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Abstract: Plant parts and extracts that are rich in bioactive substances with allelopathic potential can
be explored as a possible alternative to herbicides for natural weed control in sustainable agriculture.
In the present study, we investigated the allelopathic potential of Marsdenia tenacissima leaves and
its active substances. Aqueous methanol extracts of M. tenacissima showed significant inhibitory
activities against the growth of lettuce (Lactuca sativa L.), alfalfa (Medicago sativa L.), timothy (Phleum
pratense L.), and barnyard grass (Echinochloa crusgalli (L.) Beauv.). The extracts were purified through
various chromatography steps, and one active substance was isolated and determined by spectral
data to be a novel compound, assigned as steroidal glycoside 3 (8-dehydroxy-11β-O-acetyl-12β-O-
tigloyl-17β-marsdenin). Steroidal glycoside 3 significantly inhibited the seedling growth of cress at a
concentration of 0.03 mM. The concentrations needed for 50% growth inhibition of the cress shoots
and roots were 0.25 and 0.03 mM, respectively. These results suggest that steroidal glycoside 3 may
be responsible for the allelopathy of M. tenacissima leaves.

Keywords: Marsdenia tenacissima; allelopathic substances; growth inhibition; novel compound
(steroidal glycoside 3; 8-dehydroxy-11β-O-acetyl-12β-O-tigloyl-17β-marsdenin)

1. Introduction

Weeds inflict serious restrictions on agricultural production [1]. They reduce agri-
cultural productivity and quality because both weeds and crops compete for natural
resources through allelopathy [2] and parasitism [3], and they also harbor pests and
plant pathogens [4]. Weeds have been controlled either mechanically or by using her-
bicides [5]. Among weed control methods, herbicide application is the most effective.
Therefore, agricultural weed control relies heavily on herbicides [6]. However, the overuse
of synthetic agrochemicals for weed control has increased environmental pollution, unsafe
agricultural products, and human health concerns [7], and resulted in the evolution of
herbicide-resistant weeds [8]. Consequently, the negative effects of commercial herbicide
use on the environment make it desirable to diversify weed management options [9–11].
Many investigations have attempted to exploit the allelopathy of plants for weed control
purposes [12,13] because allelopathic plants are used as cover crops, green manure, and
mulch, and they can help to reduce noxious weeds and improve crop production and
soil quality [14]. In addition, allelochemicals, or secondary metabolites with phytotoxic
effects, have been discovered in a range of plants, so these allelochemicals have been
investigated as potential candidates for herbicides [15–17]. Therefore, allelopathic plants
and their allelochemicals could be useful for weed management options in a variety of
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agricultural settings, potentially reducing dependency on commercial herbicides [13,18].
Nowadays, allelopathic plants and allelochemicals that have the biological ability to sup-
press weeds are receiving the most attention. For example, Kato-Noguchi et al. (2014) [19]
discovered that two novel compounds, nimbolide B and nimbic acid B, from the leaves of
Azadirachta indica have strong allelopathic effects on the growth of cress and barnyard grass;
leaf extracts of Dregea volubilis have phytotoxic potential against timothy, barnyard grass,
lettuce, and alfalfa, and the phytotoxic activity of its two compounds, 3-hydroxy-α-ionone
and 5-hydroxy-3,4-dimethyl-5-pentylfuran-2(5H)-one, were successful against two test
plants [20]; and the allelopathic effects of two phenolic chemicals, vanillic acid and ferulic
acid, which were isolated from the leaves of Senna garrettiana, on the growth of cress were
described by Krumsri et al. in 2022 [21]. Based on these findings, many plant species could
contain bioactive substances with potential allelopathic effects.

