.03 4.77 15.4 0.13 3.52 0.01 0.018 0.22 bal.
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Figure 1. Schematic diagram showing the dual-phase heat treatments and aging at different times.

The microhardness was tested with a load of 300 g for 15 s using an HMV-G20 Vickers
microhardness tester. A total of 20 locations with 0.5 mm between indentations were
measured, and the average value was regarded as the final hardness. For TEM observation,
thin sections were cut from the samples and mechanically polished down to a thickness of
0.2 mm with #800 grit paper and then to 0.1 mm with #1000 grit SiC paper. A 3 mm disk
was punched out of the sample and ground to a thickness of 0.05 mm with #1200 grit paper.
The disks were electropolished into foils in an electrolyte consisting of 5% perchloric acid,
25% glycerol, and 70% ethanol at −5 ◦C under 35 V potential [20]. The foils were examined
under a field emission transmission electron microscope (FE-TEM Tecnai G2 F30) operated
at 300 kV.

3. Results
3.1. Dual-Phase Microstructure of Color Metallograph

The optical color microstructures of samples treated after homogenization and solid
solution and then quenched in H2O or liquid N2, respectively, are exhibited in Figure 2.
Many well-defined large grains of martensite were surrounded by allotriomorphic ferrite
(ALF) in white at the grain boundaries, as indicated by the yellow arrows in Figure 2a–c,
because of the solid solution treatment in the δ + γ dual-phase region. Allotriomorphic
ferrite (ALF) and idiomorphic ferrite (IDF) in Figure 2 have been categorized as the products
of diffusional decomposition from austenite, and their distinct morphological difference
is believed to be highly related to their sites [13]. For ALF, the nucleus first forms at the
prior austenite grain boundary, and then growth follows, either along or normal to this
boundary, with the former obviously occurring at a much higher rate. The number of
nucleation sites for ALF is proportional to the grain boundary area per unit volume, and
therefore can be greatly reduced by increasing the prior austenite grain size, resulting in
a layer-like morphology because of the lower possibility of hard impingement between
adjacent ALF grains.

On the other hand, IDF, though rarely observed in Figure 2, has been reported to
form within prior austenite grains, and the nucleation of this intragranular ferrite has been
assumed to be closely related to inclusions or carbides. Previous studies have suggested
that IDF tends to nucleate at inclusions such as MnS, Ti2O3, or mixtures of MnS and either



Metals 2023, 13, 625 4 of 13

V(C, N) [21] or Al2O3. The prior austenite grain size (PAGS) of homogenization was
approximately 164 ± 23 µm (Figure 2a) with about 12 vol% ALF δ. The measured PAGS for
two cooling conditions after solid solution treatment were approximately 130 ± 14 µm for
H2O quenching (Figure 2b), and 142 ± 17 µm for liquid N2 quenching (Figure 2c). Color
metallography highlighted the δ ferrite grains in various heat-treated 17-4 PH SS, as shown
in Figure 2. Even after subsequent solid solution treatment, the prior ALF δ continued
to grow to about 22 vol% ALF δ for H2O quenching, and about 15 vol% ALF δ for liquid
N2 quenching. The faster cooling in liquid N2 resulted in larger PAGs, leading to a lower
vol% ALF δ.
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Figure 2. Microstructures of type 17-4 PH color metallography etched with Beraha’s sulfamic
acid reagent for (a) water quenched homogenization; (b) water quenched solid solution; (c) liquid
nitrogen quenched solid solution. (Image J pictures for phase volume measurement inserted at the
bottom right).

3.2. Hardness Distributions

Vickers hardness values (HV) obtained for the homogenized samples, solid-solution-
treated samples, and samples aged under 600 ◦C conditions are plotted in Figure 3. The
average microhardness was about 287 HV in H2O-quenched homogenization, and rose to
about 303 HV due to the formation of microtwins during either H2O- or liquid N2-quenched
solid solution treatment, as depicted in Figure 3. For aging at the temperature of 600 ◦C for
1 h, the hardness value exhibited a peak value then decayed from the peak hardness, with
the prolonged aging time, to approaching the solid solution hardness of about 303 HV of
aging for 5 h at 600 ◦C. An inappropriate aging temperature has the drawback of softening
the steel by coarsening the microstructure, as shown in Figure 3.
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3.3. Quenched Nanoprecipitate Formation in ALF δ Matrix

