Opioid Analgesics

PEDIATRIC PAIN MANAGEMENT

Ardin S. Berger, D.O. Department of Anesthesiology & Pain Management Version 1, revised 10/12/19

Contents

- General characteristics
- Common side effects
- Specific Medications
 - Morphine
 - Fentanyl
 - › Hydromorphone
 - Sufentanil
 - › Oxycodone
 - Methadone
 - Meperidine
 - > Tramadol
 - Nalbuphine
 - > Naloxone

- Opioids in Renal Failure
- Combination Medications
 - Acetaminophen Toxicity
- Opioids & Substance Use Disorders
 - > Substance Use Disorder
 - Definitions
 - Dependence
 - Tolerance
 - > Heroin
 - > Preventative Strategies

Opioid Medications – Generalized Characteristics

- Opiates vs. Opioids
 - > Opiates: substances with active ingredients naturally derived from opium
 - Morphine, codeine, thebaine
 - > Opioids
 - Synthetically manufactured substances that mimic the effects of opium
- Classification based on action
 - > Full agonists (primary action via μ_1 receptors)
 - Partial agonists: less conformational change and receptor activation than full agonists
 - · Low doses: may provide similar effects to full agonists
 - High doses: analgesic activity plateaus; increased adverse effects
 - > Mixed agonists/antagonists: varying activity depending on opioid receptor and

	Ми	Delta	Карра
Clinical Effect	Supraspinal chemical, thermal, & mechanical nociception Analgesia Euphoria, sedation Respiratory Depression Miosis Reduced GI Motility Hormonal Changes	Mechanical nociception Inflammatory pain Analgesia Euphoria Physical dependence Dopamine release inhibition Mu receptor modulation	Spinal-mediated thermal nociception Chemical visceral pain Sedation Miosis Dysphoria Respiratory Depression Constipation Diuresis

Opioid Medications – Generalized Characteristics

- Opioid-induced respiratory depression
 - Therapeutic opioid doses decrease minute ventilation by decreasing respiratory rate
 - Tidal volume maintained
 - Depressed ventilatory response to carbon dioxide
 - CO₂ response curve shows decreased slope and rightward shift
 - Apneic threshold increased
 - > Resting ETCO2 increased
 - Partial agonists and agonist-antagonist opioids less likely to cause severe respiratory depression than selective kappa agonists

Opioid Medications – Generalized Characteristics

- Additional Side Effects
 - Acute Desensitization
 - Acute receptor agonism (minutes to hours) \rightarrow activation of intracellular signaling \rightarrow acute tolerance or desensitization
 - Disappears with a time course parallel to the clearance of the agonist
 - Likely related to receptor phosphorylation \rightarrow receptor uncoupling from G-protein and/or internalization of the receptor
 - > Hyperalgesia
 - A state of nociceptive sensitization caused by exposure to opioids
 - Paradoxical response; increased sensitivity to noxious stimuli with administration of opioids
 - Secondary to neuroplastic changes in the peripheral and central nervous system (CNS) → sensitization of pronociceptive pathways
 - Multiple proposed mechanisms
 - Signs
 - Opioid effect wanes in absence of disease progression
 - Unexplained pain reports or diffuse allodynia unassociated with original pain
 - Increased pain levels with increasing dosages
 - Treatment: dose discontinuation or decrease, augmentation with NMDA modulators
- Signs & Symptoms of Withdrawal
 - Flu-like illness, dysphoria, insomnia, pupillary dilation, piloerection, yawning, muscle aches, lacrimation, rhinorrhea, nausea, fever, sweating, vomiting and diarrhea