Marsdenia tenacissima (Roxb.) Moon (family: Asclepiadaceae) is a perennial climber ex-
tensively distributed in the tropical and subtropical parts of Asia. This species can be found
below an altitude of 2000 m in dry and damp deciduous forests with an annual rainfall of
1000–1500 mm [22]. Its leaves are opposite and heart-shaped (Tiwari et al., 2018) [23]; the
inflorescences are greenish yellow, numerous, and large, arranged in many branches; and
the roots are cylindrical and yellow to buff [24] (Figure 1). The roots of M. tenacissima have
been widely used as a herbal medicine by the Dai people who reside in Laos, Myanmar, and
Yunnan province in China [25]. Different parts of the M. tenacissima plant have been used in
traditional medicine to treat various ailments such as pneumonia, cancer, fever, cough, vom-
iting, tumors, diabetes mellitus, heart disease, postpartum milk impassability in women,
and gonorrhea [24,26]. A phytochemical investigation of this plant has reported that it
contains 196 phytochemicals, including 155 steroids, triterpenes, phenolic compounds,
and organic acids (Wang et al., 2018) [22]. In addition, the leaves contain benzoic acid,
gallic acid, pyrogallol, salicylic acid, trans-cinnamic acid, and vanillic acid [27]. Pharma-
cological studies have revealed that this plant possesses anti-cancer [28,29], anti-HIV [30],
anti-tumor [31], anti-inflammatory, anti-diarrheal, and immunomodulatory properties [32].
Many researchers have extensively studied the phytochemical constituents and pharma-
cological activities of different parts of this plant. However, there is little information on
its allelopathic activity and substances. In our previous research, we discovered that M.
tenacissima extracts significantly restricted the growth of Italian ryegrass and cress, and we
also identified two phytotoxic compounds in its extracts. Additionally, the other active
peak from the same fraction of M. tenacissima has been found to have strong phototoxic
activity, indicating that we can isolate that other bioactive substance from its extracts [33].
Therefore, the current study was undertaken to determine the allelopathic potential of M.
tenacissima against the growth of four test plants, to identify the allelopathic substances
from its extract, and to assess their biological activities.
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2. Results
2.1. Allelopathic Activity of the Marsdenia tenacissima

The leaf extracts of M. tenacissima suppressed the seedling growth of lettuce, alfalfa,
barnyard grass, and timothy at concentrations greater than 3 mg DW equivalent extract/mL,
(p < 0.05) (Figure 2). The leaf extracts obtained from 10 mg of M. tenacissima inhibited the
shoot growth of lettuce, alfalfa, barnyard grass, and timothy to 35, 28.72, 87.56, and 48.08%
of the control, respectively, whereas the root growth was inhibited to 27.07, 31.25, 73.47, and
1.36% of the control, respectively, (p < 0.001). Moreover, the extract concentration of 300 mg
DW equivalent extract/mL completely inhibited the shoot and root growth of the lettuce,
alfalfa, and timothy, and the root growth of barnyard grass, but not its shoots, compared
with the control.

Plants 2023, 12, x FOR PEER REVIEW 3 of 14 
 

 

2. Results 
2.1. Allelopathic Activity of the Marsdenia tenacissima 

The leaf extracts of M. tenacissima suppressed the seedling growth of lettuce, alfalfa, 
barnyard grass, and timothy at concentrations greater than 3 mg DW equivalent ex-
tract/mL, (p < 0.05) (Figure 2). The leaf extracts obtained from 10 mg of M. tenacissima in-
hibited the shoot growth of lettuce, alfalfa, barnyard grass, and timothy to 35, 28.72, 87.56, 
and 48.08 % of the control, respectively, whereas the root growth was inhibited to 27.07, 
31.25, 73.47, and 1.36% of the control, respectively, (p < 0.001). Moreover, the extract con-
centration of 300 mg DW equivalent extract/mL completely inhibited the shoot and root 
growth of the lettuce, alfalfa, and timothy, and the root growth of barnyard grass, but not 
its shoots, compared with the control. 

 

 

Figure 2. Effects of aqueous methanol extracts of Marsdenia tenacissima leaves on the root and shoot 
growth of lettuce, alfalfa, barnyard grass, and timothy with the concentrations corresponding to the 
extracts acquired from 1, 3, 10, 30, 100, and 300 mg DW equivalent extract/mL. The bars on each 
experiment show mean ± SE from two independent experiments with three replications and 10 
plants for each treatment (n = 60). Asterisks indicate significant difference between control and treat-
ment: * p < 0.05, ** p < 0.01, *** p < 0.001. 

