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Abstract: The vegetative life cycle in the model filamentous fungus, Neurospora crassa, relies on the 

development of conidiophores to produce new spores. Environmental, temporal, and genetic 

components of conidiophore development have been well characterized; however, little is known 

about their morphological variation. We explored conidiophore architectural variation in a natural 

population using a wild population collection of 21 strains from Louisiana, United States of America 

(USA). Our work reveals three novel architectural phenotypes, Wild Type, Bulky, and Wrap, and 

shows their maintenance throughout the duration of conidiophore development. Furthermore, we 

present a novel image-classifier using a convolutional neural network specifically developed to 

assign conidiophore architectural phenotypes in a high-throughput manner. To estimate an 

inheritance model for this discrete complex trait, crosses between strains of each phenotype were 

conducted, and conidiophores of subsequent progeny were characterized using the trained 

classifier. Our model suggests that conidiophore architecture is controlled by at least two genes and 

has a heritability of 0.23. Additionally, we quantified the number of conidia produced by each 

conidiophore type and their dispersion distance, suggesting that conidiophore architectural 

phenotype may impact N. crassa colonization capacity. 

Keywords: Neurospora crassa; natural variation; complex trait; conidiophore development; 

phenomics; convolutional neural network; generalized linear model; spore shadow 

 

1. Introduction 

Neurospora crassa propagates asexually through the dissemination of haploid spores, conidia, 

which develop via specialized aerial structures called conidiophores [1]. Macroconidiophores give 

rise to macroconidia and are morphologically and developmentally distinct from their smaller 

counterparts, microconidiophores, which give rise to uninuclear microconidia [2]. Since 

macroconidiophores are the subject of this work, they are hereafter referred to simply as 

conidiophores. Development of conidiophores is under strict environmental and temporal control, 

requiring cues such as desiccation, nutrient deprivation, and light exposure for its induction [3]. After 

exposure to these environmental triggers, aerial hyphae grow perpendicular to the preceding 

mycelial mat to stimulate conidiophore development. The organism subsequently undergoes a series 

of constriction budding followed by crosswall formations until eventual sporulation, roughly 10 

hours (h) following the beginning of this process [4]. It is through this dissemination of conidia that 

the vegetative life cycle can propagate, thus allowing new filaments to germinate after a period of 

dormancy. Conidiophore development is under strict circadian control, requiring activation of the 
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white collar complex (WCC) by light for activation of fluffy (fl), a necessary regulator of conidiophore 

development [5,6]. While environmental, temporal, and genetic components of conidiophore 

development in N. crassa have been well characterized [7], little is known about morphological 

variation of these structures, particularly in natural populations. 

In other filamentous fungal species, conidiophore architecture has been shown to directly impact 

the ability of an organism to disseminate throughout an environment and infect host tissues. For 

example, conidiophore morphology is altered in Aspergillus niger following deletion of velvetA, 

directly impacting both spore dispersion and colonization capacity of the organism [8]. Additionally, 

mutating the acropetal locus of Magnaporthe grisea modifies arrangement of the developing spores in 

a conidiophore, resulting in spores that are nonpathogenic [9]. Given these known effects in other 

fungal species, we sought to characterize natural conidiophore architectural variation in N. crassa, 

estimate heritability of these phenotypes, and examine their potential impact on sporulation. To do 

this, we employed a wild population collection of 21 N. crassa strains collected from Louisiana, United 

States of America (USA) [10]. These isolates have been used in previous population genetics studies 

to elucidate local adaptations to cold tolerance and circadian rhythm [11] and characterize novel 

functions of loci [12,13]. Our work reveals three novel and distinct conidiophore architectural 

phenotypes among these wild populations. These phenotypes persist throughout the duration of 

conidiophore development and are described here as Wild Type (WT), Bulky, and Wrap. By 

conducting crosses between each phenotype and characterizing subsequent progeny conidiophores, 

we were able to fit a model for heritability of the discrete complex trait, conidiophore type. Our model 

suggests that at least two genes control conidiophore architectural phenotype and estimates a 

heritability of 0.23. We explored the potential impact of conidiophore phenotype on sporulation by 

quantifying the number of conidia produced and their dispersal distance. Furthermore, we present a 

novel approach with an accurate image-classifier using a convolutional neural network [14] 

specifically developed to assign conidiophore architectural phenotypes in a high-throughput 

manner. 

2. Materials and Methods 

2.1. Strains and Media 

Wild Louisiana isolates were obtained from the Fungal Genetics Stock Center (FGSC, 

Manhattan, KS, USA) [15] and are listed in Table A1 (Appendix A). Strains were maintained on 1.8% 

glucose/1.8% fructose/1.5% agar slants with 1× Vogel’s media and recommended biotin and trace 

element supplements. To isolate conidiophores, strains were inoculated on 1.8% glucose/1.8% 

fructose/1.5% agar plates (100 × 15 millimeters (mm)) with 1× Vogel’s media, biotin, and trace element 

supplements and incubated at 30 °C for 20 h. Cultures were then harvested onto a 82 mm diameter 

nitrocellulose membrane with 0.45 micron (µm) pore size (Whatman Protran BA-85, Maidstone, 

England), inverted onto a new agar plate as described above, and placed under light for aerial hyphae 

to penetrate the membrane. After 20 h, membranes were removed from the agar and secured on a 

flat surface for imaging of conidiophores. Method was adapted from Bailey-Shrode and Ebbole, 2004 

[6]. 

