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Abstract  1 

Abstract 
Downslope and alongslope sediment transport are the dominant processes during the evolution of 

continental margins. While downslope transport is driven by gravity, slope parallel transport is mainly 

controlled by the thermohaline circulation and associated bottom currents. Although several studies 

focused on either one of these processes, knowledge on bottom current induced sediment transport and 

its interplay with downslope oriented processes is still limited. The major goal of this thesis is to 

reveal the impact of both alongslope and downslope oriented sediment transport on slope architecture 

in highly dynamic oceanographic settings and to assess their interaction.  

The main investigation area covers the continental slope in the border region of Uruguay and 

Argentina, where a major contourite depositional system (CDS) is located beneath the Brazil-Malvinas 

Confluence, which represents a key location within the deep and intermediate water loop of the global 

conveyor belt. The CDS encompasses well defined depositional and erosive features, the most 

prominent represented by contourite terraces and the Mar del Plata submarine canyon. 

By means of high resolution multichannel seismic data, three major seismic units were identified in 

the subsurface of the middle slope, which allow reconstruction of former oceanographic settings based 

on changes in their reflection stacking pattern. In agreement with earlier studies, first current 

controlled sedimentation can be observed around the Eocene/Oligocene boundary coeval with the 

opening of the Drake Passage. During the Middle Miocene the formation of large plastered drift 

sequences marks the onset of Northern Sourced Deep Water (NSDW) production, which resulted in a 

major vertical shift of water mass interfaces off northern Argentina. Finally, the modern 

oceanographic regime was established with the closure of the Central American Seaway in the Late 

Pliocene, which due to the strengthening of NSDW resulted in the formation of another plastered drift. 

Consequently, it can be shown that alongslope sedimentary processes dominated the evolution of the 

northern Argentine slope architecture. Furthermore, highlighting the impact of the NSDW on slope 

architecture, it is likely that since the Middle Miocene deep water production in the northern 

hemisphere plays a significant role in shaping continental slopes in the western South Atlantic. 

To study the recent sedimentary system, the morpho-sedimentary features of the northern Argentine 

margin were mapped in great detail based on seismo- and hydro-acoustic data sets including 

conventional and high-resolution seismics, parametric echosounder and single and swath bathymetry. 

Erosive and depositional features of the CDS were described in detail with special emphasis on spatial 

variations north and south of the Mar del Plata Canyon. Joint interpretation with regional hydrographic 

data sets revealed that most of the morpho-sedimentary features are the result of bottom current driven 

sediment transport. In particular, the evolution of large-scale contourite terraces including their 

associated depositional and erosive features can be explained by alongslope processes, which are 

controlled by the interplay of water mass interfaces, helicoidal flow patterns and topography.  

However, spatial analysis of sedimentary features revealed a major deficit in sediment budget on the 

northern flank of the Mar del Plata Canyon. This area of non-deposition reveals the effect of the 
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canyon on bottom current flow pattern, which is a flow disturbance over this seafloor irregularity by a 

loss in topographic constraint. This major disturbance decreases not only flow velocity, but also the 

sediment transport capacity of the bottom current. Therefore, particles transported alongslope are 

released into the canyon, from where the suspension flows down the canyon floor. Tracing this distinct 

sedimentary signature on geological time scales, slope architecture analysis by means of high-

resolution multichannel seismic data indicated that the Mar del Plata Canyon interacts at least since 

the Late Miocene with the northern Argentine oceanographic regime. 

To justify such an interpretation, which suggests sediment pirating of a submarine canyon from 

bottom currents, a modern analog study from SE Africa showing the huge transport capacity of bottom 

currents in the water column has been carried out for comparison. By means of 18 kHz parametric 

echosounder and Acoustic Doppler Current Profiler (ADCP) data several smaller-scale lee eddies have 

been identified within the Agulhas Current offshore Mozambique, which erode, resuspend and 

transport vast amounts of sediments by forming nepheloid layers. With this approach for the first time 

the impact of high energetic eddies on sediment dynamics could be visualized. This analysis confirms 

that indeed massive sediment transport occurs due to the interplay between dynamic bottom currents 

and the topographic framework. 

Overall, this thesis makes a comprehensive attempt to decipher the impact of both alongslope and 

downslope sediment transport processes. Based on slope architecture analysis it becomes obvious that 

the overall margin shape and its associate sedimentary stacking pattern represent paleoclimatic 

archives, which provide insight into former oceanographic settings. In particular, the existence of 

contourite terraces might be used to not only determine distinct water masses but also to trace their 

interface in space and time. Furthermore, in this study, the interaction of alongslope and downslope 

oriented sediment transport processes and its margin shaping character within the framework of a 

highly dynamic oceanographic setting could be shown. The mechanism, which suggests a feeding of 

submarine canyons by bottom currents, might present a possible material source of canyons, which are 

not connected to major river systems or shelf edges at all. Thus, the results of this thesis improve the 

understanding on alongslope and downslope oriented sediment transport and their interaction.  
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Kurzfassung 
Hangabwärts gerichteter und hangparalleler Sedimenttransport stellen die bedeutendsten Prozesse 

während der Evolution eines Kontinentalrandes dar. Während hangabwärts gerichteter Transport von 

der Schwerkraft angetrieben ist, wird der hangparallele Transport hauptsächlich durch die 

thermohaline Zirkulation und den damit verbundenen Bodenwasserströmungen kontrolliert. Obwohl 

sich bereits mehrere Studien gezielt mit einem der beiden genannten Prozesse auseinandergesetzt 

haben, ist das Wissen über durch Bodenwasserströmung hervorgerufenen Sedimenttransport und 

dessen Interaktion mit Schwerkraft getriebenen Prozessen weiterhin begrenzt. Das Hauptziel dieser 

Dissertation ist daher, den Einfluss des sowohl hangabwärts gerichteten als auch des hangparallelen 

Sedimenttransports auf die Hangarchitektur in einem hoch dynamischen Strömungsregime 

aufzuzeigen und deren mögliche Interaktion zu bestimmen. 

Das Hauptuntersuchungsgebiet dieser Studie umschließt den Kontinentalhang der Grenzregion 

zwischen Uruguay und Argentinien, an dem sich ein größerer kontouritischer Ablagerungsraum 

befindet. Dieser befindet sich im Einflussgebiet der Brazil-Malvinas Konfluenz, die eine 

Schlüsselposition innerhalb des mittleren und tiefen Wasserkreislaufes des globalen 

Zirkulationsmusters darstellt. Der kontouritische Ablagerungsraum umfasst gut ausgeprägte 

Ablagerungs- und Erosionsstrukturen. Die beeindrucktesten Strukturen stellen kontouritische 

Terrassen und der Mar del Plata Canyon da. 

Mittels hochauflösender Mehrkanalseismik-Daten wurden im Untergrund des mittleren Hanges drei 

größere seismische Einheiten identifiziert, die auf Grund von sich verändernden Reflektionsmustern 

eine Rekonstruktion von früheren Strömungsregimen ermöglichen. In Übereinstimmung mit früheren 

Studien kann erste von Strömung kontrollierte Sedimentation in der Nähe der Eozän/Oligozän-Grenze 

zeitglich mit der Öffnung der Drake Passage beobachtet werden. Während des mittleren Miozäns 

markiert die Entwicklung mehrerer am Hang liegender konturitischer Sedimentationsabfolgen das 

Einsetzten des Nordatlantischen Tiefenwassers. Dieses hatte ein vertikales Verschieben der 

Wassermassengrenzen vor Argentinien zur Folge. Schlussendlich entstand das heutige 

ozeanographische Regime durch das Schließen des Isthmus von Panama, der durch ein Verstärken des 

Nordatlantischen Tiefenwassers zur Ablagerung einer weiteren konturitischen Ablagerung führte. 

Daher kann gezeigt werden, dass hangparallele Sedimentationsprozesse die Evolution des 

Argentinischen Kontinentalhanges dominiert haben. Zusätzlich die ausschlaggebende Rolle des 

Nordatlantischen Tiefenwassers berücksichtigend ist es wahrscheinlich, dass seit dem mittleren 

Miozän die Tiefenwasserproduktion in der nördlichen Hemisphäre eine signifikante Rolle für die 

Evolution von Kontinentalhängen im westlichen Atlantik spielt.  

Um das heutige sedimentäre System zu studieren wurden basierend auf mehreren seismischen und 

hydroakustischen Datensätzen, die neben konventionellen und hochauflösenden Mehrkanalseismik-

Daten auch Messungen mit parametrischen Sedimentlot und sowohl Schiffs- als auch Fächerecholot 

beinhalteten, morpho-sedimentäre Merkmale vor Nordargentinien kartiert. Erosions- und 
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Ablagerungsstrukturen des konturitischen Ablagerungsraums wurden beschrieben mit einem 

speziellen Augenmerk auf räumliche Unterschiede nördlich und südlich des Mar del Plata Canyons. 

Gemeinsame Interpretation mit regionalen hydrographischen Daten zeigte, daß die meisten morpho-

sedimentären Merkmale durch Bodenwasserströmungen und daher durch hangparallelen 

Sedimenttransport entstanden sind. Ins besonders die Entstehung von großflächigen konturitischen 

Terrassen eingeschlossen ihrer Ablagerungs- und Erosionsstrukturen kann auf Hang parallele Prozesse 

zurückgeführt werden, die durch die Wechselwirkung von Wassermassengrenzen, helicoidalen 

Strömungsmustern und der Topographie kontrolliert werden. 

Die Analyse jener sedimentären Merkmale zeigte ebenfalls auf der nördlichen Flanke des Mar del 

Plata Canyons ein größeres Gebiet, das durch einen Mangel an Sedimentation gekennzeichnet ist. 

Dieser Mangel an Sedimentation ist das Ergebnis des Canyons, der ein größeres Strömungshindernis 

darstellt. Über den Canyon fließende Strömungen verlieren ihre topographische Begrenzung und daher 

auch an Geschwindigkeit. Einhergehend mit dem Verlust an Geschwindigkeit sinkt auch die Fähigkeit 

Sedimente zu transportieren. Daher fallen durch Strömung transportierte Sedimente in den Canyon. 

Das Verfolgen des depositionslosen Gebietes auf geologischen Zeiträumen mit Hilfe von 

hochauflösenden Mehrkanalseismik-Daten deutet an, dass der Canyon mindestens seit dem späten 

Miozän mit dem Nordargentinischen Strömungssystem interagierte.  

Um eine solche Interpretation zu rechtfertigen, die auf dem Sedimenttransport von 

Bodenwasserströmungen beruht, wurde eine neuartige Studie vor Südostafrika durchgeführt, die das 

gewaltige Transportvermögen von Bodenwasserströmungen verdeutlicht. Mittels von Datensätzen, die 

mit einem 18 kHz parametrischen Echolot und einem 75 kHz ADCP (Acoustic Doppler Current 

Profiler) gesammelt wurden, wurden mehrere kleine Stromwirbel innerhalb des Agulhasstroms vor 

Mozambique identifiziert, die große Mengen an Sediment erodieren, resuspendieren und in Form von 

Nepheloidlagen transportieren. Mit diesem Ansatz konnte zum ersten Mal der Einfluss von 

Stromwirbeln auf die Sedimentdynamik visualisiert werden. Diese Analyse bestätigte, daß tatsächlich 

gewaltige Mengen von Sediment durch die Wechselwirkung von dynamischen 

Bodenwasserströmungen und Topografie transportiert werden können. 

Diese Dissertation macht einen umfassenden Versuch den Einfluss von sowohl hangabwärts 

gerichtetem als auch hangparallelen Sedimenttransport zu entschlüsseln. Auf Grund der oben 

dargelegten Analyse der Hangarchitektur ist es eindeutig, dass die Hangmorphologie und die damit 

verbunden sedimentären Strukturen paleoklimatische Archive darstellen, die einen Einblick in frühere 

Ozeanregime ermöglichen. Ins besondere die Existenz von konturitische Terrassen kann dazu benutzt 

werden, spezifische Wassermassengrenzen zu bestimmen und diese über geologische Zeiträume zu 

rekonstruieren. Darüber hinaus konnte in dieser Studie die Interaktion zwischen hangparallelem und 

hangabwärts gerichtetem Sedimenttransportprozessen in einem hoch dynamischen Strömungsregime 

gezeigt werden. Der dargestellte Mechanismus, der das Befördern von Sedimenten zum Mar del Plata 

Canyon durch Bodenwasserströmungen beinhaltet, könnte eine mögliche Sedimentquelle für Canyons 
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darstellen, die nicht mit größeren Flusssystemen oder der Schelfkante verbunden sind. Daher haben 

die Ergebnisse dieser Arbeit zu einem besseren Verständnis von hangabwärtsgerichteten und 

hangparallelen Sedimentationsprozessen und deren möglicher Interaktion beigetragen. 
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1. Introduction 

1.1 The ocean as archive for climate changes 
Marine sediments are representing the major climatic archive on Earth. Although short-term climate 

variations can be analyzed utilizing other archives like tree rings, ice cores and corals, marine 

sediments, in particular those which were eroded, transported and deposited by water, provide an 

insight into over 99% of Earth’s geological history (Ruddiman, 2001). Traditional paleoclimatic and 

paleoceanographic studies are based on the analysis of marine sediment components using mineral 

composition, grain size distribution, microfossils or isotopic composition as climate proxies and were 

restricted to undisturbed hemipelagic/pelagic sedimentation (Fig. 1.1). Other approaches incorporate 

structural analysis of small-scale and large-scale sedimentary features which were deposited by non-

vertical sediment transport processes and are often linked to atmospheric variability, sea level 

fluctuations or the thermohaline circulation. Consequently, sediment structures derived from transport 

processes can also carry a climatic fingerprint and can be used as additional source of information for 

paleoclimatic and paleoceanographic reconstructions. 

Sediment transport can be distinguished through transport direction into either downslope or 

alongslope transport (Fig. 1.1). Downslope processes are driven by gravity and occur mostly 

episodically or in single events, which range from slides to turbidity currents (Shanmugam, 2003, 

�
Figure 1.1: Schematic diagram showing complex deep-marine sedimentary environments occurring at water depths greater 
than 200 m. In general, shallow marine environments are characterized by tides and waves, whereas deep-marine (slope and 
basin) environments are characterized by mass movements, bottom currents and pelagic/hemipelagic sedimentation. 
Modified from Shanmugam (2003, 2008); with permission from Elsevier. 
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 2008). Depending on the specific transporting process they result in a large variety of deposits. 

Successive failure of sediments over a extended time periods will shape continental slope morphology 

and might result in the evolution of channel-levee systems or submarine canyons (Fig. 1.1). While 

downslope processes were extensively studied not the least due to their importance for hydrocarbon 

reservoirs and their geohazard potential, alongslope processes gained an increasing scientific 

awareness during the last decades for similar reasons. Alongslope sediment transport is driven by 

bottom currents, which follow the contours of the bathymetric framework as part of the thermohaline 

circulation or are related to rings, meanders and eddies carried within surface as well as deep waters 

(Fig. 1.1). Persisting for long time periods, bottom currents are steered by the marginal framework, 

which in turn is continuously altered by depositional and erosive processes associated with alongslope 

processes (Rebesco and Camerlenghi, 2008). 

 

1.2 Sedimentation under influence of bottom currents 
The capacity of ocean currents to transport and redistribute sediments in the deep ocean was first 

described in the 1930’s (Wust, 1936). Nevertheless, the scientific attention was finally drawn to 

bottom current related sediment transport in the 1960’s (Dzulynski and Walton, 1965; Heezen, 1959; 

Heezen et al., 1955; Wust, 1955, 1958). Inspired by these findings, during the next decades sediment 

waves and drift deposits were identified in all kinds of marine environments including the shallow 

marine realm and several formation processes were introduced (Faugeres et al., 1999; Gao et al., 1998; 

Lovell and Stow, 1981; Okada and Ohta, 1993; Rebesco, 2005; Rebesco and Camerlenghi, 2008; Stow 

and Mayall, 2000; Stow et al., 2002; Viana et al., 2007). Today, the idea is widely accepted that 

bottom (contour) currents are capable to significantly shape continental margins (Stow et al., 2009) by 

eroding, transporting and depositing sediments at the sea floor (Rebesco and Camerlenghi, 2008). 

These currents, although mostly flowing alongslope, can be extremely variable in space and time, in 

particular in areas influenced by through-passing eddies or close to gateways connecting ocean basins 

(Brackenridge et al., 2011; Nowell et al., 1985; Rebesco and Camerlenghi, 2008). Furthermore, 

bottom currents can be related to a uniform flowing water mass, or encompass several water masses, 

which might even flow in opposite direction and therefore result in complex flow pattern (Laberg et 

al., 2005; Viana et al., 2002a; Viana et al., 2002b). However, all deposits formed mainly under the 

control of geostrophic and thermohaline circulation patterns or substantially reworked by bottom 

currents are classified as ‘contourites’ (Faugères and Mulder, 2011; Rebesco and Camerlenghi, 2008). 

The identification of drift deposits based only on sedimentological evidence is a hard task to 

accomplish. In the early stages of contourite research scientists were only aware of deposits without a 

distinct mounded shape (e.g. Heezen and Hollister, 1964; Heezen et al., 1966 and therefore, only 

samples from current controlled deposits intercalated with turbidites and pelagic sediments were 

available. This fact prohibited the definition of conclusive sedimentological criteria regarding 

contourite drift identification. Based on the tremendous amount of samples collected in the following
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 decades, especially during the High Energetic Benthic Boundary Layer Experiment (HEBBLE, 

McCave and Hollister, 1985; Nowell et al., 1985), a contourite facies model was suggested for both 

sandy and muddy contourites (Stow, 1982; Stow and Lovell, 1979), which was recently summarized 

and refined by Stow and Faugéres (2008). Although this facies model was already established 30 years 

ago, it is still debated by the scientific community, in particular by Shanmugam (2003, 2007, 2008) 

2008) and Shanmugam et al. (1995). 

Besides sedimentological evidence, seismic and acoustic imaging of seafloor and subsurface structures 

can provide detailed information regarding drift identification (Fig. 1.2). Furthermore, by spatial 

imaging of sedimentary structures the evolution of contourite features can be reconstructed in time and 

space. Based on the development of both the large-scale shape and the internal seismic facies of drift 

deposits the paleo-environment factors, which have been constrained deposition, can be deciphered as 

shown e.g. in the Gulf of Cadíz (Llave et al., 2001), at the Cantabrian Margin (Van Rooij et al., 2010), 

off SE Africa (Preu et al., 2011) and off South and Central Argentina (Hernández-Molina et al. 2009, 

2010). 

The shape of contourite deposition is controlled by four main factors: Bottom current velocity and 

variability, the topographic framework, sediment supply and the time period available for drift 

formation (Faugéres et al. 1999). Based on these variables, different types of contourites are deposited, 

which were summarized and classified by Faugéres et al. (1993, 1999), Faugéres and Stow (2008) and 

Rebesco (2005). In principle, drift deposits are subdivided into sheeted and mounded drifts. 

Sheeted drifts cover extensive areas with thicknesses up to hundreds of meters. As the name ‘sheeted 

drift’ implies, sediment thickness shows little variations along the drift and only a slight decrease in 

thickness can be observed across the drift’s center to its borders (Faugéres et al. 1999). By means of 

seismo-acoustic facies analysis, sheeted drifts are quite similar to turbidite sheets due to their low-

amplitude character, which mostly reveals discontinuous reflections. In some parts these low 

amplitudes fade into acoustic transparency (Faugéres et al. 1999). Overall, sheeted drifts are formed on 

top of a gentle relief with a smooth topography, which favors non focused, tabular bottom currents. 

Smaller turbulence in the bottom currents may lead to the formation of sediment waves, which might 

be comprised within their sedimentary record or are recently formed (Faugéres and Stow, 2008). 

Typical examples of sheeted drifts include those within the Mozambique Basin (Ben-Avraham et al., 

1994), the North Rockall Trough (Howe et al., 1994; Richards et al., 1987; Stoker, 1995) and the 

Argentine Basin (Flood and Shor, 1988).  

Mounded drifts differ from sheeted drift by their distinctly mounded and elongated shape. With 

length/width ratios varying from 2:1 to 10:1 they can extend from several tens of kilometers to over 

1000 km (Faugéres et al. 1999). Location, orientation and drift migration depend strongly on the 

interplay between the contours of the continental margin, the slope gradient, the local current regime 

and the Coriolis force (Fig. 1.2, Faugéres and Stow, 2008). They were already classified by McCave 

and Tucholke (1986) into plastered, separated and detached drifts (Fig. 1.2) depending on their margin 
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setting, current strength and migration direction. Additional subclasses, the channel-related and 

confined drift, were amended by Faugéres et al. (1993; 1999) and recently summarized by Faugéres 

and Stow (2008, Fig. 1.2). Due to their strong dependence on the interplay between topographic 

framework and bottom current velocity and direction, the spatial analysis of these deposits allows to 

infer on former oceanographic settings. However, since mounded drifts are mostly located along or in 

Figure 1.2: Summary of the different types of mounded contourite drifts (see McCave and Tucholke, 1986; Faugéres et al.
1993, 1999; Stow et al. 2002) showing the drift general geometry and trend of migration – aggradation as well as inferred
bottom-current pathways. From Faugéres and Stow (2008); with permission from Elsevier. 
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close vicinity to continental slopes, events of downslope sediment transport might add to or overprint 

the quasi-continuous, but slowly forming bottom current controlled deposits (Faugéres et al. 1999; 

Faugéres and Stow, 2008).  

The different contourite drift classifications encompass minor disagreements, which are partly related 

to non-uniform usage of nomenclature, but point also to residual uncertainties in determining the 

crucial forcing factor in drift formation on a case to case basis. Therefore, next to the drift deposition 

modern analysis of contourites takes as well into account erosive features, which are often intimately 

linked to contourite formation (Fig. 1.3). These extensive erosive features are the result of bottom 

currents interacting with the bottom relief, leading to a development of local and regional 

hydrodynamic anomalies as e.g. cores, vortices and helicoidal flows (Fig. 1.3, Hernández-Molina et al. 