The I50 values of the M. tenacissima extracts for the shoot and root growth of lettuce, 
alfalfa, barnyard grass, and timothy varied from 0.7 to 54.2 mg DW equivalent extract/mL 
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Figure 2. Effects of aqueous methanol extracts of Marsdenia tenacissima leaves on the root and shoot
growth of lettuce, alfalfa, barnyard grass, and timothy with the concentrations corresponding to
the extracts acquired from 1, 3, 10, 30, 100, and 300 mg DW equivalent extract/mL. The bars on
each experiment show mean ± SE from two independent experiments with three replications and
10 plants for each treatment (n = 60). Asterisks indicate significant difference between control and
treatment: * p < 0.05, ** p < 0.01, *** p < 0.001.

The I50 values of the M. tenacissima extracts for the shoot and root growth of lettuce,
alfalfa, barnyard grass, and timothy varied from 0.7 to 54.2 mg DW equivalent extract/mL
(Table 1). The I50 values of the M. tenacissima extracts for the shoot growth of lettuce and
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alfalfa were not significantly different compared with its root growth, whereas the root
growth of barnyard grass and timothy was significantly less than their shoot growth.

Table 1. I50 values (mg DW equivalent extract/mL) of the shoot and root growth of lettuce, alfalfa,
barnyard grass, and timothy by the aqueous methanol extracts of Marsdenia tenacissima.

Test Plant
I50 Value (mg DW Equivalent Extract/mL)

Shoot Root

Dicots
Lettuce 3.8 d 3.2 d

Alfalfa 3.5 d 3.9 d

Monocots
Barnyard grass 54.2 a 12.6 db

Timothy 9.1 c 0.7 e

Different letters indicate significant difference according to Tukey’s HSD test (p < 0.05).

2.2. Isolation and Identification of the Active Substance

The leaf extracts of M. tenacissima were separated through partitioning into ethyl
acetate and aqueous fractions. Both fractions showed concentration-dependent inhibitory
activity against the shoot and root growth of barnyard grass (Figure 3). To evaluate the
biological activity of both fractions, barnyard grass (Echinochloa crus-galli (L.)) was selected
as a representative monocot test plant because it was most sensitive to the plant extracts of
the ethyl acetate fraction at high concentrations with regard to root development. At the
concentration of 300 mg DW equivalent extract/mL, the ethyl acetate fraction inhibited the
shoot growth of barnyard grass to 19.58% of the control and the root growth was completely
inhibited, while the aqueous fraction inhibited the shoot and root growth to 23.79 and
4.72%, respectively (p < 0.001). Moreover, the ethyl acetate fraction at 10 mg DW equivalent
extract/mL inhibited the root growth of barnyard grass more than the aqueous fraction.
Therefore, the ethyl acetate fraction was selected for further purification and separated
through a series of chromatography steps: silica gel, Sephadex LH-20, reverse-phase C18
cartridges, and HPLC. Finally, one active substance was isolated and characterized by
reverse-phase HPLC and spectral data analysis.
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Figure 3. The inhibitory effect of the aqueous and ethyl acetate fractions obtained from Marsdenia
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100, and 300 mg DW equivalent extract/mL. The bars on each experiment express mean ± SE from
three replicates, each with 10 seedlings (n = 30). Asterisks indicate significant difference between
control and treatment: ** p < 0.01, *** p < 0.001.
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The molecular structure of the characterized active compound was determined as
C42H66O14 by using HR-ESIMS m/z 817.4355 [M + Na]+ (calcd for C42H66O14Na 817.4350)
(Figure 4). The specific rotation of the compound showed [α] D

23 = +31 (c 0.21, CH3OH); IR
(neat) 3446, 2972, 2931, 2864, 1740, 1716, 1700, 1373, 1256 cm−1. The 1H and 13C-NMR data
are summarized in Table 2.
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2.3. Biological Activity of the Active Compound

The active compound significantly inhibited the seedling growth of cress (Lepidium
sativum L.), and the degree of inhibitory activity increased with increasing concentration of
the compound. The cress shoots and roots were significantly inhibited at concentrations
greater than 0.1 and 0.03 mM, respectively (p < 0.05) (Figure 5). At a concentration of
6 mM, the shoot and root growth of cress was inhibited to 10.2 and 3.58% of the control,
respectively. The I50 values of the shoot and root growth of cress were 0.25 and 0.03 mM,
respectively (p < 0.001).
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Table 2. NMR data of the active compound in CD3OD.

