
Citation: Luo, C.; Yang, Y.; Xin, Z.;

Li, J.; Jia, X.; Fan, G.; Zhu, J.; Song, J.;

Wang, Z.; Xiao, H. Assessment of the

Declining Degree of Farmland

Shelterbelts in a Desert Oasis Based

on LiDAR and Hyperspectral

Imagery. Remote Sens. 2023, 15, 4508.

https://doi.org/10.3390/rs15184508

Academic Editors: Jiahua Zhang,

Alex Okiemute Onojeghuo

and Fengmei Yao

Received: 24 August 2023

Revised: 10 September 2023

Accepted: 11 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessment of the Declining Degree of Farmland Shelterbelts
in a Desert Oasis Based on LiDAR and Hyperspectral Imagery
Chengwei Luo 1,2,3, Yuli Yang 1,2, Zhiming Xin 3,4, Junran Li 5, Xiaoxiao Jia 1,2,3, Guangpeng Fan 6,
Junying Zhu 1,2,3, Jindui Song 1,2,3, Zhou Wang 1,2,3 and Huijie Xiao 1,2,3,*

1 College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
lcw15586221001@163.com (C.L.); yangyuli@bjfu.edu.cn (Y.Y.); jxx12@bjfu.edu.cn (X.J.);
zjunying@bjfu.edu.cn (J.Z.); songjd@bjfu.edu.cn (J.S.); zhouw@bjfu.edu.cn (Z.W.)

2 State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University,
Beijing 100083, China

3 Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, National Forestry and
Grassland Administration, Dengkou 015200, China; xinzhiming@caf.ac.cn

4 Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
5 Department of Geography, The University of Hong Kong, Hong Kong 999077, China; lijr@hku.hk
6 School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China;

fgp@bjfu.edu.cn
* Correspondence: xhj1978@bjfu.edu.cn; Tel.: +86-18600407802

Abstract: The deterioration of farmland shelterbelts in the Ulan Buh desert oases could weaken their
protective functions. Therefore, an accurate method is essential to assess tree decline degree in order
to guide the rejuvenation and transformation of these shelterbelts. This study selected three typical
farmland shelterbelts in the Ulan Buh desert oases as the objects. Terrestrial laser scanning (TLS) and
airborne hyperspectral imagery (AHI) were used to acquire point cloud data and detailed spectral
information of trees. Point cloud and spectral characteristics of trees with varying decline levels
were analyzed. Six models were constructed to identify decline degree of shelterbelts, and model
accuracy was evaluated. The coefficient of determination between the structural parameters of trees
extracted by TLS and field measurements ranged from 0.76 to 0.94. Healthy trees outperformed
declining trees in structural parameters, particularly in tridimensional green biomass and crown
projection area. Spectral reflectance changes in the 740–950 nm band were evident among the three
tree types with different decline levels, decreasing significantly with increased decline level. Among
the TLS-derived feature parameters, the canopy relief ratio of tree points and point cloud density
strongly correlated with the degree of tree decline. The plant senescence reflectance index and
normalized difference vegetation index exhibited the closest correlation with tree decline in AHI data.
The average accuracy of the models constructed based on the feature parameters of LiDAR, AHI, and
the combination of both of them were 0.77, 0.61, and 0.81, respectively. The light gradient-boosting
machine model utilizing TLS–AHI comprehensive feature parameters accurately determined tree
decline. This study highlights the efficacy of employing feature parameters derived from TLS alone
to accurately identify tree decline. Combining feature parameters from the TLS and AHI enhances
the precision of tree decline identification. This approach offers guidance for decisions regarding the
renewal and transformation of declining farmland shelterbelts.

Keywords: desert oases; protective functions; tree decline; remote sensing; laser scanning; spectrum;
machine learning; classification

1. Introduction

Farmland shelterbelts play a crucial role in mitigating sand damage, improving micro-
climates in farmland, and enhancing crop yields [1–3]. The desert oasis area in Northwest
China is currently grappling with water shortages and severe wind erosion. The farmland
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shelterbelts within the region feature a single tree species structure and have aged. Some
farmland shelterbelts have declined, reducing the connection and protective function of
the shelterbelts [4]. Against the backdrop of global climate change, the decline of farmland
shelterbelts has attracted increased attention across various sectors of society [5]. There-
fore, in order to execute reasonable renewal and reconstruction of farmland shelterbelts,
identifying the degree of their decline has become an essential technical requirement.

The external manifestations of tree decline include the wilting of crown branches
and the shedding of leaves [6]. Though conventional field survey methods can relatively
accurately assess the degree of tree decline, they are labor intensive, time consuming, and
inefficient. Remote sensing has high accuracy, good efficiency, and strong adaptability [7,8].
In recent years, technological advancements have reduced the cost of acquiring remote-
sensing data, thus facilitating the application of novel remote-sensing techniques in forestry
investigation and research [9,10].

Light detection and ranging (LiDAR) is an active remote sensing technology that
extracts spatial distribution and other characteristics of target objects by analyzing infor-
mation such as the time delay and energy of emitted and returned laser pulses [11,12].
Terrestrial laser scanning (TLS) stands out due to its high precision in directly detecting
trees and measuring forest spatial structures, making it widely applied in forestry re-
search [13,14]. Caldres et al. [15] reconstructed three-dimensional quantitative structural
models (QSMs) of trees based on TLS point cloud data, effectively estimating above-ground
biomass. Othmani et al. [16] utilized texture features extracted from TLS to recognize and
segment five different types of individual trees, achieving an overall classification accu-
racy exceeding 80%. Previous studies have employed LiDAR data for three-dimensional
physical modeling of tree trunks and branches, enabling effective extraction of forest struc-
tural parameters (diameter at breast height, tree height) branching characteristics (branch
volume, branch length, branch angles), and other data [17,18]. Presently, research on TLS
primarily focuses on aspects like tree species classification and inversion of forest structural
parameters [19,20], with relatively fewer applications for assessing tree health using the
extracted parameters.

