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Abstract: The Gulf of Gabès, located on the south-east Tunisian coast, is an important maritime
area, with great influence on the local economy and human welfare. The aim of the current study
was to assess the response of meiobenthic copepod populations from this gulf to anthropogenic
disturbances. Nine sampling sites, situated along the shores of the gulf were surveyed seasonally
from winter of 2004 to autumn of 2005. Interestingly, this biotope has one of the highest semi-diurnal
tides in the Mediterranean Sea. Despite the fact that the data being presented here are not that
new, such a high maximum amplitude of tides reaching 2 m makes any information available on
animals with diurnal dispersal cycles such as copepods extremely precious. Furthermore, the lack
of knowledge on these crustaceans is obvious and lags behind that of numerous other meiobenthic
taxa and planktonic calanoids. Actually, most publications do not reach the species level and are
limited to determining densities. This is mainly due to the modest size of harpacticoids, and the lack
of qualified taxonomic experts and global taxonomic databases. Sediment samples were analyzed for
fluorine, carbohydrates and trace metals (i.e., Fe, Zn and Cd) content. A pollution index, based on
the eigenvalues of the main ordination axis of a Principal Component Analysis, was applied. The
highest values of chemicals were detected at the sites situated near an industrial complex, along with
significant variations among seasons. The copepod community comprised 38 species, including five
species new to science. Species richness, density and biomass of copepod communities varied among
sites and seasons. These community-based indices were also analyzed separately for each season
with conditional autoregressive models, revealing a significant negative response with the level of
pollution. However, the results of partial Mantel tests showed positive correlations between species
richness and pollution level, after controlling for the effect of geographic proximity in-between pairs
of sites (winter: r = 0.927, p < 0.0001; spring: r = 0.935, p < 0.0001; summer: r = 0.918, p < 0.0001;
autumn: r = 0.937, p < 0.0001). The overall pattern was that nearby sites were characterized by similar
pollution levels and inhabited by similar species of copepods. Moreover, the copepod communities
were significantly influenced by pollutants, mainly by trace metals. The results of the current survey
emphasize the usefulness of meiobenthic copepods in biomonitoring programs not only for the gulf
of Gabès, but also for other coastal areas from the Mediterranean Sea region.

Keywords: meiobenthic copepods; check–list; trace metals; carbohydrates; pollution; Tunisia

1. Introduction

Chemical pollutants enter the marine ecosystem either directly by their discharge in
the ocean or indirectly through contaminated rivers, winds or rain [1]. Furthermore, a
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number of chemical pollutants are carried far away from their source via the atmosphere.
The pressure on space and time on a global scale is increased by these chemical pollutants
in addition to the numerous other pollutants generated by human activity [2]. The con-
centration of metals in natural aquatic ecosystems is quite low, and it ranges on the scales
from a few nanograms to micrograms per liter [3]. The presence of contaminating trace
metals themselves, especially their presence in amounts up to natural levels, has recently
become a cause for concern. The main factors for metal contaminations are considered:
rapid population growth, increased domestication, the expansion of industrial activity and
the exploration and exploitation of natural resources [4–9].

The Gulf of Gabès is one of the most productive areas in south-east Tunisia [10,11]
(Figure 1) and is characterized by shallow waters, weak currents as well as higher salinity
and temperature compared to other regions of the Mediterranean Sea basin [12]. This
gulf represents the first pole of mussel farming and is considered a major point for sea
fishing [13]. Unfortunately, since the 1970s, this complex of habitats has experienced serious
environmental disturbances, mainly induced by overfishing and industrialization, the latter
occurring after the construction of a chemical complex from the City of Ghannouch, situated
north of the city of Gabès [14,15]. This chemical complex discharged several end products
into the sea, such as phosphogypsum, metals and organometallic compounds [16,17]. The
Gulf of Gabès is Tunisia’s top fishing area and is unrivaled in the Mediterranean area due
to its tidal trends, substantial continental shelf and the presence of enormous seagrass
meadows [18]. Together with the islands (including Kerkennah and Djerba), the Gulf of
Gabès’ coastline stretches for 750 km, or 58% of Tunisia’s coastline [19]. Actually, the winds
in the deep parts and the tide along the shore determine the hydrodynamics of the entire
Gulf of Gabès [20]. Phosphoric acid units located in the Ghannouch–Gabès industrial area
on the coast of Gulf of Gabès discharge a huge amount of phosphogypsum, approximately
10,000 to 12,000 tons, into the sea every day, seriously impacting coastal marine ecology [21].
Significant amounts of phosphogypsum are discharged in the water either directly or
indirectly affecting water transparency and circulation and adversely affecting the flora
and fauna. A variety of symptoms indicate an unbalanced environment:

• Posidonia habitats clearly decline in favor of Caulerpa, as shown by [22],
• A very noticeable reduction of the fauna diversity in these meadows (loss of 2/3 of

the settled bottom-living macrofauna, in particular the disappearance of two species
(Pinna nobilis and Pinctada Radiata), which are well represented in spared sites, such as
the Kerkennah islands).

• −10 m bottom desiccation from the isobath by fish,
• Greater customary appearance of red water [23,24].
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Figure 1. Location of study sites of the gulf of Gabès (A), and its geological and hydrodynamic 
map (B). Water circulation (B): Large red arrows: flow (rising tide); Large blue arrows: ebb (ebb 
tide); Small red arrows: withdrawal from the coast (marine erosive action). Coastal formations: 
Orange: large sandy beaches, Grey: very wide foreshore, Green: low marshy coasts, Red: cliffs. 
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hydrocarbon distribution serves as an indicator of identification of the source of the 
pollutants; indeed [29] reported that organic matter compounds would serve an indicators 
and tracers for the marine pollution in the area of the Gabès Gulf.  

Along with free-living nematodes, the copepods comprise the second major 
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widespread in benthic habitats and represent an important part of juveniles fish diets [31]. 
These crustaceans, dominated by harpacticoids, are very sensitive to various types of 
environmental stressors and their potential role as reliable ecological indicators was 
highlighted numerous times in the past (Influence of the Marseille sewer’s outflow into 
the sea, California’s continental shelf (Santa Maria Basin), offshore platforms in the Gulf 
of Mexico, China’s Bohai Sea, German Bight North Sea, and a tropical ridge lagoon on 
Zanzibar Island, Tanzania [32–41]). The harpacticoids are characterized by small 
dimensions and a short life span with no planktonic stage, but they are very abundant 
and diverse [42–45]. Copepods are widespread and lead a variety of lifestyles. In his initial 
biogeographic synthesis in 1948, Lang published an inventory of endemic harpacticoids 
[46], and subsequently [47] examined the eco-ethological information of this widely 
dispersed group. Harpacticoids are an outstanding predictor of the environmental 
contamination because they are more susceptible to contaminants compared to 
nematodes [48,49]. Therefore, harpacticoids have been extensively studied in both the 
South China Sea and the Baltic Sea [50,51].  