Position δC, (Type) a δH (J in Hz) b COSY/TOCSY Selected
HMBC

Selected
NOESY

1a 39.0, CH2 1.22, m 2a, 2b 18

1b 1.56, m 2b 18

2a 30.7, CH2 1.28, m 1a, 1b, 3

2b 1.77, m 1a, 1b, 3

3 77.9, CH 3.61, m 2a, 2b, 4a, 4b

4a 36.0, CH2 1.22, m 3, 5

4b 1.66, m 3, 5

5 45.7, CH 1.23, m 4a, 4b, 6a, 6b

6a 30.2, CH2 1.32, m 5, 7a, 7b

6b 1.38, m 5, 7a, 7b

7a 29.1, CH2 1.16, m 6a, 6b, 8

7b 2.13, m 6a, 6b, 8

8 40.8, CH 1.77, m 7a, 7b, 9 14

9 51.0, CH 1.45, m 8, 11

10 38.7, C

11 72.5, CH 5.82, dd (10.1, 10.1) 9, 12 1′ 18, 19

12 78.7, CH 4.86, d (10.1) 11 1”

13 55.6, C

14 85.2, C

15a 34.4, CH2 1.87, m 16a, 16b 14

15b 2.11, m 16a, 16b 14

16a 24.9, CH2 1.99, m 15a, 15b, 17

16b 2.08, m 15a, 15b, 17

17 59.0, CH 2.89, dd (4.8, 9.6) 16a, 16b

18 12.6, CH3 0.94, s 1, 5, 9, 10 1a, 1b, 11

19 11.7, CH3 1.04, s 12, 13, 14, 17 11, 21

20 216.0, C

21 32.0, CH3 2.12, s 17, 20 19

Acetyl

1′ 172.1, C

2′ 21.6, CH3 1.82, s 1′

Tigloyl

1” 169.1, C

2” 129.1, C

3” 140.6, CH 6.93, brq 4” 2”

4” 14.6, CH3 1.85, brs 3”

5” 12.1, CH3 1.85, s 1”, 2”
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Table 2. Cont.

Position δC, (Type) a δH (J in Hz) b COSY/TOCSY Selected
HMBC

Selected
NOESY

Cym I

1′” 98.6, CH 4.64, dd (1.6, 9.6) 2′”a, 2′”b 3

2′”a 37.9, CH2 1.34, m 1′”, 3′”

2′”b 2.23, m 1′”, 3′”

3′” 80.5, CH 3.37, m 2′”, 4′”

4′” 84.0, CH 3.17, m 3′”, 5′”

5′” 72.5, CH 3.66, m 4′”, 6′”

6′” 18.8, CH3 1.35, d (5.9) 5′”

13′” 57.4, CH3 3.40, s 3′”

Cym II

7′” 102.2, CH 4.72, d (8.1) 8′” 4′”

8′” 73.6, CH 3.31, m 7′”, 9′”

9′” 84.0, CH 3.62, m 8′”, 10′”

10′” 75.0, CH 3.17, m 9′”, 11′”

11′” 71.3, CH 3.37, m 10′”, 12′”

12′” 18.2, CH3 1.23, d (6.3) 11′”

14′” 62.5, CH3 3.59, s 9′”
a Measured at 100 MHz. b Measured at 400 MHz. These are the abbreviation of NMR peak multipliaca-
tion and explained as d = doublet, dd = doublet of doublet, m = multiplet, s = singlet, brq = broad quarted,
brs = broad singlet.
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Figure 5. Inhibitory activity of the active compound on the shoot and root growth of cress. The
bars on each experiment express mean ± SE from three replicates, each with 10 seedlings (n = 30).
Different letters indicate significant differences among the treatments (Tukey’s HSD, p < 0.05).
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3. Discussion