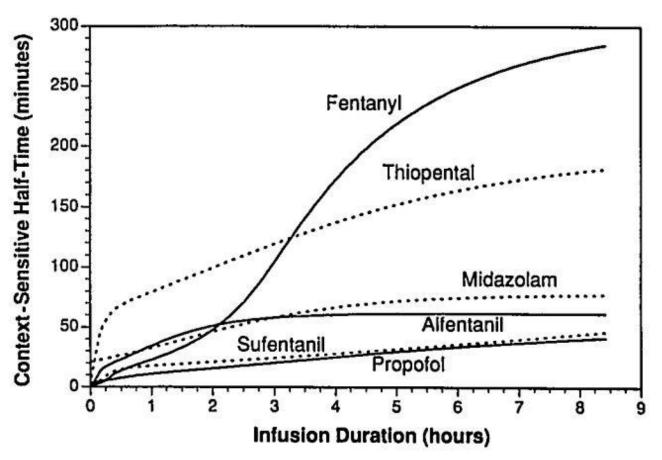
Opioid Medications - Morphine

- Naturally occurring opioid derived from the poppy straw of the opiate poppy
- Prototypical opioid, against which the potency of all other opioids are measured
- "Morphium" after the Greek god Morpheus, the god of dreams.
- IV, oral, buccal, sublingual, intranasal, subQ, intramuscular, and neuraxial
- Oral administration: extensive first pass metabolism
- Neuraxial administration: biphasic respiratory depression
 - > Early: systemic absorption into the intravascular compartment (30-90 min.)
 - Late: slow migration through the cerebrospinal fluid (hydrophilic) and into the respiratory drive center brainstem (6-18 hours after administration)
- Primarily metabolized in the liver by glucuronidation
 - Second phase of this metabolism yields two compounds
 - Morphine-3-glucuronide (no analgesic qualities)
 - Morphine-6-glucuronide (active metabolite)
 - Potency 100x parent compound
 - ↓ lipophilicity; ↓ crossing of blood brain barrier (normal renal function)
 - Neonates and decreased renal function at risk for accumulation \rightarrow respiratory depression, sedation, potential coma
 - > Metabolism develops markedly over first few weeks of life
 - Morphine's $V_{\rm d}$ and clearance increase rapidly with age during initial period of life
 - Levels equal to those of an adult by the 2 weeks to 2 months of age

Stanford University

Opioid Medications - Fentanyl

- Most widely used synthetic opioid; potency 100x that of morphine
- Highly lipophilic & high membrane permeability → rapid onset/offset
 - Action terminated secondary to redistribution from active sites
 - Context sensitive half time
 - Variable, delayed time until offset after prolonged administration
 - Compartment saturation \rightarrow termination by metabolism and elimination
- Routes: IV, epidural, intrathecal, transdermal, intranasal, other transmucosal
- Highly alpha-1-glycoprotein bound
 - > Neonates with \downarrow glycoprotein production \rightarrow higher percentage unbound
- Fentanyl patches
 - Semipermeable membrane with a medication reservoir; doses of 25-100mcg/hour
 - > Peak effect 12-24h; offset prolonged by deposition in skin & subQ tissue
 - > Uptake variables: body temperature, body fat composition, patch location
- Increasingly common substance of abuse
 - > Unreliable purity and potency: analogues with up to 10,000x that of morphine
 - Combined with heroin, other substances of abuse; frequently sold as oxycodone
 - > Mortality: 2016 alone, over 20,000 deaths from fentanyl-related overdose
 - 5 times those which occurred in 2013
 - 82% involved illegally-manufactured fentanyl; only 4% from Rx medication



Stanford University

Opioid Medications - Fentanyl

Fentanyl

Context Sensitive Half Time [Hughes]

Stanford University 🕌

Opioid Medications - Hydromorphone

- Hydrophilic, semi-synthetic (from morphine), hydrogenated ketone
- Potency approximately 5x greater than that of morphine
- Low oral bioavailability
 - Converting from IV to PO, dosage increased by approximately 4x
 - Peak effect at 15-30 minutes when given intravenous; duration 2-3 hours
- Hepatic metabolism by phase 2 glucuronidation
 - › Hydromorphone-3-glucuronide
 - Active metabolite
 - Devoid of analgesic properties
 - Accumulation associated with neuroexcitatory effects
 - Allodynia
 - Agitation, confusion, hallucination
 - Myoclonus, ataxia, tonic-clonic seizures