Due to the difficulty of taxonomic identification, marine harpacticoids have been 
included in fewer studies by ecologists compared to nematodes [52–54]. Many 
harpacticoids are cosmopolitan despite their small size and restricted mobility. Benthic 
harpacticoids enter into the sediments in one of three ways: interstitially, by digging or 
epibenthically. These modes range from coastal basins to deep abyssal bottoms [55–57]. 
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free-living nematodes, which were commonly used for environmental monitoring 
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Phosphogypsum contains all of the phosphate ore impurities that are dissolved and
released into the seawater. These include iron, chromium and arsenic, the high toxicity of
the two latter chemicals being widely known [25]. The phosphogypsum factories in the
Gabès discharge acidic liquids and solid discharges into the sea that are heavily loaded
with phosphogypsum (600–650 tons/hour on average) and other pollutants (cadmium,
fluorine). It was reported that these factories had, since the beginning of their activity in
1972, discharged into the sea water around 90 million tons of phosphogypsum [25]. Due to
this high level of contaminants with a negative impact on marine and coastal ecosystems,
the Posidonia oceanica meadow’s habitat has been significantly reduced [26]. Therefore, the
assessment of the Gulf’s ecological conditions is crucial for the effective implementation of
upcoming environmental monitoring programs.

Sediments serve as final reservoirs for the pollutants, especially trace metals and
hydrocarbons. They differ primarily in their granulometry, composition and by their
particles size [27]. Other compounds are known to be carcinogenic and/or mutagenic
and belong to the categories of substances that damage the environment. To assess the
ecotoxicity of such sedimentary xenobiotics, the characteristics and components of the
small food we, meiobenthos, protists and microbs need to evaluated [28]. In addition,
the hydrocarbon distribution serves as an indicator of identification of the source of the
pollutants; indeed [29] reported that organic matter compounds would serve an indicators
and tracers for the marine pollution in the area of the Gabès Gulf.

Along with free-living nematodes, the copepods comprise the second major sediment-
dwelling taxonomic group of marine meiobenthos [30]. Copepods are widespread in
benthic habitats and represent an important part of juveniles fish diets [31]. These crus-
taceans, dominated by harpacticoids, are very sensitive to various types of environmental
stressors and their potential role as reliable ecological indicators was highlighted numerous
times in the past (Influence of the Marseille sewer’s outflow into the sea, California’s
continental shelf (Santa Maria Basin), offshore platforms in the Gulf of Mexico, China’s
Bohai Sea, German Bight North Sea, and a tropical ridge lagoon on Zanzibar Island, Tan-
zania [32–41]). The harpacticoids are characterized by small dimensions and a short life
span with no planktonic stage, but they are very abundant and diverse [42–45]. Copepods
are widespread and lead a variety of lifestyles. In his initial biogeographic synthesis in
1948, Lang published an inventory of endemic harpacticoids [46], and subsequently [47]
examined the eco-ethological information of this widely dispersed group. Harpacticoids
are an outstanding predictor of the environmental contamination because they are more
susceptible to contaminants compared to nematodes [48,49]. Therefore, harpacticoids have
been extensively studied in both the South China Sea and the Baltic Sea [50,51].

Due to the difficulty of taxonomic identification, marine harpacticoids have been in-
cluded in fewer studies by ecologists compared to nematodes [52–54]. Many harpacticoids
are cosmopolitan despite their small size and restricted mobility. Benthic harpacticoids
enter into the sediments in one of three ways: interstitially, by digging or epibenthically.
These modes range from coastal basins to deep abyssal bottoms [55–57].

As in many parts of the world, the main focus on Tunisian marine meiofauna was on
free-living nematodes, which were commonly used for environmental monitoring programs
in the north of the country [58] or in laboratory ecotoxicological experiments [28,59]. The
knowledge of the biology and ecology of meiobenthic copepods in the Mediterranean Sea
bordering northern Tunisia lags behind that of other taxonomic groups [60–62]. On the
other hand, compared to planktonic copepods [63–76], the study of meiobenthic copepods
is relatively less advanced and less documented. Indeed, most publications do not reach
the species level and are limited at the determination of the density [77–81]. This is mainly
because of their modest size, the scarcity of qualified experts on taxonomy of meiobenthic
copepods and the absence of a global database on the morphology and biometry traits of
up-to-date described taxa. Given the taxonomic difficulties mentioned, scientists interested
in meiobenthic copepods turned their attention to ecotoxicology, which only required the
culture of easily identifiable species [36,37,82,83].
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Limited studies were carried out on the exploration of the copepod fauna inhabiting
the Mediterranean Tunisian coasts. This group of meiobenthic crustaceans in Tunisia was
studied a long time ago by Monard (1935) [60], who was interested in marine harpacticoids
in the Salammbô region and in the fishing in Sidi Ahmed (Bizerte). Another study was
carried out by Amorri (2004) [62], who investigated the inhabitants of benthic copepods in
the Bizerte lagoon. However, the previous studies aimed at analyzing their density, and
showed that these inhabitants do not change much over time. The Tunisian faunistic lists
of nematodes in Tunisia from 1981 to 2003 and actual ones are strikingly similar [84–88].

This study uses an integrative approach that combines taxonomic and morphometric
diversity on the one hand and spatial and temporal diversity on the other. Here, the
organo-mineral characterization of sediments from the Golf of Gabès was performed to
explain the observed pattern of meiobenthic copepods. Furthermore, the Gulf of Gabès
has one of the highest semidiurnal tide levels in the Mediterranean Sea, with a maximum
amplitude of about 2 m [89]. This characteristic undoubtedly affects the biodiversity and
productivity of planktonic and benthic copepods, resulting in diurnal cycles of dispersal
movements into the water and sediment columns, respectively.

The current study addresses this knowledge gap by exploiting the copepod character-
istics and developing a checklist of Gulf of Gabès’ copepod species that will be used for the
assessment of the ecological status of these marine complex habitats. Initially, the measure-
ments of the level of contamination by metals and organometallic compounds of this gulf
was carried out, followed by the investigation of the response of the sediment-dwelling
copepods to these stressors.

2. Material and Methods
2.1. Study Area

The study area was the gulf of Gabès, Tunisia (33◦45′ N–33◦57′ N and 9◦57′ E–10◦18′ E)
(Figure 1). In this area, the currents are regular and the stream comes from the NE or the
east, and follows the NW and/or SW directions [90] (Figure 1). Sampling campaigns were
carried out seasonally from the winter of 2004 to the autumn of 2005 at nine sites (Table 1).
Site S1 was situated in north of the city of Gabès, whereas sites S2, S3 and S4 on the transect
R1 are located 0.5 km from the discharge point of the industrial zone of Ghannouch City.
Stations S5 and S6 were situated in the south of transect R1 by 2.45 and 13 km, respectively.
The sites S7, S8 and S9 were situated on the transect R2, south of Gabès City, within the
tourist area. The sampling stations were chosen as such as to cover a pollution gradient
that starts from the industrial zone of Gabès City and ends in the gulf.

Table 1. Location and depth of sampled sites in the Gulf of Gabès during the four seasons of study.

Sites Depth (m) Latitude (S) Longitude (W)

S1 5 33◦56′37.14′′ 10◦ 5′24.88′′

S2 3 33◦54′44.37′′ 10◦ 6′22.02′′

S3 5 33◦54′50.56′′ 10◦ 6′40.96′′

S4 7 33◦54′57.98′′ 10◦ 7′11.57′′

S5 5 33◦53′42.57′′ 10◦ 7′27.66′′

S6 5 33◦49′16.23′′ 10◦12′17.33′′

S7 3 33◦46′13.96′′ 10◦16′11.56′′

S8 5 33◦46′30.40′′ 10◦16′29.83′′

S9 7 33◦47′4.59′′ 10◦17′7.60′′

The Gulf of Gabès is known for its low, muddy, sandy beaches and frequent sabkhas
on the land side. The El Bibans lagoon (approximately 30,000 acres) is located further
south [91,92]. A very high structural similarity was found along the Tunisian Coasts from
Cap Bon to the Libyan border. Most of the Tunisian coast is covered by recent Quaternary
sediments, some of which extend more than 100 km offshore [93]. The Gulf of Gabès has
a wide area of marine abrasion dating from the Pliocene and Miocene periods, where
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the continental shelf is more extensive than elsewhere, although, this region is frequently
covered by marine or continental formations from the recent Quaternary period [94]. Thus,
the location of the −200 m isobaths are 250 km from the coastline [95].