In our previous research, we found significant inhibitory effects of M. tenacissima
extracts against the growth of cress and Italian ryegrass [33]. We evaluated the inhibitory
effects of this extract against the growth of four other test plants (lettuce, alfalfa, barnyard
grass, and timothy) to corroborate the previous findings. In the present research, the
aqueous methanol extracts of the M. tenacissima leaves significantly inhibited the seedling
growth of lettuce, alfalfa, barnyard grass, and timothy (Figure 2). The growth of the four
test plants decreased with the increase in extract concentration, showing that the inhibitory
effect depended on concentration. Such concentration-dependent inhibitory activity of sev-
eral plant extracts has also been documented in other studies: those of Al-Harbi (2020) [34],
Moh and Kato-Noguchi (2022) [35], Bari and Kato-Noguchi (2017) [36], Das and Kato-
Noguchi (2018) [37], and Poonpaiboonpipat et al. (2021) [38]. Additionally, the I50 values of
the shoot and root growth of the four test plants varied, showing that the inhibition by the
M. tenacissima extracts was species dependent (Table 1). A similar trend in concentration
and species-dependent inhibitory activity for extracts of Elaeocarpus floribundus, Anredera
cordifolia, Garcinia xanthochymus, and Plumbago rosea have also been reported [39–42]. There-
fore, the M. tenacissima leaf extracts may contain allelopathic substances responsible for the
growth-inhibitory activities against the four tested plants.

The ethyl acetate fraction (partitioned from the aqueous methanol extracts of M.
tenacissima) was separated on a silica gel column, and the allelopathic activity of each
separated fraction was determined. The most active fraction was further purified by
Sephadex LH-20, reverse-phase C18 cartridges, and HPLC, and the inhibitory activity was
determined by a cress bioassay. One active compound was isolated and characterized
through HR-ESIMS, 1H, and 13C-NMR. The aglycone moiety of the active compound had
a polyoxypregnan-20-one skeleton according to a comparison of its 1H and 13C-NMR
spectroscopic signals with those of marsdenosides A–H [43] and tenacissosides L and
M [44], which was identified from the stem of M. tenacissima. Therefore, the structure of the
active compound was elucidated based on the spectroscopic data of pregnane glycoside or
C21 steroidal glycoside. The spectroscopic signals of the pregnane skeleton were assigned
through analysis of 1H-1H COSY, TOCSY, HMBC, and NOESY spectra (Figure 6A,B). In the
1H and 13C-NMR spectra, we found that the two angular methyl groups at CH3-18 and
CH3-19 (δH 0.94 (s), 1.04 (s); δC 12.6, 11.7) (Table 2); one tertiary methyl group at CH3-21
(δH 2.12 (s); δC 32); three oxygenated tertiary carbons at CH-3, CH-11, and CH-12 (δH 3.61,
m 5.28, dd (10.1, 10.1), 4.86, d (10.1); δC 77.9, 72.5, 78.7); three quaternary carbons at C-10,
C-13, and C14 (δC 38.7, 55.6, 85.2); two secondary methyl groups at CH3-6′” (δH 1.35, d
(5.9); δC 18.8) and CH3-12′” (δH 1.23, d (6.3); δC 18.2); two methoxy groups at CH3-13′” (δH
3.40 (s); δC 57.4) and CH3-14′” (δH 3.59 (s); δC 62.5); and the ester carbonyl signals at C-1′

(δC 172.1) and C-1” (δC 169.1) indicated that the active compound carried two acyl groups.
An NMR study (1H and 13C-NMR, HMBC, TOCSY, and NOESY) and a consideration of
the molecular structure of the active compound includes one carbonyl carbon of a ketone
group, two acyl groups, five methyls, seven methylenes, six methines, three quaternary
carbons (one oxygenated), two olefinic carbons, and dehydroxy alcohol, as well as two
sugar units.

In the HMBC spectrum, the active compound showed a specific rotation system
from H-1 to H-4 and H-9 to H-12, H-5 to H-8, and the correlations between H-15/H-16,
which might be elucidated by the four-ring skeleton of a pregnane derivative. The HMBC
correlations from H-18 to C-1, C-5, C-9, and C-10, and H-19 to C-12, C-13, C-14, and C-17
indicate the two angular methyl groups were connected to C-10 and C-13, respectively.
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One additional methyl signal of CH3-2′ (δH 1.82 (s)) together with two carbon signals at
δC 172.1 and 21.6 suggested one acetyl (Ac) group on the aglycone of the active compound.
This group was attached at the C-11 position on the basis of HMBC correlations from CH-11
(δH 5.28, dd (10.1, 10.1)) to δC 172.1 (C-1′ of Ac) (Figure 6A,B). The tigloyl (Tig) group was
identified through a series of proton signals at CH-3” (δH 6.93, brq), CH-4” (δH 1.85, brs),
and CH-5” (δH 1.85, s) with carbon resonance signals at δC 169.1, 129.1, 140.6, 14.6, and
12.1 in the 13C-NMR spectrum. The Tig group was attached at the CH-12 (δH 4.86, d (10.1))
position on the long-range of HMBC correlations from to δC 169.1(C-1” of Tig). Moreover,
the correlation from the protons CH-11 to CH-8 and CH-12 to CH-9 revealed that the Ac
group at CH-11 and the Tig group at CH-12 were in β-orientation in the NOESY spectrum.
Moreover, NOESY correlation between H-12 and C-17 (δH 2.89, dd (4.8, 9.6)) indicated that
the C-17 side-chain was in β-orientation and the carbonyl carbon of the β-linked methyl
ketone at C-17 appeared near δC 216.0. Similar findings of the β-linked methyl ketone at
C-17 were discovered near δC 214.5 and δC 217 according to earlier studies [45,46].