Opioid Medications - Sufentanil

- Synthetic opioid structurally similar to fentanyl
 - > Methoxymethyl group on piperidine ring \rightarrow shorter duration of action
- 5-10x greater potency than fentanyl; ~500x potency of morphine
- Intravenous, intramuscular, neuraxial, sublingual tablet (2018)
- Renal Failure
 - Hepatic metabolism without active metabolites
 - > Improved context-sensitive half life over that of fentanyl
- Among highest therapeutic index of commercial opioids (~27,000)
- More effective analgesia; less respiratory depression when compared to fentanyl

Opioid Medications - Oxycodone

Oxycodone

- Semisynthetic opiate derived from the alkaloid compound thebaine
- Full μ receptor agonism; partial κ and δ agonism
- ~1.5x potency of morphine
- Oral solution, immediate release tablet, extended release tablet, and tamper-resistant formulations
- Frequently combined with acetaminophen
 - Improved analgesia
 - Theoretical decrease in abuse potential
- Onset of action (IR formulation) 10-30 min; peak plasma at 30-60 min
- Oxymorphone
 - Active metabolite
 - Responsible for 10-15% of drug action
 - In renal or hepatic dysfunction, may accumulate and cause a pronounced level of respiratory depression and sedation

Opioid Medications - Codeine

Codeine

- Opioid agonism primarily via active metabolite, morphine
- Substantial genetic variability in CYP2D6 results in varied metabolism, from no effect to high sensitivity
 - Ultra-rapid metabolizers
 - Convert codeine to morphine more rapidly and completely
 - ~30% North African and Ethiopian patients
 - ~6% African American, caucasian, and Greek patients
 - Somnolence, decreased arousability, disorientation, confusion, apnea, hypoxia
- Discouraged use in pediatrics by multiple organizations
 - World Health Organization
 - US Food and Drug Administration
 - European Medicines Agency

Opioid Medications - Methadone

- Synthetic opioid first tested as a treatment for heroin addiction in 1964
- Mechanism
 - Full µ opioid agonism
 - I-Isomer/R-met
 - > NMDA antagonism
 - d-Isomer/S-met
 - > MAOI
 - TCAs may increase effect
- Fecal excretion primarily (some renal)
 - Multiple applications
 - Acute pain
 - Chronic pain
 - Opioid weaning in dependence
 - NMDA thought to mitigate hyperalgesia
 - > Analgesic effect of 12-36 hours after single dose
 - > Peak analgesia 10-15 minutes with IV dosing
 - Variable half-life of 12-100 hours
 - Steady state maximal effect ~ 5 days
 - > Oral bioavailability 65-95%

Opioid Medications - Methadone

- Highly lipophilic
- Biphasic elimination phase
 - Alpha phase (distribution phase)
 - 8-12 hours
 - Approximates period of analgesia
 - Beta phase (clearance)
 - 30-60 hours
 - Avoid withdrawal syndrome
 - Insufficient for analgesia
 - Reason for BID dosing for analgesia and daily dosing for opioid maintenance
- Conversion from morphine based on MEDD
- QTc prolongation → Torsades de Pointe
 - Monitor EKG
 - Treatment magnesium

Morphine to Methadone Conversion		
Morphine (mg/day)	Methadone (mg/day)	
20	5	
40	10	
60	15	
90	20	
120	20	
180	22.5	
200	25	
300	30	