Ben Othmen (1973) [94] observed the sedimentological succession at the level of the
radial going through the parallel 34◦30′ N while examining the bottoms of the Gulf of
Gabès. From −13 to −50 m sand, sand mud and sandy mud sequentially spread across the
bottom were observed; from −50 to −80 m sand and mud are gradually spread across the
bottom, whereas from −80 to −200 m, sandy-muddy sediment was observed.

Several studies [96–98] indicate that the Gulf of Gabès has several unique characteris-
tics, such as the progressive siltation of the area since 1954 and the very fine grain size of
the sediment near the seagrass beds. These structures also serve as sediment traps [99].

2.2. Sediment Sampling

Sediment samples were taken with a Van Veen grab. In the laboratory, subsamples
were taken, dried at 45 ◦C and used for grain-size measurements [100], whereas others
were frozen at −20 ◦C for chemical analyses of Organic Matter (OM) and lipid contents.

2.3. Extraction of Carbohydrates

Following the removal of large shell debris, the sediments were sieved through a 2 mm
mesh size sieve before freeze-drying. The free lipids were extracted (flushing, 60%; purge,
120 s; cycles, 2 × 2; total solvent collected, 500 mL) at 80 ◦C with an accelerated solvent
extractor (Dionex ASE 100; Salt Lake City, UT, USA) and a mixture of CH2Cl2/MeOH (2/1,
v/v). The resulting organic matter was fractioned into neutral, polar and acidic compounds
using SPE LC-NH2 cartridges (3 mL/500 mg; Supelco) [101]. According to [101], cartridges
were conditioned with 5 mL hexane and samples were loaded at a 1 mL·min−1 rate. The
carbohydrates were extracted with 5 mL hexane and alcohols with 5 mL CHCl3. Fractions
were then eluted on a Cu column to remove elemental sulphur [102].

2.4. Trace Metal Analysis

The determination of trace metals was conducted according to the Loring method [103]
and the atomic absorption spectrophotometry for sediments [104]. The metallic elements
were determined by spectrophotometry Electrothermal Atomic Absorption (SAAE) using a
graphite furnace and a color corrector continuous bottom with the Zeeman effect (Varian
220Z).

2.5. Fluorine Determination

In order to determine the fluorine content, we applied the method that was designed
by [105], utilizing a fluoride selective electrode (DZ/T0167-2006). The accuracy of analysis
was checked by comparing the samples with the standard, controlled samples and the
errors for all analyzed samples proven to be less than 5%.

2.6. Copepod Study

Sediment samples were taken by SCUBA diving (Figure 1). At each sampling site,
four hand cores (section of 10 cm2, inner diameter of 3.6 cm) were taken. Samples were
immediately preserved in 4% buffered formaldehyde until further analysis in the laboratory.
Meiobenthic organisms were first extracted with the aid of the levigation-decanting-sieving
method of [106], and then stained with Rose Bengal (0.2 g·L−1; [107]). The copepods were
sorted under a Leica MZ 12.5 stereomicroscope and subsequently transferred to glycerin.
The taxonomic identification to species level was done with a Leica DMR microscope, based
on the identification keys of [46,57,108,109]. Copepod individuals were measured (body
length, maximum width) using a drawing tube attached to the microscope. Their body
volumes were calculated using conversion factors given by [110]. The individual copepod
biomass [µg, wet weight] was determined using a specific gravity of 1.075 given by [32]
and the total copepod biomass was calculated and expressed per 10 cm2.
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2.7. Data Processing

Principal Component Analyses (PCA) was applied to illustrate the pattern of chemical
variability within a single factor, providing a comprehensive measure of pollution level
(i.e., pollution index). Separate PCA ordinations were done for each season. The pollution
index scores, as well as the copepod community-based indices (i.e., species richness, density,
and biomass) were checked for Moran’s spatial autocorrelation by using correlograms,
according to [111–113], followed by Bonferroni multiple-comparison corrections [114].
Because data showed significant spatial autocorrelation (see below), conditional autore-
gressive models [115] were used to investigate the relationship between copepod richness,
density and biomass (response variables) and pollution index (explanatory variable). These
models assume that the response in each site is influenced not only by the explanatory
variables per se, but also by the neighboring sites [116].

Three distance matrices were computed and used: (1) a matrix of geographic distance
among sites, (2) a matrix of Euclidian distance in pollution level among sites and (3) a
matrix of distance in species composition among sites computed using the Jaccard index.
The correlation was made between pollution and species composition matrix, relative to
the geographic distance matrix. The significance of the partial Mantel’s test was assessed
by 10,000 permutations.

Data from the four seasons were treated separately. Spatial autocorrelation analyses
and spatial regressions were done in SAM software [117], whereas partial Mantel tests
were done in XLSTAT (version 2012; Addinsoft, Paris, France). Throughout the manuscript,
means are presented as ± SE.

3. Results
3.1. Abiotic Parameters

In general, there were significant differences across sampling sites in terms of reconsti-
tuted oxygen, sediment type and pollutant content (Table 2). The sediments of radial R1 are
mostly silty facies, ranging from fine silts (S2 and S3) to clay silts (S4), whereas sediments
at other stations containing sandy granulometry, clearly differ in grain size.

Table 2. Type of sediment, dissolved oxygen and sediment concentration of the five measured
contaminants in the nine sampled sites during the four seasons of study.

Sites Season Type of
Sediment O2 (mg·L−1) Carbohydrates

(µg/g) F (g/kg) Fe (mg/kg) Cd (mg/kg) Zn (mg/kg)

S1

Winter Sandy 7.75 nd 2.635 ± 0.361 1627 ± 102 21.13 ± 2.15 213.68 ± 82.11

Spring Sandy 7.9 nd 2.215 ± 0.945 1629.76 ± 93.24 22.12 ± 376 244.87 ± 34.09

Summer Sandy 7.24 nd 2.352 ± 0.672 1501.13 ± 167.15 21.11 ± 5.04 214.86 ± 28.17

Autumn Sandy 6.99 nd 2.332 ± 0.428 1452.76 ± 305.11 21.06 ± 5 201 ± 66

S2

Winter Medium silt 4.09 1955 ± 95 5.802 ± 1.522 5370 ± 258 287 ± 16 1877 ± 51

Spring Medium silt 5.85 1707.85 ± 74.2 5.813 ± 0.933 5371.25 ± 401.23 304 ± 12 1960 ± 103

Summer Medium silt 5.12 442.75 ± 12.5 5.815 ± 0.689 5403.46 ± 304.71 389 ± 35 1987.35 ± 216.19

Autumn Medium silt 3.61 568.73 ± 36.7 5.81 ± 0.721 5400 ± 402 406.34 ± 62.47 1987.65 ± 203.21

S3

winter Medium silt 3.85 367.16 ± 12.94 5.778 ± 1.109 4484 ± 209 473.72 ± 35.68 3214 ± 86

spring Medium silt 5.95 2221.65 ± 18.22 5.78 ± 1.451 3480 ± 311 498.27 ± 62.51 3356.4 ± 71.4

summer Medium silt 5.4 1082.04 ± 35.02 5.714 ± 0.882 3500 ± 106 512.27 ± 72.04 3473.4 ± 63.8