In the 1H NMR spectrum, the two anomeric protons at CH-1′” (δH 4.64, dd (1.6, 9.6))
and CH-7′” (4.72, d (8.1)) indicated that the two sugar units were attached by β-linkage
to the aglycone of the identified compound. The structures of the sugar units were fully
determined by analysis of NMR data, including 1H-1H COSY/TOCSY, HMBC, and NOESY
experiments (Figure 6A,B), and were further confirmed by comparison of the data with
those in the literature [47]. Thus, the two sugar units were characterized as β-cymarose
I (Cym I) and β-cymarose II (Cym II). We further assigned these proton signals based
on analysis of its 1H-1H COSY correlations between CH-Cym II-7′” (δH 4.72, d (8.1)) and
CH- Cym II-8′” (δH 3.31, m), CH-Cym II-8′” (δH 3.31, m) and CH-Cym II-9′” (δH 3.62, m),
CH-Cym II-9′” (δH 3.62, m) and CH-Cym II-10′” (δH 3.17, m), CH-Cym II-10′” (δH 3.17, m)
and CH-Cym II-11′” (δH 3.37, m), and CH-Cym II-11′” (δH 3.37, m) and CH3-Cym II-12′”
(δH 1.23, d (6.3)). In addition, the HMBC spectrum revealed 1H-13C-NMR long-range
correlations of CH-Cym I-1′” to the C-3 of the aglycone (δC 77.9), and CH-Cym II-7′” (δC
102.2) to CH-Cym I-4′” (δC 84.0), which indicated that the sugar chain was attached at C-3
and the two sugars were linked through the 1→4 position. We also detected dehydroxy
alcohol at the C-8 position from this active compound. Therefore, the structure of the active
compound was determined to be a novel compound (steroidal glycoside 3) and defined
as 3-O-[β-cymaropyranosyl (1→4)-β-cymaropyranosyl]-8-dehydroxy-11β-O-acetyl-12β-O-
tigloyl-17β-marsdenin.

Many researchers have reported that C21 steroidal glycosides possess a wide range of
pharmacological activities [44,48–51], as well as allelopathic activities [33]. Additionally,
Kenji et al. (1998) [52] mentioned that the steroid glucoside, which was isolated from
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Vernonia indica S. Moore, exhibits seedling growth inhibitory activities on lettuce (Lactuca
sativa L.). However, our report is the first on the allelopathic potential of steroidal glycoside
3 from M. tenacissima.