The microstructure of the homogenized steel and H2O-quenched (WQ) steel is com-
posed basically of a dual phase in lath martensite and δ-ferrite, as shown in Figure 4.
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The explanation in regard to the formation of lath martensite in the very low carbon con-
tent of 0.03 wt.% of 17-4 PH steel can be rationalized in terms of high Ms (martensite
transformation start temperature), which is around 93–170 ◦C, and the alloying effect in
very-low-carbon alloy steel. Typically, plate martensite is produced in high-carbon alloys
with more than 1.0% carbon, while lath martensite is the sole product in low-carbon alloys
with less than about 0.6% carbon. The width of the martensite laths in the homogenized
steel was less than 0.4 µm without the precipitates inside the laths (Figure 4a). Generally,
no copper nanoparticles were found in martensite laths besides the high density of dis-
locations, indicating that the martensite phase was supersaturated with Cu atoms in the
homogenized condition [22] in Figure 4a,b. Nevertheless, it does not obey the conventional
understanding of aging precipitation that the numerous nanoparticles of Cu-rich precipi-
tates were embedded in ALF δ-ferrite matrix immediately after H2O quenching, as can be
seen in Figure 4c,d. It has been confirmed and published by thermodynamic prediction [10].
Quenching from elevated temperatures to low temperatures can lead to excess vacancies;
that is, more vacancies than the equilibrium state at low temperature, which can acceler-
ate the precipitation processes. Based on the Thermal-Calc calculated predictions for the
phase and Cu solubility [10], the experimental results indicated that Cu-rich nanoparticles
precipitated instantly during quenching from ultrasupersaturated ALF δ ferrite. They
also verified the presence of Cu solubility at high solid solution temperature under the
coexistence of BCC δ and FCC γ [10]. Normally, Cu-rich precipitates are commonly found
in supersaturated solid solution during subsequent aging treatment because of the decrease
in the solubility of copper in ferrite with decreasing temperature [23].
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The formation of nanoprecipitates during quenching is rarely observed, and distin-
guishes this process from conventional aging precipitation. An analysis of nanomechanical
properties revealed that the strength of ALF δ ferrite containing Cu-rich nanoparticles is
superior to that of martensite [10,11].
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Similarly, many Cu-rich nanoparticles also existed in the δ ferrite matrix after either the
H2O-quenched or the liquid N2-quenched solid solution treatment, as depicted in Figure 5.
In addition, the striking feature of microtwins was also found inside the martensite laths.
The existence of twin-related streaks was interpreted as a result of the accommodation of the
strain created by the adjacent laths. The diffraction patterns were obtained along [113]bcc in
Figure 6a and [011]bcc in the Figure 6b axis zones, which were captured from H2O-quenched
(Figure 6a) and liquid N2-quenched (Figure 6b) solid solution steel, respectively.
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3.4. Aging Feature of Nanoprecipitates and Reverted γ

The samples with peak hardness at 1 h were selected for TEM examination. The
microstructures of aged samples after solid-solution treatment and H2O quenching (WQ)
are presented in Figure 7. By superimposing two periodic structures (i.e., lattices) under the
proper conditions, one can obtain a new fringe pattern. This pattern is known as a Moiré
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fringe pattern [24,25]. The shape of the copper precipitates tended toward an elliptical
shape after aging at 600 ◦C for 1 h, with a short axis of about 18.3 nm and a long axis
of about 24.1 nm, as shown in Figure 7c. The Moiré fringes of parallel bands (Figure 7c)
formed on the precipitate; this feature was quite similar to that of the twinned 9R structure
reported by Othen et al. [26,27]. It has been confirmed by the two-beam condition to
demonstrate the precipitation of bcc Cu-rich precipitates in the bcc ferrite matrix [28]. They
suggested that the presence of a strain field without any Moiré fringes in the precipitate
area is evidence of the presence of bcc Cu-rich precipitates. It was argued that the formation
of (114)9R 9R twins in 9R Cu-rich precipitates could reduce the strain energy between 9R
Cu-rich precipitates and the α′-matrix during the transformation [29]. The peak hardness
after aging at 600 ◦C for 1 h was higher than the hardness of the solid solution sample
shown in Figure 3, which was attributed to the presence of nanocopper precipitates in the
lath martensite inhibiting the dislocation motion. Therefore, during aging, copper obtains
the thermal energy of diffusion and precipitates from the matrix [3].
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Figure 7. Samples aged for 1 h at 600 ◦C after H2O-quenched solid solution treatment. (a) Cu-rich
particles in martensite matrix; (b) enlarged magnification of nano Cu-rich particles in ALF δ ferrite
matrix; (c) enlarged 9R-Cu in (a) martensite with the Moiré fringes of parallel bands; (d) 9R Cu-rich
precipitates with zigzag or herring-bone pattern of interference fringe; (e) collapsed lath martensite
embedded reversed γ dark field of reversed γ at bottom left; (f) orientation relationship (OR) between
martensite α′ and reversed austenite γ.