Hyperspectral imagery (HI) is a passive optical remote sensing technology encom-
passing hundreds of spectral channels, which can be utilized to monitor vegetation growth
based on extracted plant spectral information [21]. HI is widely used in forestry in tree
species classification, biomass estimation, and pest monitoring. A previous study employed
airborne hyperspectral data (AHI) to acquire crown texture and spectral feature informa-
tion, in conjunction with a support vector machine (SVM), which achieved high accuracy
in tree species classification [22]. Shaokui et al. [23] included wavelength and vegetation
index features based on HI data extraction of plant, and in combination with actual on-site
measurements data established models for the leaf area index and aboveground biomass
estimation. Ren et al. [24] integrated ground-based HI and drone-acquired HI data, and
found that HI data performed well in the early detection of pine wilt disease by utilizing
red-edge parameters.

While a single sensor can acquire a certain amount of observational data, it can only
characterize partial attributes of the observed target. Combining multiple data sources
can comprehensively reflect target information, thereby enhancing the observed target’s
accuracy. Meng et al. [25] combined laser radar and airborne HI data to study changes
in crown spectral and structural features after leaf fall. The results indicated that mod-
eling using multiple data sources yielded higher accuracy than relying on a single data
source. Similarly, Chi et al. [26] integrated airborne laser radar and HI data to classify the
health of urban trees, finding that combining airborne laser scanning with HI achieved
sensor complementarity.

Machine learning models can achieve higher classification accuracy in relatively com-
plex regions and large datasets than traditional models [5]. Integrating remote sensing
technology and machine learning has emerged as a novel approach to monitoring tree
growth conditions. Iordache et al. [27] collected two sets of drone-acquired HI data and
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applied the random forest (RF) algorithm to detect pine wilt disease. The classification
accuracy for distinguishing healthy, infected, and suspected pine trees exceeded 90%. In
summary, LiDAR and HI can extract a wealth of tree parameter information. Combining
extracted tree parameters with machine learning holds significant potential for studying
the degree of tree decline. Due to the different research objects, backgrounds, and selection
of characteristic factors, the existing classification models based on LiDAR or HI cannot
be fully applied to farmland shelterbelts in desert oases. Consequently, further research is
necessary to identify tree decline levels in the context of farmland shelterbelts in this region.

In this study, three typical shelterbelts in the study area were taken as objects, the
characteristic parameters of the point cloud and spectral information were obtained, and six
kinds of tree decline degree identification models were constructed. The main objectives of
this research were (1) to explore the feasibility of LiDAR in extracting shelterbelt parameters;
(2) to analyze the changes in the structural parameters and spectral characteristics of the
three tree species at various levels of decline; (3) to evaluate the optimal parameters
that represent tree decline and the model that best reflects the accuracy of assessing tree
decline levels. The results of this study can provide technical support for the renewal and
transformation of degraded farmland shelterbelts in the Ulan Buh desert oasis regions.

2. Materials and Methods
2.1. Study Area

The study plot is located in Dengkou County, Bayannaoer City, Inner Mongolia, China
(40◦17′–40◦29′N, 106◦35′–106◦59′E) (Figure 1). This region features a temperate continental
monsoon climate characterized by an average annual temperature of 8 ◦C and an average
annual precipitation of 144 mm. The precipitation is mainly concentrated from June to
September and the annual evaporation is 2398 mm. The prevailing wind in the area is
from the northwest, with an average annual wind speed of 4.1 m/s, and the maximum
instantaneous wind speed can reach 24 m/s. The predominant soil types are sandy soil
and sandy loam. The tree species in the agricultural shelterbelt forests mainly consist of
Populus alba var. pyramidalis, Populus simonii, and Populus nigra var. thevestina.
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2.2. Data
2.2.1. Field Survey Data

This experiment selected three typical tree species as subjects, namely, Populus alba var.
pyramidalis, Populus simonii, and Populus nigra var. thevestina (Table 1). From July to August
2021, three sample were randomly chosen within each shelterbelt and the trees within these
quadrats were examined for various parameters. These parameters included diameter at
breast height (DBH), tree height, crown diameter, and other data. A total of six Populus alba
var. Pyramidalis trees, six Populus simonii trees, and three Populus nigra var. Thevestina trees
were chosen from all sample plots for accuracy assessment of TLS parameter extraction
and algorithm tuning. This study adopted the method for categorizing tree decline levels
previously established by Wang et al. [28]. The classification involves three levels based on
the proportion of dead branches (the percentage of secondary and tertiary dead branches in
the tree’s main stem branches): normal growth when the proportion is ≤10%, mild decline
when it’s >10% and ≤30%, and severe decline when it’s >30%. Following an evaluation of
the proportions of dead branches across all trees within the three shelterbelts, the Populus
alba var. pyramidalis belt contains a total of 450 individual trees, with 303 growing normally,
67 experiencing mild decline, and 80 exhibiting severe decline. In the Populus simonii belt,
there are 192 individual trees, with 145 growing normally, 16 experiencing mild decline,
and 31 exhibiting severe decline. Similarly, in the Populus nigra var. thevestina belt, there
are 378 individual trees, with 308 growing normally, 33 experiencing mild decline, and
37 exhibiting severe decline.

Table 1. Basic information on shelterbelts.

