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2 Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John
Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK

3 Faculty of Pharmacy, Tripoli University, Tripoli 42300, Libya
4 Department of Biotechnology, Government V. Y. T. PG Autonomous College, Durg 491001, Chhattisgarh, India
* Correspondence: drnahar@live.co.uk or nahar@ueb.cas.cz (L.N.); s.sarker@ljmu.ac.uk (S.D.S.)

Abstract: Arbutin, a hydroquinone glucoside, has been detected in ca. 50 plant families, especially in
the plants of the Asteraceae, Ericaceae, Proteaceae and Rosaceae families. It is one of the most widely
used natural skin-whitening agents. In addition to its skin whitening property, arbutin possesses other
therapeutically relevant biological properties, e.g., antioxidant, antimicrobial and anti-inflammatory,
as well as anticancer potential. This review presents, for the first time, a comprehensive overview
of the distribution of arbutin in the plant kingdom and critically appraises its therapeutic potential
as an anticancer agent based on the literature published until the end of August 2022, accessed via
several databases, e.g., Web of Science, Science Direct, Dictionary of Natural Products, PubMed and
Google Scholar. The keywords used in the search were arbutin, cancer, anticancer, distribution and
hydroquinone. Published outputs suggest that arbutin has potential anticancer properties against
bladder, bone, brain, breast, cervix, colon, liver, prostate and skin cancers and a low level of acute or
chronic toxicity.

Keywords: arbutin; anticancer; distribution; hydroquinone

1. Introduction

Arbutin (1, C12H16O7), also known as β-arbutin, is a hydroquinone glucoside (Figure 1).
This compound was first reported from the leaves of Arbutus unedo L. (family: Ericaceae) [1].
Arbutin structurally differs from its isomer α-arbutin by the presence of a β-glucose unit
instead of an α-glucose one. Since its discovery, arbutin (1) has been detected in ca.
50 other plant families. As this glycoside (1) is capable of inhibiting melanin production by
inhibiting tyrosinase, it has long been used as a skin whitening (depigmenting) agent in
various commercially available topical cosmetic products [2,3]. It should be mentioned here
that tyrosinase is a multi-copper enzyme that plays a pivotal role in melanogenesis and
enzymatic browning. The objectives of this review are to extensively explore, for the first
time, the distribution of arbutin (1) in the plant kingdom (Table 1) and critically appraise
its therapeutic potential as an anticancer agent. In order to achieve these objectives, an
extensive literature search was conducted covering the literature published until the end
of August 2022, accessed through several databases, e.g., Web of Science, Science Direct,
Dictionary of Natural Products, PubMed and Google Scholar, and using the keywords,
arbutin, cancer, anticancer, distribution and hydroquinone.
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Figure 1. Arbutin (1). 

Table 1. Distribution of arbutin (1) in the plant kingdom. 

Species Family Common Name Plant Part Geographical 
Source 

Reference 

Aesculus californica Nutt. Hippocastanaceae California buckeye Fruit endo-
sperm 

USA [4] 

Afgekia mahidolae B.L. Burtt & 
Chermsir. 

Fabaceae Kan Pai Mahidol Leaves Thailand [5] 

Ailanthus altissima (Mill.) Swin-
gle 

Simaroubaceae Varnish tree Fruits China [6] 

Ainsliaea bonatii Beauverd Asteraceae Chinese daisy Leaves China [7] 
Amaranthus spp. Amaranthaceae Amaranth Leaves Bangladesh [8] 

Amaranthus tricolor L. Amaranthaceae Amaranth Leaves Russia [9] 
Antidesma thwaitesianum Muell. 

Arg. Phyllanthaceae Mao tree 
Fruits and 

leaves Thailand [10] 

Arbutus andrachne L. Ericaceae Greek strawberry 
tree Leaves Greece and Tur-

key [11] 

Arbutus pavarii Pamp. Ericaceae Libyan strawberry 
tree Leaves Libya [12] 

Arbutus unedo L. Ericaceae Strawberry tree 
Leaves 

Mediterranean 
region and west-

ern Europe 
[1,13] 

Fruits  [14] 

Arctostaphylos pungens Kunth. Ericaceae Point leaf manza-
nita 

Leaves Italy, Mexico 
and USA 

[15] 

Arctostaphylos spp. Ericaceae Bearberry Leaves Scotland and 
Scandinavia 

[16,17] 

Arctostaphylos uva-ursi (L.) 
Spreng. 

Ericaceae Bearberry Leaves Bulgaria, Turkey [18] 

Arctous alpina (L.) Nied. Ericaceae Alpine bearberry Leaves Russia [19] 
Artemisia pallens Wall. Ex. DC. Asteraceae Damanaka Leaves India [20] 

Artocarpus lacucha L. Moraceae Monkey fruit Leaves South-east Asia [21] 
Astilbe rivularis L. Saxifragaceae False spirea Leaves Nepal and UK [22] 
Atriplex littoralis L. Amaranthaceae Grass leaf orache Aerial parts Serbia [23] 

Bacopa procumbens (Mill.) 
Greenm. Plantaginaceae Baby jump-up Aerial parts 

Tropical and 
subtropical areas 

of North and 
South America 

[24] 

Bellendena montana R. Br. Proteaceae Mountain rocket Leaves Tasmania [25] 
Benincasa hispida (Thunb.) Cogn. Cucurbitaceae Wax gourd Fruits China [26] 
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Table 1. Distribution of arbutin (1) in the plant kingdom.

