

Endocrine system

SUBJECT: patho summary

LEC NO. : ____4

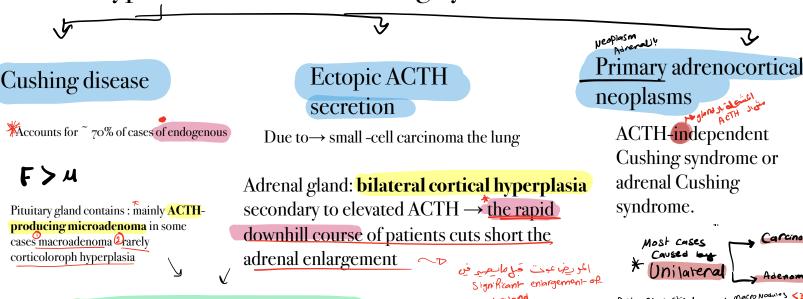
DONE BY: sara nafi' + omar shanaq

ويُقالَ سِيرِدُني علياً

The Adrenal Cortex

Adrenocortical hyperfunction: Hyperadrenalism

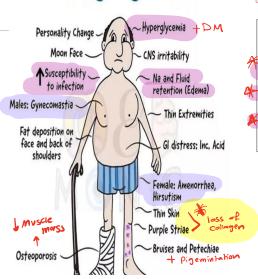
- 1. Cushing syndrome: excess of cortisol
- 2. Hyperaldosteronism: excess of mineralocorticoid
- Adrenogenital or virilizing syndromes: excess of androgens



Exogenous glucocorticoids (iatrogenic).

Bland Commission Endogenous

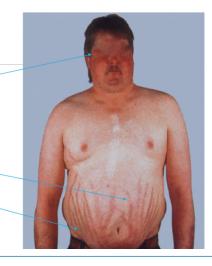
- 1. Cushing disease: Primary hypothalamicpituitary diseases associated with hypersecretion of ACTH
- 2. Secretion of ectopic ACTH by nonpituitary neoplaspasms
- 3. Primary adrenocortical neoplasms


Hypercorticolism: Cushing syndrome

High urine levels of Excreted CorticoSteroids

Clinical features:

Cushing's Syndrome

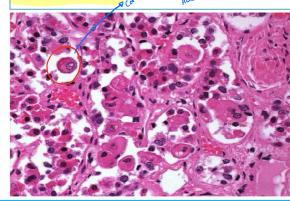

Cushing Syndrome

<u>Characteristic features</u> include:

-Moon facies

-Central obesity

-Abdominal striae.



Morphology:

The pituitary gland:

- In pituitary Cushing syndrome, there is an adenoma.
- The pituitary in all forms of Cushing's syndrome shows Crooke's hyaline change:
- The normal granular, basophilic cytoplasm of the ACTH-producing cells is replaced by homogeneous, lightly basophilic material due to the accumulation of intermediate keratin filaments in the cytoplasm.
- It is due to high exogenous or endogenous glucocorticoids.

Crooke's hyaline change. Non-tumorous corticotrophs in the pituitary of a patient with raised glucocorticoids show an accumulation of hyaline material as a concentric whorl in the cytoplasm.

Morphology: The adrenal gland

-D Depends on the cause of-Hypercortisoism

I.Bilateral cortical atrophy:

Suffression in the endogenous ACTH

(bilateral cortical atrophy due to a lack of stimulation of the zona fasciculata and zona reticularis by ACTH

The zona glomerulosa is of normal thickness because it functions independently of ACTH.

2) Diffuse hyperplasia:

ACTH-Dependent Cushing syndrome provided in the

Both glands are enlarged

The adrenal cortex is diffusely thickened and variably nodular

The yellow color of glands derives from the presence of lipid-rich cells ir the zona fasciculata & reticularis, which appear vacuolated.

3) Primary pigmented adrenal nodular hyperplasia:

The cortex is replaced almost entirely by macronodules or darkly pigmented micronodule

The pigment is believed to be lipofuscin

4. Functional adrenal adenomas or carcinomas:

ADenoma > Carcinoma

Carcinoma

Adenoma > yellow

larger (200 -300g)

Weight less than 30g

Non- Capsulated

Thin or well-Developed Capsules

With functioning tumors, the adjacent adrenal cortex and that of the contralateral adrenal gland are atrophic, due to suppression of endogenous ACTH by high cortisol levels.

-Adenoma is composed of cells similar to those encountered in the normal zona fasciculata

Witohic activity + Necrosis
are not seen

Adrenocortical
Adenoma

2. Hyperaldosteronism

Primary hyperaldosteronism

overproduction of aldosterone

suppression of the renin-angiotensin system and decreased plasma renin activity.