Opioid Medications - Meperidine

- Meperidine
 - > Synthetic opioid; derived from phenylpiperidine
 - > Analgesic effects via action at the μ receptor; anti-shivering via κ receptor agonism
 - > 1/10 as potent as morphine; elimination half-life ~ 3 hours
 - > Routes: intravenous, oral, intramuscular, subcutaneous
 - Injection with local anesthetic properties
 - Effects at sodium channel
 - > Hepatic metabolism by hydrolysis and N-demethylation
 - Normeperidine
 - Active metabolite of meperidine
 - About ¹/₂ of the analgesic properties of meperidine; 2x the seizure-inducing activity
 - Delirium, dysphoria, and tremor
 - > Cardio-depressive effects and tachycardia
 - Chemical structure similar to atropine
 - Anticholinergic effects
 - Less miosis than other opioids
 - Serotonergic activity
 - Associated with serotonin syndrome: excitation, delirium, hyperpyrexia, and convulsions
 - Avoid co-administration with SSRIs, SNRIs, and MAOIs
 - > Previously considered low risk of addiction
 - Increased euphoria from meperidine than with oxycodone and hydromorphone
 - Rapid onset of action
 - High abuse potential

Opioid Medications - Tramadol

- Atypical opioid of the benzoid class [Bozkurt]
 - > Potency 10% that of morphine
 - Multiple means of action
 - Opioid agonism (primarily µ)
 - Inhibition of serotonin and norepinephrine
 - Serotonin 5-HT_{2C} antagonism
 - Minimal effects at NMDA receptors
 - Decreased seizure threshold
 - Co-administration with meperidine
 - Naloxone further increases risk
 - > Risk of serotonin syndrome
 - Monoamine oxidase inhibitors and tricyclic antidepressants
 - > As of 2017, FDA contraindicated in patients under 12 years old
 - "Serious risks, including slowed or difficulty breathing and death, which appear to be a greater risk in children younger than 12 years"

Stanford University

Opioid Medications - Nalbuphine

- Nalbuphine (Nubain®)
 - > Antipruritic (opioid-induced pruritus) and analgesic effects
 - High-efficacy partial agonist of the κ-opioid receptor
 - Moderate-efficacy partial agonist, agonist, or antagonist of µ receptor
 - Antagonist activity
 - Doses ≤ analgesic dose
 - Coadministration with mu agonists may result in partial reversal or blockage of opioid-induced respiratory depression
 - May precipitate withdrawal in chronic opioid users
 - $\,$ > Low affinity $\delta\text{-opioid}$ (DOR) and sigma receptors
 - Respiratory depression equivocal to equianalgesic morphine doses
 - Ceiling effect (increased doses > 30 mg without further respiratory depression)

Opioid Medications - Naloxone

- Non-selective and competitive opioid receptor antagonist
 - > Potent antagonist at μ receptor
 - $\,$ > Moderate antagonistic properties at δ and κ opioid receptors
- Incremental doses of 0.5-1mcg/kg to avoid withdrawal symptoms in chronic opiate users or opiate-dependent patients
 - Restlessness, agitation, tachycardia, hypertension, ventricular fibrillation, dyspnea, pulmonary edema, diaphoresis, nausea, vomiting
- Infusion at 1-2 mcg/kg/h for opiate-induced pruritus
- Half-life of 60-90 minutes
 - $\,$ > Effects terminate prior to elimination of most μ agonists
 - Infusion or re-dosing as necessary to prevent recurrence of sedation and respiratory depression
- Multiple routes of administration, including a nasal spray formulation and single-use filled syringe kits

Opioids in Renal Failure [Dean]

- Typically Avoided
 - Codeine
 - Morphine and morphine-6-glucuronide active metabolites
 - Morphine
 - Metabolized to morphine-3-clucuronide (55%) and morphine-6-glucuronide (10%) and renally excreted
 - M6G accumulation leads to respiratory depression, hypotension, narcolepsy
 - > Hydrocodone
 - Metabolized to hydromorphone
 - Hydromorphone-3-glucuronide: potential for neuroexcitatory effects
 - Meperidine
 - Normeperidine active metabolite; accumulation

 decreased seizure threshold
- Used with Caution
 - > Oxycodone
 - Active metabolite oxymorphone; plasma levels typically negligible
 - > Hydromorphone
- Typically Used
 - > Fentanyl: metabolized by liver; lacks active metabolites
 - > Sufentanil: metabolized by liver; lacks active metabolites. Decreased context sensitive half time.
 - > Alfentanil: metabolized by liver; lacks active metabolites
 - > Methadone
 - · Fecal and urinary excretion without active metabolite
 - · Typically considered safe in renal disease
 - Remifentanil
 - · Nonspecific plasma esterases; inactive metabolites