2008a). Although erosive features are not as well studied as drifts, several types have been described 

during the last years, including contourite terraces, which represent the most common feature (e.g. 

García et al., 2009; Hernández-Molina et al., 2003, 2008a; Nelson et al., 1993; Nelson et al., 1999; 

Stow et al., 2009; Stow et al., 2008; Stow and Mayall, 2000). Nevertheless, no detailed model was yet 

proposed explaining the evolution of contourite terraces in detail. Analogue to turbidite depositional 

systems, to pronounce the relation between drifts and their associated erosive features, a conglomerate 

of these features aligned along a particular continental slope is commonly termed contourite 

depositional system (CDS; Hernández-Molina et al., 2003; 2008b; Rebesco and Camerlenghi, 2008; 

Stow et al., 2002).  

�
Figure 1.3: 3-D conceptual sketch showing the potential contourite depositional and erosional features on a slope over: (a) 
margins with different water masses along the slope but with simple current pathways (e.g. the Brazilian slope and the 
Northern European Margin), (b) margins where recent tectonic activity has produced very complex slope morphology, 
increasing the possibility of generating multiple-current pathways (e.g. the slopes of the Gulf of Cadiz, western Iberian 
Margin and some active margins) and (c) interaction between down-slope (submarine canyons and slides). From Hernández-
Molina et al. (2008b); with permission from Elsevier. 
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1.3 Motivation and objectives 
Along- and downslope sedimentation processes and their interaction have a major impact on the shape 

of continental slopes. Downslope transport is either caused by mass-wasting events as slumps/slides or 

occurs in canyons incised into shelf or slope. In contrast, slope parallel sediment transport is mainly 

controlled by contour-following currents as part of the thermohaline circulation. During the last 

decades it became evident that contour current controlled deposition and therefore contourites form a 

significant amount of marginal sediments (Faugéres et al. 1993). 

At the same time, contouritic sediment deposits became more and more important as 

paleoceanographic/paleoclimatic archives, as hydrocarbon reservoirs and because of associated slope 

instabilites and geohazards (Rebesco and Camerlenghi, 2008). Especially due to their high 

accumulation rates compared to the background sedimentation, studies were carried out focusing on 

sediment transport processes and paleoceanographic reconstructions (e.g.: Hernández-Molina et al., 

2006; Llave et al., 2001; McCave and Tucholke, 1986; Mézerais et al., 1993; Preu et al., 2011; Van 

Rooij et al., 2010). Nevertheless, the scientific knowledge on contourite drifts, their associated erosive 

features and their interplay is still limited. In particular, the origin of wide contourite terraces and their 

linkage to the oceanographic and depositional regime remains unclear. 

In contrast to the rapid sediment accumulation associated with contourites, canyons form large 

incisive, rather erosive features at the seafloor. They strongly influence the sedimentary regime on 

continental slopes by acting as major conduits for turbidity currents transporting shelf and upper slope 

material into the deep sea basin. However, canyons are not only interesting from a mass wasting point 

of view. Reconstruction of activity within canyons and analysis of background sedimentation can 

provide paleoclimatological and paleoceanographic information (Hanebuth and Henrich, 2009; 

Henrich et al., in rev.; Henrich et al., 2009; Zühlsdorff et al., 2008). Moreover, canyons strongly 

influence bottom currents and their resulting drift deposits. This interaction represents a significant 

and important process for the evolution of continental slopes (Hernández-Molina et al., 2008a; Laberg 

and Camerlenghi, 2008; Mulder et al., 2008; Mulder et al., 2006). Even though studies focused on the 

interaction between alongslope processes and canyons (Marchès, 2008; Marchès et al., 2010; Salles et 

al., 2010), the impact of large-scale incisions on bottom currents and the sediments, which they 

transport, is not well understood. 

In the frame of MARUM Project SD3 ‘Slope architecture and evolution of sedimentary regimes’ the 

overall goal of this thesis is to assess the impact of both, alongslope and downslope oriented sediment 

transport, on sedimentary processes and to decipher their interaction. A promising location to study the 

interplay between gravitational and current-driven sediment transport is the northern Argentine 

margin, where a huge CDS has formed in the border region between Argentina and Uruguay off the 

Rio de la Plata in water depths of ~1100-1500 m. This CDS is characterized by drift deposits, by 

several contourite terraces (Hernández-Molina et al., 2009; Violante et al., 2010) and by the large Mar 

del Plata submarine canyon (Fig. 1.4, Krastel et al., 2011).  
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In this context the first objective of this thesis is mapping and analyzing of the sedimentary structures 

associated with the northern Argentine CDS based on high-resolution multichannel seismic data and 

multibeam bathymetry data. Mapping depocenter shifts and areas of deposition and non-deposition in 

time and space within the drift accumulations allow to reconstruct the evolution of the CDS and the 

oceanographic regime controlling alongslope processes in this area. 

The second objective is the spatially inclusive and comprehensive mapping of surface and near-surface 

sedimentary structures off the Rio de la Plata River. For this purpose sediment echosounder 

(‘Parasound’) data collected in 2009 and conventional seismic data provided by the ‘Comisión 

Nacional del Límite Exterior de la Plataforma Continental’ (COPLA) are considered to achieve for 

this purpose sufficient data coverage. Joint interpretation with available hydrographic data sets will 

allow linking the spatial variations in drift deposition and erosive features with the regional 

oceanographic setting. 

The third objective of this thesis is a morphological and structural analysis of the drifts deposits in 

close vicinity of the Mar de Plata Canyon, located within the northern Argentine CDS, in time and 

space based on seismic data. Depocenter shifts in close vicinity to the Mar del Plata Canyon will 

reveal the history of the Mar del Plata Canyon and its evolving impact on the drift deposition.  

At last, the final objective is the spatial analysis of hydro-acoustic water column data recorded using 

an 18 kHz parametric echosounder. Interpretation of these backscatter signals in relation to Acoustic 

Doppler Current Profiler data might allow inferring on sediment transport processes within the water 

column and at the sea floor.  
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1.4 Regional setting of the northern Argentine margin 

1.4.1 Oceanographic setting 

�
Figure 1.4: Map of the boundary region between Uruguay and Argentina indicating besides the main physiographic features, 
as well the regional oceanographic regime; BC – Brazil Current; MC – Malvinas Current; AAIW – Antarctic Intermediate 
Water; CDW – Circumpolar Deep Water; NADW – North Atlantic Deep Water; AABW – Antarctic Bottom Water 

The northern Argentine margin encompasses one of world’s most dynamic oceanographic settings, in 

which the interaction of ocean currents with the seafloor is ubiquitous (Chelton et al., 1990). 

Numerous shipboard surveys and satellite image analysis were focused on the identification of water 

masses and their volume transport, main flow direction and driving forcing (de Souza et al., 2006; 

Gordon and Greengrove, 1986; Legeckis and Gordon, 1982; Reid, 1989; Reid et al., 1977). The upper 

circulation pattern is mainly dominated by the northward flowing, subantarctic Malvinas Current 

(MC), the southward flowing, sub-tropical Brazil Current (BC) and the resulting encounter called the 

Brazil/Malvinas Confluence (BMC, Figure 1.4, Peterson, 1992; Piola and Matano, 2001).  

The 100 km wide MC, as a branch of the Antarctic Circumpolar Current, transports cool, nutrient rich 

water from the pole equatorward along the Argentine slope (Stramma, 1989). The current originates in 

the northern portion of the Drake Passage (Tomczak and Godfrey, 2001). In contrast, the BC 

transports warm, saline and relatively oligothroph water poleward along the shelf of Brazil and 

Uruguay (Stramma, 1989). As a branch of the South Equatorial Current the BC forms a major surface 

current in the SW Atlantic, which consists mainly of Tropical Water (TW) and South Atlantic Central 

Waters (SACW, Fig. 1.5, Piola and Matano, 2001). 
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The confluence zone resulting from the collision of Brazil and 

Malvinas Current influences an area between 25°S and 45°S 

depending on the seasonal variability both surface currents. In 

annual average the axis of this high energetic area is located at 

38-39°S (Bisbal, 1995). The confluence zone is hydrographically 

mainly characterized by intense vertical and horizontal mixing 

and large variations in temperature and salinity due to the 

formation of large eddy fields (Piola and Rivas, 1997). 

Vortices and eddies are not only associated to the surface waters 

of the BMC. Eddies originating from the BC are mostly a result of 

an anomalous poleward migration of the BC (Gordon and 

Greengrove, 1986; Piola and Matano, 2001). These eddies might 

strongly influence the underlying water stratification causing a 

vertical mixing up to 4000 m. Once detached from the BC 

retroflection these northeastward moving eddies enter the wind-

driven sub-tropical South Atlantic anticyclonic gyre (Olson et al., 

1988). Cold filaments and shed rings carried within the MC are 

also driven frequently into this recirculation cell (Piola and 

Matano, 2001). 

However, the BMC is not only characterized by the highly 

dynamic and complex current setting in surficial waters. 

Underlying water mass circulation and stratification along the 

slope is characterized by the encounter and interaction of northward flowing Antarctic water masses 

(Antarctic Intermediate Water [AAIW]; Circumpolar Deep Water [CDW] and Antarctic Bottom Water 

[AABW]) with the southward flowing recirculated AAIW, originating from the BMC itself, and North 

Atlantic Deep Water (NADW; Figs. 1.4 and 1.5; Carter and Cortese, 2009; Georgi, 1981; Piola and 

Matano, 2001; Saunders and King, 1995). Interfaces between these water masses are determined by 

relatively large density gradients, which tend to deepen on a basin scale (Reid et al., 1977) and lead to 

strong vertical mixing and the shedding of eddies (Arhan et al., 2002, 2003; Piola and Matano, 2001). 

Intermediate and deep water circulation along the Argentine margin is characterized by the AAIW and 

the two fractions of the CDW: the Upper Circumpolar Deep Water (UCDW) and the Lower 

Circumpolar Deep Water (LCDW, Fig. 1.5 (Arhan et al., 2002; 2003; Reid et al., 1977). Within the 

confluence UCDW and LCDW are vertically separated by the southward flowing NADW (Fig. 1.5), 

which follows closely the South African slope until the BMC (Fig. 1.4), where it detaches from the 

margin (Piola and Matano, 2001). 

Figure 1.5.: Vertical water mass
stratification north of the Brazil Malvinas
Confluence (BMC); TW – Tropical
Water; SACW – South Atlantic Central
Water; AAIW – Antarctic Intermediate
Water; UCDW – Upper Circumpolar
Deep Water; NADW – North Atlantic
Deep Water; LCDW – Lower
Circumpolar Deep Water; AABW –
Antarctic Bottom Water; modified from
Hernández-Molina et al., 2009 
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ABWW, partly trapped within the basin, dominates the abyssal circulation pattern in water depth 

deeper than 3500-4000 m forming a large cyclonic gyre (Arhan et al., 2002, 2003; Piola and Matano, 

2001). 

 

1.4.2 Geological setting 
The tectonic regime of the Argentine margin is controlled by deep located crustal structures 

established during the break-up of the South Atlantic in the Early Cretaceous or even prior to the 

continental fragmentation (Franke et al., 2007; Hinz et al., 1999). Structures originating from the rift 

phase, in particular major seaward dipping reflections are the result of seafloor spreading and 

extensive volcanic activity during continental drift and ocean-floor spreading in the Early Cretaceous 

(Ewing and Lonardi, 1971; Franke et al., 2007; Hinz et al., 1999; Keeley and Light, 1993; Light et al., 

1993; Ramos, 1999). 

Next to complex deep lying crustal structures the south-eastern margin of South America is as well 

known for its contour current controlled sedimentation regime. Three major sheeted contourite drifts 

were described in the abyssal plain off Argentina formed under the influence of the AABW: the Ewing 

Drift, Argyro Drift and Zapiola Drift, which is in particular known for its extensive sedimentary wave 

field (Ewing and Lonardi, 1971; Hernández-Molina et al., 2008b; Lonardi and Ewing, 1971; von Lom-

Keil et al., 2002).  

However, not only sedimentary processes in the abyssal plain are influenced by the oceanographic 

regime, but also several CDSs with well developed depositional and erosive features, forming a 

contourite depositional system (CDC), are located in mid-slope position off Argentina (Fig. 1.6; 

Hernández-Molina et al., 2009). The aforementioned Antarctic water masses (see chapter 1.4.1) and 

their interfaces control sedimentation and shape slope morphology especially in the southern part of 

Argentina, where contour channels and terraces are carved into the slope sediments. Towards the north 

the importance of down-slope oriented sediment transport increases resulting in a more complicated 

sedimentary regime, which is reflected by numerous canyons, scars and mass flow deposits (Fig. 1.6 

(Hernández-Molina et al., 2009, 2010, Violante et al., 2010). These down-slope processes are not only 

related to more than 80 million tons of suspension load per year, which are transported onto Argentine 

margin from large river systems as the Rio de la Plata representing one of the largest rivers on Earth 

(Milliman and Meade, 1983), but also to local slope instabilities (Krastel et al., 2011; Violante et al., 

2010). 

The northernmost drift and shallowest deposits included in the extensive mapping of Hernández 

Molina et al. (2009) and Violante et al. (2010) is located off the Rio de la Plata mouth in the border 

region between Uruguay and Argentina (Fig. 1.6). Here, in the northern area of the Ewing Terrace 

drift deposits were identified in water depths between 1200 and 1400 m north of the Mar del Plata 

Canyon. The head of this major submarine canyon is located beneath the La Plata Terrace (Urien and 

Ewing, 1974) in water depth of 1000 m and the canyon exit is located in 4000 m (Krastel et al., 2011). 
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�
Figure 1.6: Morpho-sedimentary map of the Argentine marin; from Hernández-Molina et al., 2009 
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In the center part of the Ewing Terrace the canyon extends over 20 km and is incised up to 1500 m 

into the seafloor. Although the Mar del Plata Canyon is located directly in front of the Rio de la Plata, 

not only a modern but as well a former connection of both features can be excluded based on 

subsurface imaging by means of high-resolution multichannel seismic (Krastel et al., 2011). 

 
1.5 Methods 

�
Figure 1.7: Map of the northern Argentine margin including location of high-resolution multichannel seismic lines recorded 
during R/V Meteor Cruises M49/2 (2001) and M78/3 (2009) 

Spatial and temporal analysis of the northern Argentine slope architecture is mainly based on data sets 

collected during R/V Meteor Cruise M49/2 (2001) and R/V Meteor Cruise M78/3 (2008). During both 

cruises integrated seismic and acoustic measurements were carried out, including multichannel seismic 

using Generator-Injector (GI)-guns (Fig. 1.7), Parasound acoustic profiling and swath bathymetry 

mapping. However, this thesis focuses mainly on GI gun data, so the following text will only 

introduce the multichannel systems necessary to acquire GI gun data in greater detail. 

While during R/V Meteor Cruise M49/2 the GeoB high-resolution multi-channel seismic system 

developed by the Department of Geoscience, Bremen was used, during R/V Meteor Cruise M78/3 the 

seismic equipment of the IFM-GEOMAR was deployed. Both systems are designed to image small 

scale sedimentary structures and closely spaced layers even in large water depths, which can usually 

not be imaged with conventional seismic systems. Due to rough weather during the cruises, both 

systems were temporarily operating under heavy conditions. The resulting technical issues resulted in 

an increased level of background noise and in several minor data gaps. 
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In total over 1540 km of multichannel seismic data were processed and analyzed for this study. 

 

1.5.1 Data acquisition 

1.5.1.1  R/V Meteor Cruise M49/2 
Two different GI-Guns served as seismic sources during R/V Meteor Cruise M49/2, which were 

triggered in an alternating mode: The first, a GI-Gun with reduced chamber volume of 2 x 0.41 L 

(frequency range 100 – 800Hz), and the second, a GI-Gun with an extended chamber volume of 2 x 

1.7 L (frequency range ca. 80-400Hz), were both operated in harmonic mode (injector volume does 

not exceed generator volume) and towed approximately 13 m behind the ship’s stern, one on each side 

of the ship. However, due to the fact, that the GI-Gun with extended chamber volumes ensures deeper 

penetration of the seismic signal which is still characterized by a reasonable frequency range, only 

data acquired using the 1.7 L GI-Gun were processed and analyzed in the context of this thesis. The 

injector was triggered with a delay of 50 ms with respect to the generator signal, which basically 

eliminated the bubble signal. The gun was triggered at an air pressure of 150 bar in an 18 s time 

interval, which results by an average ship speed during seismic survey operations of 6 kn in a 

approximated shot distance of 54 m.  

The acoustic signal was received using an analog multichannel seismic streamer, which included a 

tow-lead, two stretch sections of 50 m and six active sections of 100 m length. Active sections are 

subdivided in 16 hydrophone groups of 6.25 m length. The streamer was towed in a mean water depth 

of 3 m, which was controlled by 5 MultiTrak and 5 DigiBird Remote Units (RUs). These RU were 

attached to the streamer and include a depth and a heading sensor as well as adjustable wings. Via 

communication coils, nested within the streamer, water depth and heading of each RU was recorded 

for each shot to ensure a high quality of geometry control for data processing purposes. 

Finally, the signal was recorded using a 48 channel JUPITER/ITI/BISON seismograph, providing a 

sample frequency of 4 kHz at 24 bit resolution over 3 s recording time. The data were demultiplexed 

and stored in SEG-Y format on a DLT 4000 cartridge tape. Due to the technical limitation of the 

acquisition unit only every second channel could be recorded for the 1.7 L GI-Gun, which results in a 

final multichannel seismic data set data set of 48 channels with a 12.5 m spacing recorded during R/V 

Meteor Cruise M49/2. 

 

1.5.1.2  R/V Meteor Cruise M78/3 
For the seismic data recorded during R/V Meteor Cruise M78/3 a Mini-GI-Gun (2 x 0.2 L) in 

harmonic GI configuration was used as seismic source, towed 10 m behind the ship’s stern. In contrast 

to the larger source used during the former cruise, the Mini-GI-gun emits higher frequencies (100-800 

Hz) resulting in a higher vertical resolution at the expense of lower penetration depth of the acoustic 

signal. The injector chamber was triggered with a time delay of 20 ms. Overall, the gun was shot with 
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an air pressure of 150 bar in with water depth varying intervals between 4.5 and 6 s. This results in an 

shot interval of 11-15 m considering an average ship speed of 5 kn while seismic surveying.  

The digital streamer, used to receive the acoustic energy, included a 25 m long stretch section and 16 

active sections of 12.5 m length. Towed as well in 3 m water depth, the streamer was steered by three 

Oyo Geospace Bird RUs, which all include depth sensors, a compass and adjustable wings. Data from 

these RUs were transmitted by each shot via the streamer to the control unit, which recorded the 

different parameters. 

The data were recorded with acquisition software provided by ‘Geometrics’ with a sampling frequency 

of 8 kHz and stored as multiplexed SEG-D. 

  

1.5.2 Data processing 
The goal of seismic data processing is to increase the 

image quality of the geological features in the data 

set to guarantee a correct and convenient 

interpretation. To accomplish this goal there are two 

major tasks: suppress background and electric noise 

energy inside the data set and migration of the 

seismic traces to allow correct imaging of dipped 

surfaces and reflections. 

Noise is categorized into coherent noise, which has 

constant frequency characteristics, and incoherent 

noise, which distributes its energy randomly over all 

frequencies. While coherent noise can be treated with 

trace editing and frequency depended filtering, to 

suppress incoherent noise is more complicated. To 

approach this task a common mid-point (CMP) 

gather stacking can be applied, which is one of the 

major advantages of multichannel seismic 

technology. For applying this technique, previously 

other conventional processing procedures like 

geometry incorporation, CMP-binning, velocity 

analysis and normal move-out (NMO) correction 

have to be carried out. Conditioned by CMP-binning 

and its implied assumption, that gun-receiver mid-

points are the locations of seismic events recorded by 

corresponding traces, this processing step is 

susceptible for errors. Because this assumption fails 

Figure�1.8:�Schematic�processing�flow�applied�to�seismic
data� recorded� during� R/V� Meteor� Cruises� M49/2� and
M78/3 
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immediately in areas characterized by dipping layers or diffractive bodies, a migration has to be 

performed on the stacked data set. 

This leads to a general processing sequence schematically summarized in at Fig. 1.8. While the 

incorporation of acquisition geometry was carried out using the custom software packages GeoApp 

and WinGeoApp, the applied seismic processing including trace editing, velocity analysis, NMO 

correction, stacking, filtering and migration was carried out with the commercial software package 

Vista Seismic Processing. These processing steps will be explained briefly in this chapter based on 

Yilmaz (1987). 

 

1.5.2.1  Pre-processing 
After trace header information were corrected for 

time and date mismatches, CMP-binning was carried 

out based on previously determined source and 

corresponding receiver positions provided by the 

custom software packages ‘GeoApp’ (R/V Meteor 

Cruise M49/2) and ‘WinGeoApp’ (R/V Meteor 

Cruise M78/3). The resulting CMP gather differs 

crucially from the shot gather, in which the data was 

recorded (Fig. 1.9). While a shot gather describes 

the sorting of traces for each shot with increasing 

receiver offsets, a CMP gather encompasses all 

traces, whose corresponding source-receiver midpoints are located at the same spot on the seafloor. 

This processing step is carried out based on the assumption of a horizontal and flat seafloor. 

While incorporating acquisition geometry supported by ‘WinGeoApp’ provides full manual control on 

the binning process, the older ‘GeoApp’ allows correcting the position of the individual receivers for 

deviations from the standard geometry layout recorded by the RUs. CMP bin size was set to 2 m for 

data recorded using the Mini-GI-gun. Due to the lower shot rate a CMP bin size of 10 m was chosen 

for the 1.7 L GI-gun data. 