Reversed austenite was also found in Figure 7e, and its dark field reflection in the
bottom left of Figure 7e was taken from the selected area diffraction (SAD) patterns. The
SAD patterns produced from the regions of the reversed austenite and martensite ma-
trix are shown in Figure 7f. The orientation relationship between the reversed austenite
and the martensite matrix in Figure 7f was analyzed and identified as (101)α′//(11 1)γ;
[111]α′//[110]γ. The morphology of reversed austenite suggests that its formation was
involved with a diffusional mechanism [2]. The nano Cu-rich particles still remained within
the δ ferrite to this stage.

The microstructures that resulted from aging after previous fast cooling by liquid N2
(LQ) quenching are presented in Figure 8. The nano Cu-rich particles that precipitated
in the martensite matrix were about 6~12 nm; they were smaller than previous water-
quenched nano Cu-rich precipitates in size (Figure 8a) due to the faster cooling rate. The
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Cu-rich particles formed in a sequence of twinned 9R Cu-rich precipitates with a diameter
of 4~17 nm after coherent bcc Cu clusters. They sequentially transformed into the more
stable 3R Cu-rich precipitates having the K-S OR with α′.
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Figure 8. Samples aged after liquid N2-quenched solid solution treatment. (a) Nano 9R-Cu rich
particles in martensite matrix with diffraction patterns; (b) collapsed lath martensite and reversed
γ; (c) dark field of reversed γ; (d) orientation relationship (OR) between martensite α′ and reversed
austenite γ; (e) nano Cu-rich particles in δ ferrite.

In addition, the enlarged image in Figure 8a shows a Moiré fringed particle, defined
as a 9R Cu-rich particle, which also precipitated in the martensite matrix, and its diffraction
pattern is shown in Figure 8a. These distinct striations perpendicular to the [001]α′ direction
were observed, and the satellite spots around the (002)α′ and (110)α′ reciprocal planes
appeared in the SAD patterns (Figure 8a). It is worth noting that the bcc Cu clusters were
arranged in a regular morphology; that is, they were characterized by a period of distinct
striations perpendicular to the [001]α′ direction [30]. The pattern also showed streaks along
with [110]9R-Cu, and other diffraction spots of Cu-rich particles too weak to be recognized.
It was concluded that the 9R Cu-rich particles and reversed austenite coexisting in the
martensite were predominated by all the Cu atoms that diffused from adjacent supersatu-
rated δ ferrite into the martensite matrix through many short diffusion paths of dislocations,
sub-block, and block boundaries, and joined with the supersaturated Cu already in the
prior austenite matrix. A similar type of herring-bone image has been documented by
several authors [30]. A zigzag or herring-bone pattern of interference fringe was clearly
visible within the precipitate, highly suggestive of uniform twin-related bands extending
throughout the particle [30]. The observed orientation relationship between the bcc α′ and
the 9R Cu-rich particles can be expressed as (001)bcc//(114)9R; [111]bcc//[110]9R [20,25]. It
has been argued that the formation of (114)9R twins in 9R Cu-rich particles can reduce the
strain energy between 9R Cu-rich particles and the α′ matrix during the transformation [30].

The bright field and centered dark-field images obtained from the aged steel are shown
in Figure 8b,c. The dark field of the reversed austenite pattern in Figure 8d was taken from
the SAD in Figure 8b. This analysis confirmed that the reversed austenite preferentially
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formed along martensite lath boundaries and inside the martensite laths, which agreed
with the literature [31]. The electron diffraction pattern (Figure 8d) indicated that the
reversed austenite had an identical K-S OR with the martensite matrix, (101)α′//(11 1)γ;
[111]α′//[110]γ, which was consistent with the literature [32,33]. A certain amount of
reversed austenite formed along the original martensite laths, and the mechanism of its
formation involved a diffusional mechanism (Figure 8b). The Cu-rich nanoprecipitates still
remained within the δ ferrite to this stage in Figure 8e.