Species Family Common Name Plant Part Geographical
Source Reference

Aesculus californica Nutt. Hippocastanaceae California buckeye Fruit endosperm USA [4]

Afgekia mahidolae B.L.
Burtt & Chermsir. Fabaceae Kan Pai Mahidol Leaves Thailand [5]

Ailanthus altissima (Mill.)
Swingle Simaroubaceae Varnish tree Fruits China [6]

Ainsliaea bonatii
Beauverd Asteraceae Chinese daisy Leaves China [7]

Amaranthus spp. Amaranthaceae Amaranth Leaves Bangladesh [8]

Amaranthus tricolor L. Amaranthaceae Amaranth Leaves Russia [9]

Antidesma thwaitesianum
Muell. Arg. Phyllanthaceae Mao tree Fruits and leaves Thailand [10]

Arbutus andrachne L. Ericaceae Greek strawberry
tree Leaves Greece and Turkey [11]

Arbutus pavarii Pamp. Ericaceae Libyan strawberry
tree Leaves Libya [12]

Arbutus unedo L. Ericaceae Strawberry tree
Leaves

Mediterranean
region and western

Europe
[1,13]

Fruits [14]

Arctostaphylos pungens
Kunth. Ericaceae Point leaf

manzanita Leaves Italy, Mexico and
USA [15]

Arctostaphylos spp. Ericaceae Bearberry Leaves Scotland and
Scandinavia [16,17]

Arctostaphylos uva-ursi
(L.) Spreng. Ericaceae Bearberry Leaves Bulgaria, Turkey [18]

Arctous alpina (L.) Nied. Ericaceae Alpine bearberry Leaves Russia [19]

Artemisia pallens Wall.
Ex. DC. Asteraceae Damanaka Leaves India [20]

Artocarpus lacucha L. Moraceae Monkey fruit Leaves South-east Asia [21]

Astilbe rivularis L. Saxifragaceae False spirea Leaves Nepal and UK [22]

Atriplex littoralis L. Amaranthaceae Grass leaf orache Aerial parts Serbia [23]

Bacopa procumbens (Mill.)
Greenm. Plantaginaceae Baby jump-up Aerial parts

Tropical and
subtropical areas of

North and South
America

[24]
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Table 1. Cont.

Species Family Common Name Plant Part Geographical
Source Reference

Bellendena montana R. Br. Proteaceae Mountain rocket Leaves Tasmania [25]

Benincasa hispida
(Thunb.) Cogn. Cucurbitaceae Wax gourd Fruits China [26]

Bergenia ciliata (Haw.)
Sternb. Saxifragaceae Fringed elephant’s

ears Rhizome Nepal [27]

Bergenia cordifolia L. Saxifragaceae Heartleaf Bergenia Leaves Russia [28]

Bergenia crassifolia (L.)
Fritsch.

Saxifragaceae Heart-leaved
Bergenia

Aerial parts Russia [29]

Leaves Russia [30]

Leaves Romania [31]

Bergenia purpurascens
(Hook. f. & Thomson)

Engl.
Saxifragaceae Purple Bergenia Leaves China [32]

Bergenia spp. Saxifragaceae Elephant’s ears Aerial parts
Afghanistan to
China and the

Himalayan region
[17,33–35]

Bergenia stracheyi (Hook.
F. & Thoms.) Engl. Saxifragaceae Elephant’s ears Aerial parts The Himalayas [36]

Betula pendula Roth. Betulaceae Silver birch Leaves Europe and Asia [37]

Betula platyphylla
Sukatchev var. japonica

Hara
Betulaceae Shirakamba Leaves China [38]

Betula schmidtii Regel. Betulaceae Schmidt’s birch Bark China, Japan, Korea
and Russia [39]

Breynia officinalis Hemsl. Phyllanthaceae Chi R Yun Leaves China and Japan [40]

Breynia rostrata Merr. Phyllanthaceae Hui Guo Hei Mian
Shen Aerial parts China and Vietnam [41]

Calluna spp. Ericaceae Heather Leaves Europe and Asia
Minor [17]

Calluna vulgaris L. Hull. Ericaceae Heather
Aerial parts Asia Minor [42]

Leaves Russia [43]

Careya arborea Roxb. Lecythidaceae Slow match tree Bark, leaves and
seeds India [44]

Casearia multinervosa
C.T.White & Sleumer Salicaceae Casearia Stem Australia [45]

Cenarrhenes nitida R. Br. Proteaceae Port Arthur plum Leaves Tasmania [25]

Centaurea urvillei DC.
subsp. urvillei Asteraceae Star thistle Leaves Turkey [46]

Chamaecyparis lawsoniana Cupressaceae Lawson cypress Galls Iran [47]

Clausena indica (Datz.)
Oliver Rutaceae Indian wampi Fruit pericarp India and Sri Lanka [48]

Coriandrum sativum L. Apiaceae Coriander Aerial parts
Western Asia,

Southern Europe
and Russia

[49]

Cotoneaster simonsii
Baker Rosaceae Himalayan

cotoneaster Aerial parts The Himalayas [50]
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Table 1. Cont.

Species Family Common Name Plant Part Geographical
Source Reference

Cuscuta sinensis Lam. Convolvulaceae Chinese cuscuta Semen China, Japan and
Korea [51]

Dryopteris sublaeta
Ching & Y. P. Hsu Dryopteridaceae Chinese male fern Rhizome China [52]

Eriobotrya fragrans
Champ. Ex. Benth. Rosaceae Xiang hua pi ba Leaves China and Vietnam [53]

Eryngium bourgatii
Gouan. Apiaceae Sea holly Flowers and leaves Spain [54]

Eugenia hyemalis L.
Cambess Myrtaceae Hyemalis Aerial parts Argentina, Bolivia

and USA [55]

Flammulina velutipes
(Curtis) Singer Physalacriaceae Velvet shank Leaves China [56]

Fragaria spp. Rosaceae Strawberry Roots Europe, North
America and China [57]

Gentiana pyrenaica L. Gentianaceae Pyrenian gentian Leaves United Kingdom [58]

Grevillea banksii R. Br. Proteaceae Dwarf silky oak Leaves Australia [59]

Grevillea robusta A. Cunn.
Ex R. Br.