Cultures for time-course images were grown following the same protocol with nitrocellulose 

membranes removed at 20, 25, or 35 h for imaging of conidiophores at different stages of 

development. 

2.2. Crosses and Progeny Screening 

Crosses were performed in the dark on cornmeal crossing medium, after which ascospores were 

plated on sorbose + fructose + glucose (SFG) media. Colonies were subsequently picked to isolate 

random ascospore progeny. Strains selected for crossing were FGSC8872 (WT) × FGSC3943 (Bulky), 

FGSC8872 (WT) × FGSC8876 (Wrap), and FGSC2229 (Bulky) × FGSC8876 (Wrap). Crosses were 

conducted in duplicate with 25 progeny selected from each. To isolate and image conidiophores in a 

high-throughput manner while preventing fusion of different progeny sharing a plate, each strain 
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was inoculated on a 1 mL 1.5% agar droplet containing 1.8% glucose/1.8% fructose with 1× Vogel’s 

media and recommended biotin and trace element supplements. Each 150 × 15 mm petri dish 

contained eight agar droplets evenly spaced roughly 2.5 cm apart. Each droplet was inoculated with 

progeny conidia and incubated at 30 °C for 20 h to allow sufficient mycelial growth without hyphal 

fusion between droplets. Each droplet was then harvested onto a separate nitrocellulose membrane 

with 0.45 um pore size. Each membrane was inverted onto a new agar droplet as described above 

and placed under light for aerial hyphae to penetrate the membrane. After 25 h, membranes were 

removed from the agar and secured on a flat surface for imaging of conidiophores. 

2.3. Microscopy and Image Deconvolution 

Nitrocellulose membranes containing conidiophores were visualized on an inverted microscope 

(Axio Observer A1, Carl Zeiss Microscopy, LLC, Thornwood, NY, USA) at 20× magnification and 

brightfield images were taken with a charge-coupled device (CCD) camera (AxioCam HRm, Carl 

Zeiss Microscopy, LLC, Thornwood, NY, USA). Multiple z-slices were captured and overlaid in 

ImageJ [16] to convey a complete representation of each three-dimensional structure. Augmentation 

including contrast enhancement and noise and background subtraction was conducted on image 

stacks to isolate conidiophores from underlying mycelia and/or aerial hyphae [17]. 

2.4. Automated Phenotype Classification 

Residual nets (ResNet) was used to classify brightfield images into the three phenotypic classes 

by transfer learning [14]. After some hyperparameter searching, ResNet-50 pretrained on ImageNet 

was chosen as the starting neural network for image classification [18]. Training parameters were as 

follows: batch size, 15; initial learning rate, 0.001; stochastic gradient decent as the optimizer. The 

training process did not update parameters before module 3 in ResNet, and the parameters were only 

updated for the last 27 convolutional layers and the fully connected layer. Learning rates decayed 

when plateau was used for modifying learning. Augmentation including random rotation, random 

horizontal flip, and random gray was introduced in the training to simulate realistic diversity and 

prevent overfitting. Before augmentation, all images went through padding and resize to fit the 

ResNet input size. All images were converted to tensor and normalized. 

We balanced the three classes of conidiophore phenotypes and separated the dataset into 

training (543), validation (66), and test sets (66). An external test set generated from progeny 

conidiophore images was collected in a separate batch and used for further validation (WT: 40; Bulky: 

60; Wrap: 49). The training set was used to train the neural network and update its parameters. The 

validation set was used for updating learning rates and finding the final model to alleviate overfitting 

(Figure A1 in the Appendix A). The test set was not used until the final performance evaluation. We 

calculated accuracy and macro definition of precision and recall for multiclass classification [19]. The 

model training and inference used PyTorch [20], torchvision, and CUDA. P100 at Sapelo2 of GACRC 

was used for model training. 

Feature importance was also evaluated on the test set. Features were evaluated on an integrated 

gradient [21], and the noise tunnel method [22] smoothed the result. We chose the maximal value as 

baseline instead of regular choices (constant black) because, in our brightfield images, a lighter 

background indicated the absence of features [23]. In noise tunnel, the noise was added 10 times, and 

the means of squared attributions were used. 

The codes for training and visualization are shared on GitHub 

(https://github.com/michaelSkaro/image_classification/tree/master/src). 