Autumn Medium silt 3.99 424 ± 31 5.732 ± 1.073 4003.5 ± 307.5 501.06 ± 18.97 3458 ± 107

S4

Winter Silty clay 4.68 3273.45 ± 78.96 5.798 ± 1.004 6542 ± 405 312.03 ± 27.06 2014.35 ± 92.61

Spring Silty clay 5.75 2264.09 ± 108.47 5.791 ± 0.952 6463.88 ± 109.24 304.183 ± 12.54 2053.23 ± 64.08

Summer Silty clay 5.35 3885.94 ± 98.35 5.794 ± 1.307 6531.62 ± 307.10 312.18 ± 17.82 2142.23 ± 70.15

Autumn Silty clay 4.01 4379.06 ± 107.08 5.796 ± 0.911 6567.34 ± 228.19 334.68 ± 41.06 2131.82 ± 73.11

S5

Winter Silty clay 4.92 nd 0.778 ± 0.082 1300.23 ± 89.76 22.56 ± 3.84 185.06 ± 30.29

Spring Sandy 5.69 nd 0.732 ± 0.073 1440.45 ± 245.08 24.5747 ± 4.05 198.49 ± 21.08

Summer Sandy 5.52 nd 0.731 ± 0.086 1321.4 ± 87.51 23.5 ± 3.11 176.49 ± 15.77

Autumn Sandy 4.98 nd 0.745 ± 0.091 1123.56 ± 62.88 19.17 ± 6.61 205.79 ± 36.86
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Table 2. Cont.

Sites Season Type of
Sediment O2 (mg·L−1) Carbohydrates

(µg/g) F (g/kg) Fe (mg/kg) Cd (mg/kg) Zn (mg/kg)

S6

Winter Sandy 5.76 21 ± 4 0 1234.51 ± 109.05 3.21 ± 1.04 48.38 ± 8.75

Spring Sandy 6.87 nd 0 1269.41 ± 97.36 4.56 ± 1.78 51.75 ± 11.09

Summer Sandy 6.49 21 ± 2 0 1231.46 ± 56.44 3 ± 1 43.75 ± 8.44

Autumn Sandy 6.33 nd 0 1199.91 ± 102.27 3.75 ± 1.10 42.89 ± 10.16

S7

Winter Sandy 8.1 nd 0.071 ± 0.020 857.65 ± 37.54 1 ± 1 30.18 ± 6.40

Spring Sandy 8.52 nd 0.067 ± 0.021 945.86 ± 65.10 1.59 ± 0.86 31.85 ± 8.88

Summer Sandy 7.9 nd 0.065 ± 0.003 924.85 ± 84.16 1 ± 1 29.85 ± 7.09

Autumn Sandy 7.62 nd 0.063 ± 0.009 634.19 ± 51.68 1.5 ± 0.7 29.54 ± 5.42

S8

Winter Sandy 8.13 nd 0.071 ± 0.005 324.42 ± 63.07 0 31.79 ± 9.11

Spring Sandy 8.45 nd 0.044 ± 0.010 335.88 ± 44.13 0 34.35 ± 6.78

Summer Sandy 8.04 nd 0.054 ± 0.002 310.82 ± 25.99 0 31.35 ± 10.06

Autumn Sandy 7.31 nd 0.07 ± 0.00 231.29 ± 62.13 0.25 ± 0.01 31.35 ± 3.84

S9

Winter Sandy 8.13 nd 0.068 ± 0.007 978 ± 34.21 2 ± 1 65 ± 9

Spring Sandy 8.49 nd 0.059 ± 0.00 1166 ± 91.33 6 ± 2 74 ± 7

Summer Sandy 8.25 nd 0.062 ± 0.03 1002.1 ± 60.08 3 ± 1 64 ± 12

Autumn Sandy 7.21 nd 0.061 ± 0.02 953.85 ± 35.77 2.7 ± 0.4 57 ± 8

By extracting data from each season separately, a PCA ordination summarized the five
measured pollution parameters into a single factor with high eigenvalues (winter: 4.374,
spring: 4.657, summer: 4.231, autumn: 4.184), explaining the overall variance from the
original datasets (winter: 87%, spring: 93%, summer: 85%, autumn: 84%). This factor was
positively correlated with the concentration of pollutants (Table 3), providing a composite
measure of pollution level. This pollution index exhibited significant spatial autocorrelation,
as shown by the Moran’s correlograms (Figure 2). The sites situated closer were more
similar to each another than expected by random distribution of pollution in the studied
area.

Table 3. Correlation coefficients and associated p-values between the original pollution parameters
and the first factor extracted from the PCA.

Winter Spring Summer Autumn

r p r p r p r p

F (g/kg) 0.976 <0.0001 0.981 <0.0001 0.975 <0.0001 0.977 <0.0001
Fe (mg/kg) 0.982 <0.0001 0.909 0.0007 0.942 0.0001 0.969 <0.0001
Cd (mg/kg) 0.951 <0.0001 0.972 <0.0001 0.945 0.0001 0.955 <0.0001
Zn (mg/kg) 0.942 0.0001 0.969 <0.0001 0.943 0.0001 0.937 0.0002

Carbohydrates (µg/g) 0.815 0.0074 0.992 <0.0001 0.782 0.0128 0.707 0.0333

3.2. Copepod Parameters

Thirty-eight copepod species were identified, including five species new to science,
comprising three orders, 14 families and 23 genera (Table 4). Three new species belonged
to the Ectinosomatidae family, genus Pseudobradya sp. and one to the Canthocamptidae
family, genus Stenocaris sp. One species, Apodopsyllus gabesensis (Paramesochridae fam-
ily), according to Amorri et al., 2010, was discovered and described in the course of this
study [61].
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The species richness, density and biomass varied among sites and seasons (Table 5).
There was a significant spatial autocorrelation among these parameters, except for the
density during winter (Figures 3–5). Considering data from each season separately and
using conditional autoregressive models that counted for the spatial autocorrelation, the
copepod richness, density and biomass were negatively correlated with the pollution level
(Table 6, Figures 6–8). During each season, the copepod richness, density and biomass
decreased in the most polluted sites. The results of the partial Mantel tests showed positive
associations between species composition and pollution level, after controlling for the
effect of geographic proximity between pairs of sites (winter: r = 0.927, p < 0.0001; spring:
r = 0.935, p < 0.0001; summer: r = 0.918, p < 0.0001; autumn: r = 0.937, p < 0.0001). Overall,
the results suggest that nearby sites were characterized by similar pollution levels and
inhabited by similar copepod communities.
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Table 4. List of recorded copepod species classified by taxonomic groups in terms of dominance (%)
at sites in the Gulf of Gabès, all seasons combined (*: species new to science).