Proteaceae Silk oak
Leaves Australia and India [60]

Bark and leaves [61]

Hakea saligna L. Proteaceae Hakea Leaves Australia and India [60]

Halocarpus biformis
(Hook.) C.J. Quinn Podocarpaceae Yellow pine Leaves New Zealand [62]

Heliciopsis lobata (Merr.)
Sleumer Proteaceae Helicia Leaves China and Vietnam [63]

Herpetospermum
caudigerum Wall. Cucurbitaceae Herpetospermum Leaves China, India and

Tibet [64]

Homalium zeylanicum
(Gardner) Benth. Flacourtiaceae Kalavaram Leaves India [65]

Huperzia serrata Lycopodiaceae Toothed clubmoss Whole plant China, Japan, Korea,
Russia and Tibet [66]

Ilex brasiliensis (Spreng.)
Loes. Aquifoliaceae Brazilian holly Leaves Brazil [67]

Ilex integerrima Reiss. Aquifoliaceae Holly Leaves Brazil [67]

Ilex latifolia Thunb. Aquifoliaceae Tarajo holly Leaves Japan [68]

Ilex pseudobuxus Reiss. Aquifoliaceae Brazilian holly Leaves Brazil [67]

Ilex theezans Mart. Aquifoliaceae Congonha Leaves Brazil [67]

Jamesia americana
Torr. & A. Gray Hydrangeaceae Cliffbush Aerial parts USA [69]

Juglans regia L. Juglandaceae Walnuts Nuts
The Balkans, the
Himalayans and

China
[70]

Larix leptolepis Pinaceae Japanese Larch Needles Japan [71]

Lens culinaris Medik. Fabaceae Lentil Seeds India [72]

Leucadendron spp. Proteaceae Conebushes Leaves South Africa [73]

Lysiloma latisiliquum (L.)
Benth. Fabaceae Wild tamarind Leaves USA [74]
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Table 1. Cont.

Species Family Common Name Plant Part Geographical
Source Reference

Madhuca latifolia (J.
Konig) J.F. Macbr. Sapotaceae Mahua Seeds

India, Nepal,
Pakistan and Sri

Lanka
[75]

Magnifera indica L. Anacardiaceae Mango Leaves India [76]

Malus sylvestris (L.) Mill. Rosaceae
Crab apple Leaves United

Kingdom & Russia [77]

Crab apple Fruits Russia [78]

Morus alba L. Moraceae Mulberry Leaves China and India [79]

Mutisia acuminata var.
acuminata Ruiz & Pav. Asteraceae Bolivian Mutisia Aerial parts Peru and Bolivia [80]

Mutisia acuminata var.
hirsuta (Meyen) Cabrera Asteraceae Mutisia Leaves Peru [81]

Myrsine seguinii H. Lev. Myrsinaceae alt.
Primulaceae Myrsine Leaves China, Japan and

New Zealand [82]

Myrothamnus flabellifolia
Welw.

Myrothamnaceae Resurrection plant
Leaves South Africa [83]

Aerial parts Germany [84]

Onobrychis kachetica
Boiss. & Buhse Fabaceae Espartzet

Kakhetinski Leaves Trans-caucasus, and
Russia [85]

Onobrychis viciifolia Scop. Fabaceae Sainfoin Petals Euro Siberian
temperate region [86]

Origanum dubium Boiss. Lamiaceae Rouvanos Aerial parts Cyprus [87]

Origanum majorana L. Lamiaceae Sweet majoram Leaves Egypt [88]

Origanum vulgare L. Lamiaceae Oregano or wild
majoram Aerial parts Mediterranean

region [89]

Paederia scandens (Loir.)
Merr. Rubiaceae Gandheli Aerial parts China and India [90]

Paulownia fortune (Seem.)
Hemsl. Paulowniaceae Dragon tree Flowers China [91]

Persoonia gunnii Hook. f. Proteaceae Persoonia Leaves Tasmania [25]

Petasites tricholobus
Franch. Asteraceae Butterburs Aerial parts

China, Nepal,
Pakistan and

Vietnam
[92]

Phellinus linteus
(Berk. & M.A. Curtis)

Teng
Hymenochaetaceae Meshimakobu Aerial parts China, Korea and

Japan [93]

Phellodendron chinense
var. glabriusculum C.K.

Schenid.
Rutaceae Cork tree Aerial parts China [94]

Phyllostachys heterocycla
Mitf. Poaceae

Mousouchiku or
tortoise shell

bamboo
Bamboo-sheath Japan [95]

Picrorhiza
scrophulariiflora Pennell. Scrophulariaceae Xizang

Huhuanglian Roots China, India and
Tibet [96]

Platycodon
grandiflorum L. Campanulaceae Balloon flower Leaves China [97]
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Table 1. Cont.

Species Family Common Name Plant Part Geographical
Source Reference

Podospermum canum C.
A. Mey Asteraceae Karakok Aerial parts Caucasia, Iran, Iraq,

Syria and Turkey [98]

Prunophora salicina Linn. Rosaceae Chinese Plum Fruit peels China and Korea [67]

Psophocarpus
tetragonolobus (L.) DC Fabaceae Winged bean Leaves India [99]

Pyrola calliantha Andres Ericaceae Wintergreen Leaves Eastern Himalaya to
China [100]

Pyrola incarnata Fisch. Ericaceae Lu Shou Cha Leaves China [101]

Pyrus anatolica Browicz Rosaceae Turkish pear Fruits, leaves and
stem Turkey [102]

Pyrus biossieriana Buhse Rosaceae Wild pear Leaves Iran [103]

Pyrus bretschneideri
Rehder Rosaceae Ya pear Leaves China [104]

Pyrus bourgaeana Decne. Rosaceae Iberian pear Aerial parts Iberian Peninsula
and Morocco [105]