In the first stage of signal processing a broad Ornsby band-pass filter was applied (filter flanks: 10 

Hz/25 Hz/ 1000 Hz/ 2000Hz) to suppress low frequent mechanic noise, which partly exceeds the 

signal, carrying the geological information, by an order of magnitude. Next, damaged or empty 

channels were selected and deleted. Furthermore, major amplitude anomalies associated to incoherent 

noise need to be deleted in an interminable process manually. At last the gun delay was corrected. 

 

1.5.2.2  Velocity analysis 
The main purpose of velocity analysis is to estimate sound velocity and its horizontal and vertical 

variability utilizing the relationship between two-way travel time of seismic events and shot-receiver 

Figure 1.9: Geometrical source and receiver relationship
in Shot and CMP gather 
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offsets. Since in large water depth and for deep located subsurface structures as well large offsets are 

required for a precise determination of sound velocity, the configuration of both used streamer systems 

did not allow for a detailed velocity analysis. 

During data processing a constant root –mean-square (RMS) sound velocity of 1500 m/s was assumed. 

 

1.5.2.3  Normal move-out (NMO) correction, despiking, correction of 

residual statics and stacking 
Correcting the time delay caused by the source-receiver offset of every trace is called NMO 

correction. Afterwards, all seismic events in a CMP gather, should appear at the same two-way time in 

all traces. This allows suppressing of moderate incoherent noise by applying a 2D-despike algorithm, 

which operates on the basis of a running average calculation. This algorithm determines the RMS 

amplitude over all traces within a CMP-gather for a narrow time window and compares the result to 

the individual amplitudes of each trace. Amplitudes corresponding to a single trace exceeding the 

RMS amplitude by a factor of 1.3 were reduced to the calculated RMS value. In the next step the 

window is shifted downward in time with a window overlap of 25%. That way, the algorithm allows 

suppressing incoherent noise without resulting in abnormal amplitude variations in the final CMP 

stack. 

After despiking minor shifts of seismic events in time between traces in a CMP-gather, called residual 

static, were corrected. Residual static originates from three dimensional movements of source and 

receivers during acquisition, which were not yet considerate during pre-processing. These shifts are 

corrected using an auto-correlation algorithm, which was set up to calculate the necessary shift for 

each trace providing the best stacking result for the seafloor. The correction of residual stacking not 

only results in a clearer seismic image after CMP-stacking, it also ensures the preservation of high 

frequent information in this process. 

Finally, the seismic data in each CMP-gather were stacked to enhance seismic events and suppress 

incoherent and random noise, which results in a tremendous increase of the signal to noise (S/N) ratio. 

 

1.5.2.4  Post-stack processing 
To reduce the residual noise another band-pass filter was applied. In contrast to the filter applied 

during pre-processing, a narrow Butterworth band-pass filter was used, which is due to its cosine filter 

flanks is less susceptible to Gibb’s Phenomena at the expense of computing time. The filter was set to 

40 Hz /80 Hz/ 600 Hz/ 1200 Hz for the 1.7 L GI-gun data and to 60 Hz/ 120 Hz/ 600 Hz / 1200 Hz for 

data containing the signals recorded using the Mini-GI-gun. Next, to prepare the data for migration, 

which requires equidistant trace spacing, missing traces were interpolated, which might have been 

generated during pre-processing due to the erasing of channels and traces carrying irrelevant seismic 

signals. 
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As already mentioned above, the major assumption of processing based on CMP-sorting is, that all 

traces are located at the mid-point between source and receiver. Since this assumption is not solid for 

dipped surfaces, in a stacked profile steeply dipping reflectors are displaced and their dipping angle is 

lowered. At diffractive bodies, hyperbolas would occur on their edges. The process of migration 

should collapse these diffractions and migrate dipping reflectors to their correct position and angle. 

Therefore, as a last step in processing a FD time-migration was carried out, which in comparison to 

other migration algorithms is more tolerate to uncertainties in sound velocity estimations. 

 

1.6 Thesis outline 
Chapters 2-5 represent stand-alone case studies, written for publication purposes. They focus on 

individual aspects of onset, evolution and transport processes of CDSs, in particular of the highly 

dynamic system off northern Argentina. An special case is presented by Chapter 5, which focuses on 

along-slope processes and transport of suspended particles within the water column off SE Africa. 

Chapter 6 summarizes the major findings of the four stand-alone articles and evaluates the main 

results in a greater context regarding the general concept of contourite depositional systems. 

In Chapter 2, high-resolution reflection seismic data are used to determine the evolution of the 

northern Argentine continental margin. Derived from spatial and temporal variations in slope 

architecture for the first time the oceanographic regime can be reconstructed trough time, in particular 

the history of Antarctic water masses and the North Atlantic Deep Water, in whose transition the 

contourite drift deposits are formed (Hernández-Molina et al., 2009). 

Chapter 3 concentrates on the mapping and analysis of surface and near-surface sedimentary features. 

The novel approach here is the use of both, seismo-/hydro-acoustic and hydrographic data sets, to link 

modern morphological features of the northern Argentine continental margin to the highly dynamic 

oceanographic regime. This approach provides insights into the origin of contourite terraces and their 

influence on bottom current flow pattern. 

In Chapter 4 the slope architecture in close proximity of the Mar del Plata Canyon is analyzed. Based 

on the deeper understanding of the alongslope processes off northern Argentina achieved in chapter 2 

and 3, for the first time the influence of the canyon on bottom current controlled sedimentary 

processes will be evaluated and reconstructed on geological time scales.  

The last stand-alone article presented in Chapter 5, focuses on spatial analysis of water column 

backscatter anomalies off SE Africa recorded with a parametric echosounder (‘Parasound’). This study 

was carried with data collected during R/V Meteor Cruise M75/3 (2008). The backscatter anomalies 

will be interpreted in conjunction with Acoustic Doppler Current Profiler (ADCP) data and results of 

my master thesis, which were recently published (Preu et al., 2011; Appendix 1), but are not 

considered as a separate chapter in this thesis. This novel approach of visualizing the distribution of 

suspended particles within the water column will provide spectacular insights into the interaction of 

ocean currents, topography and the resultant sediment transport.  
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1.7 Additional contributions to articles 
In addition to the four articles presented in this thesis, I contributed to the following complementary 

studies during my PhD studies: 

 

Title:  Sediment dynamics and geohazzards off Uruguay and the la Plata River region 

(northern Argentina and Uruguay) 

Authors:  Sebastian Krastel, Gerold Wefer, Till J.J. Hanebuth, Andrew A. Antobreh, Tim 

Freudenthal, Benedict Preu, Tilmann Schwenk, Michael Strasser, Roberto Violante, 

Daniel Winkelmann, M78/3 shipboard party 

Journal: Geo-Marine Letters 

Status:   published 2011 (Appendix 2) 

Contribution: paper writing; seismic data processing, conceptual model 

 

Title:   Distinct Expressions of the BSR using various various frequencies offshore Uruguay 

and its correspondence with the gas hydrate stability zone 

Authors:  Juan Tomasini, Benedict Preu, Sebastian Krastel, Tilmann Schwenk, Volkhard 

Spiess, Héctor de Santa Ana 

Book: Proceedings of the 7th International Conference on Gas Hydrates (2011) 

Status:   published 

Contribution: paper writing, seismic data processing, data integration 

 

Title:   Geotechnical characteristics of submarine slope and mass movement deposits along 

the Northern Argentine and Uruguayan margin 

Authors:  Fei Ai, Ina Schulze, Daniel Winkelmann, Sebastian Krastel, Benedict Preu, Michael 

Strasser, Achim Kopf 

Journal: Marine Geology 

Status:   submitted 

Contribution: conceptual model; data integration 

 

Title:   Las terrazas contorníticas en el Margen Continental Argentino: implicationes 

morfosedimentarias y oceanograficas 

Authors:  F. Javier Hernández-Molina, Benedict Preu, Roberto A. Violante, Alberto R. Piola, 

C. Marcelo Paterlini 

Journal: GEOGACETA – Sociedad Geologica de España 

Status:   submitted 

Contribution: seismic data processing, seismostratigraphy, conceptual model 
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Title:   Submarine Slope Failure offshore Uruguay – A Relation to Hydrates? 

Authors:  Daniel Winkelmann, Michael Strasser, Andrea Anasetti, Benedict Preu, Tilmann

  Schwenk, Sebastian Krastel 

Status:   in preparation 

Contribution: seismic data processing 
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Abstract 
Large sedimentary sequences consisting of several major contourite drifts were studied along the 

middle slope off Northern Argentina to determine the evolutionary stages as well as to identify and 

assess the possible impact of Northern Source Deep Water (NSDW) on the middle slope architecture. 

Based on their sedimentary stacking pattern, current controlled sediments deposited beneath the 

northern extent of the Ewing Terrace allow decoding on the pale-oceanographic setting of the last 32 

Ma. By means of high-resolution multichannel seismic data collected during R/V Meteor Cruises 

M49/2 (2000) and M78/3 (2009) three major seismic units can be identified, which were used to 

determine growth stages, each representing a different oceanographic setting  

Earliest current controlled sedimentation can be observed over the middle slope close to the 

Eocene/Oligocene boundary within the Complex Unit. The Unit shows an aggradational stacking 

pattern with a complex and wavy acoustic facies, pointing towards an unstable, turbulent current 

environment. This facies is in general coeval with the opening of the Drake Passage. Its related global 

cooling resulted in a strengthening of surface, intermediate and deep ocean currents in the Southern 

Ocean and allowed the first time sediment deposition at the Argentine slope under current control. 

During the Middle Miocene the sedimentation regime changes and the Sigmoidal Unit, plastered drift 

sequences with a sheeted reflection pattern, was deposited. The formation of major plastered drifts 

indicates weak, non-turbulent current conditions. We conclude that this change in the current regime is 

the result of the first formation of NSDW during the Mid-Miocene climatic optimum, which led to a 

major rearrangement of water masses and vertical shifts of water mass boundaries in the study area. 

Above, the Aggradational Unit shows continuous formation of plastered drift sequences with an 

aggradational stacking pattern leading to the modern extent of the Ewing Terrace along the 

middle/lower slope off Argentina. This is the result of the strengthening of NSDW until the final 

closure of the Central American Seaway (CAS). Today, after the complete closure of the CAS and 

under the influence of the full force of the NSDW, mounded plastered drift sequences are built upon 

the Ewing Terrace. 

Showing the influence of NSDW on the slope architecture in the study area, we suggest that deep-

water production in the northern hemisphere plays a significant key role in shaping the continental 

slopes in the western South Atlantic since the middle Miocene. 

 

2.1 Introduction 
While the large capacity of ocean currents to transport and redistribute sediments in deep ocean basins 

was first described in the 1930’s (Wust, 1936), the scientific interest in bottom current controlled 

sedimentary deposits grew in the 1960´s (e.g.: Dzulynski and Walton, 1965; Heezen, 1959; Heezen et 

al., 1955; Pettijohn and Potter, 1964; Wust, 1955, 1958). Subsequently, more and more studies 

identified sediment waves and drift deposits on slopes, in the abyssal plains as well as along 

continental margins, and several processes shaping the seafloor were introduced (e.g.: Gao et al., 1998; 
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Rebesco, 2005; Rebesco and Camerlenghi, 2008; Stow et al., 2002; Stow and Mayall, 2000; Viana et 

al., 2007). Following the definition of Rebesco and Camerlenghi (2008), all such deposits formed 

mainly under the control of geostrophic and thermohaline driven bottom currents can be classified as 

contourites. 

Erosional features and areas of non-deposition are typically observed in combination and close 

proximity to contourite drifts, forming in combination a contourite depositional system (CDS, 

Hernández-Molina et al., 2003, 2008a). Analyzing these large-scale sedimentary patterns in time and 

space allows studies of former oceanic regimes as shown e.g. off Greenland (Hunter et al., 2007), off 

Antarctica (Rebesco et al., 2002) and in the Gulf of Cádiz (Habgood et al., 2003; Hernández-Molina et 

al., 2003; Llave et al., 2007; Mulder et al., 2003, 2006) and off Mozambique (Preu et al., 2011). 

Along the Argentine continental margin, a large CDS has developed, which is characterized by large-

scale contourite channels, morphological terraces and plastered drift sequences controlled by Antarctic 

bottom water circulation (Hernández-Molina et al., 2009). Although several studies dealt with the 

southern part of the Argentine CDS in detail, the continuation of this sedimentary system into the 

northern area was tentatively described and analyzed in previous studies (Krastel et al., 2011; Violante 

et al., 2010). However, this part of the margin represents a key location in the global thermohaline 

ocean circulation due to the convergence of Brazil and Malvinas Current (Brazil-Malvinas Confluence 

Zone; BMCZ; Fig. 2.1A) two major surficial ocean currents. In addition, the BMCZ marks the 

Figure 2.1: A)Map of the border region between Argentina and Uruguay (GEBCO, 2008); colors highlight the Ewing
Terrace on the middle slope; the black box marks the study area (see Fig. 2); thick arrow mark the flow path of the main
currents and water masses: BC (Brazil Current); MC (Malvinas Current); AAIW (Antarctic Intermediate Water); CDW
(Circum Polar Deep Water); NADW (North Atlantic Deep Water) and AABW (Antarctic Bottom Water). B) Oceanographic
transect crossing the Brazil Malvinas Confluence showing the modern vertical water mass stratification based on Piola and
Matano (2001) and Hernandez Molina et al. (2009) 
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southernmost extent of Northern Source Deep Water (NSDW) as a bottom current along the western 

South American margin (Piola and Matano, 2001). 

Since NSDW, today known as North Atlantic Deep Water (NADW), acts as a major element within 

the climatic coupling responsible for glacial/interglacial cycles (Knutz, 2008) and variations in deep 

water production, transport and depth off Greenland and Norway are considered to strongly influence 

the thermohaline circulation, pathways of the NSDW in the modern and past ocean all over the globe 

have been intensely studied using predominantly nano- and microfossils (e.g.: Broecker et al., 1988, 

2004; Prell, 1984; Ravelo, 2006; Ravelo et al., 1990; Tiedemann et^ al., 1994; Zachos et al., 1994). 

The main goal of this study is to carry out a seismostratigraphic analysis of the CDS on the north-east 

Argentina continental margin based on multiple seismo-acoustic data sets (Fig. 2.2) to identify its 

temporal and spatial variability and to identify major evolutionary stages. This analysis will be used to 

reveal the evolution of the oceanographic regime controlling the western South Atlantic on geological 

time scales, and to evaluate the possible impact of North Atlantic Deep Water in margin construction. 

  

Figure 2.2: Map of the northern Argentine and southern Uruguayan continental margin showing the position of seismo-
acoustic lines and boreholes used in this study 
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2.2 Regional setting 
2.2.1 Oceanographic framework 

The modern oceanographic regime at the Argentine margin is highly dynamic and variable and 

became target of several shipboard surveys and satellite image analysis (de Souza et al., 2006; Gordon 

and Greengrove, 1986; Legeckis and Gordon, 1982; Reid, 1989; Reid et al., 1977). The upper 

circulation is mainly dominated by the northward flowing, subantarctic Malvinas Current (MC), the 

southward flowing, sub-tropical Brazil Current (BC) and the resulting Brazil-Malvinas Confluence 

Zone (Fig. 2.1A; Peterson, 1992).  

The MC, as a branch of the Antarctic Circumpolar Current (ACC), transports cool water from the pole 

equatorward along the Argentine slope (Fig. 2.1A; Matano et al., 2010; Stramma, 1989). The current 

originates in the northern portion of the Drake Passage (Fig. 2.1A, Tomczak and Godfrey, 2001). In 

contrast, The BC transports warm and saline water poleward along the shelf of Brazil and Uruguay 

(Stramma, 1989).  

The resulting confluence zone influences an area between 25°S and 45°S depending on the seasonal 

variability of both surface currents. In annual average the axis of this highly energetic area is located at 

38-39°S (Fig. 2.1A; Bisbal, 1995). The confluence zone is hydrographically mainly characterized by 

intense vertical and horizontal mixing and large variations in temperature and salinity due to the 

formation of large eddy fields.  

The intermediate circulation within this confluence is conditioned by the northward flow of Antarctic 

Intermediate Water (AAIW), and of the two Circumpolar Deep Water fractions: Upper Circumpolar 

Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW; Fig. 2.1B; Arhan et al., 2002, 

2003). AAIW is still present below the BC in a depth of 500-1200 m (Fig. 2.1B; Piola, 2006). NADW, 

originating from northern hemisphere high latitudes, stratifies underneath the BC close to the slope in 

water depths of 2000-3000 m (Fig. 2.1B). At the southern tip of the BMCZ, the NADW detaches from 

the slope and flows without morphological constrain further southward (Arhan et al., 2003; Piola and 

Matano, 2001; Tomczak and Godfrey, 2001).  

 

2.2.2 Geological and physiographic framework 

The Argentine margin is characterized by a continental slope of ~1500 km length and 50-300 km 

width (Ewing and Lonardi, 1971). The underlying crust is constructed by voluminous extrusives due 

to large scale transient volcanism accompanying the continental break-up and initial seafloor 

spreading in the Early Cretaceous (Ewing and Lonardi, 1971; Franke et al., 2007; Hinz et al., 1999; 

Keeley and Light, 1993; Light et al., 1993). Since Late Paleogene times the sedimentation regime is 

controlled by currents (Hernández-Molina et al., 2009, 2010; Violante et al., 2010). Three major 

elongated and mounded contourite drifts are known, forming large sediment deposits in the AABW 

controlled abyssal plain: the Ewing, Argyro and Zapiola Drift (Ewing and Lonardi, 1971; Hernández-

Molina et al., 2008b; Lonardi and Ewing, 1971; von Lom-Keil et al., 2002). 
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A major contourite depositional complex 

has built the mid-slope topography of the 

Argentine margin controlled by Antarctic 

water masses and their interfaces. 

Especially in the southern part of 

Argentina, large contour channels and 

terraces are carved into the slope 

sediments. Toward the north the 

sedimentation regime becomes more 

complex due to an increase of down-slope 

sediment transport processes, which result 

in numerous canyons, scars and mass flow 

deposits (Hernández-Molina et al., 2009, 

2009; Krastel et al., 2011; Violante et al., 

2010). These down-slope processes are 

related in part to slope sediment 

instabilities (Krastel et al., 2011; Violante 

et al., 2010) but also to the more than 80 

million tons of suspension load per year 

transported onto the Argentine margin from large river system as the Rio de la Plata River, which is 

one of the largest rivers on earth (Giberto et al., 2004; Milliman and Meade, 1983). 

The northernmost and shallowest drift described by Hernández-Molina et al. (2009) and Violante et al. 

(2010) is located along the mid-slope in the border region between Argentina and Uruguay off the Rio 

de la Plata River mouth in water depths between 1200 and 1400 m as part of the so-called Ewing 

Terrace. The terrace, and thereby the drifts, are incised by  the Mar del Plata Canyon (Fig. 2.3), which 

is located between 1000 m and 4000 m water depth (Krastel et al., 2011). In its center the canyon 

extends over 20 km and the talweg is incised by almost 1500 m into the seafloor (Fig. 2.3). 

 

2.3 Methods  
High-resolution multichannel seismic (MCS) data were collected off northern Argentina during R/V 

Meteor Cruises M49/2 (2001) and M78/3 (2009, Fig. 2.2). Data collected during R/V Meteor Cruise 

M49/2 were acquired using as seismic source a 1.7 L GI-Gun (TM SODERA, France) with main 

frequencies of 100-500 Hz and an analog MCS streamer of 600 m length hosting 96 channels. During 

R/V Meteor Cruise M78/3, MCS data were collected with a 0.24 L Mini-GI-Gun (TM SODERA) as 

seismic source with main frequencies of 100-600 Hz. The seismic signal was received using a 200 m 

active digital MCS streamer containing 128 channels. Seismic processing was carried out with the 

commercial seismic processing package Vista (Gedco Co.). Standard seismic processing was applied 

Figure 2.3: Bathymetric map of the northernmost slope off Argentina
recorded based on multi-beam data recorded during R/V Meteor
Cruises M49/2 (2001) and M78/3 (2009) covering water depths of
500-4500m; the map shows the Ewing Terrace with the Mar del Plata
Canyon in the south; see position of this frame in Fig. 1A; position of
multichannel seismic Lines GeoB01-141, GeoB01-143 and GeoB09-
099 are indicated 
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including trace editing, normal move-out correction, residual statics correction, geo-referenced 

common midpoint (CMP) binning and stacking, band-pass filtering and FD time migration. Data 

recorded during R/V Meteor Cruise M49/2 were processed using 10 m CMP spacing, while for data 

recorded during R/V Meteor Cruise M78/3 5 m CMP spacing was applied. Interpretation was done 

using the software the commercial software package The Kingdom Software (SMT). 

For bathymetric mapping swath sounder data (HYDROSWEEP DS (M49/2) and EM120 (M78/3) 

were collected during both cruises.  

The seismic data were interpreted in four steps: first, seismostratigraphic analysis was carried out by 

tracing discontinuities to define major seismic units from the middle through the lower slope to the 

rise; second, subunits were identified by studying variations in seismic facies to identify changes of 

the depositional style and to distinguish between down-slope and along-slope sedimentary processes; 

and last, the ages of seismic units and discontinuities were correlated with borehole data as well as 

with previous regional seismic-stratigraphic correlations (Fig. 2.2). Correlations of industrial borehole 

data were provided by Argentine (Instituto Hidrografico Naval, IHN) and Uruguayan (Administracíon 

Nacional de Combustibles, Alcohol and Portland, ANCAP) authorities. The seismostratigraphic 

approaches implemented and discussed in this study (Tab. 2.1) are based on Ewing et al. (1971), Hinz 

et al. (1999), Franke et al. (2007), Hernández-Molina et al. (2009, 2010), Violante et al. (2010) and 

Gruetzner et al. (2011). 