Order, Family, Genus and Species S1 S2 S3 S4 S5 S6 S7 S8 S9

HARPACTICOIDA 99.24 72.02 84.87 94.63 99.25 95.49 98.36 98.05 99.26

AMEIRIDAE 17.07 9.89 10.34 4.41 8.19 7.80 2.04 5.18 2.37

Ameira parvula (Claus, 1866) 1.60 0.00 0.00 2.66 3.87 1.11 0.72 1.57 0.95
Ameira scotti Sars, 1911 2.70 9.89 10.34 1.75 1.73 1.29 0.74 1.62 0.88
Pseudoameiropsis sp. 12.77 0.00 0.00 0.00 2.58 5.40 0.57 2.00 0.54

CANTHOCAMPTIDAE 19.09 9.03 8.75 16.41 0.00 2.12 0.29 7.72 7.04

Mesochra pygmaea (Claus, 1863) 1.25 0.00 0.00 0.00 0.00 0.00 0.02 1.93 2.89
Mesochra timsae Gurney, 1927 2.94 0.00 0.00 0.00 0.00 0.00 0.04 1.46 3.01
Mesochra xenopoda Monard, 1935 0.00 9.03 8.75 16.41 0.00 0.00 0.00 0.00 0.00
* Stenocaris sp. 2.12 0.00 0.00 0.00 0.00 0.00 0.15 2.26 0.58
Stenocaropsis similis Cottarelli
and Venanzetti, 1989 12.79 0.00 0.00 0.00 0.00 2.12 0.09 2.07 0.56

CANUELLIDAE 0.78 15.42 10.44 3.01 25.30 16.42 15.11 6.91 17.11

Brianola stebleri (Monard, 1926) 0.08 15.42 10.44 3.01 0.00 0.00 0.00 0.53 0.00
Canuella furcigera Sars, 1903 0.10 0.00 0.00 0.00 5.11 8.70 4.03 4.36 10.47
Canuella perplexa Scott T. and Scott, A. 1893 0.35 0.00 0.00 0.00 18.22 5.48 9.28 1.47 4.61
Scottolana bulbifera (Chislenko, 1971) 0.25 0.00 0.00 0.00 1.97 2.24 1.79 0.55 2.03

CLETODIDAE 0.50 2.39 4.49 1.96 0.96 0.00 0.00 0.00 0.00

Enhydrosoma propinquum (Brady, 1880) 0.50 2.39 1.36 0.67 0.96 0.00 0.00 0.00 0.00
Enhydrosoma sordidum Monard, 1926 0.00 0.00 3.13 1.30 0.00 0.00 0.00 0.00 0.00

ECTINOSOMATIDAE 24.24 7.64 9.61 10.57 44.02 39.20 42.78 47.25 42.32

Ectinosoma melaniceps Boeck, 1865 0.51 2.65 3.17 2.07 2.94 0.81 1.19 1.00 2.37
Halectinosoma curticorne (Boeck, 1872) 1.32 4.99 4.10 4.97 7.27 1.97 0.21 0.02 0.14
Halectinosoma herdmani
(Scott T. and Scott A., 1896) 1.75 0.00 0.00 0.00 20.06 4.57 1.48 0.58 2.68

Halectinosoma aff. itoi Clément and Moore, 1999 0.04 0.00 2.34 0.00 5.73 29.60 1.84 41.71 2.74
* Pseudobradya sp.1 10.89 0.00 0.00 0.00 2.84 0.90 29.65 1.26 27.63
* Pseudobradya sp.2 8.64 0.00 0.00 0.00 2.54 0.75 4.13 1.18 2.60
* Pseudobradya sp.3 1.08 0.00 0.00 3.53 2.63 0.60 4.27 1.51 4.17

HARPACTICIDAE 8.34 10.09 22.73 41.24 20.79 17.64 26.73 27.56 26.16

Harpacticus chelifer (Müller, 1776) 4.43 0.00 0.00 0.00 0.00 0.06 3.64 1.70 2.98
Harpacticus flexus Brady and Robertson, 1873 2.06 0.00 0.00 9.44 17.60 3.17 18.74 25.08 20.04
Harpacticus gracilis Claus, 1863 0.04 10.09 22.73 31.80 0.00 0.02 0.08 0.02 0.00
Harpacticus littoralis Sars, 1910 1.82 0.00 0.00 0.00 3.19 14.39 4.26 0.76 3.14

LAOPHONTIDAE 1.52 14.65 13.22 5.03 0.60 4.12 0.57 0.96 0.98

Heterolaophonte stroemii brevicaudata
(Monard, 1928) 0.29 5.64 2.82 4.86 0.00 0.00 0.00 0.00 0.00

Paralaophonte brevirostris (Claus, 1863) 0.00 9.01 10.40 0.17 0.00 0.00 0.00 0.00 0.00
Paralaophonte congenera (Sars, 1908) 1.23 0.00 0.00 0.00 0.60 4.12 0.57 0.96 0.98

LONGIPEDIIDAE 0.62 0.00 0.00 0.00 0.00 0.00 2.91 0.84 2.57

Longipedia coronata Claus, 1863 0.62 0.00 0.00 0.00 0.00 0.00 2.91 0.84 2.57

MIRIACIIDAE 5.27 13.49 14.80 9.30 0.00 4.96 0.44 0.98 0.46

Amphiascopsis cinctus (Claus, 1866) 5.27 0.00 0.00 0.00 0.00 4.96 0.44 0.98 0.46
Delavalia polluta (Monard, 1928) 0.00 5.99 8.11 4.88 0.00 0.00 0.00 0.00 0.00
Delavalia tethysensis (Monard, 1928) 0.00 7.50 6.68 4.42 0.00 0.00 0.00 0.00 0.00

PARAMESOCHRIDAE 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

* Apodopsyllus gabesensis Amorri et al., 2010 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

THALESTRIDAE 0.71 3.45 3.72 3.03 0.00 0.00 0.00 0.00 0.00

Dactylopusia tisboides (Claus, 1863) 0.71 3.45 3.72 3.03 0.00 0.00 0.00 0.00 0.00

TETRAGONICIPITIDAE 20.77 0.62 0.00 4.70 0.00 7.35 8.07 1.61 1.23

Phyllopodopsyllus berrieri Monard, 1936 14.67 0.00 0.00 0.00 0.00 2.13 3.42 0.82 0.49
Phyllopodopsyllus sp. 6.10 0.62 0.00 4.70 0.00 5.22 4.65 0.79 0.74

CYCLOPOIDA 0.37 0.00 0.00 0.00 0.00 0.17 0.52 0.53 0.71

HALICYCLOPIDAE 0.37 0.00 0.00 0.00 0.00 0.17 0.52 0.53 0.71

Halicyclops magniceps (Lilljeborg, 1853) 0.37 0.00 0.00 0.00 0.00 0.17 0.52 0.53 0.71

CALANOIDA 0.33 0.00 0.00 0.00 0.00 0.12 0.43 0.40 0.69

PSEUDOCYCLOPIDAE 0.33 0.00 0.00 0.00 0.00 0.12 0.43 0.40 0.69

Pseudocyclops sp. 0.33 0.00 0.00 0.00 0.00 0.12 0.43 0.40 0.69

number of species 33 13 14 17 17 23 28 29 27
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Table 5. Species richness, density and biomass of meiobenthic copepods in the nine sampled sites
during the four seasons of study.