Pyrus communis L. Rosaceae Pear or Rocha pear

Leaves
Central and eastern

Europe and
western Asia

[106,107]

Aerial parts and
seeds [108]

Flowers Poland [109]

Pyrus communis L. var.
sativa (DC.) Rosaceae Pear Twigs China [110]

Pyrus communis L. cv.
Wujiuxiang Rosaceae Wujiuxiang pear Fruit peels China [111]

Pyrus elaeagrifolia Pall. Rosaceae Wild pear Leaves Albania, Bulgaria,
Romania and Turkey [112]

Pyrus pashia Buch ham
ex D. Don Rosaceae Kainth Fruits The Himalayas [113]

Pyrus pyraster (L.)
Burgsd. Rosaceae European wild

pear Fruit peels Western Europe to
the Caucasus [114,115]

Pyrus pyrifolia Nakai Rosaceae
Niitaka or Asian

pear
Fruits Japan [104,116]

Fruits Korea [117]

Asian pear Fruit peels China [118]

Pyrus pyrifolia cv. Kousui
Nakai Rosaceae Japanese pear Branches, fruits,

leaves and stem Japan [119]

Pyrus serotina Rehder.
var. culta Rehdar. Rosaceae Japanese pear Leaves Japan [120]

Pyrus spinosa Rosaceae Almond-leaved
pear Twigs Siberia [115]

Pyrus spp. Rosaceae Pear Stem
Central and eastern

Europe and
western Asia

[121]

Pyrus ussuriensis Maxim. Rosaceae Ussurian pear Leaves China [104]
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Table 1. Cont.

Species Family Common Name Plant Part Geographical
Source Reference

Rhodiola coccinea (Royle)
Boriss. Crassulaceae Rhodiola Aerial parts

Central Asia,
south-western

Siberia and central
China

[122]

Rhodiola crenulata LLL Crassulaceae Arctic root Aerial parts China [123]

Rhodiola rosea L. Crassulaceae Golden root Aerial parts China [124]

Rhododendron adamsii
Rehder Ericaceae Sagaan dali Leaves Russia [125]

Rhododendron
dauricum L. Ericaceae Dauria Leaves China, Mongolia and

Russia [125]

Rhododendron fauriei
Franch. var.

brachycarpum
Ericaceae Japanese

Rhododendron Leaves Japan, Korea and
Russia [125]

Rhododendron luteum
Sweet Ericaceae Yellow azalea Leaves Poland and Russia [125]

Rhododendron
ponticum L. Ericaceae Common

rhododendron Leaves Iberian Peninsula
and Russia [125]

Rosa roxburghii Tratt. Rosaceae Roxburgh rose Leaves China [126]

Salix acmophylla Boiss. Salicaceae Brook willow Aerial parts Pakistan and
central Asia [127]

Salvia hispanica L. Lamiaceae Chia Flowers and stem Central America [128]

Salvia mexicana var.
Mexicana L. Lamiaceae Mexican sage Aerial parts Mexico [129]

Sambucus nigra L. Adoxaceae Elderberry or black
elder Fruits Serbia [130]

Saxifraga stolonifera
Curtis Saxifragaceae Creeping sailor Leaves China, Japan and

Korea [131]

Scrofella chinensis
Maxim. Plantaginaceae Scrofella Whole plant China [132]

Sedum purpureum L. Crassulaceae
Purple

spoon-leaved
stonecrop

Leaves United Kingdom [133]

Sedum spp. Crassulaceae Stonecrops Leaves Northern
hemisphere [134]

Selaginella tamariscina
(Beauv.) Spring Selaginellaceae Selaginella Aerial parts

China, India, Japan,
Korea, Russia and

Thailand
[135]

Serratula komaroviilljin L. Asteraceae Saw-wort Leaves Russia [136]

Serratula quinquefolia M.
Bieb. ex. Willd. Asteraceae Five-leaved

saw-wort Leaves Poland [137]

Serratula sogdiana
(Bunge) L. Martins Asteraceae Plumeless

saw-wort Leaves Eurasia [138]

Sonneratia alba Sm. Lythraceae Perepat Leaves
East Africa and
south-east/far

east Asia
[139]

Sorbaria arborea Schneid. Rosaceae False spirea Stem China [140]
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Table 1. Cont.

Species Family Common Name Plant Part Geographical
Source Reference

Stachys alopecuros (L.)
Benth. Subsp. divulsa

(Ten.) Grande
Lamiaceae Yellow betony Aerial parts Italy [141]

Stachys germanica L
subsp. Salviifolia (Ten.)

Gams.
Lamiaceae Downy

woundwort Aerial parts Italy and Germany [142]

Stachys lavandulifolia
Vahl. Lamiaceae Wood betony Aerial parts Iran [143]

Teucrium chamaedrys L. Lamiaceae Wall germander Leaves Mediterranean
region [144]

Turnera diffusa Willd. Passifloraceae Damiana Leaves and stem Mexico and USA [145]

Vaccinium
arctostaphylos L. Ericaceae Caucasian

whortleberry Leaves

Armenia, Azerbaijan,
Bulgaria, Georgia,
Iran, Russia and

Turkey

[146]

Vaccinium dunalianum
Wight Ericaceae Chinese blueberry Flower buds, fruits

and leaves

Assam, China
South-Central, China

Southeast, East
Himalaya, Myanmar,
Nepal, Taiwan, Tibet

and Vietnam

[147]

Vaccinium myrtillus L. Ericaceae
European
blueberry

Leaves and fruits Europe [148]

Leaves and stem Europe [149]

Vaccinium vacillans Torr. Ericaceae Blueberry Leaves Rhode Island [150]

Vaccinium vitis-idaea L. Ericaceae Cowberry
Leaves and berries

Alaska, Canada,
Poland, Russia and

Eurasia
[151,152]

Aerial parts China [153]