In this study, steroidal glycoside 3 significantly suppressed the shoot and root growth
of the cress seedlings (Figure 5) and the inhibitory activity varied with compound concentra-
tion. Based on the I50 values, steroidal glycoside 3 inhibited the roots more than the shoots.
Previous reports also confirmed that root growth is more sensitive to allelochemicals than
shoot growth [20,33]. This inhibitory activity of steroidal glycoside 3 might be due to the
different molecular structures [53] and acyl moieties in the C-11 and C-12 positions [47].
Panda et al. (2006) [54] reported that pregnane glycosides with acyl moieties at C-11 or
C-12, such as acetyl, benzoyl, and cinnamoyl, are more active. Steroidal glycoside 3 (in this
study) and steroidal glycoside 1 (in the previous study) [33] have the same acyl moieties at
the C-11 or C-12 position and sugar group, but they differ in the presence of dehydroxy
alcohol in steroidal glycoside 3 and a hydroxy group in steroidal glycoside 1 at the C-8
position. Furthermore, the I50 values of shoot growth of xxxsteroidal glycoside 3 exhibited
higher allelopathic potential than steroidal glycoside 1. These two steroidal glycosides,
however, showed greater growth inhibitory activities than steroidal glycoside 2, which
possesses the Tig group at the C-11 position (in the previous study) [33] (Table S1). Hence,
the different inhibitory activities of the identified compounds (steroid glycoside 3 (current
research) and steroidal glycosides 1 and 2 (previous research) [33] may be because of the
Ac group at the C-11 position, the dehydroxy alcohol and the hydroxy group at the C-8
position. Our findings indicate that the M. tenacissima leaves possess allelopathic activity,
and its identified compounds, steroidal glycosides 1 and 2 (previous research) and steroid
glycoside 3 (current research), may contribute to its allelopathy. Therefore, because of its
allelopathic activity, M. tenacissima leaves may be used as mulch and a soil-additive resource
to control weeds biologically as well as to protect the environment from the negative effects
of commercial herbicides.

4. Materials and Methods
4.1. Plant Material

Marsdenia tenacissima leaves were collected from Khin-U Township, Shwe Bo district,
Sagaing Division Region, Myanmar (22◦49′4′′ N and 95◦48′12′′ E) during July–August
2020 (Figure 1). The leaves were shade-dried and ground using an electric grinder. Before
extraction, the leaf powder was kept in plastic bags in a refrigerator at 2 ◦C. Lettuce (Lactuca
sativa L.), alfalfa (Medicago sativa L.), timothy (Phleum pratense L.), and barnyard grass
(Echinochloa crusgalli (L.) Beauv.) were chosen as the test plants for growth bioassays.

4.2. Extraction and Growth Bioassay

Powdered leaf (500 g) was extracted with 3000 mL of 70% (v/v) aqueous methanol
and then filtered through a single layer of filter paper (No. 2, 125 mm; Toyo Ltd., Tokyo,
Japan) after being kept in the dark for 48 h. The extract residue was then re-extracted with
methanol (3000 mL) for 24 h and filtered. The two filtrates were mixed and evaporated
in a rotary evaporator to obtain crude extracts at 40 ◦C until dry. The crude extracts of M.
tenacissima were dissolved in 300 mL of methanol to prepare six bioassay concentrations
(1, 3, 10, 30, 100, and 300 mg dry weight (DW) equivalent extract/mL). To obtain those
concentrations, an aliquot of the extract (0.45, 1.35, 4.5, 13.5, 45.11, and 135 µL, respectively)
and control (100 µL methanol only) were added to sheets of filter paper (No. 2; Toyo Ltd.)
in 28-mm Petri dishes. The Petri dishes were then placed in a fume hood to evaporate
the methanol, and the filter papers were then moistened with 0.6 mL of a 0.05% aqueous
solution of polyoxyethylene sorbitan monolaurate (Tween 20; Nacalai Tesque, Inc., Kyoto,
Japan). Consequently, ten seeds of lettuce and alfalfa, and ten sprouted seeds of barnyard
grass and timothy were placed on the filter papers and incubated in darkness at 25 ◦C for
36 h. Seedling length was measured and compared with the control seedlings to calculate
the percentage of seedling growth after 48 h of incubation. A completely randomized design
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(CRD) with three replicates was used in the bioassay experiment, and the experiment for
each test plant was repeated twice (10 seedlings/replicate, n = 60).