 

 

Table 2.1: Regional stratigraphic discontinuities and depositional units defined by Ewing and Lonardi (1979), Hinz et al. 
(1999), Hernández-Molina et al. (2009, 2010), Violante et al. (2010) and Gruetzner et al. (2011). 

 

Nomenclature and classification of erosive and depositional features appearing in a CDS are based on 

review studies previously published by Faugeres et al. (1999) and Rebesco (2005), which had been 

summarized and discussed in Rebesco and Camerlenghi (2008). 
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2.4 Results 
2.4.1 General morphologic characteristic 

Bathymetric and multichannel seismic data used for this study show a CDS located on the Ewing 

Terrace north of the Mar del Plata Canyon in a water depth of ~1200 m (Figs. 2.3-2.6).  

This part of the Ewing Terrace covers at least an area of 50 km width by ~90 km length constructed by 

drift deposits with a maximum thickness of 0.9 s TWT. Landward, the Ewing Terrace is attached to 

the locally steep upper slope (4-8°). While the proximal part of the terrace in water depths of 1100-

1150 m is characterized by very low slope angles (~0.4°), overall the terrace is clearly dipping 

seaward reaching a slope gradient of 1° in its distal part in water depths of 1300-1350 m. At the 

 

�

Figure 2.4: A) Multichannel seismic Line GeoB01-141 as indicated in Fig. 2.3; VE ~20; stratigraphic information was based 
on Ewing and Lonardi (1978) and Hinz et al. (1999, see Tab. 2.1); B) Oblique Unit with imaged with a higher gain for a 
better illustration of the internal structures 

 

�

Figure 2.5: Multichannel seismic Line GeoB01-143 as indicated in Fig. 2.3; VE ~20; stratigraphic information was based on 
Ewing and Lonardi (1978) and Hinz et al. (1999, see Tab. 2.1) 
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Figure 2.6: Multichannel seismic Line GeoB09-099 as indicated in Fig. 2.3; VE ~8; stratigraphic information was based on 
Ewing and Lonardi (1978) and Hinz et al. (1999, see Tab. 2.1) 
�

seaward limit, the Ewing Terrace descends onto the lower slope, which reveals significantly higher 

slope angles (3-6°). 

In the study area, the terrace is crossed by two submarine canyons: The Mar del Plata Canyon and 

further north a smaller canyon structure. Additionally, several smaller along- and down-slope oriented 

incisions cut into the terrace (Fig. 2.3) and were described by Krastel et al. (2011). Despite the 

incisions, the Ewing Terrace is characterized by a more or less smooth and regular seafloor 

topography. 

 

2.4.2 Seismic analysis 

Based on seismostratigraphic analyses, four major regional seismic units were identified in the 

subsurface of the Ewing Terrace. These units have been named from bottom to top as the Oblique 

Unit, the Complex Unit, the Sigmoidal Unit and the Aggradational Unit (Figs. 2.4-2.6), which are 

bounded by the major regional discontinuities AR4, OUS, AR5 and H2 (from bottom to top). Major 

units are composed by subunits.  

 

2.4.2.3 Oblique Unit (OU) 

The Oblique Unit represents a seismic unit above the AR4 discontinuity restricted to the proximal part 

of the present Ewing Terrace. Its upper boundary, the sigmoidal OUS discontinuity, is marked by a 

high seismic amplitude (Figs. 2.4A and B). The lower boundary represents the AR4 horizon, onto 

which the reflections of the Oblique Unit onlap. The shape of the 0.3 s TWT thick Oblique Unit has a 

bank-like morphology, and although its acoustic response is very weak, the oblique-sigmoidal stacking 

pattern clearly represents a sequence of clinoforms (Fig. 2.4B). 
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2.4.2.1 Complex Unit (CU) 

The Complex Unit represents the seismic unit defined by the regional discontinuities AR4 and OUS, 

marking its lower boundaries, and AR5, representing the upper boundary. AR4 can be clearly 

identified under the central area of the modern Ewing Terrace by the change from a parallel to a wavy 

layered reflection pattern. However, on the landward and seaward termination of the terrace the 

identification fails due to strong signal attenuation and therefore insufficient penetration of the seismic 

signal.  

The Complex Unit has a region-scale uniform thickness of about 0.6 s TWT and is characterized by 

low amplitudes and, in contrast to the reflection pattern below, by a wavy, sub-parallel reflection 

pattern, partly onlapping in the Northwest onto the OUS horizon (Figs. 2.4 and 2.5). It is composed by 

a complex stacking pattern of the subunits CU1, CU2, and CU3 (from bottom to top). These subunits 

are deposited in a backstepping configuration or aggrading (Figs. 2.4 and 2.5) on top of the Oblique 

Unit. 

The lowest subunit (CU1, Fig. 2.4) is dominated by a wavy reflection pattern, onlapping landward on 

the OUS reflection. There, the waviness is highest resulting in an upslope prograding reflection pattern 

with 0.4 s TWT thickness. Seaward the signature of CU1 is lost in the low amplitude zone. However, 

the discontinuity marking the upper boundary of CU1 indicates a dipping or a decrease in unit 

thickness toward the Southeast (Figs. 2.4 and 2.5). The resulting depression is filled by seismic unit 

CU2 with locally increased thickness, which is indicative of a seaward depocenter shift. Several 

normal syn-sedimentary faults can be identified within the CU1 (Figs. 2.4 and 2.5). The reflection 

pattern of CU2 shows a sub-parallel stacking pattern including an onlap onto CU1 landward, and the 

acoustic facies is generally less wavy compared to CU1 (Fig. 2.5). It is thinner than CU1, with 0.2 s 

TWT in average. Locally, smaller mounded, prograding sequences can be detected (e.g. 2s TWT at 30 

km Fig. 2.5). The youngest and thinnest (0.1 s TWT) subunit (CU3) shows an aggradational stacking 

pattern with only slight waviness in the Southeast. 

 

2.4.2.2 Sigmoidal Unit (SU)  

The Sigmoidal Unit (SU) can be easily identified in all seismic lines in the study area by its 

boundaries: the base of the unit is marked by the AR5 discontinuity and the top by the H2 horizon, 

which truncates reflections seaward (Figs. 2.4-2.6).  

The formation of the Sigmoidal Unit represents a distinct change in the sedimentary stacking pattern 

with a wide plastered sedimentary drift development of 0.6 s TWT maximum thickness. The main 

depocenter of the Sigmoidal Unit is located down-slope compared to the Complex Unit in the 

transition between middle and lower slope. Small depocenter shifts between the subunits can be 

determined in the distal area of the Sigmoidal Unit. In contrast, in the proximal area of the terrace the 

overall stacking pattern of the subunits is aggradational onto the previous Complex Unit. While 

through time the sigmoidal character of the reflections increases, the overall reflection inclination 
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decreases toward the H2 horizon, resulting in a widening of the terrace-like morphology shape given 

by AR5 Horizon (Figs. 2.4 and 2.5). 

The Sigmoidal Unit is internally structured by four subunits: SU1, SU2, SU3, and SU4 (from bottom 

to top, Figs. 2.5 and 2.6) bounded by internal truncations reflections. The deepest subunit (SU1) forms 

an individual plastered drift with a distinct depocenter down-slope onlapping onto AR 5, which partly 

builds a mounded morphology (Fig. 2.5). All three above lying subunits (SU2-SU4; Figs. 2.4-2.6) 

onlap on the unit beneath, which is in turn terminated by a truncation of reflections on their upslope 

boundary. Each subunit shows seaward a progradational, clinoform-like reflection pattern. All 

subunits are present in the proximal and distal part of the terrace. However, in the central part of the 

Ewing Terrace incisions have been indentified cutting from the Sigmoidal Unit down to Subunit CU3 

(e.g.: between 22500 and 37500 m offset and at ~1.7 TWT in Fig. 2.5). 

On the seaward termination of the Sigmoidal Unit it is possible to determine a cyclic change in the 

seismic facies within the subunits, with more transparent to weak facies at the base and progressively 

higher amplitudes upward (erosional surfaces, Fig. 2.6). Furthermore, the seismic facies show in some 

parts disturbance in the proximal area of the Ewing Terrace (grey shaded area in Fig. 2.4 and 2.5) with 

an irregular and chaotic reflection pattern. 

 

2.4.2.4 Aggradational Unit (AU) 

The Aggradational Unit represents a new important regional change in sedimentary stacking pattern 

and depositional style of the slope, changing to its present configuration. The aforementioned change 

is generated by a sharp shift of depocenter landward (Figs. 2.5 and 2.6) with an aggradational 

configuration over the middle slope. This unit is bounded at its base by the regional discontinuity H2, 

which truncates the reflections of the previous Sigmoidal Unit, and at its top by the seafloor, which 

forms a SW-NE-oriented elongated crest. 

The Aggradational Unit shows a maximum thickness of 0.3 s TWT (Figs. 2.5 and 2.6), which 

increases toward the north in the central area of the modern Ewing Terrace. Overall, the seismic facies 

of this unit shows similar high amplitudes as the upper part (SU3 and SU4) of the Sigmoidal Unit 

beneath. 

Comparable to the underlying seismic units, the Aggradational Unit is composed by several subunits: 

AU1, AU2, AU3, AU4 and AU5 (from bottom to top, Figs. 2.5 and 2.6). They can be easily 

distinguished due to the presence of small-scale unconformities, which represent e.g. erosional 

truncations, or several cycles of onlap upslope and downlap down-slope, which results in minor shifts 

of the depocenter. Occasionally, local erosional surfaces do not allow identification of all sub-units 

(Fig. 2.5) 

Subunits AU1 and AU2 show more or less undisturbed aggradational sequences. Especially AU1 

balances depressions and fills incisions formed by the H2 discontinuity resulting in a terrace-like 

morphology. Despite the chaotic and wavy areas within Unit AU2 (shaded areas in Figs. 2.5 and 2.6) 
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at the seaward side of the terrace, which also are noticed in some parts within Subunit AU3, the 

acoustic facies is characterized by an undisturbed, continuous and high amplitude reflections pattern 

(Figs. 2.5 and 2.6). 

Subunits AU1 and AU2 show a larger thickness (in total 0.15 s TWT in average) than the younger 

subunits AU3, AU4 and AU5. These two groups of subunits are separated by the H1 discontinuity, 

which marks a regional stratigraphic surface, marked by a landward prograding reflection stacking 

pattern. Present sea-bottom morphology was finally established by the deposition of subunits AU3-

AU5, which form the modern crest of the drift deposits over the distal part of the Ewing Terrace with 

an average thickness of 0.15s TWT increasing northward (Fig. 2.6). Whereas the chaotic facies, 

described for the underlying units, is partly present as well in subunit AU3, AU4 and AU5 show no 

reflectivity anomalies. 

 

2.5 Discussion 
2.5.1 Age control 

Based on several seismic studies carried out in the last 40 years along the Argentine margin, a general 

seismic-stratigraphy for the southwestern Atlantic has been developed. Unfortunately, each study used 

partly its own nomenclature for basin wide discontinuities and seismic units (see e.g.: Ewing and 

Lonard, 197; Hernández-Molina et al., 2009, 2010; Gruetzner et al., 2011; Hinz et al., 1999; Violante 

et al. 2010). A summary and comparison of this nomenclature is given in Table 2.1. Major seismic 

horizons and the seismic units defined in this study were correlated utilizing their seismic facies and 

depths with the results of these former studies to establish a stratigraphy in our study area (Tab. 2.1). 

Following this stratigraphy, AR4 marks the Eocene-Oligocene boundary, AR5 represents Middle 

Miocene times, H2 is assigned to Late Miocene and H1 is assigned to Late Pliocene. 

 

2.5.2 Evolution of the slope 

The seismo-stratigraphic analysis of the MCS data collected on the middle and lower slope revealed 

four major units. In the following, we reconstruct the evolution of the slope (Fig. 2.7) based on 

variations within the seismic facies in the framework of changing climate and sea-level in geological  

 

2.5.2.1 Late Oligocene Shelf Break (Oblique Unit) 

As described before, the deepest identified unconformity in our study area is AR4. In general, the 

margin wide appearance of the AR4 reflector (e.g. Hinz et al., 1999; Franke et al., 2007; Hernández-

Molina et al., 2009) reflects the onset of deepwater circulation during the Early Oligocene over the 

slope, coevally with the initial opening of the Drake Passage and the initiation of the Antarctic 

Circumpolar Current (e.g.: Barker, 2001; Barker et al., 2007; Katz et al., 2011; Lawver and Gahagan, 

2003; Livermore et al., 1994). Whereas in greater depth the newly formed strong bottom currents can 

be hold responsible for erosional surfaces in the sedimentary record during this time frame 
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Figure 2.7: Line drawing showing evolution of the northern Argentine margin and the related current regime without 
considering non-uniform subsidence; dotted lines mark missing reflections within the acoustic data  
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(Hernández-Molina et al., 2009, 2010), the effect of the opening of the Drake Passage on surface 

currents and intermediate water masses is still intensely discussed (Lagabrielle et al., 2009). However, 

the opening of the Drake Passage led to the initial build-up of an Antarctic ice-sheet and global 

cooling, resulting from to the thermal isolation of Antarctica (Fig. 2.9; e.g.: Katz et al., 2011; Zachos 

et al., 2001). This cooling probably led to a strengthening of surface currents in the Southern Ocean, 

which in turn would enhance the Malvinas Current and its related intermediate and deep water masses. 

The direct dependence of the MC on the circulation pattern in the Southern Ocean has been shown by 

conceptual modeling and several oceanographic studies (Gill, 1968; Peterson, 1992; Piola and Gordon, 

1989). In general, the resulting bottom currents created for the first time the necessary boundary 

conditions for contourite drift formation along the Argentine slope (Fig. 2.9; Hernández-Molina et al., 

2009, 2010). However, we suggest that not only the opening of the Drake Passage alone, but the 

climate feedback of this opening is in fact responsible for the margin wide appearance of AR4 in the 

water depths of our study area. 

On top of AR4, the Oblique Unit has been deposited on the upslope part of the margin. Its oblique-

sigmoidal stacking pattern forming clinoform-like structures strongly suggests a shallow marine 

environment comparable to modern shelf breaks or subaqueous delta deposits (e.g.: Palamenghi et al., 

2011; Vail et al., 1977; Wolinsky and Pratson, 2005). The stratigraphy indicates that the Oblique Unit 

has been formed in the Late Oligocene, consequently OUS horizon represents the late Oligocene shelf 

break and upper slope. Seaward of OUS, no major deposition took place during that period at the 

slope. In contrast, major sheeted drift deposits were formed on top of the AR4 horizon at the foot of 

the slope off central and southern Argentina (Hernández-Molina et al., 2009, 2010; Violante et al., 

2010). This mismatch could suggest an environment in our study area characterized by high wave 

energy and fast flowing surface currents prohibiting drift accumulation, which in turn would be 

consistent with the relative sea level low stand in the late Oligocene (Fig. 2.7A; Haq et al., 1987). 

 

2.5.2.2 Initiation of along-slope sedimentary processes over the middle slope

(Complex Unit). 

The Complex Unit has been deposited on top of the regional discontinuity AR4 and landward as well 

as on top of the OUS discontinuity. The onlap of reflectors building the Complex Unit clearly 

indicates that this unit has been deposited after the Oblique Unit, namely in the Early Miocene. Three 

sub-units within the Complex Unit were identified aligned along the mid-slope and dominated by non-

uniform waviness and the alternation between a landward prograding stacking pattern and erosional 

surfaces (Figs. 2.4 and 2.5). It is also noticeable that seismic facies, especially the waviness of 

reflector packages, change significantly from profile to profile along the slope. This pattern represents 

a remarkable change in the depositional style at the margin and the onset of contouritic deposition 

along the slope. This enhanced accumulation is probably related to a significant increase in water 

depth which supports less vigorous current conditions at the seafloor. In contrast, the absence of large- 
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scale sheeted or mounded drifts suggests a variable and unstable currents system (Fig. 2.8), which 

would prohibit the formation of such large sedimentary bedforms (Fig. 2.7B).  

The highly turbulent ocean environment and variable current conditions could be related to the 

presence of the BMCZ and a margin physiography with many sea-floor irregularities produced by the 

current environment itself. In accordance to the concept of wind-driven ocean circulation (Munk, 

1950) the BMCZ was probably formed simultaneously to the MC with the opening of the Drake 

Passage 32 Ma ago, though reconstruction of position and strength derived from sedimentary records 

is even on glacial/interglacial cycles a challenging task (e.g.: Chiessi et al., 2007). Regarding the depth 

and location as well as the shape of the plastered drifts within the Complex Unit, two potential water 

masses could have controlled sediment accumulation during this time period: Northward flowing 

Southern Source Intermediate Water (SSIW), which is comparable to the recent AAIW, and Southern 

Source Deep Water (SSDW) in Holocene times represented by the CDW. Considering the modern 

stratification of the water column within of the BMCZ (Fig. 2.1), and considering the complex to 

chaotic appearance of the CU, we suggest that the Complex Unit was formed by the SSIW or at the 

interfaces to the Upper-SSDW (Fig. 2.7B). 

 

2.5.2.3 Initiation of Northern Source Deep Water (Sigmoidal Unit) 

The upper boundary of the Complex Unit (AR5) is not erosional, but instead characterized by 

onlapping of the reflectors within the upper Sigmoidal Unit. This unit consists mainly of a large 

plastered drift sequence in the transition between the middle and lower slope, but has also a more 

sheeted component on the middle slope. In general, the Sigmoidal Unit represents a major depocenter 

shift on top of AR5. The observed increasing seaward inclination of each subunit within Sigmoidal 

Unit suggests also differential subsidence which offers additional accumulation space for drift 

Figure 2.8: Discontinuities, seismic units, subunits, sedimentary stacking pattern and their paleoceanographic implication
within the Mar del Plata contourite depositional system in correlation with the oxygen isotope record (based on Zachos et al.
(2001) and Knutz (2008)); elements of the slope architecture and sedimentary structures are written in italic font 
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sedimentation and allowed the Sigmoidal Unit growing to its large extent. Such circumstances are 

reported for the Middle Miocene, where major regional subsidence occurred in the region (Aceñolaza, 

2000; Kennett, 1982; Potter and Szatmari, 2009) and additionally global third order sea-level 

highstands took place (Haq et al., 1987). These observations together with the stratigraphic definition 

of AR5 suggest that the SU has been deposited during the Middle Miocene.  

The observed shift of depocenter indicates a major rearrangement of the vertical stratification of the 

water column and therefore a vertical shift in water mass boundaries. Additionally, a transition from a 

complex wavy, small-scale structure dominated seismic facies of the Complex Unit to a more 

continuous sheeted, upward convex facies is clearly visible and typical for plastered drifts along 

middle slopes (Laberg and Vorren, 2004; Pudsey, 2002; Viana and Faugères, 1998). Because plastered 

drifts are normally formed under weak to moderate but stable current conditions (Faugeres et al., 

1999; Stow et al., 2008), Horizon AR5 marks – besides the depocenter shift - the transition from an 

unstable, turbulent flowing bottom current to a more stratified ocean current setting. 

For greater depths, as in our study area, a reduction in bottom water flow and a change to more tabular 

current conditions in the Middle Miocene was described by Hernández-Molina et al. (2010) for 

Southern Source Bottom Water (SSBW, today AABW) circulation due to a widening of the Drake 

Passage. However, the Sigmoidal Unit in our study area is deposited in much shallower water depths 

than sedimentation controlled by the SSBW and therefore, this reasoning is insufficient to explain 

changes of the sedimentary regime at the middle slope. 

Moreover, a major vertical rearrangement of water masses, which is needed for shifting the depocenter 

of the Sigmoidal Unit down-slope, can also sufficiently explained by the widening of the Drake 

Passage. Instead, a strong impact on the stratification can be assigned to the onset of Northern Source 

Deep Water (NSDW) formation, which correlates today with NADW, and its related influence on the 

global large-scale circulation pattern (Knutz, 2008). During the middle Miocene – the assumed age of 

the Sigmoidal Unit - the Faeroe-Iceland-Greenland ridge subsided below sea level, which allowed 

surface waters to penetrate further north and finally enabled NSDW production (Vogt, 1972). This 

event marked the onset of NSDW circulation in the southern hemisphere (Kennett, 1982). Comparable 

to the modern ocean circulation, where NADW is vertically separating UCDW and LCDW (Fig. 2.1B; 

see also e.g.: Piola and Gordon, 1989; Piola and Matano, 2001), the presence of NSDW probably 

caused a vertical separation of the SSDW along the Argentine margin, resulting in a major vertical 

shift of water mass boundaries (Fig. 2.7C). The influence of NSDW would shift the SSIW and Upper-

SSDW upward, and therefore also the turbulent zone at their interfaces. This shift translocates the core 

of the Upper-SSDW also upwards, and thereby the moderate but stable current conditions needed for 

the build-up of the plastered drift were created at the position where the Sigmoidal Unit was formed 

(Fig. 2.7C). 

Therefore our data suggests that a significant impact of the NSDW on the Argentine Slope in our 

study area occurred during the Middle Miocene (Fig. 2.8). Since the BMCZ marks the termination of 
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the NSDW influence at the Argentine margin (Piola and Matano, 2001), the position of the BMCZ 

must have been located southward of our study area during the Middle Miocene. In other words, 

similar to its seasonal variability (Bisbal, 1995) the BMCZ was probably shifted southward with 

respect to its modern position during the Mid-Miocene climatic optimum (Fig. 2.8). 