Veronica austriaca L. Plantaginaceae Broadleaf
speedwell Leaves Bulgaria [154]

Veronica turrilliana
Stoj. & Stef. Plantaginaceae Speedwell Aerial parts Bulgaria [155]

Viburnum fordiae Hance Viburnaceae Bright red berry Stem China [156]

Viburnum opulus L. Viburnaceae Guelder rose Leaves
Europe, northern

Africa and
central Asia

[68,157]

Viburnum phlebotrichum
Siebold & Zucc. Viburnaceae Japanese

viburnum Leaves Japan [68,158]

Viola arvensis L. Violaceae Field Pansy Aerial parts Russia [159]

Wulfeniopsis amherstiana
(Benth.) D.Y. Hong Plantaginaceae Himalyan

Wulfenia Leaves The Himalayas [160]

Xanthoxylum piperitum
DC Rutaceae Sichuan pepper or

Japanese pepper Pericarp and seeds Japan [161]

Zanthoxylum bungeanum
Maxim. Rutaceae Japanese pepper

tree Pericarps China and Japan [162]
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2. Distribution of Arbutin (1) in the Plant Kingdom

Arbutin (1) is widely distributed in the plant kingdom (Table 1) [4–162]. While the
plants from the families, Asteraceae, Ericaceae, Proteaceae and Rosaceae are the main
sources, to date, at least 45 other plant families have been reported to produce this gly-
coside (Table 1). In the Asteraceae, the genera Ainsliaea [7], Artemisia [20], Centaurea [46],
Mutisia [80], Petasites [92], Podospermum [98] and Serratula [136] are known to produce
arbutin (1), while the genera Arbutus [12], Arctostaphylos [15], Arctous [19], Calluna [17], Py-
rola [101], Rhododendron [125] and Vaccinium [147] from the family Ericaceae are seven other
major sources thereof (Table 1). Plants from at least seven genera within the Proteaceae,
e.g., Bellendena [25], Cenarrhenes [25], Grevillea [59], Hakea [60], Heliciopsis [63], Leucaden-
dron [73] and Persoonia [25] biosynthesize arbutin. The family Rosaceae includes the highest
number of genera that produce the compound, including Cotoneaster [50], Eriobotrya [53],
Fragaria [57], Malus [77], Prunophora [67], Pyrus [103], Rosa [126] and Sorbaria [140] (Table 1).

The highest concentration (ca. 1.7%) of arbutin was found in the leaves of Pyrus com-
munis [163]. Certain plants from families like Fabaceae [5,72,74,86], Lamiaceae [87,128,141]
and Plantaginaceae [132,154,160] are also notable sources of this hydroquinone glycoside
(Table 1). At least three genera of each of the families Rutaceae [48,94,161] and Saxifra-
gaceae [22,36,131] are known to produce arbutin (Table 1). While leaves are the main
source of the compound, it is present in other plant parts, e.g., aerial parts, flowers, fruits,
stem and twigs (Table 1). The presence of arbutin in roots was only reported in Picrorhiza
scrophulariiflora [96].

Grisdale and Towers [163] demonstrated that arbutin is biosynthesized in the young
leaves of Pyrus communis and Grevillea robusta from shikimic acid, as well as from phenyl-
propanoid compounds (Scheme 1). Evidence has suggested that the hydroquinone skeleton
could have been formed by the removal of the propyl side chain of certain phenylpropane
derivatives, e.g., cinnamic acid and phenylalanine. However, there are several reports avail-
able in the literature that describe various engineered and artificial methods for enhanced
biosynthesis of arbutin [164]. For example, Shen et al. [165] demonstrated an artificial
pathway in Escherichia coli for increased production of arbutin from simple carbon sources.
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In addition to its skin whitening property which has been known for at least seven
decades, arbutin (1) has been shown to possess various other therapeutically relevant
biological properties, e.g., antioxidant, antimicrobial and anti-inflammatory [164,165]; it
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also has the potential as an anticancer agent [166–181]. Information obtained from the
published literature on arbutin shows that this compound possesses cytotoxic properties
against several human cancer and tumor cell lines including bladder, bone, brain, breast,
cervical, colon, gastric, liver, prostate and skin cancers (Table 2) [166–181]. Most of these
activities have been demonstrated in vitro, and in some cases, plausible mechanisms of
action, e.g., apoptosis, have been identified (Table 2). A pictorial summary is presented
in Figure 2. The activity of arbutin against various cancer cell lines is discussed in the
following subsections.

Table 2. Cytotoxicity of arbutin (1) against various cancer and tumor cell lines.

Type of Cancer/Tumour Brief Description of Anticancer Activity
of Arbutin (1) In Vivo/In Vitro References

Bladder cancer
Inhibition of TCCSUP (anaplastic transitional cell

carcinoma in the neck of the urinary bladder)
bladder cancer cell proliferation.

In vitro [166]

Brain tumour Activity against rat C6 glioma cells. In vitro [167,168]

Breast cancer Cytotoxicity of arbutin containing methanolic extract
against MDA-MB-231 and T-47D breast cancer cells. In vitro [145]

Cytotoxicity towards the MCF-7 (breast cancer)
cell line. In vitro [169]

Cytotoxicity against adriamycin-resistant MCF-7
and wild-type MCF-7. In vitro [170]

Cervical cancer Antiproliferative activity against HeLa cells.
In vitro

[168]

Activity against human cervical carcinoma HPV-16
positive (SiHa) and HPV negative (C-33) cell lines. [145]

Colon cancer Assessed for cytotoxicity against HCT-15 cells
derived from human colon carcinoma. In vitro [171]

Gastric cancer Inhibition of gastric carcinoma MGC-803
cells invasion. In vitro [63]

Liver cancer
Antioxidant, anti-inflammatory and anticancer

activities against diethylnitrosamine-induced liver
carcinoma in rats.