Sites Season Species Richness Density (ind/10 cm2) Biomass (µg/10 cm2)

S1

Winter 3.45 151 ± 9.93 661.69 ± 217.82

Spring 3.77 556.5 ± 16.74 2252.85 ± 1016.25

Summer 4.93 131.5 ± 17.67 561.24 ± 228.13

Autumn[M1] 4.44 261.5 ± 14.61 986.43 ± 439.26

S2

Winter 2.31 11.5 ± 1.29 114.81 ± 43.5115

Spring 2.21 29 ± 3.36 252.11 ± 92.998

Summer 2.05 4.75 ± 1.34 32.34 ± 0.13

Autumn 2.27 7.25 ± 0.5 34.55 ± 0.13

S3

Winter 2.59 13.75 ± 4.34 95.40 ± 30.7765

Spring 3.21 28.75 ± 3.77 200.74 ± 69.01

Summer 2.005 6.5 ± 4.35 37.97 ± 12.04

Autumn 1.17 3.5 ± 3.31 20.24 ± 22.89

S4

Winter 2.54 31 ± 2.16 195.70 ± 60.64

Spring 3.31 34.75 ± 2.75 172.95 ± 51.41

Summer 0 1 ± 1.41 4.59 ± 0.18

Autumn 0.72 0.66 ± 1.15 4.69 ± 0.21

S5

Winter 2.49 57.5 ± 29.58 571.62 ± 174.78

Spring 2.41 267 ± 23.13 6398.07 ± 1714.74

Summer 2.98 78.75 ± 13.96 855.64 ± 252.63

Autumn 2.99 65.5 ± 8.58 639.64 ± 197.98

S6

Winter 2.79 375.5 ± 21.97 3927.008 ± 1431.42

Spring 3.14 304.75 ± 14.17 2013.49 ± 683.97

Summer 2.95 165 ± 61.18 2216.48 ± 781.26

Autumn 3.007 112.66 ± 15.17 1080.67 ± 387.84

S7

Winter 3.4 259.75 ± 25.28 2545.76 ± 853.96

Spring 3.07 486.5 ± 5.80 5022.9 ± 329.1

Summer 2.9 415.25 ± 46.52 4258.69 ± 1395.05

Autumn 3.19 319.75 ± 38.629 3036.11 ± 1043.99

S8

Winter 3.45 929.75 ± 112.84 5317.4 ± 573.14

Spring 4.03 522.25 ± 15.71 3582.61 ± 1457.16

Summer 4.24 390.75 ± 66.43 2726.50 ± 1128.33

Autumn 4.11 321 ± 25.56 2306.59 ± 936.68

S9

Winter 3.6 158.75 ± 36.34 1585.74 ± 638.88

Spring 3.07 524 ± 15.12 4977.96 ± 1979.372

Summer 3.04 407.75 ± 40.96 3946.04 ± 1512.40

Autumn 3.24 313.5 ± 23.17 3635.45 ± 1425.36
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data.

Species Richness Density Biomass

R2 (%) β ± SE t p R2 (%) β ± SE t p R2 (%) β ± SE t p

Winter 77 −0.223 ± 0.052 −4.306 0.005 88 −1.035 ± 0.254 −4.067 0.007 93 −1.037 ± 0.185 −5.612 0.001
Spring 68 −0.191 ± 0.063 −3.033 0.023 93 −1.027 ± 0.135 −7.588 <0.001 95 −1.047 ± 0.214 −5.642 0.001
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During all seasons combined, the Ectinosomatidae family dominated the copepod
populations in sites S1, S5, S6, S7, S8 and S9, andthe Harpacticidae family dominated sites
S3 and S4, whereas the Canuellidae family dominated in site S2.

Only five families (Ameiridae, Canuellidae, Ectinosomatidae, Harpacticidae and
Laophontidae) were common in all sampling sites. The Thalestridae family was encoun-
tered in sites S1, S2, S3 and S4, whereas the Paramesochridae family was found only in
site S1.

Considering all seasons combined, the most abundant and diverse was the Ectinoso-
matidae family with seven species (40.78%). The families found during winter were also
found in spring, summer and autumn. During summer, just one family of benthic copepods,
comprising seven individuals of the new species Apodopsyllus gabesensis [61], were found
(Paramesochridae family); this species was also found during autumn.

The species richness increased on both sides of the industrial zone of Ghannouch
towards the south. The sediments from sites S2, S3 and S4 comprised the lower taxonomic
richness, and the latter site was dominated by Harpacticus gracilis. The species richness,
which was the highest in winter, showed variations among sites S2, S3 and S4 and the
others going north (S1) or south (S5, S6, S7, S8 and S9). The species richness fluctuated in
space and time, following an increasing gradient from sites S2, S3 and S4 towards the south
and north.

4. Discussion

The current study provided the first large-scale investigation of benthic copepods’
spatial distribution in south-east of Tunisia, as well as information on their biomass, species
diversity and response to environmental influences, with a main focus on harpacticoids.
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4.1. Variation of Environmental Variables

In general, the stations that were investigated in the Gulf of Gabès showed extremely
heterogeneous surface sediments. Additionally, the obtained results show a typical dis-
solved oxygen mass. According to [118], the oversaturation limit is 8.8 mg·L−1. In our
study, the average value of the oxygen concentration measured at the bottom of the water
resulted in a level close to the seawater’s natural level (6.8 mg·L−1) [118].

The hydrocarbon content in the sediments sampled from the Gulf of Gabès was
moderate–high [119,120]. These values were close to those measured on the coast of the city
of Sfax [121,122] but higher compared to those reported from other coastal areas (Table 7).

Table 7. Bibliographic comparison of sedimentary contents of total hydrocarbons in the Gulf of Gabès
and other coastal regions.

Carbohydrates Study Area References

5–3000 µg·g−1 North Atlantic coastal zone [123]
0.67–32.5 µg·g−1 Ebro Delta (Western Mediterranean) [124]
6.5–348.9 mg·g−1 Rhone Delta [125]

20.3–1356.3 µg·g−1 coasts of Alexandria
(south-eastern Mediterranean) [126]

average 495.7 mg·g−1 coasts of the city of Barcelona [127]
10–153 µg·g−1 Black Sea [128]

562 à 5697 ng·g−1 coasts of Crete [129]
Gulf of Gabès

1121–5217 mg·kg−1 Coastal area of the city of Sfax [121]
928–5108 mg·kg−1 Coastal area of the city of Sfax [122]
21–4379.06 µg·g−1 Coastal area of the city of Gabès current study

The high concentration of hydrocarbons from sites S2, S3 and S4 have a mixed origin:
biogenic sources with low molecular weight n-alkanes (C14–C19) and degraded organic
matter and oil contamination highlighted by the presence of MCUs [130–133]. The hydro-
carbons from the coast of Gabès are the result of a mixture of natural and anthropogenic
sources. The former input could have its origins from plant debris, carried by inland waters
and discharged in coastal areas.

High levels of iron, zinc, cadmium and fluorine were found at sites S2, S3 and S4 (the
radial R1) in all seasons. These results reflect the industrial activity in the Gabès region. The
fluorine is an important component of phosphogypsum, an end-product of the Ghannouch
industrial complex [134]. The sediments analysis from the Gulf of Gabès showed that the
contamination levels above the tolerated threshold (i.e., lowest threshold effect level) was
likely to cause mutations and the death of certain marine organisms.

The quantities of fluorine, iron, zinc and cadmium in the sediments of R1 were quite
similar to those reported at the Ghannouch industrial complex’s discharge region by Sarbaji
et al. in 1993 [135]. The contents we measured were significantly correlated among them
and with the sediments particle size (r > 0.70 and r > 0.90, respectively). The ability of fine
silt to trap organic matter compared to the coarse sediment was associated with the higher
levels of contaminants, such as trace metals [136].

The monitoring of the different sedimentary parameters (MOT, total hydrocarbons,
n-alkanes, fatty acids, phosphorus (P), fluorine (F), Fe, Zn, Cd and Cu) along the infralit-
toral zone of the city of Gabès highlighted the impact of industrial discharges, without
underestimating the importance of wind direction and peri-littoral currents in the distri-
bution of pollutants in the sea [135]. In addition to the chemical contamination of the
seawater, phosphogypsum deposits alter the ecology of the local marine environment
and, according to [22], destroy the Posidonia meadow and reduce the coast’s halieutic
wealth [135]. The contaminants’ concentrations were considered high compared to the
Tunisian discharge standards for the public ocean domain [135]. In fact, the main compo-
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nents of the discharges coming from the Ghannouch industrial complex—especially those
of phosphogypsum—included phosphorus and fluorine [137].