 

2.5.2.4 Formation of the modern Ewing Terrace (Aggradational Unit) 

The upper boundary of the Sigmoidal Unit is the erosional unconformity H2 (Figs. 2.5 and 2.6) which 

marked a new terrace similar to the modern one into the slope. The erosion is probably the result of 

stronger currents, since such terraces are often the result of a local increase in current velocity along 

steeper slopes and the related erosion leading to a cutting-back (McCave et al., 1982). But modern 

observations (Hernández-Molina et al., 2009) also reveal that water mass interfaces favor terrace 

formation and preservation. The stratigraphic position of H2 (Fig. 2.8), also in conjunction with the 

assumption that stronger currents had developed as a result of rapid global cooling after the 

termination of the Mid-Miocene climatic optimum, suggests that H2 has been eroded in the Middle 

Miocene. Consequently, H2 marks the boundary region between the SSIW and the U-SSDW during 

the Middle Miocene (Fig. 2.7C).  

On top of H2, a change in the depositional pattern to the Aggradational Unit with more or less uniform 

sediment distribution occurred. This can be first explained by the fact that the topography of the 

terraces enforces a tabular flow pattern, which is required to maintain a steady and uniform sediment 

thickness increase as identified in the lower two subunits AU1 and AU2. Second, this change in the 

sedimentary regime could be explained by a continuous upward shifting of the interface of SSIW and 

U-SSDW caused by a thickening of the NADW due to its gradual strengthening (Newkirk and Martin, 

2009). This strengthening was forced by the closure of the Central American Seaway (Fig. 2.8; 

Hermann, 1990), through which until the Late Pliocene most of the NSDW was flowing into the 

Pacific Ocean (Nisancioglu et al., 2003). 

The AU is vertically subdivided by Horizon H1, which is partly an erosional surface, but also 

characterized by onlapping of the upper reflectors. H1 marks also a change in the slope architecture by 

forming a positive relief. Consequently, a new plastered drift sequence is build at the seaward limit of 

the Ewing Terrace, which is thickening toward the north (compare Fig. 2.5 and 2.6) even in recent 

geologic times. Therefore, at H1 the modern oceanographic scenario was established and the present 

morphology started to develop. From stratigraphic correlation, H1 represents Late Pliocene ages, 

which is in agreement with the modern deep water circulation having evolved as well since the late 

Pliocene due to the final closure of the Isthmus of Panama (Fig. 2.8; Nisancioglu et al., 2003). By 

restraining warm surficial Pacific waters from diluting cold and dense waters in the North Atlantic, in 

the late Pliocene NSDW production increased significantly (Burton et al., 1997; Nisancioglu et al., 

2003). This strong influence of NSDW enforces the stratification, shifting the boundary between the 
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Upper-SSDW and the NSDW further upslope (Figs. 2.7D and E). Therefore, the build-up of the 

modern plastered drift is controlled by Upper-SSDW, which today is represented by the UCDW. 

The sediments on top of H1 are separated by two minor discontinuities into seismic units AU3, AU4 

and AU5 (Fig. 2.6). Whereas AU3 has been deposited during the late Pliocene, subsequently AU4 

represents probably the early Pleistocene times. With the growth of AU4 the depositonal style of the 

terrace changed and a positive relief was formed on top. Therefore, we suggest that the discontinuity 

between AU3 and AU4 could mark the onset of the dominant 41 ka glacial/interglacial cycles 

(Lisiecki and Raymo, 2007), which mainly controlled climate in the early Pliocene. 

Glacial/interglacial cycles have an impact on the global circulation pattern by leading to a short term 

weakening of NSDW circulation during glacial times (compare Figs. 2.7D and E; e.g.: Knutz, 2008; 

McCave et al., 1995; Rasmussen et al., 1996; Venz et al., 1999), which is associated with strong 

variations in the NSDW flow pattern in the southern hemisphere (Oppo and Fairbanks, 1987). 

Additionally, the dynamics and position of the BMCZ will probably change within these cycles.  

The uppermost Subunit AU5 represents probably the time period after the Mid-Pleistocene Revolution 

(960 ka, Fig. 2.8), which marks the transition from a glacial/interglacial cycle of 41 ka to the modern 

100 ka (e.g.: Mudelsee and Schulz, 1997; Raymo et al., 1997). Overall, this time period is 

characterized by more extreme climatic conditions within the cycles including four major cycles every 

200 ka (Hernández-Molina et al., 2002; Llave et al., 2001). These stronger fluctuations would explain 

the local increase in sediment thickness compared to AU4 and would be consistent with findings in the 

Gulf of Cadiz (Llave et al., 2001) and at the Cantabrian Margin (Van Rooij et al., 2010). 

 

2.5.3 Downslope mass transports 

As visible in Figs. 2.5 and 2.6, several distinct units are found at different stratigraphic levels which 

are characterized by a wavy to chaotic reflection pattern (Fig. 2.5 grey boxes). Such pattern is partly 

visible at the seafloor as well. These units are interpreted as gravity driven, individual downslope mass 

movements. In general, contourites are sensitive to downslope mass movements due to the 

horizontally uneven sedimentation, which leads finally to differential pore pressure within the 

sediment column (Laberg and Camerlenghi, 2008). Large to median sized mass transport deposits 

have been found all along the Argentine/Uruguayan margin (Hernández-Molina et al., 2009; Krastel et 

al., 2011). For a distinct mass transport complex offshore Uruguay it has been shown, that an 

earthquake in 1988 would have been able to trigger this event (Henkel et al., 2011). However, all these 

described mass transport deposits are characterized by distinct headwalls. As such headwalls are not 

visible in our bathymetric data, we conclude that the chaotic seismic facies is derived from a slow, non 

turbulent downslope movement of thin surface sediment packages as creeping probably triggered by 

exceeding pore pressure, which is a common phenomena within drift deposits (Laberg and 

Camerlenghi, 2008). 
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2.5.4 Global oceanographic implications derived from general slope architecture 

The influence of ocean currents on slope architecture was studied all over the world covering depths 

reaching from shallow to deep sea environments (Hernández-Molina et al., 2008a, 2008b). At least in 

the southern hemisphere several studies identified comparable growing phases described in this study 

as in the central Scotia Sea (e.g.: Barker and Thomas, 2006), in the southern Argentine Basin (e.g.: 

(Hernández-Molina et al., 2009, 2010) and off western South Africa (e.g.: Martin et al., 1982; Preu et 

al., 2011). However, most of these studies focused on the upper slope, inferring on variations in 

surface currents, or on the lower slope and the abyssal plains, reconstructing bottom water production 

rate and velocity. However, only studies dealing with the middle slope allow concrete conclusions on 

the fast flowing intermediate water masses. 

Although former studies already briefly described the middle slope off Argentina (e.g.: Hernández-

Molina et al., 2009; Krastel et al., 2011; Violante et al., 2010), the presented data in this study show 

for the first time the strong impact of NSDW on the large scale slope architecture. The onset and 

strengthening of NSDW resulted in a change of the sedimentary stacking pattern along the middle 

slope in the southwestern Atlantic in the Middle Miocene.  

Therefore, we infer that the general slope architecture in the western South Atlantic since the Middle 

Miocene is not only the result of variations in southern hemisphere ocean circulation controlled by the 

opening of the Drake Passage and the build-up of the Antarctic ice sheet. Instead, Northern Source 

Deep Water production plays a key role in shaping the Atlantic continental margin of South America. 

 

2.6 Conclusions 
Four major sedimentary units could be identified in seismic data collected from the northern extent of 

the Ewing Terrace offshore Argentina. Based on established regional stratigraphy and by linking the 

architecture of the units to climate and sea-level changes as well as to regional tectonics, the ages of 

the different units could be determined. The oldest Oblique Unit represents the Late Oligocene shelf 

break and upper slope. The following Complex Unit, characterized by a wavy facies with low seismic 

amplitudes, is build-up by the onset of contouritic deposition in the study area in the early Miocene. 

This contouritic deposition is mainly driven by the initiation of the Malvinas Current and its related 

northward flowing Antarctic water masses due to the strengthening of the Antarctic Circum Polar 

Current as a result of global cooling. The seismic facies of the Complex Unit suggests the 

establishment of the BMCZ in the study area. The upper boundary of the Complex Unit marks a 

significant change in the depositional style in the Middle Miocene. The following Sigmoidal Unit 

shows plastered drift evolution and a downslope depocenter shift. Both findings can be explained by a 

vertical shift of water masses, which inevitably indicates the first impact of North Atlantic Deep 

Source Water in the South Atlantic off Argentina. Additionally, the BMCZ must have been located 

south of the study area during the Middle Miocene. The most recent Aggradational Unit has been 

deposited since the Late Miocene. The architecture of this unit indicates that deposition is controlled 
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by an ocean circulation similar to the recent system, reflecting especially the strengthening of the 

NSDW as a consequence of the closure of the Panama isthmus. In summary, this study reveals a 

significant impact of NSDW on the slope evolution of the southern hemisphere margins, which might 

have been underestimated before. 
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Abstract 
Bottom currents and their margin-shaping character became a central aspect in the research field of 

sediment dynamics and paleoceanography during the last decade. They can form large contourite 

depositonal systems (CDS), consisting of both erosive and depositional features. 

A major CDS off northern Argentina was studied in front of the Rio de la Plata by means of seismo- 

and hydro-acoustic methods including conventional and high-resolution seismics, parametric 

echosounder and single and swath bathymetry. Erosive and depositional features associated with the 

CDS will be described in this study especially highlighting variations in the sedimentary style south 

and north of the Mar del Plata Canyon. In addition, mass wasting deposits were identified and 

described in detail. The overall morpho-sedimentary characteristics are interpreted jointly with 

hydrographic data sets characterizing the oceanographic framework, which is dominated by the 

presence of the dynamic and highly variable Brazil-Malvinas Confluence (BMC). We will discuss the 

location of each sedimentary feature along the margin and its local variability in relation to the 

regional current system to decipher their origin and evolution trough time considering the topographic 

and tectonic framework. 

We focus on three regional terraces identified in the study area, whose locations coincide with water 

mass interfaces. The shallowest one, the La Plata Terrace (~500 m), is located at the Brazil Current 

(BC)/Antarctic Intermediate Water (AAIW) interface characterized by its deep and distinct 

thermocline. In ~1200 m water depth the Ewing Terrace correlates with the AAIW/Upper Circumpolar 

Deep Water (UCDW) interface. At the foot of the slope in ~3500 m the Necochea Terrace marks the 

transition between LCDW and Antarctic Bottom Water (AABW) during glacial times.  

Based on the correlation of morphology and ocean regime, we propose that the terrace genesis is 

strongly connected to the turbulent current pattern typical for water mass interfaces. Furthermore, the 

erosive processes necessary for terrace formation are probably enhanced due to internal waves, which 

are generated along strong density gradients typical for water mass interfaces. Through time the 

terraces widen due to locally focused currents along the steep landward slopes and more tabular 

conditions along the terrace surface. 

Considering this new scheme of contourite terrace development, lateral variations of the morpho-

sedimentary features off northern Argentina can be used to derive the evolution of the BMC on 

geological time scales. We propose that the BMC is in modern times located close to its southernmost 

position in the Quaternary, while during cold periods its center was shifted northward. 

 

3.1 Introduction 
Bottom (contour) currents represent a major force shaping ocean margins (Stow et al., 2009) through 

along-slope oceanographic processes, which are capable of eroding, transporting, and depositing 

sediments at the seafloor (Rebesco and Camerlenghi, 2008). Depending on the bottom relief, local and 

regional hydrodynamic features (cores, branches, vortices, helicoidal flows, etc.) might develop, which 
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dominate sedimentary processes (Hernández-Molina et al., 2008b). A sufficiently strong bottom 

current acting over an extended time period will profoundly affect the seabed, ranging from 

winnowing of fine-grained sediments to large-scale erosion and deposition (e. g.: Heezen, 1959; 

Heezen and Hollister, 1964; Heezen et al., 1966; Kennett, 1982; Pickering et al., 1989; Rebesco and 

Camerlenghi, 2008; Seibold and Berger, 1993; Shanmugam, 2007; Stow et al., 2009; Stow and Lovell, 

1979). 

The term ‘contourite’ is now generally accepted for those sediments deposited or substantially 

reworked by bottom currents and contour currents sensu stricto (Faugères and Mulder, 2011; Gonthier 

et al., 1984; Heezen et al., 1966; Rebesco, 2005; Rebesco and Camerlenghi, 2008; Stow et al., 2002). 

Major accumulations of contourite deposits are referred to as drifts or contourite drifts, for which 

several classifications have been proposed based mainly on their morphological, sedimentological, and 

seismic characteristics (Faugères et al., 1993, 1999; Faugères and Mulder, 2011; McCave and 

Tucholke, 1986; Rebesco, 2005; Rebesco and Camerlenghi, 2008; Stow et al., 2002).  

Where currents are strong enough, a variety of erosive features can develop. Extensive erosion or non-

deposition leads to the development of widespread hiatuses in the depositional record. Although 

erosive features are not as well studied as contourite drifts, several types have been investigated to date 

(e.g.: García et al., 2009; Hernández-Molina et al., 2003, 2008a, 2009; Nelson et al., 1993, 1999; Stow 

et al., 2008, 2009; Stow and Mayall, 2000), the most common are represented by contourite terraces. 

An association of various drifts and related erosive features is commonly termed a Contourite 

Depositional System (CDS), by analogy with, and of equal importance to, turbidite depositional 

systems (e.g.: Hernández-Molina et al., 2003, 2008b; Rebesco and Camerlenghi, 2008; Stow et al., 

2002). 

A huge CDS is located along the Argentine margin (Fig. 3.1) characterized by particularly well 

developed depositional and erosive features (Hernández-Molina et al., 2009). In regional studies, 

contourite features were so far mainly identified in the southernmost sector of the margin (Patagonian 

margin; Cavallotto et al., 2011; Hernández-Molina et al., 2009, 2010; Lastras et al., 2011). However, 

recently Violante et al. (2010), Bozzano et al. (2011), Preu et al. (chapter 2) and Krastel et al. (2011) 

have also reported large contourite features along the northern Argentine margin.  

Main objective of this work is to identify morpho-sedimentary features along the northern Argentine 

margin (Fig. 3.1) with special emphasis on contourite terraces, which are present in different depths 

along the slope. A regional correlation with hydrographic features is presented and a new conceptual 

model for the onset and evolution of contourite terraces is discussed. 

 

3.2 Regional setting 
3.2.1 Physiography 

The Argentine continental margin (Fig. 3.1) includes three major physiographic domains: the shelf; 

the slope and the rise. All three margin segments, which were focused in several regional studies (e.g.: 



Morpho-sedimentary characteristics of the northern Argentine margin  48 

Ewing and Lonardi, 1971; Hernández-

Molina et al., 2009; Lonardi and Ewing, 

1971; Parker et al., 1997; Parker et al., 1996) 

include morphological features of minor 

order, which are relevant indicators for the 

interaction between ocean dynamics, tectonic 

processes, sea level fluctuations and other 

processes (e.g.: Henkel et al., 2011; 

Hernández-Molina et al., 2009, 2010; Krastel 

et al., 2011). 

The shelf varies drastically in its width 

(Ewing and Lonardi, 1971; Parker et al., 

1997; Parker et al., 1996). The narrowest 

part of the shelf in the study area is located 

near Mar del Plata and further south where 

the shelf is ~180 km wide. North and south 

of this area the continental shelf width 

exceeds 200 km. The eastern boundary of the 

shelf is close to a straight line, which runs in SSW direction along the 130/150 m isobaths in the study 

area. 

The slope runs almost parallel to the continental shelf with the main SW direction in the study area 

(Fig. 3.1). In this part of the margin the slope extends over ~180 km in width with a mean slope angle 

of 2-5°. Located off the Rio de la Plata (Fig. 3.1), two major terraces result in a step-like slope 

morphology: The La Plata Terrace (Urien and Ewing, 1974) and the Ewing Terrace (Hernández-

Molina et al., 2009). Especially, the latter encompasses significant sediment accumulations. 

 

3.2.2 Oceanographic context 

Interaction of highly active oceanographic processes with the seafloor is an ubiquitous characteristic 

of the Argentine margin, which is located in one of the most dynamic of the world’s ocean basins (Fig. 

3.1; e.g.: Chelton et al., 1990). This margin encompasses the Brazil/Malvinas Confluence (BMC), as 

well as the encounter and interaction of Antarctic water masses (Antarctic Intermediate Water 

[AAIW], Circumpolar Deep Water [CDW] and Antarctic Bottom Water [AABW]), with the Brazil 

Current, re-circulated AAIW and North Atlantic Deep Water (NADW; Carter and Cortese, 2009; 

Georgi, 1981; Piola and Matano, 2001; Saunders and King, 1995) at different depths (Fig. 3.1). The 

surface circulation around the Argentine margin results from interaction of the northward flowing 

Malvinas Current with the southward flowing Brazil Current, which form the BMC near 38�S. The 

BMC strongly controls the sedimentary processes and the margin’s morphology (Lonardi and Ewing, 

Figure 3.1: Regional bathymetric map of the northeastern
Argentine margin, including its general ocean circulation pattern;
BMC - Brazil-Malvinas Confluence; M/F - Malvinas-Falkland;
NADW – North Atlantic Deep Water; AABW – Antarctic Bottom
Water; black dashed box marks the study area. 
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1971; Piola and Rivas, 1997). The intermediate circulation south of the BMC is conditioned by the 

circulation toward the north by the Antarctic Intermediate Water (AAIW), and by the two CDW 

fractions: Upper Circumpolar Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW; 

Arhan et al., 2002, 2003; Reid et al., 1977). North of the confluence, apart from the aforementioned 

water masses, the NADW flows along the margin southward (Fig. 3.1). Interfaces between these water 

masses are determined by changes in relatively large vertical density gradients, which tend to deepen 

northward at basin scale (Reid et al., 1977), and are vertically displaced by eddies (Arhan et al., 2002, 

2003; Piola and Matano, 2001).  

The abyssal circulation is dominated by AABW (Fig. 3.1), which is partially trapped in the basin, 

generating a large, regionally up to 2000 m thick cyclonic gyre, the influence of which is felt at depths 

greater than 3500 to 4000 m (Arhan et al., 2002, 2003; Carter and Cortese, 2009; Hernández-Molina et 

al., 2008b; Piola and Matano, 2001). These circulation patterns may play a significant role in 

controlling sedimentary processes across the entire ocean basin (Klaus and Ledbetter, 1988; Le Pichon 

et al., 1971; Reid, 1989), and particularly on the Argentine margin (Arhan et al., 2002, 2003; Flood 

and Shor, 1988; Hernández-Molina et al., 2009). 

 

3.2.3 Geological context 

The northern part of the Argentine margin belongs to the passive volcanic rifted continental margin of 

South America ranging from southern Brazil to northern Patagonia. The tectonic characteristics of the 

region are conditioned by deep structures related to the geodynamic evolution prior to the continental 

fragmentation, as well as by sea-floor spreading, magmatic activity and thermal flux (Ramos, 1999). 

The margin has been subdivided into four tectonic segments separated each other by transference 

fracture zones (Franke et al., 2007; Hinz et al., 1999). The study area comprises the northern part of 

Segment III and the southern part of Segment IV, which are separated by the Salado Transfer Zone 

(STZ, Fig. 3.2).  

Post-Cretaceous sedimentary sequences display six major units separated by conspicuous seismic 

horizons. These reflectors represent the following times according to the interpretations by Ewing and 

Lonardi (1971), Urien and Zambrano (1996), Hinz et al. (1999) and Parker et al. (2008), later 

correlated and synthesized by Hernández Molina et al. (2009) and Violante et al. (2010): AR4 

(Eocene-Oligocene boundary), R* (Oligocene-Miocene boundary), AR5 (Mid Miocene), H2 

(Miocene-Pliocene boundary), H1-L (Lower-Mid Miocene) and N (2.4 Ma, base of Quaternary). 

Sequences between reflectors indicate the different stages of evolution: 1) a first evolutive stage (Early 

Cenozoic) characterized by a high vertical accretion of the slope; 2) a second evolutive stage (Eocene-

Mid Miocene), when the passive margin definitively developed, Antarctic water-masses began to 

actively influence the region, and prograding-retrograding sedimentary sequences played a significant 

role in shaping and enlarging the slope with high turbiditic dynamic and formation of submarine 

canyons; 3) the third evolutive stage (Mid-Late Miocene) comprises the time-span when progradation 
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Figure 3.2: Schematic map showing the geological and structural features in the study area. The structural and extensional 
transverse basins contain post-Jurasic-Cretaceous sedimentary sequences up to 8 km thick. The northernmost basin of the 
Argentine margin is “Salado”. It develops above the metamorphic basement of the Plata Craton (Urien and Zambrano, 1996) 
between Tandil and Martín García/Plata Highs. The origin of the basin has been attributed to extensional fracturing affecting 
former weakened zones (Stoakes et al., 1991; Yrigoyen, 1975).The study area is located in the southern flank of the offshore 
sector of Salado basin in transition to the small Eastern Plata basin, and close to Mogotes Platform, which belongs to the 
Tandil High (Tavella and Wright, 1996; Urien and Zambrano, 1996); here, the post-Cretaceous sedimentary thickness ranges 
between 2 and 4 km. 

dominated and ocean and sediment dynamics gave rise to contouritic sedimentation with the formation 

of the Ewing Terrace; 4) finally, the fourth stage (Late Pliocene-Quaternary) represents the definitive 

morphosedimentary evolution of the slope towards its present characteristics, with intense contouritic 

and turbiditic activity and the final shaping of the Mar del Plata Submarine Canyon. 
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3.3 Methods 

3.3.1 Seismic and hydro-acoustic data sets 

�
Figure 3.3: Map of study area showing the position of the seismic surveys and the water column data including hydrographic 
sections and turbidity measurements 
�

To allow detailed analysis of small scale variations in morphology and acoustic facies of the shallow 

subseafloor and to show possible links to the recent oceanographic regime, multiple seismo- and 

hydroacoustic data sets were used covering a wide range of frequencies. Conventional and high-

resolution multi-channel seismic (MCS) profiles, single- and multibeam lines and parametric 

echosounder data were analyzed and jointly interpreted (Fig. 3.3). 