Acetaminophen and Acute Hepatic Failure

- Acetaminophen Toxicity
 - > Most common cause of acute liver failure in US
 - > Up to 500 annual cases of unintentional overdose leading to acute liver failure
 - ~150 deaths per year [Fontana]
 - Acute hepatic failure: severe, acute liver injury with encephalopathy & impaired synthetic function (INR of ≥1.5) in a patient without cirrhosis or preexisting liver disease & with an illness of fewer than 26 weeks duration
- Hepatic metabolism: primarily non-toxic, inactive metabolites excreted by the kidneys
 - Glucuronidation (45-55%), Sulfate conjugation (20-30%), N-hydroxylation and dehydration, typically followed by glutathione conjugation
 - N-acetyl-p-benzoquinone imine (NAPQI): intermediate toxic metabolite
 - Therapeutic doses: NAPQI detoxified 1° by glutathione conjugation (min. oxidation by cytochrome P450)
 - Overdose: overwhelmed glutathione pathway \rightarrow enhanced oxidation \rightarrow high levels of oxidation byproducts \rightarrow fulminant hepatic failure & necrosis
- Dosing in Pediatrics [Dimitropoulos]:
 - > Do not exceed 50 to 70 mg/kg in 24 hours
 - > Dose-dependent toxicity (toxicity varies according to baseline glutathione levels, etc.)
 - Single dose: minimal toxic dose 150 mg/kg; toxicity likely >250mg/kg in 24h
 - Chronic overdose: minimum toxic threshold 150-175 mg/kg daily over 2-4 days
- Combination opioid formularies often avoided in pediatrics as a result
 - > Tylenol #3, Vicodin[®] [hydrocodone], Percocet[®] [oxycodone]

Stanford University

Opioids and Substance Use Disorders – Terms [Yaksh]

- Acute Desensitization
 - Acute receptor agonism (minutes to hours) → activation of intracellular signaling → acute tolerance or desensitization
 - Disappears with a time course parallel to the clearance of the agonist
 - Likely related to receptor phosphorylation \rightarrow receptor uncoupling from G-protein and/or internalization of the receptor
- Tolerance
 - > The need for larger doses of medication to maintain original effect
 - Tolerance to analgesic effects tends to parallel tolerance to side effects.
 - Varied rates of tolerance development, from little to no tolerance (pupillary miosis) to rapid tolerance (euphorogenic effects)
 - · Resolution several weeks after withdrawal of substance
 - Degree of cross-tolerance exists (i.e. different µ agonists)
- Dependence
 - Production of withdrawal symptoms with cessation of drug exposure or with antagonist administration
 - Increased adenylyl cyclase, release of excitatory amino acids & cytokines, activation of microglia & astrocytes, initiation of apoptosis
 - > Term is not synonymous with addiction
- Addiction
 - A primary, chronic, neurobiological disease with genetic, psychosocial, and environmental factors influencing its development and manifestations. Characterized by behaviors that include one or more of the following: impaired control over drug use, compulsive use, continued use despite harm, and craving.
- Pseudoaddiction: caused by poorly controlled pain; can mimic addiction
- Substance Use Disorder
 - DSM-V combines categories of substance abuse and substance dependence into single disorder measured on a continuum from mild to severe

Opioids and Substance Use Disorders – History [Jones]