Causes:

1. Bilateral idiopathic hyperaldosteronism:

D Bilateral Modular hyperplasia of A Drenal gland

Mutation in KCN15 gene

2. Adrenocortical neoplasm:

Ly Aldosterone-Producing adenoma - D Conn Syndrome

3. Rarely, familial hyperaldosteronism

> Gienetic defect

Secondary hyperaldosteronism (Common)

SIII (Common

aldosterone release occurs in response to

*activation of the renin-angiotensin system.

Characterized by increased levels of plasma

renin

Causes:

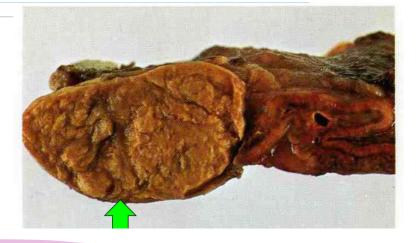
1.Decreased renal perfusion (renal artery stenosis)

2. Arterial hypovolemia and edema (CH, nephrotic syndrome)

3. Pregnancy (caused by estrogen-induced increases in plasma renin substrate)

Clinical features:

- Na retention & K excretion
- Hypertension.
- The long-term effects are cardiovascular compromise (e.g., left ventricular hypertrophy) and an increased risk of stroke and MI.
- Hypokalemia results from potassium wasting, and can cause:
- neuromuscular manifestations (weakness, paresthesia, visual disturbances).


Morphology

SAldosterone-producing adenomas:

- Almost always solitary, small and well-circumscribed.
- Bright yellow and, surprisingly, are composed of lipid-laden cortical cells resembling fasciculata cells than glomerulosa cells.
- The cells are uniform; occasionally, there is some nuclear and cellular pleomorphism.
- A characteristic feature of aldosterone-producing adenomas is the presence of eosinophilic, laminated cytoplasmic inclusions, known as spironolactone bodies (after treatment with spironolactone)
- Adenomas associated with hyperaldosteronism do not usually suppress ACTH secretion. Therefore, the adjacent adrenal cortex and that of the contralateral gland are NOT atrophic.
- Sallateral idiopathic hyperplasia: diffuse or focal hyperplasia of cells resembling the normal zona glomerulosa.

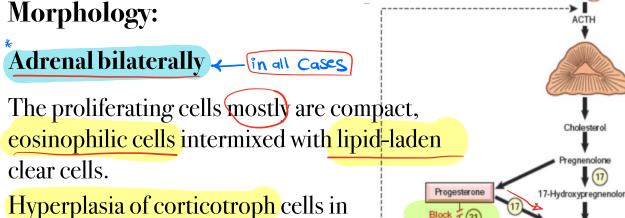
Adrenal cortex, adenoma:

 A golden-yellow, encapsulated adenoma arising from the adrenal

3. Adrenogenital or virilizing Syndromes _- Androgen excess

- Adrenal Causes of androgen excess §
- 1. Adrenocortical neoplasms: Carcinoma > Adenomas
- 2. Congenital adrenal hyperplasia (CAH)

Congenital adrenal hyperplasia (CAH)


a group of autosomal recessive disorders, each characterized by a <u>hereditary</u> defect in an enzyme involved in adrenal steroid biosynthesis, particularly cortisol.

The most common enzymatic defect in CAH is a 21-hydroxylase deficiency (90%), (range from a total lack to a mild loss)

Lo (Compensatory)

 \downarrow cortisol production $\rightarrow \uparrow$ ACTH \rightarrow adrenal hyperplasia $\rightarrow \uparrow$ production of cortisol precursor steroids are then channeled into the synthesis of androgens with virilizing activity.

MINERALOCORTICOIDS

the anterior pituitary in most patients

Clinical Features

Clinical Sx may occur in the perinatal period, later childhood, or (less commonly) adulthood.

- Masculinization in females (due to androgen excess):
- clitoral hypertrophy, ambiguous genitalia, and
- oligomenorrhea, hirsutism, and acne in post-pubertal girls.
- 🕟 In males (due to androgen excess):
- Enlargement of the external genitalia and other evidence of precocious puberty in young patients.
- Aldosterone deficiency: salt wasting and hypotension.
- concomitant cortisol deficiency

عدده الله و بحمده سبحان الله العظيم

Anterior pituitary

GLUCOCORTICOIDS

Hyperplastic adrenal

Dehvdroxvepiandrosterone