The conventional MCS (10-50 Hz) data were acquired and processed by the ‘Bundesanstalt für 

Geowissenschaften und Rohstoffe’ (BGR). The shooting interval during all BGR cruises (Fig. 3.3) 

was 50 m and data were recorded using a 6000 m long streamer system, sampled at a rate of 2 ms. The 

data were reprocessed on behalf of COPLA (‘Comisión Nacional del Límite Exterior de la Plataforma 

Continental’) by CGG/VERITAS. These data were used to identify potential structural control on 

margin physiography and consequently on morpho-sedimentary features. 

High-resolution MCS (100-500 Hz) profiles were recorded during R/V Meteor Cruises M49/2 (2001) 

and M78/3 (2009). During the first cruise data were acquired using the multichannel seismic system of 

the University of Bremen encompassing a 600 m analog streamer with 96 channels. The sampling 

frequency was set to 4 kHz. In 2009 data were recorded with the IFM-GEOMAR multichannel seismic 
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system including its 200 m long digital streamer consisting of 128 channels. Sample frequency during 

that cruise was constantly 8 kHz. Both data sets were processed with the software package ‘VISTA 

Seismic Processing 2D/3D’ (GEDCO) following standard seismic procedures including bandpass 

filtering, common midpoint (CMP) sorting and binning, CMP stacking, residual static correction and 

post-stack time migration. CMP bin size varies among profiles between 5 and 10 m depending on data 

quality and coverage. Based on these data large scale erosive and depositional features were identified 

and mapped within the study area. 

Single beam echosounder data were collected by Argentine authorities on behalf of COPLA during 

multiple cruises with R/V Puerto Deseado during the last decade. This data set was analyzed in 

conjunction with a dense multibeam echosounder data set confined to the Mar del Plata Canyon, 

recorded during R/V Meteor Cruise M78/3, to determine large and small-scale morphological features. 

Additionally, parametric sediment echosounder data (PARASOUND P70 with a lower parametric 

frequency of 4kHz) acquired along the multibeam tracks were used for detailed morphological and 

seismoacoustic analysis of the uppermost tenth of meters. 

To discuss the origin, evolution and lateral extent of the morpho-sedimentary features, acoustic data 

sets were jointly interpreted using the software package ‘The Kingdom Software’ (SMT) and the 

software ‘GeoMapApp’ created at the Lamont-Doherty Earth Observatory (Ryan et al., 2009). 

Identification of erosive and depositional features related to CDSs and the related nomenclature are 

based on previous comprehensive and reviewing studies carried out by Faugeres et al. (1999) and 

Rebesco (2005). Both publications were recently summarized and discussed by Rebesco and 

Camerlenghi (2008).  

 

3.3.2 Hydrographic data sets 

The detailed distribution of water masses down the northern portion of the Argentine margin is 

depicted by two full-depth, high-resolution cross-sections of potential temperature, salinity, dissolved 

oxygen and neutral density (Fig. 3.3). A zonal section referred to as Section I was collected close to 

38�S in 1984 as part of the Marathon Expedition (Camp et al., 1985) and a second section occupied 

further north during the SAVE-5 Expedition, referred to as Section II runs southeastwards down the 

slope intersecting the 2000 m isobath near 35�S (Fig. 3.3). Note that the cross-slope resolution of 

Section I is about 30 km, while that of Section II east of the 200 m isobath is quite lower and irregular. 

Both sections will be used to identify changes in circulation based on distinct variations in water mass 

distributions over the study area. 

As pointed out above, the abyssal Argentine Basin is subject to the influence of the circulation of 

AABW, however, as bottom depth decreases along the continental margin various water masses 

interact with the bottom. To understand the role of the circulation and water mass structure on the 

sediment redistribution over the slope it is necessary to determine where each water mass interacts 

with the bottom across and along the slope. For this purpose we analyzed the distribution of near-
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bottom (within 150 m) water mass properties based on all data available (World Ocean Database 

2009) in the Argentine Basin. We adopted water mass property criteria as shown in Table 3.1. 

To allow detailed analysis of the interplay between the oceanography and the morpho-sedimentary 

features, the hydrographic sections and seismic lines were combined into single profiles. These 

seismic/hydrographic intersections were calculated using the program ‘Ocean Data View 4.0’ 

(Schlitzer, 2011). 

Additionally, sea surface temperature (SST) measurements were used for this study derived from 

published high-resolution satellite climatology (Casey and Cornillon, 1999). Based on these data, SST 

gradients were calculated and averaged to southern hemisphere ‘summer’ (October-March) and 

‘winter’ (April-September) to visualize the seasonal variability of the BMC. 

�
Table 1: water mass property criteria for figure 10 

3.4 Results 

3.4.1 Physiography of the study area 

In the study area the continental slope varies in width between 160 and 200 km. It clearly narrows in 

the north, in principle at the location of the Mar del Plata submarine canyon (Fig. 3.4), which separates 

the southern from the northern part of the study area. The continental slope can be subdivided into the 

upper, middle and lower slope, which include several major terraces (La Plata Terrace, Ewing Terrace, 

T3 and Necochea Terrace) located in different water depths (Fig. 3.4). The region where the lower 

slope merges with the continental rise is sometimes hard to identify due to a constant concave shape of 

the continental slope, however the transition is located close to ~3500 m water depth, where slope 

angles reach ~0.6°. The continental rise covers an extensive area with an overall width of more than 

200 km.  

Three major submarine canyons are located in the study area (Fig. 3.4): The most prominent is the 

aforementioned Mar del Plata Submarine Canyon, which originates at ~1000 m water depth cutting 

into the middle slope and reaches toward the foot of the lower slope (Krastel et al., 2011). The head of 

the Mar del Plata Canyon is located in the middle slope, mid-way between the La Plata and the Ewing 

Terrace (Fig. 3.4).  

North of the Mar del Plata Canyon a smaller structure, called Querandi Submarine Canyon, is located, 

incised into the Ewing Terrace. A much smaller canyon structure originates from the lower slope south 

of the Mar del Plata Canyon, called Punta Mogotes Submarine Canyon (Fig. 3.4). 
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3.4.2 Morpho-sedimentary features 

3.4.2.1 Erosive features 

  

Figure 3.4: Morpho-sedimentary map of the NE Argentine margin 

Erosive features in the study area encompass steep erosive surfaces, channels and minor slope parallel 

incisions located at the lower slope. Overall these features are very pronounced in the northern and 

southern part of the study area (Figs. 3.4-3.8). 

 

Erosive surfaces 

Two major large-scale erosive surfaces were imaged in the northern and southern part of the study 

area, one represented by the upper slope landward of the La Plata Terrace and the other one located 

along the middle slope located landward of the Ewing Terrace (Figs. 3.5, 3.6, 3.8a and b). 

The upper slope connects the shelf break located close to the 130/150 m isobaths with the La Plata 

Terrace characterized by a mean slope angle of ~4-6°. Independent of the width of the La Plata 

Terrace the upper slope has a more or less constant width of ~5-10 km reaching its maximum upslope 

of the Mar del Plata Canyon. The upper slope is hard to characterize based on the available seismic 

data sets due to technical limitations resulting from the hydrophone group length of the GeoB seismic 
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Figure 3.5: Multichannel seismic Line GeoB01-141; inlet indicates position of seismic line; black box marks area shown in 
Fig. 8; VE ~17 

Figure 3.6: Multichannel seismic Line GeoB01-135; inlet indicates position of seismic line; black box marks area shown in 
Fig. 8; VE ~20�

Figure 3.7: Multichannel seismic Line GeoB01-143; inlet indicates position of seismic line; black box marks area shown in 
Fig. 8; VE ~20�
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�
Figure 3.8: Examples of morpho-sedimentary features for the northern and southern study area subdivided into erosion, 
deposition and interaction of along slope and down-slope processes;  location of individual examples are marked in Figs. 5-7; 
T2 – Ewing Terrace 

system and high slope angles. However, the acoustic appearance including truncated reflections points 

at least in the transition between the upper slope and La Plata Terrace to predominantly erosive 

processes (Figs. 3.5 and 3.6). 

In the transition between the La Plata Terrace and the Ewing Terrace a mid-slope erosive surface is 

located (Fig. 3.4). Its width varies distinctly in accordance with the above described variability of the 

Ewing Terrace. While south of the canyon the middle slope has a mean width of ~35 km with a slope 

angle of 3-4°, north of the Mar del Plata Canyon the middle slope narrows to ~4 km with a slope 

gradient of ~6° (Fig. 3.4). Well-defined truncated reflections dominating the seismofacies (Figs. 3.5, 

3.6, 3.8a and b) mark this area of the margin clearly as erosive surface. 
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Channels 

Major slope parallel incisions representing channels could be identified north and south of the Mar del 

Plata Canyon. The most prominent runs along the Ewing Terrace in transition to the aforementioned 

erosive surface (Fig. 3.4). It follows the shape of the overall margin and is cut into the terrace building 

strata. In the southern area, the channel is incised ~90 m into the Ewing Terrace and reaches a width of 

~5-15 km (Figs. 3.5, 3.6, 3.8a and b). The channel widens in the central part of the southern area, 

where a second contour parallel channel emerges from the Ewing Terrace. North of the canyon the 

channel reaches a more or less constant width of ~5 km slightly widening northward with a mean 

depth of ~35 m.  

Another major channel runs across the margin slope at ~38°S connecting the La Plata Terrace with the 

major contourite channel described above south of the Mar del Plata Canyon (Fig. 3.4). It is incised 

15-20 m into the margin and only 1-2 km wide. At last, directly north of the Mar del Plata Canyon at 

~54°W a deep contour parallel incision was imaged, which is ~260 m incised into the Ewing Terrace 

with maximum width of ~350 m (Figs. 3.4 and 3.5). 

 

Minor slope parallel incisions 

In the northern part of the study area and between the Mar del Plata Canyon and the Punta Mogotes 

Canyon minor slope parallel incisions can be identified along the lower slope in water depths of 

~2000-3000 m (Figs. 3.4, 3.5 and 3.8e). The width of the features varies between 200 and 400 m and 

they are ~90 m incised into the lower slope. While they are in the northern area very common, in the 

southern area ~30 km SW of the Mar del Plata Canyon they are less abundant and of smaller 

dimension (Figs. 3.7 and 3.8f). 

 

3.4.2.2 Mixed erosive-depositional features – Contourite terraces 

The most remarkable morphological features in the study area are the wide terraces, incised into the 

continental slope. There are four major terraces (Fig. 3.4): The La Plata Terrace (T1), the Ewing 

Terrace (T2), and the Necochea Terrace(T4), located at the foot of the slope (Fig. 3.4). Although �

another terrace,T3, has been described by Hernández-Molina et al. (submitted), this terrace will not be 

considered in this study due to its small-scale appearance in the study area. 

 

La Plata Terrace (T1) 

The shallowest terrace is the La Plata Terrace located in 500-600 m water depth with a main NE 

orientation and a mean slope angle of 0.5-1°. The landward and seaward boundaries are marked by the �

upper and middle slope characterized by steeper slope angles. The terrace distinctly narrows upslope 

of the Mar del Plata Canyon from south (~35 km) to north (~7 km). The seismoacoustic characteristics 

of the T1 strongly depend on the lateral variability of the terrace, as well. While in the southern part of 

the study area, the terrace shows a clear horizontally layered reflection pattern of high amplitudes 
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(Figs. 3.5 and 3.6), in the north the seismic facies is hard to determine due to the limited lateral extent 

of the terrace and only single reflections of low amplitude can be observed. 

 

Ewing Terrace (T2) 

In water depths of 1100-1400 m the Ewing Terrace is located running almost parallel to the La Plata 

Terrace. Characterized by a mean slope angle of ~0.5-1.5° the Ewing Terrace represents the wide area 

between the erosive middle slope and the lower slope (Fig. 3.4). Northward this area widens from ~50 

km to ~80 km at the Mar del Plata Canyon, where the middle slope is shifted landward. The Ewing 

Terrace can be subdivided into three zones from land to sea: The first, erosive zone, is located at 

upslope boundary of the Ewing Terrace, where truncated reflections indicate erosive processes next to 

the contour parallel channel described above (Figs. 3.5, 3.6, 3.8a and b).While this zone is quite 

narrow (100-150 m) in the southern part of the study area, north of the Mar del Plata Canyon this area 

widens to ~35 km and is indicated in Figure 3.4 as sedimentary relicts (grey area; Fig. 3.7). 

The central zone of the terrace is characterized by close to horizontal layered reflections, which partly 

do not allow distinguishing between non-deposition and ultra-low sedimentation (Figs 3.5-3.7). 

Laterally, this part of the terrace drastically varies in width and shape from south (~35 km) to directly 

north of the Mar del Plata Canyon (~65 km) with the main break along the Mar del Plata Canyon (Fig. 

3.4). Further northward, the width of the central zone decreases. 

The last zone, located at the seaward boundary of the terrace, encompasses a major mounded plastered 

drift in 1200-1400 m water depth (Fig. 3.4). While upslope the drift fades into the central zone, 

seaward deposition is terminated at the lower slope. In the center of the plastered drift a positive relief 

associated with a sedimentary crest can be identified (Figs. 3.4-3.7, 3.8c and d). The seismic facies 

indicates intervals of aggradational and progradational stacking patterns resulting in the crest as well 

as a seaward migration of the drift (Figs. 3.8c and d). 

In the southern part of the study area, the 25-35 km wide elongated plastered drift with its 75 m crest 

covers close to half of the area corresponding to the Ewing Terrace (Figs. 3.4 and 3.6). While the 

southern termination of the drift cannot be determined in this study due to lack of data, drift deposition 

is observed toward the southern flank of the Mar del Plata Canyon. At ~39.3°S the orientation the 

crest slightly changes from a NE to a NNE trend following the general trend of the middle slope (Fig. 

3.4). In the northern part of the study area, no drift deposition occurs close to the Mar del Plata 

Canyon. The depositional zone can only be identified north of the Querandi canyon. From there it 

widens northward toward the Uruguayan margin reaching a width of 30 km in the northern boundary 

of the study area (Figs. 3.7 and 3.8c), encompassing another plastered drift. The crest of the drift runs 

parallel to the middle slope and reaches a height of 35-40 m (Fig. 3.4). 

 

Necochea Terrace (T4) 

The deepest identified terrace is the Necochea Terrace in water depths of ~3500 m (Fig. 3.4). While 
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landward it is limited by the lower slope, seaward the limit is hard to identify due to the gradual 

transition into the continental rise. However, in general the width of the terrace varies from 5 to 35 km 

from north to south. Since data coverage in this deep part is sparse and only conventional seismic 

imaged the Necochea Terrace, detailed spatial statements on the seismo-acoustic facies are not 

possible. However, at least the available data indicates an aggradational stacking pattern, representing 

another plastered drift. The pure data coverage suggests that this depositional pattern is mostly 

restricted to the southern part of the study area. Only directly north of the Mar del Plata Canyon 

seismofacies associated to plastered drifts could be identified in a small, distinct area. 

 

3.4.2.3 Gravitational features 

Mass transport deposits (MTDs) in the study area are mainly confined to the lower slope area and the 

heads and flanks of the submarine canyons (Fig. 3.4). As seen in Figures 3.5, 3.6, 3.8e and f 

gravitational processes are common on both the northern and southern lower slope in water depths 

between 2000-3000 m and can be identified by their chaotic seismic facies. In contrast to the southern 

part of the study area, MTDs and their scars are more abundant and of larger dimension in the north. 

Moreover, mass wasting deposits are associated to the head of the Querandi Canyon and the Punta 

Mogotes Canyon (Fig. 3.4) 

 

3.4.3 Oceanographic features 

3.4.3.1 Section I – South of Mar del Plata Canyon 

In the southernmost section (Fig. 3.9 top) a vertical wedge of cold (< 7�C) and fresh (S < 34.2) 

subantarctic waters is observed in the near-surface region of the upper slope. Satellite derived sea 

surface temperature data reveal that this latitude marks the mean northernmost penetration of the 

Malvinas Current (e.g. (Piola and Matano, 2001; Saraceno et al., 2004). Thus, the warm-salty and 

relatively low oxygen Tropical Waters and South Atlantic Central Waters that characterize the South 

Atlantic subtropical gyre are displaced offshore and are not in contact with the bottom toward the 

North. Below the subtropical thermocline the salinity minimum (Smin) and oxygen maximum of AAIW 

are well defined, but near the slope they connect with the slightly warmer and less dense outer shelf 

waters (Fig. 3.9 top). At this latitude the cores of circumpolar deep waters are split by the southward 

flowing NADW (Reid et al., 1977). The cores of these water masses against the slope, are well defined 

in the 1200-4000 m depth range by the low-high-low salinity (34.6, > 34.8, 34.75) and oxygen (< 4.25, 

> 5.25, < 5 ml/l) stratification sequences (Fig. 3.6 top). The core of UCDW (O2 < 4.25 ml/l) is 

observed at 1700 m and against the slope spans the 1500-2000 m depth range. UCDW also creates a 

relative potential temperature minimum matching the O2 minimum. The high salinity core of NADW 

(S > 34.9) is located at 2450 m and appears to be just separating from the slope while the NADW 
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 Figure 3.9: Hydrographic sections (location given in Fig. 3) of the study area showing lateral variations in potential 
temperature, salinity and oxygen from south (Section I top) to north (Section II bottom); BC – Brazil Current; AAIW – 
Antarctic Intermediate Water; UCDW – Upper Circumpolar Deep Water; NADW – North Atlantic Deep Water; LCDW – 
Lower Circumpolar Deep Water; AABW – Antarctic Bottom Water 

salinity range (S > 34.8, Tab.3.1) spans the 2500-3000 m depth range. At this location LCDW (S < �

34.8, O2 < 5 ml/l) occupies the 3000-3900 m depth range. Below this layer, most of the abyssal ocean 

is covered by AABW (������C; Fig. 3.9 top). 

 

3.4.3.2 Section II – North of Mar del Plata Canyon 

As expected based on the general circulation patterns, further north, upstream of the detachment of the 

Brazil Current (BC) from the slope, we find a different structure of near-bottom water masses down 

the slope (Fig. 3.9 bottom). The upper layer (depths less than ~500 m) is occupied by warm (> 10�C), 

salty (S > 35) South Atlantic Central Water (SACW), which flows southward associated with the 

Brazil Current. Also at this latitude the salinity minimum of AAIW is clearly defined in the 700-1200 
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m depth range (Fig. 3.9 bottom). This near-bottom AAIW core is thinner than further south, but 

presents similar salinity and oxygen values, suggesting it is still part of a narrow northward flowing 

branch in contact with the slope. At Section II the UCDW core is still present but the oxygen 

minimum layer, where O2 is less than 4.25 ml/l, is about 400 km east of the slope. Similarly, the �min < 

2.8�C observed in Section I close to the oxygen minimum is displaced offshore (Fig. 3.9). 

Consequently, in Section II the bulk of UCDW appears to have shifted offshore and occupies a thinner 

layer interacting with the bottom in the 1350-1650 m depth range (Fig. 3.9 bottom). The potential 

temperature maximum observed above the NADW maximum is not displaced vertically, but is now 

above 3.5�C, while the salinity maximum (S > 34.9) has expanded vertically to the 2150-2800 m depth 

range. The region with S > 34.8, our adopted definition for NADW in the Argentine Basin, spans the 

1700-2900 m depth range, thus is thicker and shallower than observed further south (Fig. 3.9 bottom). 

Note that because Section I is zonal and Section II runs perpendicular to the bottom topography the 

sections are only about 250 km apart along the 5000 m isobath. In addition, the coarser cross-slope 

sampling resolution in the deeper part of the slope in Section II precludes a more detailed comparison 

of the core properties of LCDW and AABW (Fig. 3.9). 

As shown above, the vertical arrangement of deep water masses in contact with the bottom observed 

in Section I and II is quite distinct. In Section II the core of UCDW has shifted offshore indicating an 

eastward deflection of this water mass past 38�S. South of 38�S (not shown) the warm-salty and high 

oxygen core of NADW detaches from the slope, suggesting that the bulk of this water mass veers 

offshore as it flows south of that latitude. 

 

3.4.3.3 Near-bottom layers 

As aforementioned, we analyzed the distribution of near-bottom (within 150 m) water mass properties 

based on data available in the World Ocean Database 2009 in the Argentine Basin to understand the 

role of the circulation and water mass structure on the described morpho-sedimentary features. 

AAIW is confined to the upper slope, mostly between the 200 and 1000 m isobath and its 

northernmost location is detected at 34�S (Fig. 3.10). The slope narrows northward considerably and 

there are no stations meeting the AAIW criteria in the narrow stripe between the 200 m and 1000 m 

isobaths. No near-bottom AAIW is found in the latitude range between 34 and 29�S. However, north 

of 29�S we do observe a narrow stripe of AAIW along the 1000 m isobath (Fig. 3.10). This northern 

core of AAIW intersects the bottom at somewhat deeper levels than the southern core (850-1100m), 

and flows southward below the Brazil Current. The offshore limit of near-bottom UCDW closely 

follows the 2000 m isobath and the bulk of this water mass extends northward to about 35�S. North of 

38�S there is evidence of near-bottom NADW in the depth range 1800-3000 m (Fig. 3.10). In the 

western Argentine Basin LCDW occupies a narrow near-bottom stripe in the 2300-3400 m range. The 

interaction of LCDW with the bottom appears to extend to the southern flank of the Rio Grande Rise, 

and a few observations suggest isolated portions of near-bottom LCDW at depths of nearly 4000 m 



Morpho-sedimentary characteristics of the northern Argentine margin  62 

�
Figure 3.10: Map of the Argentine Basin identifying near bottom layers depending on their physical characteristics; BC – 
Brazil Current; AAIW- Antarctic Intermediate Water; AAIW rec. – recirculated AAIW; UCDW – Upper Circumpolar Deep 
Water; NADW – North Atlantic Deep Water; LCDW – Lower Circumpolar Deep Water; AABW – Antarctic Bottom Water; 
symbols identify sample location (WOD09) and water mass 
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north of 36�S. As pointed out above, most of the bottom at depths greater than 4000 m are subject to 

the influence of AABW (Fig. 3.10). 