Finally, the distribution of the different sediment chemicals found in the Gulf of Gabes
indicated a highly polluted zone near to the Ghannouch industrial complex’s discharge
(Radial R1). They are one of the most important sources of pollution in the Gulf’s littoral
and infralittoral zones.

The area near the northern coast of the discharge spot resulted in less contamination,
and when heading south, the impact of the discharges also decreases (stations S6, S7, S8
and S9). The direction of the prevailing winds and currents plays a crucial role in the
spread of contaminants into the sea [135]. In addition, several previous studies in the
field [135,138], and those carried out in the other regions of Mediterranean [139], indicated
that the self-cleaning capacity of seawater helps to mitigate the absorption of pollution as it
moves from the coast to the open sea.

Metals originate from rock, soil and sediment weathering, but also from human
activities. The measured trace metals from the current study were iron, cadmium and
zinc, the dominant but equally among the most dangerous types of pollutants in marine
habitats [140,141]. The current study showed the presence of high concentrations of Fe, Zn,
Cu, Cd and fluorine that exceeded international standards (Table 8) [142,143]. The results
agree with those obtained in similar habitats by [144] and in accordance with those of [135].

Table 8. Bibliographic comparison of sedimentary trace metals in the Gulf of Gabès with internationals
norms [142] (LTEL: lowest threshold effect level) and fluorine [143].

LTEL Gulf of Gabès (Current Work)

Fe 18.84% 23.19% (S8)–646.38% (S4)
Cd 0.583 mg/kg 287 (S2)–512 (S3) mg/kg
Zn 98 mg/kg 64 (S9)–3473 (S3) mg/kg
Cu 28.012 mg/kg 7.87 (S3)–139.02 (S1) mg/kg
F 6.97 ± 1.07 mg/g 0 (S6)–5.81 (S2) g/kg

Fluorides are also released into the environment (air, soil, water) by various human
activities, leading to an increase beyond the natural background of fluorides in waters. Their
concentrations can reach more than 100 times the natural content of inorganic fluorides in
surface and ground waters, creating an ecological risk for aquatic organisms [145].

Aluminum smelting, steel, phosphate, fertilizer production, glass and enamel pro-
duction, brick and ceramic production, glues and adhesives, fluoride-based pesticides
and fluoridation of some drinking water supplies are examples of anthropogenic sources
of inorganic fluorides [146–149]. The manufacturing of phosphate fertilizers, phospho-
ric acid and aluminum metallurgy are the main sources of fluoride emissions [150,151].
Humans who consume fluorides may become acutely or chronically poisoned [152–154].
The digestive and skeletal systems are the main systems affected long term by fluoride
exposure [155–157].

4.2. Variation of Meiobenthic Copepod Quantitative Traits from the Gulf of Gabès

Overall, despite a large fluctuation in numbers across sites and seasons, the mean
density of copepods in the Gulf of Gabès was generally low. The density values measured
in the current study (Table 9) are similar to those of [57], where the highest values were
recorded in intertidal sediments (1,000,000 ind./m2). In the same vein, the total biomass
of copepods closely followed that of mean density. The values recorded (4.59 ± 0.18–
5317.4 ± 573.14 (µg/10 cm2) for the the Gulf of Gabès were higher compared to those
from the lagoon of Bizerte (6.61 µg/10 cm2–155.90 µg/10 cm2) or the Bizerte Bay (Rimel
station: 165.99 µg/10 cm2) [62]. The biomass values are similar to those measured by [32]
in Anse de Cortiou before the installation of the Marseille wastewater treatment plant
(63.4–8261 µg/10 cm2). These biomass values are also comparable to those measured in
the Bay of Bizerte, where the mean individual biomasses of copepods ranged between
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0.94 ± 1.12 µg–6.53 ± 2.11 µg [62]. Furthermore, biomasses between 1 and 7 µg were
reported by Wieser (1960), Guille and Soyer (1968) and Stripp (1969) (in [32]).

Table 9. Comparison of the average numbers of copepods recorded in the Gulf of Gabès with data
from polluted to very polluted environments in the literature.

Biotope Copepod’s Densities
(ind./10 cm2) References

Bay of Arcachon, France 13–1660 [158]

Tunis lagoon before sanitation 3–136 [159]

Marenne, France 139–3088 [160]

Island of Tudy, France 51–988 [161]

Bayou (Louisiana), USA 6–146 [162]

Hunter river, Australia 0–71 [163]

Cap York, Australia 0–57 [164]

Bizerte Lagoon 19–132 [84]

Bay of Bizerte 1–92 [85]

Lagune Sud de Vase noire Tunis 8–107 [165]

Tunis Lagoon after sanitation 70–260 [166]

Ghar El Melh Lagoon 0–77 [88]

Bou Ghrara Lagoon 0–256 [88]

Libanes coasts 0–974 [167]

Gulf of Gabès 0.66 ± 1.15–
929.75 ± 112.84 current study

The dominant species were appurtenant to the Canuelllidae family, as well as those
from the orders Cyclopoida and Calanoida, and a similar pattern was reported previously
by [32] (i.e., between 40 and 80 µg for coastal area from Aire, before the spreading of the
Marseille sewer), but was higher than other maximum values recorded in the literature
(i.e., 15 µg for large copepods, see Guille and Soyer 1960 in [20]). Because of their large
body size (i.e., 1.03 mm in average), the species Canuella perplexa, Canuella furcigera, Scot-
tolana bulbifera and Brianola stebleri comprised the highest biomass. The species C. per-
plexa, a common dweller in sands, mud, muddy-sandy bottoms, recorded the highest
biomass [45,54,60,168–170]. According to [57], this species was observed among seaweeds
and muddy substrates, in fresh or saltwater lagoons, as well as in unpolluted, sandy sedi-
ments with variable proportions of silt, and over a depth gradient ranging from shallow
waters to 30 m depths. This cosmopolite species was reported on the coasts of Norway,
Sweden, Germany, the British Isles, France (e.g., Bagnouls, Marseille, Camargue), Italy,
Bulgaria, Greece, Romania, North Africa and Egypt and is widely distributed in the north-
west of Europe [57]. This species is generally found in association with C. furcigera [171], in
accordance with our findings.

Stenocaris sp. (Canthocamptidae) and Apodopsyllus gabesensis (Paramesochridae) had
the lowest biomass because of their small body size, which is an adaptation to the minute
dimensions in their interstitial microhabitats [54,109,170,172].

4.3. Taxonomic Diversity of Meiobenthic Copepods from Gulf of Gabès

The species richness was the highest in sites S1, S5, S6, S7, S8 and S9, which is compa-
rable to those recorded in more clean areas from the Bizerte lagoon. An increasing gradient
in species richness was detected from stations S2, S3 and S4 towards the south and north.
In turn, the copepod communities from the polluted sites were species-poor, indicating
that pollution of sediments with metals and hydrocarbons eliminated the most sensitive
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taxa. The sites S1, S4, S5, S6, S7, S8 and S9 were characterized by sandy sediments and
hosted the most diverse copepod communities, dominated by four species: Pseudobradya
sp.1, Halectinosoma aff. itoi, Halectinosoma herdmani and Pseudoameiropsis sp. It was proven
that the abundance increases with the increment of the grain size [173,174]. H. herdmani,
on the other hand, is a psammophilous species that prefers medium-sized sand. [47]. This
species was dominant at sites S5, S6, S7, S8 and S9 on the Gulf of Gabès. However, [60]
reported this species as very rare at Salammbô. The species Phyllopodopsyllus berrieri, which
was dominant in site S1 during summer, is actually a cosmopolite species (i.e., Scotland,
Norway, Rovigno, Algiers, Bermuda, Ceylon (Malaysia), Antarctica [171]).