Species Row Age (a) Shelterbelt Length and
Width (m) Spacing (m) Direction Number

Populus alba var. pyramidalis 5 28 450 × 20 4.5 × 5 north-south 450
Populus simonii 4 35 196 × 15 4 × 5 north-south 192

Populus nigra var. thevestina 8 33 390 × 35 5 × 5 north-south 378

2.2.2. LiDAR Data Acquisition and Processing

TLS (RIGEL VZ-400i) was utilized to collect raw point cloud data from the shelterbelts.
Its scanning range encompassed 360◦ horizontally and 100◦ vertically, achieving an accuracy
of 5 mm. The RiSCANPro 2.0 software, which is compatible with the TLS, was utilized for
automated point cloud data stitching. For data segments that could not be automatically
stitched, manual stitching was conducted using control points marked by targets. The
CloudCompare v2.10.alpha software was used for point cloud denoising, ground point
separation, and single tree segmentation. The statistical filtering algorithm was employed
for noise removal, with a set of parameters: neighborhood point count N set at 20, and
standard deviation multiplier T set at 2. The outliers not automatically removed were
manually eliminated. The cloth simulation filtering method was used to eliminate ground
points [29]. Considering the study area’s relatively flat terrain, the flat mode was adopted,
with a ground classification threshold set at 0.2 m and a maximum iteration count of
500. The Lidar 360, employing the Triangulated Irregular Network (TIN) interpolation,
was utilized for elevation normalization of point cloud data. For accurate segmentation
of single trees, manual segmentation of point cloud data was performed. of Row and
column position information for each tree was manually recorded. The LeWoS was used
for separating branches and leaves from the segmented tree files [30], with a threshold of
0.125. The LiDAR360 was utilized to extract tree parameters, including diameter at the
breast height (DBH), tree height, crown diameter, and gap fraction. The crown projection
area was calculated using both the canopy contour recognition algorithm and traditional
geometric methods [31]. The CanopyLazR package in Rstudio was employed to calculate
leaf area index (LAI), with a voxel resolution set at 1 [9]. The TreeQSM algorithm [32] was
executed in Matlab R2018a to compute the tridimensional green biomass of trees, with the
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PathDiam set at 0.04 m. In this study, seven single tree structural parameter variables were
extracted to characterize tree growth horizontally and vertically (Table 2).

Table 2. Tree structure parameters and description extracted from TLS.

Label Index Description

I1 Diameter at breast height Diameter of the tree trunk at 1.3 m above ground level
I2 Tree height Distance from the top of the stand vertically to the ground
I3 Crown diameter Diameter of each tree crown
I4 Crown projection area Area of the forest canopy projected vertically on the ground
I5 Tridimensional green biomass Volume of space occupied by total plant stems and leaves
I6 Leaf area index Ratio of the total leaf area per unit land area to the land area

I7 Gap fraction Probability of light passing through the canopy and reaching the surface
without being intercepted

In addition to the seven structural variable parameters, this study also extracted
radiometric variables from the LiDAR data, including height, intensity, and density variable
information [26]. Among these, the height variable information primarily characterizes
the three-dimensional structure of the trees. The intensity variable information reflects
differences in intensity for various materials, such as leaves and woody substances. The
density variable depicts how the crown point cloud is distributed in space, highlighting
aggregation and dispersion tendencies. The specific feature parameters are presented in
the Table 3.

Table 3. Radiation variable parameters extracted from TLS (H is the height of an individual point,
D is the density of an individual point, and I is the intensity of an individual point).

Labels Indices Description

I8 Haad Average absolute deviation of the height of the tree points: mean(abs(H − Havg))

I9 Hccr Canopy relief ratio of tree points: (Havg − Hmin)/(Hmax − Hmin)

I10–I24 Hcuh1-Hcuh99 Cumulative height percentiles (i.e., 1, 5, . . ., 99) of tree points

I25 Hcv Coefficient of variation of the height of the tree points

I26 Hkur Kurtosis of the height of the tree points

I27 Hmad Median absolute deviation of the height of the tree points: median(abs(H − Hp50))

I28 Hmax Maximum height of the tree points

I29 Hmin Minimum height of the tree points

I30 Havg Average height of the tree points

I31 Hmed Median height of the tree points

I32–I46 Hhei1-Hhei99 Height percentiles (i.e., 1, 5, . . ., 99) of tree points

I47 Hske Skewness of the height of the tree points

I48 Hstd Standard deviation of the height of the tree points

I49 Hvar Variance of the height of the tree points

I50–I59 Dsp1-Dsp10 1st, 2nd. . . 10th slices point cloud density

I60 Iaad Average absolute deviation of intensity of tree laser returns: mean(abs(I − Iavg))

I61 Icv Coefficient of variation of intensity of tree laser returns

I62–I76 Icip1-Icip99 Cumulative intensity percentiles (i.e., 1, 10, . . ., 99) of tree laser returns

I77 Ikur Kurtosis of intensity of tree laser returns

I78 Imad Median absolute deviation of intensity of tree laser returns: median(abs(I − Ip50))
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Table 3. Cont.

Labels Indices Description

I79 Imax Maximum intensity of tree laser returns

I80 Imed Median intensity of tree laser returns

I81 Iavg Average intensity of tree laser returns

I82 Imin Minimum intensity of tree laser returns

I83 Iske Skewness of intensity of tree laser returns

I84 Ivar Variance of intensity of tree laser returns

I85 Istd Standard deviation of intensity of tree laser returns

I86–I100 Ip1–Ip99 Intensity percentiles (i.e., 1, 5, . . ., 99) of tree laser returns

I101 Iipr Inter-percentile range of intensity of tree laser returns: Ip75–Ip25

2.2.3. Hyperspectral Imagery Acquisition and Processing

The HI data of the shelterbelts were acquired on 13 August 2021, under clear and
cloudless weather conditions. The data collection occurred from 12:00 to 13:00. An un-
manned aerial vehicle operated at an altitude of 100 m, covering a flying area of 500 m by
50 m. The flight speed was 5 m per second, and the imaging was conducted in a vertical
downward observation mode. The Corning® microHSI™410 SHARK sensor (Corning Inc.,
Corning, NY, USA) was used for capturing imagery, spanning a spectral range from 400
to 1000 nm (interval 2 nm). The imagery was obtained via a push-broom scanning mode
employing a linear array detector.