2.5. Sporulation Quantification 

Representative strains for each phenotypic class (FGSC8872, FGSC8876, and FGSC3943) were 

inoculated on 1.8% glucose/1.8% fructose/1.5% agar plates with 1× Vogel’s media, biotin, and trace 

element supplements and incubated at 30 °C for 30 h. Three biological replicates of each strain were 

performed. Cultures were then harvested onto an 82 mm diameter nitrocellulose membrane and 
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inverted onto a new agar plate as previously described above. Plates were placed under light for 32 

h to allow penetration of aerial hyphae, development of conidiophores, and subsequent sporulation. 

Nitrocellulose membranes were then removed, and conidia were suspended into 50 mL of water and 

counted and sized with the Cellometer Auto 2000 (Nexcelom, Inc., Lawrence, MA, USA) [24,25]. 

To compare dispersal distance traveled by spores of each phenotype, the same representative 

strains listed above were inoculated onto the same growth medium. After 20 h at 30° C, cultures were 

harvested onto a 60 mm diameter nitrocellulose membrane, inverted onto a new plate, and set under 

light for 30 h. Membranes were then removed and placed at the center of a 245 mm square bioassay 

dish, where SFG medium surrounded a 60 mm diameter blank space now occupied by the 

membrane. The dish was placed under light for 48 h to allow for sporulation and subsequent colonial 

growth. At this time, pictures of each plate were taken with an iPhone XS, and contrast enhancement 

was performed in ImageJ. ImageJ was used to measure distance from the center of each nitrocellulose 

membrane to the center of each colony. Two biological replicates were conducted for each strain. 

3. Results 

3.1. Wild N. crassa Isolates Exhibit Three Conidiophore Architectural Phenotypes 

Conidiophores from 21 wild Louisiana populations of N. crassa (Table A1) were isolated and 

imaged, and we identified striking architectural variation both within and between populations. 

Conidiophores were classified by their morphology into three groups that are hereafter referred to 

as Wild Type (WT), Bulky, and Wrap. The WT phenotypic class is characterized by linear chains of 

developing conidia that extend and branch outward from the aerial hypha. Developing spores in 

Bulky conidiophores, however, form crowded clusters that inhibit the ability to distinguish linear 

chains. These spores also display more variation in their size and shape. In the Wrap phenotype, 

conidia cling to and/or wrap around a hyphal filament rather than extending and branching outward 

as in the other phenotypic groups (Figure 1). 

 

Figure 1. The three conidiophore architectural phenotypes. The Wild-Type (WT) phenotype is 

depicted in the first panel with FGSC2489, followed by the Bulky phenotype with FGSC8878, and 

Wrap with FGSC8876. Scale bar, 100 microns (µm). 

Each brightfield image was manually classified into one (or two) of the phenotypic classes using 

the guidelines described above (Table 1). Many strains had one phenotype demonstrating a clear 

majority, although every population had representation from at least two of the three phenotypes. 

All strains developed conidiophores with WT and Wrap phenotypes. Most strains also had Bulky 

conidiophores, with the exception of five populations (FGSC0847, FGSC2222, FGSC2228, FGSC3199, 

FGSC8872) lacking such individuals. Among the population set of 21 wild strains, 13 showed a 

majority of WT conidiophores, while five had a majority of Bulky, and three had a majority of Wrap. 
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Table 1. Classifications of conidiophores belonging to each wild isolate (chi-squared test for 

independence: Χ2 = 380.92, df = 40, p < 2.2 × 10−16). Individual conidiophore counts vary with each 

strain. Phenotypes are balanced for classifier training described below. 

Strain WT Bulky Wrap Total 

FGSC0847 22 0 4 26 

FGSC2221 26 1 3 30 

FGSC2222 13 0 8 21 

FGSC2223 10 2 3 15 

FGSC2224 16 23 6 45 

FGSC2228 39 0 5 44 

FGSC2229 14 54 48 116 

FGSC2489 32 7 1 40 

FGSC3199 17 0 2 19 

FGSC3200 30 5 23 58 

FGSC3211 20 16 7 43 

FGSC3212 54 2 6 62 

FGSC3943 32 80 52 164 

FGSC8870 19 2 9 30 

FGSC8871 16 6 17 39 

FGSC8872 14 0 4 18 

FGSC8873 8 11 13 32 

FGSC8874 20 3 14 37 

FGSC8876 15 21 42 78 

FGSC8878 20 26 12 58 

FGSC8879 6 12 11 29 

Total 443 271 290  

3.2. Architectural Phenotypes Are Consistent throughout Conidiophore Development 

To ensure the three phenotypes were not just representations of different time points along the 

same developmental trajectory, we captured images of strains strongly representing each phenotype 

at 20, 25, 30, and 35 h after transferring cultures to the nitrocellulose membrane, with 30 h as the 

initial reference point for mature conidiophore images. It is important to note that each time point 

was collected from a separate set of cultures, and these are not time-series images. WT, Bulky, and 

Wrap phenotypes were presented as early as 20 h and maintained until sporulation captured at 35 h, 

suggesting that the three architectural phenotypes are not a result of temporal disparity along the 

same developmental trajectory (Figure 2). 