4. Discussion
4.1. Unique Characteristics of Quenched Nano Cu-Rich Precipitation in ALF δ Matrix

In the early stage of the precipitation of copper, coherent bcc clusters nucleate and
grow in the supersaturated bcc matrix and lose coherency after reaching a certain critical
size, and they further grow such that the copper-rich particles became fcc copper-phase
precipitates [2,34]. The evolution of Cu-rich precipitates follows the steps of critical size
bcc-Cu about 4 nm→ 9R (coherent) about 4~17 nm→ 3R (incoherent) about 17~30 nm
→ ε-Cu (fcc) [35]. In the literature, it is reported that twinned 9R Cu-rich particles with
diameters of 4 nm to 17 nm form after coherent bcc Cu clusters and sequentially transform
into more 3R Cu-rich precipitates having a K-S orientation relationship with α′ [36]. The
precipitates in both binary and ternary alloy specimens were found to have transformed
from a roughly spherical twinned 9R structure to an ellipsoidal untwinned 3R structure.
The bcc Cu clusters initially form in the α′ matrix and show perfect coherency with the α′

matrix. After reaching a critical size of ~4 nm, the martensitic transformation of bcc Cu to
9R Cu takes place due to the minimization of large coherent strain energy [27,30,37]. The
crystal structure of 9R Cu-rich particles was confirmed to be orthorhombic and contains
a high density of twinning caused by misfit strain between bcc and 9R structures. The
critical size for the Cu-rich precipitates’ transformation is not known precisely, but it must
lie in the range of 18~30 nm [27]. The production of such random stacking faults on the
close-packed basal planes in the regular 9R structure is believed to occur as a result of the
lattice invariant deformation during the martensitic transformation [27].

During aging at 600 ◦C for 1 h, the highly dispersed, coherent precipitates of cop-
per strongly contribute to the hardening of the alloy. The peak hardness after 600 ◦C
aging (Figure 3) could be explained by the distribution of very fine copper precipitates
on dislocations in the martensite and ferrite, which evidently acted as sites for precipitate
nucleation and growth [23]. These fine Cu-rich precipitates contributed to strengthening
by precipitation hardening, and unresolved bcc clusters and fcc ε Cu-rich precipitates pro-
vided additional increments in strength. Coarser incoherent copper precipitates have been
found to inhibit localized slip and the formation of dislocation pile-ups at grain boundaries.
The formation of a very fine Cu-rich precipitate distribution is the principal hardening
mechanism in this alloy system.

The formation of coherent Cu-rich precipitates during aging leads to hardening, but
microstructure coarsening and modification of the dislocation structure by tempering
will decrease the hardness [23]. Thus, an increase in temperature accelerates the aging
of the alloy due to the increase in the diffusion rate, which in turn enhances both the
nucleation and growth of Cu-rich precipitates. Therefore, the hardness change depends on
the temperature and tempering duration. Significant reductions in hardness after aging at
3 h and 5 h were caused by overaging of the martensite and/or the formation of reversed
austenite (Figures 7b and 8b). Overaging at 600 ◦C for a prolonged time at a specific
temperature caused the copper atoms to diffuse to the grain boundaries and the boundaries
of the martensite laths such that reversed austenite formed at these locations. This brought
about the depletion of copper and Ni in the martensite matrix [38]. Overaging is due to the
coarsening of incoherent ε Cu-rich precipitates and the occurrence of reversed austenite.
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4.2. The Reversed Austenite Formation during Aging

The reversed austenite usually appears in two different morphologies: granular, as
shown in Figure 7b, and lath-like, shown in Figure 8b. Lath-like austenite forms along
the lath boundaries of martensite, as seen in Figure 8b, and sometimes within the lath,
and this gradually leads to a lamellar duplex structure of alternating austenite and aged
martensite films. However, the granular austenite grows mainly from prior austenite grain
boundaries, as shown in Figure 7b, or is formed by the growth of lath-like austenite. It
has generally been accepted that granular reversed austenite is the product of a diffusion
mechanism [39,40].