 

3.5 Discussion 
3.5.1 Morpho-sedimentary and hydrographic features and their oceanographic and 

tectonic implication 

3.5.1.1 Margin physiography 

The northern Argentine margin physiography is characterized by peculiar differences in slope angle 

north and south of the Mar del Plata Canyon (red marks in Fig. 3.4). While overall the northern part of 

the study area shows a margin inclination oblique to the upper slope, the slope south of the canyon 

dips northeastward and therefore, in an ~45° angle to its northern counterpart. This change in 

physiography might be related to the Salado Transfer Zone (STZ), which runs as well perpendicular to 

the upper slope in the center of the study area (Figs. 3.4 and 3.11). The STZ was established during the 

initial opening of the South Atlantic (Franke et al., 2007; Hinz et al., 1999) and is probably 

characterized by non-uniform cooling of adjacent margin Segments III and IV (Allen and Allen, 

1990). Periods of stronger subsidence were described associated with this structure as e.g. during the 

Middle Miocene (Aceñolaza, 2000; Kennett, 1982; Potter and Szatmari, 2009). Consequently, the 

differential tilting is presumably linked to the STZ, although its effect can only be observed along the 

La Plata Terrace (Fig. 3.4). Further down-slope, uniform margin inclination over the study area 

indicates the dominance of erosive and depositional forces, which overprint the tectonic signature. 

 

3.5.1.2 Upper slope – La Plata Terrace (T1) 

The La Plata Terrace is located at the upper slope in water depths between 500-600 m deepening 

toward the north (Fig. 3.4 and 3.11). Its sedimentary style excludes considerable downslope transport 

from the shelf and points to a uniform, continuous forcing which had controlled sedimentation (Figs. 

3.5 and 3.6). This kind of widespread and persistent condition can only be maintained over long time 

periods by ocean currents. 

Analysis of the hydrographic sections (Fig. 3.9) revealed that the La Plata Terrace is located close to 

the interface between surface waters and the AAIW, which is in particular well defined in the BC by 

the steep thermocline in ~500 m water depth north of the Mar del Plata Canyon (Fig. 3.9 bottom). 

Such water mass interfaces, in general, represent zones dominated by turbulent, energetic current 

patterns driven by major vertical density gradients (Reid et al., 1977). Moreover, the high energetic 

environment is supported by the presence of the BC and MC, which flow not only as surface currents 

but as well as bottom currents along the La Plata Terrace (Fig. 3.10). Surface currents, which are in 

general driven by wind circulation and large lateral temperature gradients, are characterized by high 

flow velocities and in this way contribute to the high energetic environment dominating the uppermost 

500-600 m of water depth. 



Morpho-sedimentary characteristics of the northern Argentine margin  64 

�Fi
gu

re
 3

.1
1:

 3
-D

 m
ap

 o
f 

th
e 

no
rth

er
n 

A
rg

en
tin

e 
co

nt
in

en
ta

l 
m

ar
gi

n 
co

m
bi

ni
ng

 m
or

ph
o-

se
di

m
en

ta
ry

 a
nd

 h
yd

ro
gr

ap
hi

c 
fe

at
ur

es
 a

nd
 th

ei
r i

nt
er

pr
et

at
io

n;
 A

A
IW

- A
nt

ar
ct

ic
 In

te
rm

ed
ia

te
 

W
at

er
; 

U
C

D
W

 –
 U

pp
er

 C
irc

um
po

la
r 

D
ee

p 
W

at
er

; 
N

A
D

W
 –

 N
or

th
 A

tla
nt

ic
 D

ee
p 

W
at

er
; 

LC
D

W
 –

 L
ow

er
 C

irc
um

po
la

r D
ee

p 
W

at
er

; A
A

B
W

 –
 A

nt
ar

ct
ic

 B
ot

to
m

 W
at

er
 



Morpho-sedimentary characteristics of the northern Argentine margin  65 

This dynamic environment is well reflected in the sedimentary style of the upper slope. Although in 

parts only purely imaged by means of seismo-acoustic methods, the upper slope in transition to the La 

Plata Terrace shows clear evidence of erosion. This remobilization of sediments is favored by the 

general turbulent bottom current conditions, which are locally enforced along a steep slope (McCave 

et al., 1982). Due to the lower slope angle, terraces are characterized by more tabular flow conditions 

and lower flow velocities (Hernández-Molina et al., 2008a; McCave et al., 1982). Consequently, the 

influence of bottom currents will result in uniform sedimentation along and across contourite terraces 

as was as well shown for the La Plata Terrace (Fig. 3.6). Even though current velocities are lower on 

top of the terrace, the dynamic current conditions are reflected in the deposited sediments, which show 

a silty to sandy character (Bozzano et al., 2011). Therefore, combining sedimentological and 

oceanographic evidence, we suggest that the upper slope including the La Plata Terrace and their 

associated sedimentary regime is strongly influenced by the surface water/AAIW interface (Fig. 3.11).  

The highest turbulent energy at this interface might be related to the presence of the BC, which due to 

its associated deep thermocline generates large density contrasts in 500 m water depth (Fig. 3.12). 

Accordingly, in particular the BC/AAIW interface might control sedimentary processes along the La 

Plata Terrace, although lateral bottom water distribution shows the detaching of the BC (Fig. 3.10) 

from the margin in the northern part of the study area. The southern area is probably controlled by BC 

eddies, which allow in their center isolated warm water to penetrate into the MC (Piola and Matano, 

2001). In the southern area probably single eddies allow for SACW to reach this region (Piola and 

Matano, 2001). Finally, the La Plata terrace terminates a few kilometers south of the study area (Urien 

and Ewing, 1974), since the BC cannot deeply penetrate into the MC.  

This mechanism becomes obvious comparing the northern and southern hydrographic/seismic 

intersections given in Figure 3.12. The northern section is dominated in the uppermost 500 m by 

waters depleted in oxygen, which represent the warm waters of the BC. In contrast, the southern 

section reveals high oxygen values close to the upper slope corresponding to the MC, and therefore the 

weaker influence of the BC (Fig. 3.12b). 

 

3.5.1.3 Middle slope – Ewing Terrace (T2) 

The largest terrace in the study area, the Ewing Terrace, is located in mid-slope position in water 

depths of 1200-1400 m (Figs.: 3.4 and 3.11; Hernández-Molina et al., 2009; Krastel et al., 2011; 

Violante et al., 2010). In contrast to the La Plata Terrace, the Ewing Terrace is not a locally confined 

feature, but continuous along the Patagonian margin (Hernández-Molina et al., 2009), which is already 

indicative for a regional control of the sedimentary regime.  

Comparable to the upper slope, there is clear evidence of ocean currents controlling sediment transport 

at the middle slope. Massive erosion of older strata (Figs. 3.5, 3.6, 3.8a and b), partly originating from 

Middle Miocene plastered drift deposits (Preu et al., chapter 2.), shapes the middle slope, which 

connects the La Plata and the Ewing Terrace (Fig. 3.11). The erosion is related to the AAIW (Figs. 
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Figure 3.12: Seismic-hydrographic intersections from the north (a) and south (b) of the Mar del Plata Canyon; location of 
seismic lines and hydrographic sections is marked in Fig. 3; color code shows oxygen content in ml/l; isopycnals are 
indicated by black lines; BC – Brazil Current; MC -Malvinas Current; AAIW – Antarctic Intermediate Water 

3.10-3.12), flowing as a fast bottom current favored by the margin morphology (McCave et al., 1982). 

This interpretation is strongly supported by approximated flow velocities of the OCCAM Global 

Ocean Model (Gwiliam et al., 1995; Gwilliam, 1996), suggesting flow velocities of ~15-20 cm/s in 

1000 m water depth. Such velocities allow for fine sand to be eroded and transported (McCave, 2005; 

Niño et al., 2003). Moreover, associated to the dynamic current regime and the strong erosion 

measurements of high turbidity, which are part of the world ocean nepheloid layer composition data 

base assembled by the Lamont-Doherty Earth Observatory (Fig. 3.13), suggest the presence of 

intermediate nepheloid layers fed by the erosive margin processes within the AAIW. 

At the lower boundary of the AAIW in the transition to the UCDW, which is clearly distinguished by 

its oxygen content (Figs. 3.9 and 3.12), the Ewing Terrace is located (Figs. 3.4 and 3.11). The 

turbulent processes associated to this water mass interface prohibit sediment deposition at least over a 

wide area of the terrace. In the transition between the middle slope and the Ewing Terrace deep 

contourite channels, running parallel to the margin (Figs. 3.4 and 3.11), indicate even the formation of 

helicoidal flow pattern. These are a result of a combination of margin morphology, Coriolis forcing 

and near-bottom Ekman transport.  

In contrast to the proximal area of the terrace, in the distal part of the terrace a plastered drift can be 
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identified indicating sedimentation focused by 

along-slope processes. Since plastered drift 

formation are formed under slow to intermediate 

flow conditions (Faugères et al., 1999), this 

sedimentary pattern requires a continuous decrease 

of flow velocities with increasing distance from the 

steep middle slope. 

This energetic regime is indicated by the lateral 

differences in sedimentary characteristics across the 

terrace. While in the transition from the upper slope 

erosive features are located close to the helicoidal 

flow pattern, the central area of the terrace is 

characterized by non-deposition or low 

sedimentation (Figs. 3.5 and 3.6). In turn, at the 

seaward limit of the Ewing Terrace plastered drift 

sequences are formed, marking the lowest current 

velocities. Recently published sedimentological data 

support this lateral change in the energetic 

environment, showing a gradient from gravel rich contourite material located in the contourite channel 

to more silty material at the drift’s crest (Bozzano et al., 2011). Additionally, this scenario as well fits 

to the observed turbidity values, (Fig. 3.13). Within the AAIW suspended particle load is highest, 

reflecting the eroded sediments along the middle slope. The amount of suspended sediments decreases 

drastically towards the UCDW, not only indicating the lower transport capacity of the UCDW, but as 

well the necessary conditions to form a plastered drift.  

The described conditions at the depth of the terrace are probably significantly enhanced during glacial 

times, when the AAIW/UCDW interface is shifted upward (Preu et al., chapter 2) and the turbulent 

energy of the interface is replaced by calmer conditions characterizing the UCDW. However, the 

overall sedimentary configuration of the Ewing Terrace indicates that even during glacial times the 

steep slope allows for strong enough current velocities to prohibit sedimentation on the seaward half 

of the terrace. 

Regionally, the morphology of the Ewing Terrace is characterized by remarkable changes. As 

described above and shown in Figures 3.4 and 3.11, the erosive, non-depositional and depositional 

patterns change their lateral distribution profoundly at the Mar del Plata Canyon.  

The most prominent change in slope morphology is represented by the narrowing of the middle slope 

in close vicinity to the Mar del Plata Canyon (Figs. 3.4 and 3.11). One possible explanation might be 

offered by the BMC, which strongly influences the ocean circulation in larger depth as well (Preu et 

al, chapter 2). The detachment of NADW from the northern Argentine margin, which is associated 

Figure 13: Optical scatter measurements from station
RC15-83 with indicated water masses; AAIW – Antarctic
Intermediate Water; UCDW – Upper Circumpolar Deep
Water; NADW – North Atlantic Deep Water; station
location indicated in Fig. 3.3 
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with the BMC, has a major effect on vertical water mass stratification (Carter and Cortese, 2009; 

Georgi, 1981; Piola and Matano, 2001; Saunders and King, 1995), and therefore on the position of 

water mass interfaces in the study area (cf. Figs. 3.12a and b). In addition, within the BMC, AAIW 

flowing northward along with the MC impinge recirculated AAIW flowing southward (Piola and 

Matano, 2001). The resulting high energetic mixing could be hold responsible for the stronger erosion 

north of the Mar del Plata Canyon and the change in margin morphology. Furthermore, this pattern 

would be strengthened by deep-reaching eddies traveling within the BC, which would also pass 

through the BMC. Such eddies are known to influence sedimentary processes even in large depth 

(Hollister, 1993; Hollister and McCave, 1984) and can erode large scale terraces as e.g. off SE Africa 

(Preu et al., 2011). At last, internal waves originating from the BC/AAIW interface might represent an 

enforcing factor, since these energetic patterns can result in massive sediment resuspension (Puig et 

al., 2004). Consequently, we propose that the lateral variations in width of the Ewing Terrace are the 

result of the massive forces associated to the BMC. However, partly structural control on the distinct 

northward narrowing of the La Plata Terrace and the middle slope cannot be excluded completely due 

to the presence of the Salado Transfer Zone (STZ), although satellite-derived gravimetric 

measurements (Smith and Sandwell, 1997) determined its position south of this major physiographic 

change (Franke et al., 2007). 

The change in depositional style along the Ewing Terrace in the vicinity of the Mar del Plata Canyon 

cannot be explained by the large-scale ocean circulation. Whether the canyon or the overall change in 

margin physiography disturbs the sedimentary processes forming the plastered drift will be determined 

in future studies.  

 

3.5.1.4 Lower slope – Furrows and the Necochea Terrace (T4) 

The shape of the lower slope differs from the previously described and discussed shapes of the upper 

and middle slope. Figures 3.4 and 3.11 indicate the smooth and regular margin shape in water depths 

between 1500-2000 m, which is only disturbed by the presence of the Mar del Plata and Querandi 

canyons cutting into the plastered drift strata. This part of the margin is under the influence of the 

UCDW (Figs. 3.9-3.12), which flows with relatively low velocities along the northern Argentine 

margin, favoring drift deposition (Figs. 3.8c and d) as suggested by low turbidity values (Fig. 3.13). 

In ~2000 m water depth not only the gradient of the lower slope changes, but also the margin 

morphology (Figs. 3.4 and 3.11). In contrast to the smooth surface upslope, the lower slope is 

characterized by a rough and hummocky surface in water depths between 2000-2900 m, which is at 

least in the area of the Mar del Plata Canyon and further northward incised by slope parallel incisions 

(Figs. 3.4 and 3.11). The hummocky surface of the lower slope indicates down-slope processes. These 

are  probably associated to the upslope drifts building the Ewing Terrace since the Middle Miocene 

(Hernández-Molina et al., 2009; Preu et al., chapter 2.), which are susceptible to failure due to locally 

focused sedimentation (Laberg and Camerlenghi, 2008). 
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The minor slope parallel incisions represent furrows, which are mainly located along the scars of the 

former sediment failures (Figs. 3.5, and 3.8e) and suggest the influence of erosive bottom currents 

(Viana et al., 2008). Consequently, the abundance of furrows in water depth between 2000-3000 m 

points toward the NADW, flowing as erosive bottom current (Fig. 3.11). The link to the NADW as 

margin shaping current is strengthened by turbidity values, which increase in the corresponding water 

depths (Fig. 3.13). Therefore, the disappearing of the furrows south of the canyon (Figs. 3.6 and 3.8f) 

would be the result of the detaching of NADW from the Argentine margin, which is also indicated by 

the hydrographic sections. The northern Section II (Fig. 3.9 bottom) shows that the NADW water 

mass is thicker and shallower compared to Section I (Fig. 3.9 top). These observations suggest a more 

intense flow of NADW in the north than in the south. As a result, we propose that the furrows are 

linked to the presence of the NADW, which would be locally focused due to seafloor irregularities and 

minor incisions created by gravitational processes.  

At the foot of the slope in water depths of ~3500m another terrace-like morphology called Necochea 

Terrace shapes the margin (Figs. 3.4 and 3.11). The prograding character of the deposited sediments 

indicates the influence of the surrounding oceanographic regime. Figure 3.9 shows clearly that the 

Necochea Terrace is today under the control of the LCDW and therefore, differs strongly from the La 

Plata Terrace and the Ewing Terrace. Comparable terraces were described for the southern Argentine 

margin, which are as well connected to Antarctic sourced or rather Southern Ocean sourced deep 

water masses (Hernández-Molina et al., 2009, 2010).  

The variations in the sedimentary pattern from north to south might be linked to the variations in the 

NADW pattern. With the detaching of NADW from the margin the flow behavior of the LCDW 

probably also changes. Restrained in space by the NADW, the LCDW flows faster north of the Mar 

del Plata Canyon prohibiting sediment deposition. In contrast, south of the canyon the drift formation 

is possible due to lower current activity. However, this concept of long-term behavior is in conflict 

with the recent hydrographic data (Figs. 3.9 and 3.10), which suggest no significant changes in the 

LCDW and AABW cores within the study area. 

An exception from the depositional pattern marks the area directly north of the canyon exit in the 

centre of the study area. There, in the current lee side exceptionally high sediment accumulation 

occurs supporting the hypothesis that the controlling water mass flows northward (Figs. 3.4 and 3.11). 

Consequently, the depositional style of the Necochea Terrace strongly depends on the NADW flow 

pattern, which in turn is influenced by the dynamics of the BMC. 

 

3.5.2 Genesis of Contourite Terraces 

3.5.2.1 General Concept 

Contourite terraces are formed by the interplay between margin physiography and the local current 

regime (Fig. 3.14). Water mass interfaces and their associated turbulent energy pattern might result in 

erosion along regular shaped margins (Fig. 3.14a). This energetic pattern might be enforced by 
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internal tides and internal waves, 

which have a tremendous effect on 

sediment dynamics and result in 

erosion and resuspension (Bonnin 

et al., 2002; Cacchione et al., 2002; 

Dickson and McCave, 1986; 

Hosegood and van Haren, 2003; 

van Raaphorst et al., 2001). Once 

the regular margin shape has been 

altered, upslope the slope steepens, 

while a smaller terrace-like feature 

developed along the water mass 

interface (Fig. 3.14b). 

The terrace due to its shape will 

strongly influence the local flow 

pattern. As aforementioned, 

McCave et al. (1982) described the 

relation between slope gradient and 

potential flow velocities in a case 

study at the Bermuda Rise 

suggesting that steeper slopes 

allow for higher current velocities 

and in consequence favor erosive processes. In contrast, terrace-like morphologies would result in 

calmer and more tabular flow conditions. Accordingly, a terrace would be characterized by a uniform 

depositional style or as the case may be laterally slow, from non-deposition to drift formation, varying 

depositional character on extensive terraces. While this depositional pattern would preserve the overall 

terrace shape, the upslope connected slope would be continuously eroded due to locally increased 

current velocities. On geological times the combination of both processes will lead to a cutting-back of 

the slope and a widening of the terrace (Fig. 3.14b). 

Depending on the overall flow velocities and sediment properties, the locally confined velocity 

maximum might lead to enhanced erosion forming a contour channel in the transition between the 

steep slope and the terrace (Fig. 3.14c). Therefore, a helicoidal flow pattern can evolve, which in turn 

continuously deepens the channel due to enforced erosive processes. The additional resuspended 

material provided by this processes is transported along the terrace, where at the seaward limit drift 

formation is possible (Fig. 3.14c). 

This model considers no structural control on the terrace formation. Since terraces, of course, might be 

as well predetermined by tectonic processes, for application of the model a structural control has to be 

Figure 3.14: Schematic model explaining contourite terrace formation
considering the erosive processes associated to water mass boundaries 
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ruled out. However, once the terrace was formed, sedimentary processes will be similar to the above 

described (Figs. 3.14b and c). 

 

3.5.2.2 Contourite terraces along the northern Argentine margin 

Since structural control on terrace formation can be excluded for the northern Argentine margin based 

on deep reaching multichannel seismic data (Hinz et al., 1999), the evolution of contourite terraces are 

probably related to oceanographic processes.  

Considering the above described deep thermocline associated to the BC/AAIW interface (Figs. 3.9 and 

10), the origin of the La Plata Terrace can be linked to water mass interface related processes (Fig. 

3.11). Since changes in temperature go along with changes in density, the BC/UCDW interface is 

particular susceptible for internal wave generation and propagation, which are as described above 

capable to initiate or enforce erosive processes (Fig. 3.12a). 

These high energetic patterns might not only influence the La Plata Terrace but as well the Ewing 

Terrace. Since the Ewing Terrace correlates with the AAIW/UCDW interface (Fig. 3.10), which 

represents a convenient surface to reflect and focus internal wave energy, the evolution of the Ewing 

Terrace might as well be related to processes in shallower water. Additionally, several studies 

suggested that the Ewing Terrace is controlled by the AAIW/UCDW interface since the Middle 

Figure 3.15: Seasonal variability of the Brazil-Malvinas Confluence derived from high resolution satellite climatology
(Casey and Cornillon, 1999)�
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Miocene (Hernández-Molina et al., 2009; Violante et al., 2010; Preu et al., chapter 2.). These studies �

not only suggest a cutting of the terrace into former strata but a widening of the Ewing Terrace due to 

drift deposition at the seaward boundary of the terrace, as well (compare Fig. 3.14c, Preu et al., chapter 

2). 