4.3. Purification of the Active Substance

The extraction method of M. tenacissima leaf powder (3500 g) and evaporation of the
leaf extracts was carried out using the same method mentioned above. After evaporation
of the aqueous methanol extracts, the aqueous residue was adjusted to pH 7.0 using 1 M
phosphate buffer and then partitioned six times with an equal volume of ethyl acetate.
The ethyl acetate fraction was then chromatographed on a column of silica gel, a column
of Sephadex LH-20, reverse-phase C18 cartridges, and HPLC. The inhibited fractions in
each isolation and purification step of silica gel, Sephadex LH-20, and reverse-phase C18
cartridges were similar to those used by Moh et al. (2022) [33]. In a reverse-phase C18
cartridge, the active fraction (F6) was obtained and evaporated using a rotary evaporator to
acquire a crude residue. After that, one active substance in this fraction was purified by
using reverse-phase HPLC (500× 10 mm I.D., ODS AQ-325; YMC Ltd. Kyoto, Japan), eluted
with 70% aqueous methanol at a flow rate of 1.5 mL/min, and detected at a wavelength of
220 nm and oven temperature of 40 ◦C. The peak fraction eluted during the retention time
of 142–146 min included biological activity. This active peak fraction was purified again
using reverse-phase HPLC (4.6 × 250 mm I.D., S-5 µm, Inertsil® ODS-3; GL Science Inc.,
Tokyo, Japan), eluted with 70% aqueous methanol at a flow rate of 1.5 mL/min, Inhibitory
activity of the active peak was discovered at a retention time of 52–57 min, resulting in one
active compound. The molecular structure of the active compound was then characterized
by HR-ESIMS, IR, 1H-NMR (400 MHz, CD3OD), and HMBC, TOCSY, NOESY, 13C-NMR
spectrum (100 MHz, CD3OD), and optical rotations. HR-ESIMS spectra were obtained on
an LCT Premier XE time-of-flight (TOF) mass spectrometer. A JASCO DIP-1000 polarimeter
was used to quantify optical rotations. UV spectra were obtained using a JASCO V730-BIO
spectrophotometer. A Bruker ALPHA instrument was used to record the IR spectra. All
NMR spectral data were recorded on JEOL JNM-ECX400 and JNM-ECS400 spectrometers
for 1H (400 MHz) and 13C (100 MHz).

4.4. Biological Activity of the Characterized Compound

The identified compound was dissolved in 2 mL of methanol. The assay concentrations
of 0.01, 0.03, 0.1, 0.3, 1, 3, and 6 mM were then prepared and added (0.7, 2.1, 7.1, 21.4,
71.4, 214.3, and 428.57 µL, respectively, of compound solution) to sheets of filter paper
(No. 2, 28 mm; Toyo) in 28 mm Petri dishes. The Petri dishes were dried in a fume hood
and then moistened with 0.6 mL of Tween 20. Ten seeds of cress (Lepidium sativum) were
placed on the filter papers in the Petri dishes and incubated under darkness at 25 ◦C for
48 h. The cress shoot and root lengths were measured to determine the percentage of
seedling growth.

4.5. Statistical Analysis

Three replicates and two rounds of the bioassay experiments were carried out us-
ing a completely randomized block design (CRD). The results were presented as the
mean ± standard error (SE). ANOVA of all the data was carried out using SPSS software,
version 16.0 (SPSS Inc., Chicago, IL, USA), and significant differences between the control
and sample treatments were determined using Tukey’s test at a significance level of 0.05.
The M. tenacissima extracts and the related compound concentrations required for 50%
growth inhibition (I50 value) of the tested plants were calculated using Graph Pad Prism®

Ver. 6.0 (GraphPad Software, Inc., La Jolla, CA, USA).

5. Conclusions

The leaf extracts of M. tenacissima showed significant allelopathic potential against
the seedling growth of lettuce, alfalfa, barnyard grass, and timothy. The identified allelo-
pathic substance (active compound) was isolated and determined to be a novel compound,
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steroidal glycoside 3 (3-O-[β-cymaropyranosyl (1→4)-β-cymaropyranosyl]-8-dehydroxy-
11β-O-acetyl-12β-O-tigloyl-17β-marsdenin). This compound significantly suppressed the
shoot and root growth of cress. The growth inhibitory activities of this compound may
be responsible for the allelopathic activity of M. tenacissima leaves. However, additional
field study is required to validate the phytotoxic activity of M. tenacissima and to identify
the mode of action of its active compound. Thus, our findings suggest that M. tenacissima
leaves may have good weed control potential as mulch and a soil-additive resource, and
its allelopathic compound may be considered a promising candidate for an ecofriendly
herbicide to reduce the reliance on commercial herbicides in sustainable agriculture.

Supplementary Materials: The following supplementary table can be downloaded at: https://www.
mdpi.com/article/10.3390/plants12081663/s1, Table S1: I50 value (mM) of the shoot and root growth
of cress by steroidal glycosides 1, 2 and 3.
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