Before and during the acquisition of the hyperspectral data, white reference panels
were deployed for reflectance calibration of the raw spectral data. Due to the small size of
the study area, no stitching was performed. To mitigate random errors introduced by the
instrument, the Savitzky–Golay smoothing algorithm was applied for data denoising [33].
The derivative order was set to 0, the smoothing points were set to 5, and the polynomial
degree was set to 3. Matlab R2018a was utilized for Savitzky–Golay filtering, first-order dif-
ferentiation, and second-order differentiation of the original spectral curves. The raw data
of the spectral curves were extracted using ENVI 5.3, followed by reflectance calibration,
geometric correction, clipping, and band calculation.

To capture subtle variations in the spectral curves of trees more effectively, this study
calculated spectral derivative values (first and second order) to eliminate the influence of
external factors such as temperature. To comprehensively assess the plant growth condition,
this study utilized fluctuation operations to derive vegetation indices (Table 4), which will
serve as variables for subsequent construction of the tree decline models [27].

Table 4. The selected vegetation indices and formula (Ri represents the spectral reflectance at band i,
for example, R450 represents the spectral reflectance at 450 nm).

Indices Formula

Normalized difference vegetation index (NDVI) (RNIR − Rred)/(RNIR + Rr)
Simple ratio index (RVI) RNIR/Rred

Enhanced vegetation index (EVI) 2.5(RNIR − Rred)/[RNIR + 6Rred − 7.5Rblue + 1)
Atmospherically resistant vegetation index (ARVI) [RNIR − 2(Rred − Rblue)]/[RNIR + 2(Rred − Rblue)]

Red-edge normalized difference vegetation index (NDVI705) (R750 − R705)/(R750 + R705)
Modified red-edge simple ratio index (mSR705) (R750 − R445)/(R705 + R445)

Modified red edge normalized difference vegetation index (mNDVI705) (R750 − R705)/(R750 + R705 − 2R445)

Sum green index (SGI) mean(
600
∑

i=500
Ri)
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Table 4. Cont.

Indices Formula

Vogelmann red-edge index 1 (VOG1) R740/R720

Vogelmann red-edge index 2 (VOG2) (R734 − R747)/(R715 + R726)
Vogelmann red-edge index 3 (VOG3) (R734 − R747)/(R715 + R720)

Red-edge position index (REP) λi, max(Der(Rλ i ))

Photochemical reflectance index (PRI) (R531 − R570)/(R531 + R570)
Structure insensitive pigment index (SIPI) (R800 − R445)/(R800 + R680)

Red green ratio index (RG) mean(
850
∑

i=650
Ri)/mean(

650
∑

i=450
Ri)

Plant senescence reflectance index (PSRI) (R680 − R500)/R750

Carotenoid reflectance index 1 (CRI1) (1/R510)− (1/R550)
Carotenoid reflectance index 2 (CRI2) (1/R510) − (1/R700)

Anthocyanin reflectance index 1 (ARI1) (1/R550) − (1/R700)
Anthocyanin reflectance index 2 (ARI2) R800 [(1/R550) − (1/R700)]

Water band index (WBI) R900/R970

2.3. Construction of the Identification Model of Tree Decline Degree

Given the relatively small sample size in the mild decline and severe decline categories,
this study aimed to bolster the accuracy of the tree decline identification model by imple-
menting data sampling procedures [27]. The chosen method was random oversampling,
and prior to the sampling, feature selection was carried out. Correlation analysis and
stepwise regression analysis were employed to select the spectral and LiDAR feature pa-
rameters of the trees. We used repeat sampling method to ensure that the model validation
contains samples that were oversampled.

Using random forest (RF), artificial neural network (ANN), support vector machine
(SVM), k-nearest neighbor (KNN), light gradient boosting machine (LightGBM), multilayer
perceptron (MLP) classification methods to establish the degree of decline identification
model [34] in order to explore the feasibility of each classification algorithm to identify the
degree of tree decline. The model was constructed by using the field-measured canopy
withering as the target observation, and the characteristic parameters extracted from
LiDAR data and HI data as the predictors. The overall dataset was subjected to a random
sampling of 10% for predictive purposes. Within the remaining 90% of the data, 20% was
designated as testing data, with 80% allocated as training data. This iterative process was
conducted 10 times to ensure statistical robustness. The research was conducted utilizing
the Windows 10 operating system, leveraging Anaconda 3 as the integrated development
environment, and utilizing Python 3.8 as the programming language. The development of
the six models was executed using Keras 2.7.0 and TensorFlow 2.7.0. The neural network
intelligence (NNI) platform was harnessed to optimize hyperparameters for each model.
Four parameters (learning rate, regularization parameter, batch size, and hidden layer size)
have been adjusted.

2.4. Accuracy Evaluation
2.4.1. Accuracy Calculation of Structure Parameters Extracted by TLS

To investigate the accuracy of algorithms for extracting single tree structural param-
eters based on LiDAR data, a comparison was made between field-measured values of
parameters and the values extracted from LiDAR data. The precision of the extracted
values in comparison to the measured values was assessed through the calculation of root
mean square of errors (RMSE) and coefficients of determination (R2) between LiDAR point
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cloud-derived values and actual measurements. The formulas for calculating RMSE and R2

are as follows:

RMSE =

√
∑n

1 (yi − yi
∗)2

n
(1)

R2 = 1− ∑n
i=1 (yi

∗ − yi)
2

∑n
i=1 (yi − y)2 (2)

where yi and yi* represent the field-measured values and the extracted values of the struc-
tural parameters, respectively, ȳ stands for the mean value of the field-measured structural
parameters, and n denotes the total number of field-measured structural parameter values.