The reverse transformation from martensite crystals to the austenite orientation implies
an effect of morphological memory of the orientation variant of the prior austenite grain. Ini-
tially, the reversed austenite formed at the aging temperature of 600 ◦C and remained upon
subsequent cooling to the ambient temperature (Figures 7b and 8b). The reversed γ trans-
formation that occurred at the temperature of 600 ◦C below the measured As = 785 ◦C [41]
suggested that the partitioning of Cu and Ni must have enriched these regions to such an
extent. A thin layer of reversed austenite along lath boundaries and the intralath Cu-rich
phase observed in Figure 8b corresponded to the literature [4].

Regarding the lower hardness after 600 ◦C aging at 3 h and 5 h in Figure 3 and
the influence of reversed austenite, it has been reported [35] that copper precipitates
are expected to be favorable nucleation sites for reversed austenite, since copper and
austenite have the same fcc structure with similar lattice parameters. During aging at
temperatures equal to or above 600 ◦C, segregation and diffusion of the austenite-stabilizing
elements of Cu, Ni, and Fe will have a profound influence on the precipitates and the
martensite matrix, leading to the austenite forming element-enriched areas around the
copper precipitates, which could trigger the reversed austenite to nucleate. The Cr content
from ferrite conversely decreases the amount of reversed austenite. Therefore, C and N,
which are also austenite stabilizers, may concentrate in the reversed austenite. Moreover,
the growth of reversed austenite attracts considerable amounts of Cu and Ni from the
martensite matrix, since the solubility of these elements in austenite is much higher [2,9].
The reversed austenite is a stable phase only after aging around 620 ◦C and encompasses
the ε-copper-rich precipitates [38]. It was reported that the influence of austenite reversal is
much more pronounced on softening than the influence of the coarsening of precipitates
is [42,43]. Sinha et al. [44] excluded the mechanism of dissolution of precipitates for the
formation of reversed austenite. They supposed that Ni diffused to dislocations and
defects, resulting in the microsegregation of austenite-stabilizing elements in localized
areas. Kim and Wayman [43] suggested that the formation of lath-like austenite in high-Ni
maraging alloys is shear-dominated but assisted by a diffusion-controlled process. The
habit plane of the lath-like austenite is close to [111]γ. All characteristics of the orientation
relationship, habit plane, and growth direction are quite similar to those of lath martensite
and suggest that lath austenite forms due to a shear mechanism [40,43]. However, based on
EDX analysis, the lath-like austenite contains higher Ni and Mn contents than the original
martensite does. Thus, it is concluded that diffusion is involved [40,43]. It is possible
that at a temperature of 600 ◦C, Ni, C, and other austenite stabilizers gradually diffuse
to the reversed austenite and become trapped there. Because the reversed austenite is
stabilized by these alloying elements, carbon is preferentially located in it, alloy carbides
fail to precipitate in the martensite, and the martensite is unable to decompose at the aging
of one hour.

5. Conclusions

The microstructures of solution-treated 17-4 PHSS were mainly composed of a dual
phase in lath martensite and ALF δ ferrite with nanoprecipitates. The most distinctive
features were the Cu-rich nanoparticles that appeared in the ALF δ ferrite matrix directly
after the quenched homogenization, and the Cu-rich nanoparticles that precipitated in the
martensite matrix during aging. The maximum peak aging hardness appeared only after ag-
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ing for 1 h at 600 ◦C. Meanwhile, it was noted that the reversed austenite appeared at 600 ◦C
by alloy diffusion. The nano Cu-rich particles that precipitated in the martensite during
aging at 600 ◦C for 1 h could lead to hardening. However, the coarsening, the degraded lath
martensite, the reduction in dislocation density and the growth of the reversed austenite
with increases in aging time would result in softening due to a decrease in hardness. The
following phenomena occur during the aging treatments: (i) rearrangement of dislocations
within the martensite laths; (ii) peak hardness, possibly due to the ultrasupersaturated
successive Cu-rich precipitation joined to the previous quenched precipitates in δ ferrite
and the new nanoprecipitates occurred in martensite; and (iii) formation of either granular
or lath-like reversed austenite along the lath boundaries by austenite stabilizing element
partition. The softening effect may be associated with the coarsening of the incoherent ε-Cu
rich precipitates and the formation of slight amounts of reversed austenite.
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