 

Figure 2. Development of conidiophore architectural phenotypes over time. Individual cultures were 

imaged at 20, 25, 30 and 35 h after being transferred to a nitrocellulose membrane and placed under 

light. Development of the conidiophore begins at roughly 20 h and concludes with sporulation by 35 

h. Representative strains used were as follows: WT, FGSC2489; Bulky, FGSC8879; Wrap, FGSC8876. 

Scale bar, 100 µm. 
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3.3. There Is No Dependence of Phenotype on Strain Collection Environment 

Next, we investigated whether or not there was a correlation between the environment from 

which a strain was collected and its most prominent conidiophore phenotype. We found no 

statistically significant dependence of phenotype on collection substrate as reported by the Fungal 

Genetics Stock Center (FGSC) [15] (chi-squared test for independence; Χ2 = 4.9196, df = 10, p = 0.8965) 

(Figure 3). Interestingly, all strains with a majority of Wrap conidiophores (n = 3) were collected from 

sugarcane, although WT and Bulky strains were also found on this substrate. WT strains were found 

on all six substrates (sugarcane, grass burn, burned stump, pine burn, bonfire, and unknown), and 

Bulky strains were found on sugarcane, grass burn, and pine burn. We also did not find any clear 

relationship between most prominent phenotype and the town from which each strain was collected, 

as reported by FGSC (Figure 4). 

 

Figure 3. There is no significant correlation between the substrate from which a strain was collected 

and its most prominent phenotype (Χ2 = 4.9196, df = 10, p = 0.8965) from Table 1. Collection substrate 

as reported by the Fungal Genetics Stock Center (FGSC). 

 

Figure 4. There is no clear relationship between most prominent phenotype and collection site. 

Louisiana town names were reported by the FGSC and are depicted here as geographical coordinates. 

Overlapping datapoints depict multiple strains collected from the same town. 

3.4. Architectural Phenotypes Can Be Automatically Classified and Corresponding Features Can Be Extracted 

Manually categorizing conidiophores into phenotypic classes is time-consuming and introduces 

potential bias. To streamline the future classification of additional conidiophore images, an 

automated classification process was developed. We demonstrated that an accurate image classifier 
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could be constructed based on the limited conidiophore image dataset of 543 training samples and 

presents reasonable performances (Tables 2 and 3). 

Table 2. Performance of ResNet-50 classification on training, validation, and test sets. Accuracy, 

precision, and recall are used for evolution. 

 Accuracy Precision Recall 

Training 0.9632 0.9644 0.9632 

Validation 0.7879 0.7890 0.7879 

Test 0.7576 0.7540 0.7576 

External test set 0.6779 0.6802 0.6639 

Table 3. Confusion table for the test set. Each row indicates different true labels, and each column indicates 

different predictions. In the test set, the accuracies are 0.9545 (Bulky), 0.5909 (Wrap), and 0.7273 (WT). 

 Bulky Wrap WT 

Bulky 21 1 0 

Wrap 4 13 5 

WT 2 4 16 

Images from both the test and the validation set can be accurately classified at rates of 76% and 

79%, respectively (Figure 5). Testing on an external dataset from a separate batch showed slightly 

worse performance at 68% accuracy. Feature importance is also evaluated (Figure 5), confirming that 

the program is properly identifying the conidiophore within an image for classification. This method 

was used to classify images of progeny conidiophores in a high-throughput manner to estimate 

potential heritability of these phenotypes, as described below. 

 

Figure 5. Automatic classification of phenotypes. Model performance on test and validation sets is 

depicted in the first two columns. The far-left column shows a selected test set, followed by an 

example validation set in the second column. The third and fourth columns show feature importance 

evaluation for a few test samples. The third column shows the original image (after padding and 

resize) with the last column identifying feature importance. A higher value (black) in the last column 

indicates greater feature importance. All images are labeled with the model predicted phenotype first 

and manually identified phenotype second. 

Test Validation Feature Detection
Model Prediction / True Phenotype Model Prediction / True Phenotype

WT / WT

Wrap / Wrap

Bulky / Bulky

WT / WT Bulky / Bulky

Wrap / Wrap Wrap / Wrap

Bulky / Bulky Bulky / Wrap
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3.5. Crosses Suggest at Least 2–3 Genes Involved in Conidiophore Architectural Phenotypes 

Three crosses were performed between representative strains for each architectural phenotype: 

FGSC8872 × FGSC8876 (WT × Wrap), FGSC8876 × FGSC2229 (Wrap × Bulky), and FGSC 8872 × 

FGSC3943 (WT × Bulky). A total of 50 progeny were selected from each cross, from which 

conidiophores were isolated and imaged. For efficiency, these 1932 images were each assigned a 

phenotype by automatic classification as described above. These phenotype counts were then used 

to estimate an inheritance model for this discrete complex trait, described below (Table 4). 

Table 4. The cell probabilities for the fully epistatic inheritance model with three genes in three 

crosses. The probability of phenotype j from cross i is Kij. 