2.4.2. Calculation of the Accuracy of the Decline Degree Identification Model

Common accuracy evaluation metrics for classification models include overall accu-
racy (OA) and the Kappa coefficient (Kc). In this context, OA is defined as the percentage
of correctly classified instances out of the total instances. Kc is typically calculated using a
confusion matrix [35].

OA =

n
∑

i=1
Xii

n
∑

i=1

n
∑

j=1
xij

(3)

kappa =

N
n
∑

i=1
Xii −

n
∑

i=1
(Xi+ + X+i)

N2 −
n
∑

i=1
(Xi+ + X+i)

(4)

where n represents the number of classification categories; Xii signifies the count of pixels in
the confusion matrix at the intersection of the ith row and ith column (number of correctly
classified items); Xi+ and X+i denote the total number of categories in row jth (divided into
target categories) and column jth (real samples of target categories), respectively; N is the
total number of samples.

3. Results
3.1. Accuracy Analysis of Extracting Forest Structure Parameters by TLS

The linear fitting results between field-measured and LiDAR-extracted values for
DBH, tree height, and crown width showed good performance across three tree species
(Figure 2), with R2 values ranging from 0.85 to 0.95. The highest and lowest R2 values were
associated with DBH for Populus alba var. pyramidalis (0.95) and tree height for Populus nigra
var. thevestina (0.85), respectively. The average R2 values for DBH, tree height, and crown
width across the three tree species were 0.92, 0.93, and 0.89, respectively. The corresponding
average RMSE values were 0.13 cm, 0.76 m, and 0.24 cm.

The linear regression relationships between field-measured crown projection area,
LAI, and tridimensional green biomass, and their corresponding LiDAR-extracted values,
exhibit R2 values ranging from 0.76 to 0.94. The highest and lowest R2 values were observed
for the crown projection area and LAI, respectively. Among the three structural parameters,
the highest and lowest slope values were found in the tridimensional green biomass (0.94)
and crown projection area (0.64), respectively.
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3.2. Structural Characteristics of Forest Trees with Different Degrees of Decline

The six structural parameters of trees (DBH, tree height, crown diameter, LAI, crown
projection area, and tridimensional green biomass) for all three tree species gradually
decreased with increasing levels of decline (Figure 3). The structural parameters of
non-declined trees for all three species were significantly larger than those of trees with
mild and severe decline (p < 0.05). The structural parameters of trees with mild and
severe decline were reduced by 8.84–60.66% and 10.57–82.28%, respectively, compared
to non-declined trees. On average, the decrease in structural parameters for declined
trees compared to non-declined trees ranged from 13.65% to 63.19%. Among them, the
tridimensional green biomass (63.19%) and crown projection area (44.40%) exhibited
larger reductions.
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3.3. Spectral Characteristics of Forest Trees with Different Degrees of Decline
3.3.1. Raw Spectral Characteristics of Trees

In the green peak band (530–580 nm) (Figure 4), there was no significant variation
observed among different degrees of decline for Populus alba var. pyramidalis. However, the
spectral reflectance of Populus simonii and Populus nigra var. thevestina gradually decreased
with increasing levels of decline. In the red-edge band (640–700 nm), the spectral reflectance
of all three tree species increased as the degree of decline intensifies. Notably, for trees
with severe decline, the spectral curve in the red-edge band exhibited a diminishing
trend. Within the near-infrared band (740–950 nm), distinct changes in spectral reflectance
were observed among different degrees of decline for all three tree species. The spectral
reflectance of each tree species significantly decreases as the degree of decline increases,
indicating a disruption in the internal canopy structure.
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3.3.2. First-Order Derivative Spectral Characteristics of Trees

As the degree of tree decline intensified, within the green peak band range (530–580 nm),
there was little discernible change in the first-order derivative values for Populus alba var.
pyramidalis. Conversely, for Populus simonii and Populus nigra var. thevestina, the first-
order derivative values of their spectra decreased as the degree of decline became more
pronounced (Figure 5). In the yellow edge region (550–582 nm), all three tree species
exhibited distinct absorption valleys in the first-order derivative curves of canopy spectra.
These absorption valleys gradually disappeared as the degree of decline increased. Within
the range of 680–740 nm, as the degree of decline intensified, the peak values in the first-
order derivative curves for all three tree species gradually decreased. Simultaneously, a
slight shift towards the blue end of the spectrum was observed, maintaining consistency
with the changing trends of the original spectral curves. In the range of 750–990 nm, there
was little noticeable variation in the characteristics of the first-order derivative curves of
canopy spectra among the three tree species with different degrees of decline.
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3.3.3. Correlation between the Degree of Decline and Spectral Reflectance

The correlation coefficients between the first and second order derivative values of
canopy spectra (Figure 6), and the degree of decline for the three tree species ranged from
−0.583 to 0.457 and from −0.522 to 0.580, respectively. For Populus alba var. pyramidalis,
the spectral bands with the strongest correlation to the degree of decline were 734 nm
(r = −0.583, p < 0.01) for the first-order derivative and 742 nm (r = 0.580, p < 0.01) for
the second-order derivative. For Populus simonii, the spectral bands with the strongest
correlation to the degree of decline were 734 nm (r = −0.475, p < 0.01) for the first-order
derivative and 750 nm (r = 0.485, p < 0.01) for the second-order derivative. For Populus nigra
var. thevestina, the spectral bands with the strongest correlation to the degree of decline
were 634 nm (r = 0.224, p < 0.01) for the first-order derivative and 666 nm (r = −0.196,
p < 0.01) for the second-order derivative.
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3.4. Screening of Parameters Characterizing Forest Decline
3.4.1. Characteristic Parameters Based on TLS