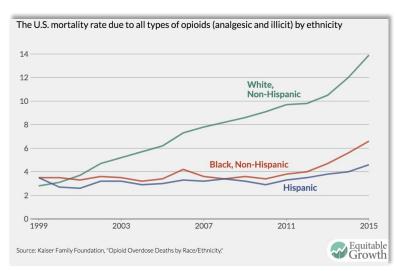
- Addictive potential known for centuries (1860s)
 - United States civil war [Yaksh]
 - Administration of "soldier's joy" (morphine & opium) \rightarrow "soldier's disease"
 - Opiate addiction secondary to using opioids to address soldiers' chronic pain states
 - "The Dr. put me on morphine and I can't stop that," Chappell wrote to William R. Terry. "Can't get it often except people give it to me." A.M. Chappell (1886)
 - Addictive potential of opioids \rightarrow search for opioid analgesics without addictive potential
- C.R. Alder Wright (1874)
 - Discovery of the synthetic opioid, diacetylmorphine. Later branded as "heroin" by Bayer corporation from 1890s-1913 and marketed as "non-addictive" cough suppressant and sedative
- Porter and Jick (1980)
 - Retrospective publication; 1-paragraph letter to editor published in New England Journal of Medicine
 - "There were only four cases of reasonably well documented addiction in patients who had no history of addiction... The addiction was considered major in only one instance." – Porter and Jick of the Boston Collaborative Drug Surveillance Program
- Portenoy (1986)
 - > Retrospective review of 38 patients
 - > 2 of 38 patients with chronic pain developed substance use disorder when receiving opioid
 - * "We conclude that opioid maintenance therapy can be a safe, salutary and more humane alternative to the options of surgery or no treatment in those patients with intractable non-malignant pain and no history of drug abuse."
- World Health Organization addressed the under-treatment of postoperative and cancer pain in 1986 with Cancer Pain Monograph

Opioids and Substance Use Disorders – History [Jones]

- Ronald Melzack (1990)
 - > Article in Scientific American
 - Contrary to popular belief, the author says, morphine taken solely to control pain is not addictive."
- American Pain Society (1995)
 - > "Pain as the fifth vital sign" campaign James Campbell
 - > Encouraged proper, standardized evaluation and treatment of pain symptoms
- Purdue Pharma (1995)
 - Oxycontin approved
- Veteran's Health Administration (1999)
 - > Adoption of pain as fifth vital sign initiative
- The Joint Commission (2000)
 - Published standards for pain management emphasizing the need for quantitative assessments of pain as recommended by the Institute of Medicine
- Federation of State Medical Boards and Drug Enforcement Agency
 - > Promised less regulatory scrutiny over opioid prescribers
 - > Decreased physician reluctance to prescribe opioids more liberally
 - > Physicians mandated to provide adequate pain control by the TJC
 - > Hospitals investing more readily in opioid therapy received better patient satisfaction rates

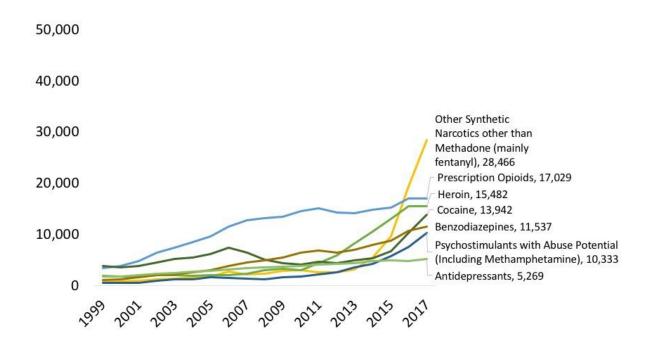
Stanford University

Opioids and Substance Use Disorders – History [Jones]


- Modern pharmaceutical companies
 - > Encouraged the use of opioids as humane treatment option
 - Avoidance of opioids by the physician considered to be inhumane
 - Ensuing litigation for the under-treatment of pain
 - > Purdue Pharma Oxycodone (OxyContin)
 - Marketed as significantly decreased likelihood for misuse or abuse
 - 1997-2002, Oxycontin prescriptions increased from 670,000 to 6.2 million
 - Purdue Pharma (2007) plead guilty to federal charges of OxyContin misbranding
 - Intentionally downplayed risk of addiction posed by OxyContin
 - Mislead healthcare industry by overstating opioid benefits for chronic pain
 - > Endo Pharmaceuticals and Johnson & Johnson facing related litigation
- Overall opioid consumption in U.S. increase
 - > 46,946 kg consumed in 2000
 - > 165,525 kg consumed in 2012
- American Academy of Pain Medicine, American Geriatric Society, American Pain Society facing litigation