In vivo [172]

Inhibition of DNA-reactive carcinogen
acetylaminofluorene induction of initiation of rat

liver carcinogenesis.
In vivo [173]

Anticarcinogenic activity against hepatocellular
carcinoma cells (HepG2). In vitro [169,174]

Cytotoxicity against HepG2 cells. In vitro [175]

Skin cancer Pro-apoptotic activity on B16 murine
melanoma cells. In vitro [176]

Action on the toxic trans-crotonaldehyde. In vitro [177]

Osteosarcoma Suppression of osteosarcoma progression. In vitro [178]

Prostate cancer Induction of apoptosis in human prostrate
adenocarcinoma (LNCaP) cells. In vitro

[179,180]

Cytotoxicity against the prostate cancer cell line PC3. [12]

Miscellaneous Promotion of expression of miRNA-338-3p in
suppressing cancer progression. In vitro [181]
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3.1. Bladder Cancer

When malignant cells are formed in bladder tissue or lining, it is known as bladder
cancer; this disease affects more than 10,000 people every year in the UK [182]. A study
conducted with the TCCSUP (an anaplastic transitional cell carcinoma in the neck of the
urinary bladder) human bladder cancer cell line revealed that arbutin did not have any
cytotoxicity against this cell line at a concentration of <500 mg/mL, but it considerably
decreased proliferation of this cell line in a concentration- and time-dependent manner
in the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay [166]. It
was also shown that arbutin could time-dependently disrupt the cell cycle and inactivate
extracellular signal-regulated kinase (ERK), which is an intrinsic regulator of cell prolif-
eration and a key mediator of p53-dependent cell cycle arrest [183]. The ERK signaling
pathway is implicated in the mitogenic signaling of several growth factors [166]. It was
postulated that the cell cycle disruption by arbutin could be mediated by an increase in the
cyclin-dependent kinase inhibitor p21(WAF1/C1P1)(p21). That study demonstrated that
arbutin could inhibit the cell proliferation of bladder cancer cells in vitro via extracellular
signal-regulated kinase inactivation and p21 up-regulation [166,183].

3.2. Brain Tumour

In a recent study on the effect of arbutin on brain tumor, it was found that it could
kill C6 glioma cells by inducing apoptosis (IC50 = 30 mM) and inhibiting the inflammatory
markers and P13/AKT/mTOR cascade [167]. It should be noted that P13/AKT/mTOR is
an intracellular signaling pathway that regulates the cell cycle and, thus, is linked to cell
proliferation. It is known that reactive oxygen species (ROS) can activate this cascade [184].
It was demonstrated that arbutin-generated excessive ROS could disrupt the mitochondrial
membrane, resulting in apoptosis in cells and inhibition of the cell adhesion property of
C6 glioma cells. C6 glioma cells are spindle-like cells; they are able to stimulate human
glioblastoma multiforme (GBM) when injected into the brain of neonatal rats and have been
used to develop a glioma model in Wistar rats. These cells exhibit the same histological
features as human GBM [185]. Like bladder cancer, over 11,000 people are diagnosed with
primary brain tumors every year in the UK, and a half of those are cancerous [186]. A
recent study [167] suggested that arbutin could be a potential anti-brain tumor drug for
the treatment of glioma. However, further studies are obviously necessary in this regard.
An earlier study also showed significant antiproliferative activity of arbutin against C6 rat
brain tumor cells in an enzyme-linked immunosorbent assay (ELISA) [168].
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3.3. Breast Cancer

Breast cancer is the most common type of cancer in the UK and is usually treated with
chemotherapy and radiotherapy [187]. In the search for natural products as potential cures
for breast cancer, the cytotoxicity of an arbutin-containing methanol extract of Turnera diffusa
was evaluated using the MTT assay against epithelial-like MDA-MB-231 breast cancer cells;
the IC50 value was determined to be 30.67 mg/mL [145]. It was also assessed against the
human breast carcinoma T-47D cell line, showing an IC50 value of 54.02 mg/mL. It was
demonstrated that the cytotoxic effect of an arbutin-containing extract was mediated via
apoptosis. It is worth noting that T-47D are epithelial cells obtained from a pleural effusion
from a 54-year-old female patient with an infiltrating ductal carcinoma of the breast [188].
This assessment did not use purified arbutin, but rather, tested a crude methanol extract
that contained arbutin as well as the flavone apigenin. More recently, Hazman et al. [169]
reported the cytotoxicity of purified arbutin against the MCF-7 human breast cancer cell
line; cytotoxicity was shown to be mediated through the induction of apoptosis via estrogen
receptors and the alpha signal pathway, as well as through inflammation and genotoxicity.
It was observed that the administration of a lethal dose (LD50 = 69.6 mM) of 50% arbutin
could induce inflammation in MCF-7 cells linked to pro-inflammatory cytokine levels and
increase genotoxicity in the cells. It was noted, however, that while at high doses arbutin
could induce apoptosis, at low concentrations, it had the opposite effect, i.e., inhibiting
apoptosis and thus, assisting cancer cell growth and survival. Earlier, a similar study was
conducted to determine the cytotoxicity of arbutin against adriamycin-resistant MCF-7
and wild-type MCF-7 cell lines using the MTT assay [170]. It was found that arbutin at a
high concentration (5–10 mM) was the least cytotoxic (15–42% inhibition of cell growth)
among the tested phenolic compounds against both cell lines, while at low concentrations
(0.32–1.25 mM), this compound raised cell viability by approximately 20%. The effective
concentrations (EC50) of arbutin against the adriamycin-resistant MCF-7 and wild-type
MCF-7 cell lines were 5.85 mM and >1000 mM, respectively.