 A (WT) B (Wrap) C (Bulky) 

A × B ��� = ���������� ��� = ���������� ��� = ������������ 

B × C ��� = ������������ ��� = ���������� ��� = ���������� 

A × C ��� = ���������� ��� = ������������ ��� = ���������� 

The inheritance model is summarized in the table above and motivated by classic models for 

quantitative traits [26]. In this model, each cross contributes the effect of one dominant allele at each 

of three loci. For example, in Emericella (Aspergillus) nidulans, at least three genes control conidiophore 

development [27]. The main effects of the three loci are denoted by �, �, and �  for the A (WT), B 

(Wrap), and C (Bulky) loci and associated phenotype, respectively. In each cross, there are two 

dominant alleles (one from each parent) being contributed that epistatically interact to determine the 

conidiophore architectural phenotype. In principle, these pairwise interactions could result from 

environmental interactions among progeny in the cross and/or developmental interactions within 

developing progeny. By isolating progeny in their own agar droplet (see Section 2), the former 

possibility could be eliminated. The pairwise interactions are denoted by ��, ��, and ��. In addition, 

in this model, there is one grand mean � that is adjusted so that all these probabilities of a progeny 

phenotype, Kij, sum to 1. The data tabled below are the multinomial counts of progeny from each of 

the three crosses (Table 5): 

Table 5. Multinomial counts of progeny phenotypes from each of the three crosses. 

 A (WT) B (Wrap) C (Bulky) 

A × B ��� = 156 ��� = 205 ��� = 253 

B × C ��� = 94  ��� = 155 ��� = 275 

A × C ��� = 202 ��� = 230 ��� = 198 

A denotes an allele associated with the WT phenotype, B denotes an allele associated with the 

Wrap phenotype, and C denotes an allele associated with the Bulky phenotype. These counts are 

stored in a 9 × 1 vector �, the “dependent variable” to be explained by the allelic and epistatic effects. 

The sum of these nine progeny counts is N. Under this model, the log of the expectations of these 

counts E(Y) are linear in the parameters of the model, such as the allelic effects; thus, the model is 

sometimes referred to as a loglinear model [28]. Much as in a probit model, the goal of this discrete 

trait model is to associate an underlying quantitative trait through the log of the expected counts with 

the allelic and epistatic effects. Under the simplest hypothesis, all nine of these cell probabilities are 

equal. Departures from this hypothesis (H0) summarize the variation in the counts as measured by 

the Pearson ��
�. Departures from the next simplest hypothesis (H1) summarize the additive variation 

in the counts as measured by the Pearson ��
�. Departures from the last, most complicated hypothesis 

(H2) with all three interactions summarizes the additive and epistatic variation by the Pearson ��
�. 

The heritability is summarized by the ratio of the additive variation to the total variation: H2 = 

(��
�−��

�)/��
� . Many intervening models can be envisioned in a hierarchy of possible inheritance 

models (Figure 6). 
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Figure 6. The above hierarchy of models contained particular models that fit the phenotypic counts 

on three crosses between parents with different conidiophore phenotypes. At the top of the model 

hierarchy is the full epistatic model (F) with a grand mean, three additive allelic effects, and three 

epistatic interactions. At the bottom of the hierarchy is an environmental model with no genetic effects 

on conidiophore phenotype (E). Intervening models in the hierarchy drop one or more parameters 

describing the additive and epistatic effects of genes A, B, and C associated with the conidiophore 

phenotypes, A, B, and C. 

Each model was fitted by the Method of Maximum Likelihood using iteratively reweighted least 

squares (IRLS) [29,30]. Under this approach, the information A about the counts is denoted by A, and 

the derivatives of the cell probabilities in the model above are stored in the array X tabled below 

(Table 6). The matrix NX’AX is the information about the parameters in the model. The score vector 

S represents the derivatives of the log of the cell probabilities and can be written as S = AY, where A 

is a 9 × 9 diagonal matrix where A(i,i) = 1/K(i,i). 

Table 6. The derivatives of the model cell probabilities are stored in the below 9 × 7 derivative matrix 

X. Each row captures the parameters present in an expected cell probability Kij of one of the three 

phenotypes j in cross i (Table 4). The X matrix captures the structure of the model. Dropping/adding 

columns corresponds to dropping/adding parameters in a model. 