In site S4, only two species were found throughout the year. In sites S2 and S3, charac-
terized by medium silt sediments and S4 with silty clay sediment, and which were situated
very close to the effluent discharge of the Ghannouch industrial complex, the copepod
fauna was dominated by the species Harpacticus gracilis, Harpacticus flexus, Brianola stebleri
and Halectinosoma curticorne. The former species was previously reported from the polluted
and euryhaline waters of the lagoon of Tunis and La Goulette [60]. H. flexus was also found
in euryhaline, muddy and sandy environments, with little disturbance in the La Goulette
lagoon of Tunis, the Bay of Algiers, and the Adriatic and Banyuls seas [47,60]. This species
prefers sandy-muddy environments with no algae [57]. B. stebleri is usually found in small
numbers in coastal zones (Lagune de Tunis, [61], with a preference for muddy, euryhaline
and more or less polluted biotopes. This species was previously reported in the Lagoon of
Tunis before its development at La Goulette, Castiglione, Sète and Roscoff [60,171,175]. This
copepod was replaced in spring by H. curticorne in site S2 (polluted clay sediment). The
latter species prefers sandy-muddy sediments and was reported in high numbers in soiled
muds (Roscoff, Salammbô, Algiers [60,171]. Co-occurring species with low abundances in
sites S2, S3 and S4 were Enhydrosoma propinquum, Enhydrosoma sordidum, Heterolaophonte
stroemii brevicaudata, Paralaophonte congenera, Delavalia tethysensis, Dactylopusia tisboides,
Ameira parvula, Paralaophonte brevirostris and Phyllopodopsyllus sp. These species are known
to prefer polluted muddy environments (i.e., La Goulette, Roscoff, Banyuls, Sète, Genoa,
Aegean Sea, Sardinia, Rovigno, Dalmatia, Suez Canal Red Sea Port vente and le Vivier) and
are resilient to wide variations in salinity [60,171,175]. These species were reported by [60]
from the Mediterranean Sea, and are very common in Salammbô, La Goulette, Tunis Lake,
Castiglione and in the port of Algiers.

Ameira scotti was the only common species in the surveyed sites from the Gulf
of Gabès. This copepod species was previously reported from other confined habitats
(i.e., Sète, Banyuls, Suez Canal, Castiglione, etc.) and dominant in muddy sites pol-
luted with oil, such as in La Goulette and in the lagoon of Tunis and the Port of Al-
giers [60,171,175].

In the pristine sites, three species (i.e., Pseudobradya sp.1, Halectinosoma aff. itoi and
Halectinosoma herdmani) were dominant, mainly in the north site S1, but also in the southern
sites with sandy bottoms. An explanation for this pattern could be that the Ectinosomatidae
family comprises cosmopolite, euryhaline and eurythermal species [57,109].

In addition to anthropogenic factors, the taxonomic composition of marine copepod
assemblages can equally be explained through stochastic factors, such as the spatial vari-
ability of environmental conditions, the specific ecological zonation of harpacticoids, which
are linked to the nature and availability of trophic resources, local mechanical agitation,
interspecific competition and reproductive activity [57], whereas the sediment type (fine
or coarse) should not be overlooked. In fact, it has been demonstrated that sediment
type plays an important role for meiobenthic copepods in terms of population dynamics,
density and species [41,176]. The presence of a specific substrate directly affects the vertical
and horizontal distribution of species within sediments [56]. Harpacticoids, which are
known to be intolerant to anaerobic environments, accumulate in the oxygen-rich layers
of the sediments and are restrained in the upper layers of muddy sediments, but they
are occasionally found in depths of 50–100 cm [57]. Additionally, copepod populations
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can migrate vertically, either entirely or partially, depending on the tides, temperature,
dissolved oxygen concentration and other environmental factors.

According to [60], high levels of pollution lead to scarce harpacticoid fauna, despite
their well-known resilience and increased taxonomic richness. In time, the taxonomic com-
position of such communities can strongly fluctuate, potentially related to the development
cycles of the dominant species from the Gulf of Gabès, but also due to environmental
stochasticity. Such patterns are nonetheless not easily discernible from anthropogenic
influences, such as the fine sediment fraction that favors the trapping of several metals
such as zinc, iron and cadmium [136,177]. Statistical analyses showed an antagonism be-
tween density, biomass and species richness of the copepod assemblages and sedimentary
parameters, such as the concentrations of fluorine, carbohydrates and trace metals (i.e., Fe,
Cd, Zn).

The sensitivity of copepods to certain contaminants was proven, such as hydrocar-
bons [178], high MOT load [179], trace metals [180,181] or mixed pollution [182], along
with the structure of the facies (i.e., fine or coarse). The latter aspect was proven to play
an important part in meiobenthic copepods’ dynamics, densities and taxonomic composi-
tion [176]. The example of the copepod Cletodes tuberculatus is instrumental, and is known
to be sensitive to changes in sediment structure and associated organic carbon content [33].
Moreover, Ref. [34] observed that harpacticoids dwelling in hydrocarbon-contaminated
sediments in the Gulf of Mexico decreased their diversity. In the same context, Ref. [37]
also demonstrated that the harpacticoids are reliable bioindicators of pollution with hy-
drocarbons. According to [35], several species of ectinosomatid copepods were sensitive
to sediment contamination with hydrocarbons. Similarly, Ref. [36] demonstrated that the
harpacticoid copepod Tigriopus brevicornis is a good pollution indicator [38] and reported
that early generations of littoral Microarthridion and Amphiascus tenuiremis were affected by
trace mixed sediment pollution.

In conclusion, our findings support the necessity of including benthic copepod popu-
lations in metal pollution biomonitoring programs in both Mediterranean and Tunisian
marine environments.

5. Conclusions

Marine coastal sediments usually comprise the final collector of trace metals and hy-
drocarbons. In the current survey, the impact of anthropogenic pollution on the distribution
and taxonomic composition of the meiobentic copepods from the littoral area of the City
of Gabès (Tunisia), in the southern Mediterranean Sea was investigated for the first time.
The results showed that the pollution index exhibited significant spatial autocorrelations,
as shown by Moran’s correlograms. The sites situated closer to each other were more
similar than what was expected by pure random distribution of pollution. The species
richness, density and biomass of marine copepods were negatively related to pollution
levels, a pattern consistent throughout all seasons. High sediment loads with hydrocarbons
and fluorine were the main abiotic factors controlling the spatio-temporal distribution of
copepod communities, closely followed by trace metals such as iron, cadmium and zinc.

The sites with the least anthropogenic impact were those situated the furthest from
the industrial complex of Ghannouch, characterized by low sediments concentrations of
fluorine, iron, cadmium, zinc as well as hydrocarbons. Consequently, these zones hosted the
most diverse copepod communities, whereas the sampling sites S2, S3 and S4, which were
the most disturbed, were characterized by species-poor and low-abundance associations.
The current survey also highlights the fact that benthic copepods may serve as excellent
indicators in biomonitoring programs of marine coastal ecosystems.
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