3.4. Cervical Cancer

Cervical cancer is cancer of the cervix, caused predominantly by infection from certain
human papillomaviruses [189]. This cancer is most common among young females under
45 years of age. An arbutin-rich methanolic extract of the leaves of Turnera diffusa, i.e., not
purified arbutin, was tested for its cytotoxicity against human cervical carcinoma HPV-16
positive (SiHa) and HPV negative (C-33) tumor cell lines. Its cytotoxicity against these
cell lines was much less prominent than its effect against the MDA-MB-231 breast cancer
cell line [145]. The IC50 values of this methanol extract against the SiHa and C-33 cell
lines were 50.14 and 40.1 mg/mL, respectively. A year later, Erenler et al. [168] reported
the antiproliferative property of purified arbutin against the HeLa cell line, which was
first developed from cervical cancer cells in 1951. A real-time cell analyzer single plate
instrument (RTCA) and electronic cell sensory array, the xCELLigence RTCA, were used to
analyze this antiproliferative effect at concentrations of 10, 50 and 100 mg/mL against the
HeLA cell line; however, no attempt was made to determine the IC50 value. Additionally,
none of the above experiments explored the possible mechanism of action of arbutin against
the human cervical cell lines.

3.5. Colon Cancer

Arbutin displayed cytotoxicity against HCT-15 cell line, a quasidiploid human cell
line derived from the large intestine of a male colorectal cancer patient [171]. In that study,
culture cells were incubated with various concentrations of this hydroquinone glycoside
for four days in a 5% CO2 incubator before cell numbers were counted. However, since
this preliminary cytotoxicity result [171], no follow up data on the cytotoxicity of arbutin
against various other colon cancer cell lines have been published in the literature, despite
the fact that colon cancer, also known as bowel cancer, is one of the most common types of
cancer among people of over 60 years of age in the UK [190].
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3.6. Gastric Cancer

Gastric cancer, a form of stomach cancer, is the disease in which cancer cells grow in the
lining of the stomach, whereas stomach cancer can be found anywhere in the stomach. This
form of cancer is not common in the UK [191]. The inhibitory effect of several derivatives
of arbutin, isolated from the leaves of Heliciopsis lobata, against cultured gastric carcinoma
MGC-803 cells invasion was reported by Qi et al. [63]. All these derivatives contained
various acyl substituents on the glycone moiety of arbutin, e.g., cinnamoyl and butenyl.
Most of these compounds displayed a moderate level of activity, with IC50 values between
11 and 45 mg/mL.

3.7. Liver Cancer

While most of the aforementioned potential anticancer activities were assessed in vitro,
recently, Zeng et al. [172] reported in vivo anticancer activity of arbutin against diethylni-
trosamine-initiated liver carcinogenesis in rats. Liver cancer is one of the leading causes
of cancer deaths worldwide and is the sixth most common form of cancer in humans,
with almost a million new cases in 2020 [172,192]. The administration (30 mg/kg body
weight) of arbutin was found to improve body weight, reduce liver weight, improve the
albumin, globulin and total protein contents, reduce liver injury marker enzyme function
and increase the c-JNK (c-Jun N-terminal kinase), caspase-8 and p53 contents in rats with
diethylnitrosamine-triggered liver carcinogenesis.

This effect was attributed to the anti-inflammatory and antioxidant properties of
arbutin, as evident from a series of in vitro bioassays with isolated rat liver tissue involving
various inflammatory markers. Furthermore, arbutin was shown to decrease the expression
of GRP78 (78-kDa glucose-regulated protein), PDIA4 (protein disulfide isomerase family
A member 4), GRP94 (94-kDa glucose-regulated protein), ERDJ4 (endoplasmic reticulum-
localized DNA J4), ATF4 (activating transcription factor 4) and GADD34 (growth arrest and
DNA damage-inducible protein 34) in liver tissues. Earlier, a similar in vivo experiment,
albeit a preliminary one, was conducted with hydroquinone, which is the aglycone of
arbutin [173]. It was reported that hydroquinone could inhibit the initiation of DNA-
reactive carcinogen acetylaminofluorene induction of rat liver carcinogenesis. However,
the authors did not observe any significant body weight gains or changes in liver weight in
hydroquinone-treated rats.

In addition to the above in vivo studies, there are a few in vitro studies available in
the literature where the effect of arbutin was studied against the HepG2 hepatocellular
cancer cell line [145,174,175]. An arbutin-rich methanolic extract of the leaves of Turnera
difusa was found to exert cytotoxicity toward the HepG2 cell line with an IC50 value
of 43.87 mg/mL [145]. Hazman et al. [174] reported the effects of α-arbutin (but not
β-arbutin) on HepG2 cells and cisplatin toxication in this cell line. At low doses, α-arbutin
did not show any genotoxicity or cytotoxicity toward HepG2 cells, and no effects on
apoptosis, inflammation or proliferation were observed. However, when the same low dose
was used with cisplatin, oxidative stress, inflammation and genotoxicity levels increased,
resulting from cisplatin toxicity without any change in caspase 3 levels. At high doses,
α-arbutin displayed anticarcinogenic effects, mediated through increased oxidative stress,
genotoxicity, inflammation and apoptosis and suppression of cell proliferation. A decade
before this study, Kang et al. [175] reported on the in vitro cytotoxicity of arbutin in the
HepG2 cell line.