Opioids and Substance Use Disorders – Current

- CDC Statistics on Prescription Opioid Use
 - Up to 25% of patients receiving opioid for noncancer pain experience struggle with addiction
 - > In 2016, more than 46 people died each day from overdoses involving prescription opioids
 - 130 people daily from opioid overdose in general
 - Now surpassed the 42 daily deaths which result from HIV/AIDS
 - > Prescription opioids contribute to 40% US opioid overdose deaths
 - > Prescription opioid overdose rates highest among people 25-54yo
 - > Approximately 75% of new heroin users misused prescription opioids prior to using heroin
- Peri-procedural doses in pediatrics associated with risk of substance use disorders [Schroeder]
- Why the publicity now? Affected demographics:

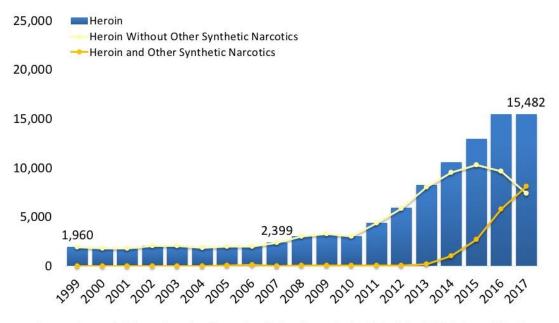


Substance Use Disorder - Fentanyl

National Overdose Deaths

Number Among All Ages, 1999-2017

Source: : Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2017 on CDC WONDER Online Database, released December, 2018



Substance Use Disorder - Fentanyl

National Overdose Deaths

Number Among All Ages, 1999-2017

Source: : Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2017 on CDC WONDER Online Database, released December, 2018

Substance Use Disorders – Preventative Strategies

- 1° goal: decreased opioid administration with maintenance of adequate analgesia
 - Adjunctive medications to address all components of pain
 - Muscular spasm: methocarbamol, tizanidine, cyclobenzaprine, baclofen, etc.
 - Anxiety: α-2 agonists, benzodiazepines
 - NSAIDs: ibuprofen, naproxen, ketorolac, selective cox-2 inhibitors
 - Acetaminophen
 - Peripheral and Neuraxial Blockade
- Medication selection and mitigating euphoria
 - > Oral vs. intravenous
 - > Oral: Oxycodone vs. Morphine ^[Wightman]
 - Oxycodone [Remillard]
 - Increased active transport across blood-brain barrier [Okura]
 - Increased phasic dopaminergism in the ventral tegmental area, nucleus accumbens, and striatal reward centers [Weele]
 - Possible increase in kappa opioid receptor-mediated withdrawal dysphoria
 - > IV: Hydromorphone vs. Morphine [Gulur]
- Medication administration
 - Bolus vs. infusion administered over 10-15 minutes
 - > PCA: decreased dose and decreased frequency interval
- Patient and Parent Education

QUESTIONS???

Bibliography

BOZKURT, PERVIN. "USE OF TRAMADOL IN CHILDREN." PEDIATRIC ANESTHESIA, VOL. 15, NO. 12, 2005, PP. 1041–1047.