Parameters/K � � � � �� �� �� 

��� 1 1 −1 0 1 0 0 

��� 1 −1 1 0 1 0 0 

��� 1 −1 −1 0 −1 0 0 

��� 1 0 −1 −1 0 −1 0 

��� 1 0 1 −1 0 1 0 

��� 1 0 −1 1 0 −1 0 

��� 1 1 0 −1 0 0 1 

��� 1 −1 0 −1 0 0 −1 

��� 1 −1 0 1 0 0 1 
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The fitting of this model with seven parameters or a simplification of this inheritance model was 

obtained from solving the below weighted least squares problem where Y = S + NAX�  is the 

provisional quantitative dependent variable, X is the regression matrix of independent variables, 

such as allelic effects, A is the weight matrix, and the parameters are �� = ( �, �, �, �, ��, ��, ��). The 

parameters are found by solving the following normal equation iteratively: 

N�����∗ = X’Y. (1)

The matrix A and vector Y are evaluated with the current provisional parameter estimate �, 

and then the normal equations are solved for the updated parameter vector �∗ . The process is 

repeated until the relative error is less than 10−8. The process is initialized by solving the multiple 

regression problem with log �
�

�
� = �� + �, where � is a normally distributed error vector with nine 

independent components. Goodness of fit was assessed by Pearson Χ2. The only thing to be changed 

for simplified models is the X matrix by removing the appropriate column(s) to eliminate a parameter 

or parameters not in a simplified model. The results for fitting the models with IRLS [29] computed 

with relative error <10−8 after nine iterations of IRLS are summarized in the table below. 

The full epistatic model with three genes fitted the ratios from three crosses (Table 7). The only 

epistatic interaction that could possibly be dropped was between the A (WT) and B (Wrap) genes 

(��). This raised the question of whether or not any one of the additive allelic effects could be 

dropped altogether. This turned out to be the � allelic effect (for Wrap). A model without the B gene 

for Wrap did fit the progeny counts of the three crosses (Χ2 = 9.96, df = 5, p = 0.08). The conclusion 

was that at least two genes control conidiophore phenotype. An additive model and the model 

without gene effects was then used to assess the heritability. The heritability of H2 was typical for 

quantitative traits [26], namely, about 0.23. 

Table 7. A nested hierarchy of inheritance models was successfully fitted with at least two genes 

controlling the conidiophore architectural phenotype to the counts of progeny phenotypes from three 

crosses (Table 5). Nine iterations were necessary to achieve the desired error tolerance of 10−8 with 

iteratively reweighted least square (IRLS). Recommended models are bolded along with their 

goodness of fit to the counts of phenotypes in crosses. A null hypothesis (H0) is tested against an 

alternative (HA) with the chi-squared test having degrees of freedom (df). 

Model Χ2 df p X2HA − X2H0 df 
p for HA vs. 

H0 
Notes 

Full epistatic 0.98 2 0.61 - - - H0 = full epistatic 

�� = 0 8.39 3 0.04 8.39 − 0.98 = 7.41 1 0.004 H0 = full epistatic 

�� = � = 0 25.31 5 0.001 25.31 − 0.98 = 24.33 2 <0.00001 H0 = full epistatic 

�� = � = � 9.96 5 0.08 9.96 − 0.98 = 8.98 2 0.01 H0 = full epistatic 

�� = 0 9.32 3 0.02 9.32 − 0.98 = 8.34 1 0.004 H0 = full epistatic 

�� = 0 84.57 3 <0.0001 84.57 − 0.98 = 83.59 1 <0.00001 H0 = full epistatic 
�� = �� = ��

= 0 

additive 
95.76 4 <0.0001 95.76 − 0.98 = 94.78 3 <0.00001 H0 = full epistatic 

environmental 124.46 8 <0.0001 124.46 − 0.98 = 123.48 7 <0.00001 H0 = full epistatic 

heritability       

H2 = (124.46 − 95.76)/124.46 = 

0.23 

H0 = environmental model 

H1 = full additive model 

The maximum likelihood estimates of parameters for the inheritance model are tabled (Table 8). 

The two promising models are fairly consistent across model parameters. One of these models has 

three loci, and the other has only two loci. 
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Table 8. Maximum likelihood estimates of allelic effects and epistatic effects in a two or three locus 

model of inheritance. The full epistatic model with three genes has three allelic effects and three 

epistatic interactions. The two-gene model with gene B (Wrap) removed has two allelic effects for A 

(WT) and C (Bulky) and two epistatic interactions between A (WT) and C (Bulky) and between B 

(Wrap) and C (Bulky). The standard errors were obtained from the square roots of the diagonal 

elements of the inverse of the information matrix N����. 

Parameters 
Full Epistatic 

3 Genes 

�� = � = �  

2 Genes 

� 5.32 ± 0.0040 5.32 ± 0.0030 

� −0.08 ± 0.0048 0.02 ± 0.0048 

� 0.05 ± 0.0061 0 

� 0.53 ± 0.0047 0.53 ± 0.0044 

�� −0.15 ± 0.0060 0 

�� 0.20 ± 0.0067 0.23 ± 0.0061 

�� −0.60 ± 0.0064 −0.58 ± 0.0062 

The allelic and epistatic effects are fairly stable between the two models. The C (Bulky) gene 

appears to have the largest effect both additively and epistatically with both B (Wrap) and A (WT). 

There also appears to be a strong epistatic interaction between B (Wrap) and C (Bulky) alleles. 