3.8. Melanoma or Skin Cancer

Melanoma is a type of skin cancer, the most common sign of which is the appearance
of a new mole or a noticeable change in an existing mole [193]. Melanoma is thought to
be caused by exposure to ultraviolet (UV) light from the sun or from a sunbed. It is the
fifth most common cancer in the UK and there are ca. 16,000 new cases of it reported in the
UK every year. Jiang et al. [176] reported the potential anti-melanoma activity of arbutin
and showed its effect on melanogenesis, as well as its pro-apoptotic effect, on B16 murine
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melanoma cells. Arbutin was shown to significantly reduce cell viability, promote cell
apoptosis, cause G1 cell cycle arrest (after 24 h of treatment) and induce mitochondrial
disruption in B16 murine melanoma cells. It also caused a reduction in the expression
of B-cell lymphoma-extra large (Bcl-xL) and Bcl-2 arbutin-treated cells. The inhibition of
cell viability by arbutin was found to be time- and dose-dependent, and it could inhibit
melanogenesis by ca. 46% at a concentration of 5.4 mM. Its pro-apoptotic effect was detected
by flow cytometry using Annexin V-FITC labeling for the detection of phosphatidylserine
externalization. Arbutin was found to be able to cause apoptosis in 23.7% of the cells after
24 h of treatment at 5.4 mM. The results from this study indicated that arbutin could be a
candidate for anti-melanoma drug development. Earlier, the anti-skin cancer potential of
arbutin was reported by studying the molecular spectroscopic behavior of this compound
and its action on the carcinogen trans-crotonaldehyde [177].

3.9. Osteosarcoma

Osteosarcoma is a type of bone cancer. It starts in the cells that form bones, espe-
cially long bones. Children, teens and young adults are the main sufferers from this
cancer [194]. Just over 500 new cases are reported each year in the UK National Health
Service (NHS) [195]. Wang et al. [178] demonstrated that arbutin could time- and dose-
dependently suppress the progression of osteosarcoma in vitro using the osteosarcoma cell
lines MG-63 and SW1353 and applying the Cell Counting Kit-8 assay. It was suggested that
arbutin could inhibit osteosarcoma cell proliferation, migration and invasion via miR-338-
3pl MTHFD1L (methylenetetrahydrofolate dehydrogenase (NADP+ Dependent) 1 Like)
and by inactivating the AKT (protein kinase B)/mTOR (mammalian target of rapamycin)
signaling pathway.

3.10. Prostate Cancer

Safari et al. [179] first reported the anti-prostate cancer potential of arbutin and looked
into the molecular mechanism of activity against the prostate cancer cell line LNCap
(androgen-sensitive human prostate adenocarcinoma cells). It was demonstrated that
1 mM of arbutin could induce apoptosis, reduce the level of reactive oxygen and decrease
the expression of pro-inflammatory 1L-1β (interleukin-1 beta) and TNF-α (tumor necrosis
factor alpha) genes. A year later, the effect of arbutin on the expression of tumor suppressor
p53, BAX/BCL-2 (BCL 2 associated X/B cell lymphoma protein 2) ratio and oxidative stress
induced by t-butyl hydroperoxide in fibroblast and LNCap cell lines was studied [180].
It was observed that arbutin could enhance the total antioxidant power and cell viability
in the MTT assay, as well as reducing the BAX/BCL-2 ratio, p53 mRNA expression and
necrosis in fibroblasts exposed to an oxidative agent. Additionally, it was shown to decrease
cell viability, induce apoptosis and increase the BAX/BCL-2 ratio in LNCap cells at certain
concentrations (e.g., 1 mM).

Recently, a dichloromethane extract of the leaves of Arbutus pavarii was shown to
possess cytotoxicity against the PC3 human prostate cancer cell line. Employing a bioassay-
guided isolation protocol, arbutin was isolated as one of the major bioactive compounds [12].
One in eight men in the UK is likely to have prostate cancer, which can develop when
cells in the prostate start to grow in an uncontrolled way [196]. Prostate cancer is the most
common cancer in men and more than 52,000 men are diagnosed with it every year in the
UK. Fatalities from this disease every year in the UK are over 12,000. The in vitro activity of
arbutin against prostate cancer cell lines requires further extensive investigation to examine
the potential of this compound or its analogues as prostate cancer therapeutics.

3.11. Miscellaneous

In discussing the regulatory impact of miRNA-338-3p on cancer growth and migration,
the antitumor effect of arbutin, i.e., suppressing cancer progression by promoting the
expression of miRNA-338-3p, was highlighted by Mirzaei et al. [181].
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4. Toxicological Aspects

Generally, arbutin is considered safe for external use, particularly at the concentrations
at which it is used in various cosmetic products. However, a few studies conducted to
date on the toxicity of this compound have reveled certain levels of in vivo and in vitro
toxicity at various concentrations [197]. At high doses, the aglycone hydroquinone can
exert hepato- and nephron-toxicity and mutagenicity [197]. Kang et al. [175] demonstrated
the ability of arbutin to induce immunotoxicity in splenocyte cultures from mice. The
genotoxic effect of arbutin on the differential gene expression profiling in A375 human
malignant melanoma cells through its effect on tumorigenesis and related side-effects has
been reported [198]. It was found that the level of toxicity may be dependent on the route
of exposure, as well as on the sex, species and strain in rodents. Meanwhile, the subchronic
and chronic toxicity in animal models was limited to nephrotoxicity [199]. However, no
developmental and reproductive toxicity or carcinogenicity have been detected with ar-
butin [200,201]. Information available in various online databases suggests that it may exert
a low level of toxicity at high doses when given orally to mice (LD50 = 9804 mg/kg) and rats
(LD50 = 8715 mg/kg) [202], as well as dermal toxicity in rat and mouse (LD50 = 928 mg/kg).
However, far more published papers have highlighted various protective and health pro-
moting effects of arbutin, e.g., cytoprotective and hepatoprotective effects [103,202–204],
the benefits of which probably outweigh the minimal toxic effect of this compound.

5. Conclusions

Arbutin is widely distributed in the plant kingdom; plants from the Asteraceae, Eri-
caceae, Proteaceae and Rosaceae families are the main sources of this compound. However,
the compound has been detected in at least 45 other plant families to date. Published data
suggest that arbutin possesses potential anticancer properties against bladder, bone, brain,
breast, cervix, colon, liver, prostate and skin cancers, and a low level of toxicity. Further in
silico studies and in vivo pre-clinical and randomized clinical investigations are essential
to establish its true potential as an anticancer drug candidate.
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