- CDC. "PRESCRIPTION OPIOID OVERDOSE DATA." CENTERS FOR DISEASE CONTROL AND PREVENTION, AUGUST 1, 2017.
- "CDC WONDER." CENTERS FOR DISEASE CONTROL AND PREVENTION, CENTERS FOR DISEASE CONTROL AND PREVENTION, 2018, WONDER.CDC.GOV/.
- DEAN M. OPIOIDS IN RENAL FAILURE AND DIALYSIS PATIENTS. J PAIN SYMPTOM MANAGE. 2004 Nov;28(5):497-504.
- Fontana, Robert J, and Paul C Adams. "Unintentional' Acetaminophen Overdose on the Rise: Who Is Responsible?" Canadian Journal of Gastroenterology, vol. 20, no. 5, 2006, pp. 319–324., doi:10.1155/2006/498157.
- Gulur, Padma, et al. "Morphine versus Hydromorphone: Does Choice of Opioid Influence Outcomes?" *Pain Research and Treatment*, vol. 2015, 2015, pp. 1–6., doi:10.1155/2015/482081.
- HUGHES, MICHAEL A., PETER S. GLASS, AND JAMES R. JACOBS. "CONTEXT-SENSITIVE HALF-TIME IN MULTICOMPARTMENT PHARMACOKINETIC MODELS FOR INTRAVENOUS ANESTHETIC DRUGS." ANESTHESIOLOGY 76.3 (1992): 334-341.
- "HEROIN OVERDOSE DATA." CENTERS FOR DISEASE CONTROL AND PREVENTION, JANUARY 26, 2017.
- JONES, MARK R., ET AL. "A BRIEF HISTORY OF THE OPIOID EPIDEMIC AND STRATEGIES FOR PAIN MEDICINE." PAIN AND THERAPY, VOL. 7, NO. 1, 2018, PP. 13–21.
- MELZACK R. THE TRAGEDY OF NEEDLESS PAIN. SCI AM. 1990;262(2):27-33. DOI: 10.1038/SCIENTIFICAMERICAN0290-27.
- Okura, Takashi, et al. "The Blood-Brain Barrier Transport Mechanism Controlling Analgesic Effects of Opioid Drugs in CNS." Yakugaku Zasshi, vol. 135, no. 5, 2015, pp. 697–702., doi:10.1248/yakushi.14-00234-2.
- PORTER J, JICK H. ADDICTION RARE IN PATIENTS TREATED WITH NARCOTICS. N ENGL J MED. 1980;302(2):123.
- Portenov RK, Foley KM. Chronic use of opioid analgesics in non-malignant pain: report of 38 cases. Pain. 1986;25(2):171–186. doi: 10.1016/0304-3959(86)90091-6.
- REMILLARD, D, ET AL. "OXYCODONE'S UNPARALLELED ADDICTIVE POTENTIAL: IS IT TIME FOR A MORATORIUM?" CURRENT PAIN HEADACHE REP. 2019 Feb 28;23(2):15. doi: 10.1007/s11916-019-0751-7.
- Schaefer, Charles P., et al. "The Opioid Epidemic: a Central Role for the Blood Brain Barrier in Opioid Analgesia and Abuse." *Fluids and Barriers of the CNS*, vol. 14, no. 1, 2017, doi:10.1186/s12987-017-0080-3.
- Schroeder, AR, et al. "Association of Opioid Prescriptions From Dental Clinicians for US Adolescents and Young Adults With Subsequent Opioid Use and Abuse." JAMA Intern Med. 2019;179(2):145-152.
- Weele, Caitlin M. Vander, et al. "Rapid Dopamine Transmission within the Nucleus Accumbens: Dramatic Difference between Morphine and Oxycodone Delivery." *European Journal of Neuroscience*, vol. 40, no. 7, 2014, pp. 3041–3054., doi:10.1111/ejn.12709.
- WIGHTMAN, RACHEL, ET AL. "LIKEABILITY AND ABUSE LIABILITY OF COMMONLY PRESCRIBED OPIOIDS." JOURNAL OF MEDICAL TOXICOLOGY, VOL. 8, NO. 4, 2012, PP. 335–340., DOI:10.1007/s13181-012-0263-x.
- Yaksh TL, Wallace MS. Chapter 18: opioids, analgesia, and pain management. In: Goodman and Gilman's: the pharmacological basis of therapeutics, 12th ed. New York: McGraw-Hill; 2011.