3.6. Architectural Phenotype May Impact Colonization Capacity in N. crassa 

Previous work conducted in Aspergillus has shown that conidiophore architecture impacts the 

colonization capability of the organism [8]. To investigate whether this may also be true in N. crassa, 

we quantified the average number of conidia produced by each conidiophore phenotype, using a 

representative strain for each. There was no statistically significant difference in the number of 

conidia produced by each phenotype when suspended in liquid culture (Figure 7). Additionally, we 

found no statistically significant difference in average conidium diameter produced by each 

phenotype (Figure 8). 

We also explored sporulation behavior on SFG medium, where mature conidiophores were 

placed at the center of a plate to allow for sporulation and subsequent colonial growth. Interestingly, 

fewer WT colonies (n = 334) developed compared to Wrap and Bulky (n = 1113 and n = 1252, 

respectively), suggesting a difference in sporulation behavior in an aerial versus aqueous 

environment. We quantified the distance from the center of each nitrocellulose membrane to the 

center of each colony. The distribution of these distances are referred to as the spore shadow. Two 

replicate datasets were combined, as there was no significant difference between replicates of a 

phenotype following a two-sample Kolmogorov–Smirnov test [30]. Sporulation by Wrap 

conidiophores resulted in colonies at a significantly closer distance when compared to that of Bulky 

colonies (p = 3.101 × 10−5) (Figure 9). No significant sporulation distance difference was found for the 

other pair combinations; however, differences in the distribution of colony distances were found 

between pairs WT and Wrap (D = 0.090973, p = 0.02849) and Wrap and Bulky (D = 0.09624, p = 3.702 

× 10−5) by two-sample Kolmogorov–Smirnov tests (Figure 10). 
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Figure 7. Number of conidia suspended in water from an 82 mm diameter nitrocellulose membrane 

by each conidiophore phenotype. The dataset includes three biological replicates. The box shows the 

25th and 75th percentiles, with the median denoted as a line inside. The whiskers represent the range 

of data. The t-test results for pairs are as follows: WT–Wrap, p = 0.09541; Wrap–Bulky, p = 0.06079; 

WT–Bulky, p = 0.505.  

 

Figure 8. Average conidium diameter in microns when suspended in water for each architectural 

phenotype. The dataset includes three biological replicates. The box shows the 25th and 75th 

percentiles, with the median denoted as a line inside. The whiskers represent the range of data. The 

t-test results for pairs are as follows: WT–Wrap, p = 0.125; Wrap–Bulky, p = 0.3219; WT–Bulky, p = 

0.3995. 
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Figure 9. Distance in mm to the center of each colony on sorbose + fructose + glucose (SFG) medium 

from the center of each nitrocellulose membrane. The dataset includes two biological replicates. The 

box shows the 25th and 75th percentiles, with the median denoted as a line inside. The whiskers 

represent the range of data. The t-test results for pairs are as follows: WT–Wrap, p = 0.0587; Wrap–

Bulky, p = 3.101 × 10−5; WT–Bulky, p = 0.3466. 

 

Figure 10. Histogram of distances in mm to the center of each colony from the center of each 

nitrocellulose membrane. Total colony counts combining two replicates are as follows: WT = 334, 

Wrap = 1113, Bulky = 1252. Results of two-sample Kolmogorov–Smirnov tests for each pair are as 

follows: WT–Wrap D = 0.090973, p = 0.02849; Wrap–Bulky D = 0.09624, p = 3.702 × 10−5; WT–Bulky D = 

0.055465, p = 0.3922. 
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4. Discussion 

Conidiophore development in N. crassa has been thoroughly documented over decades of study 

[31]. Genetic, temporal, and environmental signals guiding this process are well understood [4,31]; 

however, little is known about conidiophore morphological variation, particularly in natural 

populations. The N. crassa collection of Louisiana isolates provides a convenient tool for 

characterizing variation in a natural population and has previously been used to describe local 

adaptations and reveal novel gene functions [11–13]. Following their collection from nature, these 

strains underwent conidial plating to remove possible fungal contaminants and were maintained 

vegetatively at the FGSC [32]. It is entirely likely that these isolates are heterokaryotic, reflective of 

the genetic variation observed in the wild. By using these populations as is, we aimed to capture the 

full spectrum of natural variation in conidiophore architecture. 

By utilizing this population set of 21 wild strains to explore morphological variation in the 

conidiophore, we identified three novel architectural phenotypes: Wild Type, Bulky, and Wrap. 

These three phenotypes are consistently displayed throughout conidiophore development and are 

likely not the result of temporal disparity along the same growth trajectory. Interestingly, no clear 

dependence of phenotype on collection location or substrate was observed, suggesting a genetic 

component to this variation. To further explore this, we conducted crosses between representative 

strains for each phenotype. By quantifying the subsequent progeny conidiophores of these crosses, 

we were able to fit a model for inheritance. Our resulting model suggests that at least two genes 

control conidiophore architectural phenotype with an estimated heritability of 0.23. 