Through stepwise regression analysis, feature indicators were selected (p < 0.05)
(Figure 7). For Populus alba var. Pyramidalis, Populus simonii, and Populus nigra var. thevestina,
the optimized laser scanning structural and radiometric variables were narrowed down to
16, 10, and 16 variables, respectively. The correlation coefficients (r) between the selected
laser scanning feature parameters and the degree of decline for the three tree species ranged
from −0.684 to 0.475, with an average absolute correlation coefficient of 0.381. The most
highly correlated optimized variables for Populus alba var. pyramidalis, Populus simonii, and
Populus nigra var. thevestina are the Hccr (I9, r = −0.684, p < 0.01), Dsp8 (I57, r = −0.544,
p < 0.01), and Dsp8 (I57, r = −0.534, p < 0.01), respectively.
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3.4.2. Characteristic Parameters Based on AHI

The results of hyperspectral index selection are presented in Figure 8. For Populus
alba var. Pyramidalis, Populus simonii, and Populus nigra var. thevestina, the optimized
AHI variables were narrowed down to 8, 5, and 7 variables, respectively. The correlation
coefficients (r) between the selected hyperspectral feature parameters and the degree of
decline for the three tree species range from −0.496 to 0.551, with an average absolute
correlation coefficient of 0.324. The most highly correlated optimized variables for Populus
alba var. pyramidalis, Populus simonii, and Populus nigra var. thevestina were the PSRI (r = 0.551,
p < 0.01), NDVI (r = −0.496, p < 0.01), and PSRI (r = 0.517, p < 0.01), respectively.
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3.4.3. Characteristic Parameters Combining AHI and TLS

The results of the integrated selection of hyperspectral and LiDAR indices are pre-
sented in the Figure 9. For Populus alba var. Pyramidalis, Populus simonii, and Populus nigra
var. thevestina, the optimized AHI variables were narrowed down to 15, 15, and 16 vari-
ables, respectively. The correlation coefficients between the optimized integrated feature
parameters and the degree of decline for the three tree species ranged from −0.629 to 0.517.
The most highly correlated integrated variables for Populus alba var. pyramidalis, Populus
simonii, and Populus nigra var. thevestina were the Hccr (I9, r = −0.629, p < 0.01), Dsp9 (I58,
r = −0.528, p < 0.01), and Dsp8 (I57, r = −0.534, p < 0.01), respectively. The correlation
between Hccr and tree decline was more pronounced for Populus alba var. pyramidalis than
for Populus nigra var. thevestina and Populus simonii.
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3.5. Construction and Accuracy Evaluation of a Model for Identifying the Degree of Trees Decline
3.5.1. Models for Identifying Tree Decline Degree Based on TLS

The overall classification accuracy of the tree decline identification model based on
LiDAR feature parameters ranged from 0.61 to 0.87 (Table 5), with an average value of
0.77. For Populus alba var. pyramidalis, Populus simonii, and Populus nigra var. thevestina,
the average overall classification accuracies of the tree decline identification models based
on LiDAR feature parameters were 0.83 (Kc = 0.75), 0.78 (Kc = 0.68), and 0.69 (Kc = 0.52),
respectively. Among the models built using LiDAR feature parameters, the best-performing
models for Populus alba var. pyramidalis, Populus simonii, and Populus nigra var. thevestina
were ANN, SVM, and LightGBM, while the least-performing models were KNN, LightGBM,
and SVM, respectively. When considering the mean values across the three tree species, the
highest and lowest accuracy in discerning tree decline were achieved by the MLP model
and the KNN model, respectively.
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Table 5. Accuracy of forest decline model using TLS parameters (Different lowercase letters indicate
significant differences between the six model mean values of different tree species (p < 0.05)).

Species Classification Model OA Kc

Populus alba var. pyramidalis RF 0.85 0.78
ANN 0.87 0.81
KNN 0.75 0.62
SVM 0.83 0.79

LightGBM 0.84 0.76
MLP 0.84 0.76

Mean value 0.83 a 0.75 a
Populus simonii RF 0.73 0.60

ANN 0.81 0.72
KNN 0.80 0.70
SVM 0.84 0.82

LightGBM 0.72 0.58
MLP 0.79 0.68

Mean value 0.78 a 0.68 a
Populus nigra var. thevestina RF 0.72 0.58

ANN 0.65 0.44
KNN 0.69 0.48
SVM 0.61 0.40

LightGBM 0.74 0.62
MLP 0.72 0.58

Mean value 0.69 b 0.52 b

3.5.2. Models for Identifying Tree Decline Degree Based on AHI

The overall classification accuracy of the tree decline identification model based on
hyperspectral feature parameters ranged from 0.50 to 0.68 (Table 6), with an average value
of 0.61. For Populus alba var. pyramidalis, Populus simonii, and Populus nigra var. thevestina, the
average overall classification accuracies of the tree decline identification models based
on hyperspectral feature parameters were 0.63 (Kc = 0.43), 0.61 (Kc = 0.39), and 0.60
(Kc = 0.39), respectively.

Table 6. Accuracy of forest decline model using AHI parameters (Different lowercase letters indicate
significant differences between the six model mean values of different tree species (p < 0.05)).

Species Classification Model OA Kc

Populus alba var. pyramidalis RF 0.67 0.46
ANN 0.58 0.37
KNN 0.65 0.44
SVM 0.61 0.42

LightGBM 0.68 0.52
MLP 0.57 0.35

Mean value 0.63 a 0.43 a
Populus simonii RF 0.67 0.46

ANN 0.62 0.43
KNN 0.60 0.40
SVM 0.65 0.44

LightGBM 0.59 0.38
MLP 0.50 0.25

Mean value 0.61 a 0.39 a
Populus nigra var. thevestina RF 0.66 0.44

ANN 0.65 0.44
KNN 0.56 0.38
SVM 0.55 0.33

LightGBM 0.61 0.41
MLP 0.55 0.33

Mean value 0.60 a 0.39 a
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Among the models built using hyperspectral feature parameters, the best-performing
models for Populus alba var. pyramidalis, Populus simonii, and Populus nigra var. thevestina
were LightGBM, RF, and RF, respectively, while the poorest-performing models were all
MLP. When considering the mean values across the three tree species, the highest and
lowest accuracy in discerning tree decline were achieved by the RF model and the MLP
model, respectively.

3.5.3. Models for Identifying the Degree of Tree Decline Based on Features Combined TLS
and AHI

The overall classification accuracy of the tree decline identification model based on
the integrated hyperspectral and LiDAR feature parameters ranged from 0.63 to 0.92
(Table 7), with an average value of 0.81. For Populus alba var. pyramidalis, Populus simonii,
and Populus nigra var. thevestina, the average overall classification accuracies of the tree
decline identification models based on the integrated hyperspectral and LiDAR feature
parameters were 0.83 (Kc = 0.75), 0.84 (Kc = 0.76), and 0.77 (Kc = 0.66), respectively. Among
the models built using the integrated hyperspectral and LiDAR feature parameters, the best-
performing models for Populus alba var. pyramidalis, Populus simonii, and Populus nigra var.
thevestina were LightGBM, RF, and LightGBM, respectively, while the poorest-performing
models were KNN, KNN, and MLP, respectively. When considering the mean values across
the three tree species, the highest and lowest accuracy in discerning tree decline were
achieved by the LightGBM model (OA = 0.88, Kc = 0.80) and the KNN model (OA = 0.71,
Kc = 0.55), respectively.

Table 7. Accuracy of forest decline model combining TLS and AHI parameters (Different lowercase
letters indicate significant differences between the six model mean values of different tree species
(p < 0.05)).

Species Classification Model OA Kc

Populus alba var. pyramidalis RF 0.89 0.84
ANN 0.89 0.85
KNN 0.63 0.44
SVM 0.88 0.82

LightGBM 0.90 0.85
MLP 0.79 0.69

Mean value 0.83 a 0.75 a
Populus simonii RF 0.92 0.88

ANN 0.88 0.82
KNN 0.71 0.53
SVM 0.80 0.71

LightGBM 0.88 0.82
MLP 0.86 0.78

Mean value 0.84 a 0.76 a
Populus nigra var. thevestina RF 0.80 0.71

ANN 0.83 0.72
KNN 0.78 0.68
SVM 0.64 0.45

LightGBM 0.86 0.74
MLP 0.72 0.68

Mean value 0.77 a 0.66 a

4. Discussion
4.1. The Accuracy of Parameters Extracted by TLS and the Characteristics of Structural Parameters
of Different Declining Trees

This study found that using LiDAR technology to extract individual tree parameters
demonstrated a linear relationship with R2 values ranging from 0.76 to 0.95 when compared
to ground-truth measurements (Figure 2). This indicated that TLS rapidly and accurately
extracted forest tree parameters. However, there were still errors in the data acquisition
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and processing process of TLS, primarily stemming from one aspect: the overlapping
of crowns from neighboring trees can result in incomplete segmentation of overall tree
crowns, ultimately affecting the accuracy of the single tree crown and LAI extraction. The
study found that the minimum R2 value was shown in LAI (0.76). This could be because
the voxel-based modeling for LAI computation may incorporate tree trunk and branch
point cloud data, leading to discrepancies when calculating the overall forest LAI [36].
The reconstruction of three-dimensional leaf models based on point cloud data can be
considered to achieve higher precision in obtaining LAI. For Populus alba var. pyramidalis,
Populus simonii, and Populus nigra var. thevestina (Figure 3), all seven structural parameters
decreased gradually with increasing degrees of decline. This finding aligned with previous
research results [37]. The study also indicated that changes in tree crown projection area
and three-dimensional green volume were more pronounced with increasing degrees of
decline. Therefore, these parameters can serve as key indicators for characterizing declining
trees, providing valuable insights for the construction subsequent models.

4.2. Hyperspectral Characteristics of Trees with Different Declining Degrees

The spectral reflectance of vegetation can reflect the physiological status and growth
conditions of plants [38]. This study analyzed the crown spectral characteristics of Populus
alba var. pyramidalis, Populus simonii, and Populus nigra var. thevestina with varying degrees
of decline. The study revealed that with the increasing degrees of tree decline (Figure 4),
both the original spectral reflectance and spectral derivative values in the red-edge region
gradually decreased and exhibited a “blue-shift” phenomenon (Figure 5). This suggested
that the degree of tree decline can be effectively reflected by the original spectral reflectance
and spectral derivative values in the red-edge region [39]. The findings of this study were
consistent with previous studies conducted by Wang et al. [40]. and Ma et al. [41]. This
may be attributed to the manifestation of tree decline, which involves a process where
leaves transition from green to yellow and eventually become dry and fall off. During
this process, the internal water content and chlorophyll content of the leaves gradually
decrease, and changes in pigmentation lead to distinct variations in crown reflectance
spectral characteristics. The variation in leaf internal structure and water content primarily
affec the near-infrared region. As a result, the near-infrared region becomes a crucial
indicator band region for characterizing the degree of tree decline. This provided feasible
methods and technical means for monitoring tree declining.