Future work should seek to identify these genetic variants and characterize transcriptional 

profiles for conidiophores of different architectural phenotypes. Many key genetic players of 

conidiophore development have already been identified and thoroughly characterized, most notably 

the con genes [33], and transcriptomic data have elucidated gene expression profiles throughout wild-

type conidiophore development [7]. Interestingly, the Bulky conidiophore phenotype resembles that 

of the attenuated (at) knockout mutant, where conidia form in dense aggregates [34]. However, we do 

not observe slowed growth and pigmentation in the Bulky wild isolates as is seen in at mutants. 

Identifying and characterizing additional genes possibly underlying WT, Bulky, and Wrap 

phenotypes would provide greater understanding of conidiophore development through a 

morphological lens and perhaps lend insight into the natural population structure of these wild 

isolates. 

To investigate a potential environmental impact of conidiophore architecture, we evaluated the 

effect of conidiophore phenotype on sporulation in both an aqueous suspension and aerial 

environment. No significant effect was detected on the number of conidia or average conidium 

diameter when suspended in water, nor was there any difference in wettability of conidia while 

washing off a plate. This indicates that the conidiophore architectural phenotype is not due to 

difference in hydrophobicity of the conidia. In an aerial environment, fewer conidia from Wrap 

conidiophores germinated compared to Bulky. Additionally, spore shadows by conidia from Wrap 

conidiophores fit a different distribution compared to that of both WT and Bulky groups. This 

suggests that conidiophore architectural phenotype may impact colonization capacity of the 

organism. Sporulation experiments should be conducted at a larger scale to more effectively 

determine the maximum dispersal distance of each conidiophore phenotype and, hence, effective 

population size and neighborhood size [35,36]. Furthermore, it is possible that conidiophore 

phenotype may contribute to microspatial variation through altering effective population size and 

neighborhood size, as some strains exhibiting different architectural phenotypes were collected from 

the same substrate in the same location [37]. 

It remains a challenge to relate complex traits describing growth and form to their underlying 

genes [1]. Doing so requires genomics [13,38], transcriptomics [12], and/or metabolomics [39], as well 

as high-throughput approaches to phenotyping. Morphological diversity presents an attractive 

opportunity for image analyses and phenotyping at a large scale, as shown in other model fungal 

systems such as yeast [40,41]. Phenomics tools like Digital Imaging of Root Traits (DIRT) have been 

developed specifically to quantify architectural features in plant root systems [42]. Although 
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filamentous fungi bear some similarities to roots, the unique morphology of conidiophores is best 

characterized with a tool specifically designed for their structure. We presented a novel method to 

classify brightfield images of conidiophores into three architectural phenotypes and extract 

important features for their classification. This same approach can be applied to characterize 

conidiophores of other filamentous fungi and may even be used in conjunction with DIRT to 

characterize morphology in the symbiotic relationship between roots and arbuscular mycorrhiza 

[43,44]. To further improve our method, automation in sample collections and blurred region removal 

could be implemented. Performance in model training was also limited by the sample size in our 

study and domain-specific features. 
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Appendix A 

Table A1. Population of wild Louisiana isolates of N. crassa. Strains used in this study were obtained 

from the FGSC. Mating type (Mat) of each strain is denoted by A or a. 

Strain Number FGSC Perkins Mat Strain Provenance Collection Site Substrate/Annotation 

Wild Strains 

D110 8870 4448 A Dettman, J. Franklin, LA sugarcane 

D111 8871 4449 a Dettman, J. Franklin, LA sugarcane 

D112 8872 4453 A Dettman, J. Franklin, LA sugarcane 

D114 8874 4464 A Dettman, J. Franklin, LA sugarcane 

D116 8876 4481 a Dettman, J. Franklin, LA sugarcane 

D118 8878 4491 a Dettman, J. Franklin, LA sugarcane 

JW09 2229  A Welch, J. Welsh, LA burned grass 

JW10 2229  A Welch, J. Welsh, LA burned grass 

JW59 3200  a Welch, J. Coon, LA burned stumps 

JW66 3211  a Welch, J. Sugartown, LA Pine burn 

JW70 3199  A Welch, J. Coon, LA burned stumps 

JW75 3943  a Welch, J. Houma, LA sugarcane burn 

 847  A Lein Louisiana sugarcane burn 

D113 8873 4454 a Dettman, J. Franklin, LA sugarcane 

D119 8879 4500 a Dettman, J. Franklin, LA sugarcane 

JW20 3212  A Welch, J. Ravenswood, LA bonfire 

JW76 3943  a Welch, J. Houma, LA sugarcane burn 

JW159 2221  a Welch, J. Houma, LA sugarcane burn 

JW160 2222  A Welch, J. Iowa, LA grass burn 

JW162 2223  a Welch, J. Iowa, LA grass burn 

JW164 2224  a Welch, J. Marrero, LA wood burn 

JW167 2228  a Welch, J. Roanoke, LA grass burn 

OR74A 2489  A FGSC Marrero, LA unknown 
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Figure A1. Model accuracies through training. Accuracies of the training (solid line) and validation 

(dotted line) sets is plotted through epochs. The final model was chosen on the basis of the accuracy 

of the validation set. 
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