4.3. Characterization Parameters and Classification Model of Forest Decay Degree

Through correlation analysis and stepwise regression analysis to optimize the selected
indicator factors, the results indicated that the correlation between the laser radar indicator
factors and the degree of tree decline was higher than that between the hyperspectral
feature parameters and the degree of tree decline (Figures 7 and 8). Among them, point
cloud density and canopy relief ratio of tree points (Hccr) had the highest correlation
coefficients with the degree of tree decline. This was due to the fact that, for individual
trees, the upper branches were sparse due to upper branch dieback, resulting in lower
point cloud density. Therefore, density variables can better characterize the degree of
tree decline, which was consistent with previous research results [42,43]. Additionally,
this study emphasized that the Hccr can also effectively characterize the degree of tree
decline. The Hccr described the relative shape of the canopy and was the most important
indicator for characterizing tree decline in this study [44]. The correlation between the Hccr
of Populus alba var. pyramidalis and the degree of tree decline was higher than that of Populus
nigra var. thevestina and Populus simonii. This was because the dry branches of Populus
simonii and Populus nigra var. thevestina were distributed evenly from the bottom to the top,
whereas the dry branches of Populus alba var. pyramidalis are concentrated mainly in the
upper part of the tree. Therefore, the Hccr of Populus simonii and Populus nigra var. thevestina
did not exhibit a pronounced representation as compared to Populus alba var. pyramidalis. In
conclusion, for selecting characterization indicators of tree decline, it is recommended to



Remote Sens. 2023, 15, 4508 18 of 21

focus on utilizing TLS to obtain the Hccr and point cloud density variables. These variables
can serve as reliable indicators for estimating tree decline.

Six models for identifying degrees of tree decline were established based on three data
sources. Overall, the models constructed using laser radar feature variables outperformed
those constructed using hyperspectral feature variables in discriminating tree decline
degrees (Tables 5 and 6). Moreover, models combining TLS and AHI integrated feature
variables achieved higher classification accuracy in identifying tree decline degrees (Table 6).
This conclusion was similar to the findings of Lin et al. [45] and Chi et al. [26]. The relatively
poor performance of hyperspectral sensor feature parameters in characterizing tree decline
degrees may stem from factors like estimating tree canopy dieback and species differences.
When using HI to segment tree canopies, the influence of undergrowth vegetation growth
could lead to reduced accuracy in canopy identification, thus underestimating damage
below the canopy caused by tree decline. In estimating tree decline degrees using the TLS,
Populus nigra var. thevestina and Populus simonii exhibited lower accuracy compared to
Populus alba var. pyramidalis. This disparity might be due to the varying degrees of dead
branches from the bottom to the top of Populus nigra var. thevestina and Populus simonii,
resulting in less distinct vertical structural changes. When combined with AHI and TLS
data, Populus nigra var. thevestina and Populus simonii complemented the spectral data of
physiological changes in trees, leading to a noticeable improvement in overall accuracy
compared to models based solely on TLS data. Since the structural changes in Populus alba
var. pyramidalis were significantly greater than physiological changes, the integration of
multiple data sources did not yield substantial accuracy improvement. The highest and
lowest accuracy in discerning tree decline were achieved by the LightGBM model and
the KNN mode, respectively. (Table 7). It may be because KNN was more effective in
dealing with local problems, but there may be shortcomings in dealing with global issues.
Models such as RF, ANN, and LightGBM adopted more complex model structures and
training methods, which can better handle global problems and improve accuracy [27].
Looking at the three tree species, the model for identifying tree decline degrees established
by combining AHI and TLS data, particularly the LightGBM model, exhibited the highest
accuracy. Therefore, it is recommended to combine TLS and AHI data sources and utilize
the LightGBM model for assessing tree decline degrees in the Ulan Buh Desert Oasis region,
as it offers the best performance. A decrease in leaf area usually means a decrease in
the utilization of light energy by vegetation, leading to weakened photosynthesis and a
decline in vegetation growth. A decrease in biomass density usually means a decrease in
vegetation growth density, a decrease in biomass accumulation capacity, and also reflects
the decline of vegetation. The extracted indicators in this study were limited; future efforts
could enhance model accuracy by incorporating additional variables such as leaf area and
biomass density.

5. Conclusions

This study utilized terrestrial laser scanning (TLS) and airborne hyperspectral imagery
(AHI) data from three typical shelterbelts to assess the structural characteristics and canopy
spectral changes of declining trees. Correlation analysis and stepwise regression analysis
were applied to select AHI and TLS indicator factors, which led to the development of
six models for the identification of degrees of tree decline. TLS can rapidly and accurately
extract forest tree parameters from shelterbelts. The seven structural parameters of the
three shelterbelts gradually decreased as the degrees of decline increased. The canopy
projection area and tridimensional green biomass emerged as essential structural indicators
for characterizing tree decline. The original spectral reflectance and spectral differential
values in the red-edge region decreased gradually as tree decline progressed, effectively
reflecting the extent of tree decline. The correlation between TLS indicators and tree decline
was stronger than that between hyperspectral feature parameters and tree decline. The
canopy relief ratio of tree points and point cloud density variables exhibited a significant
potential for characterizing tree decline. The models constructed based on TLS data
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outperformed those using AHI data, with the highest accuracy achieved when combining
both data sources. Across the three tree species, the LightGBM model demonstrated the
highest accuracy in identifying tree decline degrees. Consequently, it is recommended that
when assessing forest decline in the Ulan Buh Desert Oasis region, the combination of laser
radar and hyperspectral data sources, along with the application of the LightGBM model,
yield the most effective results.
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