Since the Necochea Terrace is located within the LCDW, its position along the slope seems to exclude 

the water mass interface model (Fig. 3.9). However, this is not completely true considering that terrace 

formation is a process progressing on geological times. During glacial times the overall influence of 

Antarctic water masses onto the southern hemisphere increases (Duplessy et al., 1988; Mulitza et al., 

2007). This incorporates probably an increase in AABW production (Ninnemann and Charles, 2002; 

Piotrowski et al., 2008), which is still under debate (e.g.: Curry and Lohmann, 1982; Krueger et al., in 

press.; Weber et al., 1994). An overall strengthened influence of southern sourced water will lead to a 

thickening of the AABW layer at the Argentine margin. In contrast, NADW production is strongly 

reduced during cold periods (Knutz, 2008; McCave et al., 1995; Oppo and Fairbanks, 1987; 

Rasmussen et al., 1996; Venz et al., 1999), which leads to a thinning of the NADW layer along the 

northern Argentine margin (Kennett, 1982, Preu et al., chapter 2). While the thickening of the AABW 

pushes the LCDW/AABW-interface upward, there is no counterforce given by the NADW, which 

influence is significantly reduced. This scenario would place LCDW/AABW interface close to the 

Necochea Terrace during glacial times and therefore suggest that the terrace formation processes are 

mainly active during cold periods in this part of the margin. Consequently, the forcing responsible for 

the development of the Necochea Terrace would be very variable on geological timescales, which is 

reflected by its small-scale appearance on the margin. 

 

3.5.3 Implications on geological time scales 

Linking of lateral variations in terrace morphology and the associated erosive features to the regional 

oceanography (Fig. 3.11 and 3.12) allow to infer not only on terrace formation processes, but as well 

on the history of the controlling oceanic regime. This is in particular valid for the dynamics of the 

BMC, which marks the southernmost penetration of the BC and the NADW along the Argentine 

margin. 

As shown above, the lateral continuity and shape of the La Plata Terrace is strongly bound to 

variations in the BC flow pattern favoring internal wave generation and propagation. Since the La 

Plata terrace terminates a few kilometers south of the study area (Urien and Ewing, 1974), this 

scenario would suggest that the modern situation of the BMC would be close to its southernmost 

position on geological time scales. This might be at least valid for Quaternary times, when climate is 

dominated by glacial/interglacial cycles. While the modern position of the BMC would mark the 

location during interglacials, due to a stronger influence of southern sourced waters during glacials 

(Duplessy et al., 1988; Mulitza et al., 2007), the BMC was probably shifted northward (Preu et al., 

chapter 2). Approximately, this northward migration of the BMC can be shown by its seasonal 
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variation. Seasonal variability of the BMC (Fig. 3.15) derived from satellite observations (Saraceno et 

al., 2004) show a northward migration from southern hemisphere summer to winter. This 

interpretation is in agreement with the location of the seasonal frontal probability maxima, which was 

derived from very high resolution radiometer data (Saraceno et al., 2004). Following this concept, the 

position of the BMC would be located further northward during cold periods. Consequently,, we 

suggest based on the La Plata terrace shape that the modern position of the BMC is probably close to 

its southernmost position at least during Quaternary times. 

This interpretation is in agreement with the appearance of furrows at the lower slope mainly in the 

northern part of the study area (Figs. 3.4, 3.5, 3.8f and 3.11). As mentioned before, these features are 

probably produced by the interaction of NADW with the hummocky seafloor topography, which is the 

result from mass wasting processes. The southern limit of the NADW is marked by the location of the 

BMC, as well, where it is deflected and loses its margin constraint (Piola and Matano, 2001). 

Therefore, the abrupt disappearing of these slope parallel incisions in the southern part of the study 

area indicates the southernmost influence of the NADW and in turn of the BMC on geological 

timescales. 

 

3.4 Conclusion 
Morpho-sedimentary analysis of the northern Argentine margin based on seismo-acoustic and hydro-

acoustic data were used to describe erosive and depositional features including mass transport deposits 

and their lateral variability. Three major terraces were identified located in 500-600 m (La Plata 

Terrace), 1100-1300 m (Ewing Terrace) and 3500 m (Necochea Terrace) water depth, respectively. At 

least the two shallowest are connected upslope to particularly steep erosional slopes. In 2000-2900 m 

water depth the influence of downslope processes can be identified based on their hummocky surface 

and their chaotic seismic expression. 

The margin shape including erosive and depositional features changes distinctly in the center of the 

study area close to the Mar del Plata Submarine Canyon. While the La Plata Terrace narrows from 

south to north, the Ewing Terrace widens. Seaward, gravitational deposits in the northern part of the 

study area show slope parallel incisions identified as current induced furrows.  

Correlation of the morpho-sedimentary features with the surrounding oceanographic regime revealed a 

major relation between the terraces and the water masses. The location and evolution of terraces along 

the Argentine margin can be related to distinct water mass interfaces. While the La Plata Terrace 

correlates to the Brazil Current (BC)/Antarctic Intermediate Water (AAIW) interface, the Ewing 

Terrace is located at the AAIW/Upper Circumpolar Deep Water (UCDW) transition. The Necochea 

Terrace is probably located at the LCDW/Antarctic Bottom Water (AABW) interface during glacial 

times. 

The presence of these terraces along water mass interfaces suggests turbulent energy associated to 

these zones as initial mechanism for terrace formation. These erosive processes might be enhanced due 
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to processes related to internal wave generation. Once the first smaller incision is carved into the 

margin, locally the currents will be enforced along the stepper segments of the slope. In contrast, 

calmer, tabular conditions will dominate along the terraces. The combination of both flow patterns 

results in a cutting-back of the margin and therefore in a widening of the terrace over time. Through 

time the terrace may reach a size, when the seaward boundary of the terrace is distal to the high 

velocity pattern focused along the steeper parts of the slope. This will result in the formation of 

contourite drifts. 

Lateral variability of erosive features depends strongly on the surrounding oceanographic regime. 

Consequently, lateral variability in the shape of the northern Argentine margin indicates that the 

Brazil-Malvinas Confluence was located in its modern position or further northward during 

Quaternary times. 
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Abstract 
Sedimentary sequences of the northern Argentine contourite depositional system were studied to 

decipher the interaction of alongslope and downslope sediment transport processes. Based on the 

analysis of the sedimentary deposits in space and time by means of high-resolution multichannel 

seismic data, the influence of the oceanographic regime and the Mar del Plata Canyon on the slope 

architecture were determined.  

In agreement with earlier studies, we show that bottom currents influence sedimentary processes since 

the Eocene/Oligocene over the middle slope, coeval with the opening of the Drake Passage. While in 

the Early Miocene the study area is characterized by unfocused, lateral uniform sedimentation, an 

elongated depocenter representing plastered drift sequences was formed in the Middle Miocene with 

sedimentation rates close to ~ 10 cm/kyr due to the onset of the Northern Sourced Deep Water 

(NSDW). Afterwards, the successive closing of the Central American Seaway led to a strengthening of 

NSDW resulting in an upslope shift of the depocenter. Since the Late Pliocene associated with the 

final closure of the Central American Seaway, another plastered drift with an elongated depocenter is 

formed by the recent oceanographic setting. 

Besides the upslope depocenter shift from the Middle to the Late Miocene, as well a lateral change in 

the sediment distribution is observed. The lack of sediments on the northern Mar del Plata Canyon 

flank since the Late Miocene suggests that this major topographic irregularity has profoundly 

disturbed the bottom flow pattern and therefore along-slope transport processes. We propose that the 

Mar del Plata Canyon is mainly fed by along-slope processes since Early Miocene times due to a 

decrease of flow velocity and sediment transport capacity of the Antarctic Intermediate Water, flowing 

as bottom current over the canyon. The origin of the canyon is probably related to non-uniform 

subsidence occurring along the Salado Transfer Zone during the Middle Miocene and local failure of 

drift sediments 

 

4.1 Introduction 
Today, two different categories of sediment transport processes are known which control sediment 

dispersal within the deep-sea environment and which are distinguished by their initial driving force 

and main transport direction: downslope processes mainly driven by gravity and alongslope processes 

forced by bottom currents, which in turn are driven by the thermohaline circulation (Rebesco and 

Camerlenghi, 2008; Shanmugam, 2003, 2008). Both processes can be recognized by the appearance of 

associated sediment deposits in relation to margin physiography, their characteristic morphological 

features, which shape continental margins, and, of course, the sedimentological and acoustic 

characteristics of their deposits (Faugères and Stow, 1993; Faugères and Stow, 2008; Shanmugam, 

2003, 2008). 

Gravity-driven downslope processes dominate sediment transport in proximal areas of large 

terrigenous sediment sources as e.g. rivers, which form the most important transport system into the 
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marine realm (Milliman and Meade, 1983). There, in connection to such highly active sediment 

delivery systems, continental margins are often shaped by across-slope conduits of different 

dimensions reaching from small gullies to large canyon structures, which channelize downslope 

oriented sediment transport. Being unchannelized, gravitational processes can lead to creeping, 

extensive slides, slumps, debris and turbidity flows. These features may occur decoupled from the 

main sediment sources and are mostly the consequence of to locally higher sediment loads, 

oversteepening of slopes and excess hydrostatic pressure (Shanmugam, 2003, 2008). 

In addition to downslope transport processes, along-slope sediment transport adds an important 

element to globally relevant sediment dispersal mechanisms which can have large impact on the shape 

and architecture of continental margins (e.g.: Heezen, 1959; Heezen and Hollister, 1964; Hernández-

Molina et al., 2008a, 2008b; Stow et al., 2009). Along-slope sediment transport is mainly driven by 

bottom (contour) currents, which flow along continental margins as part of the major geostrophic and 

thermohaline circulation patterns interacting with the general seafloor morphology and eroding, 

resuspending and transporting sediments over large distances (Rebesco and Camerlenghi, 2008). 

Sedimentary deposits resulting from persistent bottom current activity are called contourites (Faugères 

and Mulder, 2011; Rebesco, 2005; Rebesco and Camerlenghi, 2008). Besides the temporal aspect the 

depositional characteristics of contourites strongly depend on the interplay between bottom current 

variability, sediment supply, and topographic framework (Faugéres et al., 1993, 1999). Associated 

with these depositional features, areas of erosion are common in close proximity to contourites.  In 

combination, zones of erosion and deposition reflect the dynamics of the bottom current regime and 

are referred to as contourite depositional 

system (CDS) (Hernández-Molina et al., 

2008a). 

While several studies dealt with the 

identification and description of either 

gravitational or bottom current induced 

sediment transport including their 

importance for slope architecture (e. g.: 

Antobreh and Krastel, 2007; Krastel et 

al., 2001; Llave et al., 2001; Nowell et 

al., 1985; Pratson and Coakley, 1996; 

Preu et al., 2011), only few studies 

focused on sedimentary systems 

controlled by both, downslope and 

alongslope processes (e.g.: Marchès, 

2008; Marchès et al., 2010; Mulder et 

al., 2006; Shanmugam, 2003) and 

Figure 4.1: Map of the boundary region between Uruguay and
Argentina indicating besides the main physiographic features, as well
the regional oceanographic regime and the Salado Transfer Zone; BC
– Brazil Current; MC – Malvinas Current; AAIW – Antarctic
Intermediate Water; CDW – Circumpolar Deep Water; NADW –
North Atlantic Deep Water; AABW – Antarctic Bottom Water; black
box indicates the study area 
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therefore, possible interactions are poorly studied and understood. 

A suitable region to study the interaction between alongslope and downslope processes is located at 

the northern Argentine continental margin. Off the Rio de la Plata River the extensive Mar del Plata 

Submarine Canyon is located directly within a major CDS (Fig. 4.1), controlled by Antarctic water 

masses and their interaction with northern sourced waters (Hernández-Molina et al., 2009; Violante et 

al., 2010); Preu et al., chapters 2 and 3). In this study we describe the characteristics of both the 

gravity controlled and bottom current induced sedimentary structures located off northern Argentina 

and their spatial and temporal variability. Moreover, we will discuss the influence of both processes 

and their possible interaction. At last, we will propose a conceptual model, which might explain the 

evolution of the northern Argentine CDS from the interplay with the Mar del Plata Submarine Canyon 

with the ambient oceanographic regime . 

 

4.2 Study site 
4.2.1 Oceanographic setting 

To study the interaction of highly active oceanographic processes with the seafloor, the northern 

Argentine margins represents a well suited study area being in one of the most dynamic basins of the 

world’s oceans (Chelton et al., 1990). The oceanographic setting in this area is mainly known for the 

Brazil/Malvinas Confluence (BMC) located at ~38°S (Fig. 4.1), a major convergence of two surface 

currents: the southward flowing Brazil Current (BC) and the northward flowing Malvinas Current 

(MC; Bisbal, 1995; Piola and Matano, 2001). Conditioned by the strong horizontal and vertical mixing 

associated with the BMC, its dynamics strongly controls sediment dynamics and margin morphology 

(Ewing and Lonardi, 1971; Piola and Rivas, 1997; Preu et al, chapter 3). Comparable to surface water 

conditions, the intermediate and deep ocean circulation encompasses as well strong mixing dominated 

by the encounter and interaction of Antarctic water masses (Antarctic Intermediate Water [AAIW], 

Circumpolar Deep Water [CDW] and Antarctic Bottom Water [AABW]) with the North Atlantic Deep 

Water (NADW), originating from the northern hemisphere (Fig. 4.1; Carter and Cortese, 2009; 

Georgi, 1981; Piola and Matano, 2001; Reid et al., 1977; Saunders and King, 1995). South of the 

BMC, the intermediate ocean circulation is conditioned by the northward flowing AAIW, located in 

500-1200 m water depth (Figs. 4.1 and 4.2), and CDW, which flows in two fractions: the Upper-CDW 

(UCDW) and the Lower-CDW (LCDW;Arhan et al., 2002; Arhan et al., 2003; Piola, 2006; Reid et al., 

1977). Within and north of the BMC, NADW, which flows southward in 2000-3000 m water depth 

(Figs. 4.1 and 4.2), separates vertically the two CDW fractions. This intercalation of water masses 

results in large vertical density gradients at their interfaces, which as a consequence are vertically 

displaced by eddies (Arhan et al., 2002, 2003; Piola and Matano, 2001). In water depths greater than 

3500 to 4000 m the ocean regime is dominated by the presence of AABW, which circulates in an up to 

2000 m thick basinwide cyclonic gyre (Arhan et al., 2002, 2003; Carter and Cortese, 2009; 

Hernández-Molina et al., 2009; Piola and Matano, 2001). 
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The overall circulation pattern of the northern Argentine margin may play a significant role in 

sedimentary processes within the Argentine basin and in particular within our study area (Arhan et al., 

2002, 2003; Flood and Shor, 1988; Hernández-Molina et al., 2009). 

 

4.2.2 Physiographic and geological context 

With a continental slope of ~1500 km length and 50-300 km width the Argentine continental margin 

represents one of the world’s most extended margins (Ewing and Lonardi, 1971). As part of the 

passive volcanic rifted continental margin of South America, it was formed during the opening of the 

South Atlantic (Ramos, 1999). Off Argentina, the margin is subdivided into four major segments each 

separated by a major transfer zone (Franke et al., 2007; Hinz et al., 1999). The study area is located in 

the transition between Segment III and IV, which is marked by the Salado Transfer Zone (STZ; Fig. 

4.1).  

Next to studies dealing with deeply located tectonic structures, the Argentine margin was in the focus 

of several local and regional studies revealing possible links between post-Cretaceous slope 

architecture and the oceanographic regime (e.g.: Bozzano et al., 2011; Gruetzner et al., 2011; Henkel 

et al., 2011; Hernández-Molina et al., 2009, 2010; Krastel et al., 2011; Violante et al., 2010; Preu et al. 

chapters 2 and 3). Latest since the Late Pliocene/Early Miocene the Argentine margin is under the 

influence of strong bottom currents. While the southern portion is mainly controlled by alongslope 

sediment transport processes, northward the influence of gravity-driven particle transport increases 

(Hernández-Molina et al., 2009; Violante et al., 2010). 

A major contourite depositional system (CDS) shapes the continental slope in the study area located 

off the Rio de la Plata (Fig. 4.1). Typical for this kind of system is that it encompasses a variety of 

physiographic features, which are the result of both erosional and depositional processes. As shown by 

Preu et al. (chapter 3), slope morphology in the study area predominantly reveals current controlled 

features, in particular three major contourite terraces: The La Plata Terrace (T1, 500-600 m), the 

Ewing Terrace (T2, 1100-1400 m), and the Necochea Terrace (T4, 3500 m; Hernández-Molina et al., 

submitted; Preu et al., chapter 3). These terraces are located close to the interfaces of the water masses, 

which are part of the complex oceanographic setting described above (Hernández-Molina et al., 2009) 

Preu et al., chapters 2 and 3). A fourth terrace, the so-called T3, located between the Ewing Terrace 

and the Necochea Terrace in water depths of ~2900m, was briefly described by (Hernández-Molina et 

al., submitted). However, its margin wide appearance and link to the NADW/LCDW interface has not 

yet been confirmed.  

Sediment deposition in the study area is restricted to the terraces. Due to their influence on bottom 

current conditions, they result in a tabular flow pattern necessary to allow for sedimentation in this 

highly dynamic oceanographic setting. Especially, along the Ewing Terrace in ~1200 m water depth 

large-scale plastered drift sequences were identified (Figs. 4.1 and 4.2; Preu et al, chapters 2 and 3). 

They form with their convex-up shape an elongated crest as part of the sedimentary deposit, oriented 
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towards the northeast, which distinguishes from the normal terrace shape by their positive relief 

(Bozzano et al., 2011; Violante et al., 2010; Preu et al., chapters 2 and 3). These are associated with a 

contour parallel channel running along the middle slope/terrace transition (Preu et al., chapter 3), 

likely linked to helical flow patterns. 

Located within the CDS three submarine canyon structures are incised deeply into the continental 

slope (from north to south): the Querandi Canyon, the Mar del Plata Canyon and the Punta Mogotes 

Canyon (Krastel et al., 2011; Preu et al., chapter 3). While both the Querandi and the Punta Mogotes 

canyon are small-scale features and quite narrow, the Mar del Plata canyon with its 130 km length and 

~15 km width forms a major physiographic irregularity within the CDS (Krastel et al., 2011). Located 

~15 km northeast of the STZ (Fig. 4.1), the Mar del Plata Canyon marks a major change in the overall 

slope morphology due to a distinct widening of the Ewing Terrace and narrowing of the middle slope 

in the northern part of the study area. The canyon head is located in water depths close to 1000 m and 

the canyon exits in ~4000 m water depth (Fig. 4.2). Overall, the thalweg is characterized by a low 

sinuosity. Based on high-resolution multichannel seismic data, a connection of the Mar del Plata 

canyon to the Argentine shelf and therefore, a relationship to a river-derived sediment flux from the 

Rio de la Plata can be excluded (Fig. 4.2; Krastel et al., 2011). 

 

4.3 Methods 
A variety of seismic and acoustic data sets were collected during R/V Meteor Cruises M49/2 (2001) 

and M78/3 (2009) with a main focuses on the acquisition of high resolution multichannel seismic 

(MCS) data (Fig. 4.2). In 2001 the data were recorded using the GeoB high resolution MCS system, 

which includes a 96-channel 600 m long analog streamer. In contrast, during R/V Meteor Cruise 

M78/3 seismic data were acquired using the high-resolution MCS system of the IFM-GEOMAR 

including a digital streamer of 200 m, which incorporates 128 channels. As seismic sources served 

several GI-guns of various chamber volumes, which cover a frequency range of 100-800 Hz. Overall, 

more than 1500 km of MCS data were collected during both cruises. The high-resolution MCS data 

were processed with the software package ‘VISTA Seismic Processing’ (GEDCO) following standard 

procedures including common midpoint binning and sorting, stacking, bandpass filtering, correction of 

residual statics and time migration.  

Seismostratigraphic interpretation in this study is based on previous work published by Ewing and 

Lonardi (1971), Hernández-Molina et al. (2010; 2009), Violante et al. (2010) and Gruetzner et al. 

(2011). The stratigraphic information was lately summarized as well and applied to the sedimentary 

sequences of the northern Argentine margin by Preu et al. (chapter 2).  

Isopach maps are given in meters based on a time-to-depth conversion of the MCS data using a 

constant velocity of 1500 m/s. 
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Next to the acquisition of MCS swatch bathymetry data were collected during both R/V Meteor 

cruises. In an integrated approach, MCS and multibeam data were interpret jointly using the software 

package ’The Kingdom Software 8.6’ (SMT).  

 

4.4 Slope architecture and its lateral variability 

�
Figure 4.2: Bathymetric map of the Mar del Plata Canyon and the surrounding contourite depositional system based on 
multi-beam data recorded during R/V Meteor Cruise M78/3; arrows indicate the regional current regime; AAIW – Antarctic 
Intermediate Water; UCDW – Upper Circumpolar Deep Water; NADW – North Atlantic Deep Water; dotted lines indicate 
location of multichannel seismic data recorded during R/V Meteor Cruises M49/2 and M78/3; black lines indicate seismic 
sections shown in Figs. 4.3-4.5; position of study area marked in Fig. 4.1 

Seismostratigraphic analysis of the subsurface of the Ewing terrace revealed four major seismic units. 

Based on previous interpretation of seismo-acoustic data sets presented by Preu et al. (chapter 2) the 

seismic units have been named the Oblique Unit, the Complex Unit, the Sigmoidal Unit and the 

Aggradational Unit (Figs. 4.3-4.5). Theses seismic units are bounded by major regional structural 

discontinuities within the sedimentary sequence of the Ewing terrace. From bottom to top they are 

named AR4, OUS, AR5 and H2. 

At the landward termination of the Ewing terrace the 300 ms TWT thick Oblique Unit is located 

~1000 ms TWT beneath the terrace. Clearly to identify by the onlap of seismic reflections, the lower 

boundary of the Oblique Unit is represented by the AR4 horizon (purple line in Figs. 4.3-4.5), marking 

the Eocene/Oligocene boundary. The upper termination of the Oblique Unit is given by the sigmoidal  
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Figure 4.3: Section of multichannel seismic Line GeoB01-143; location of profile indicated in Fig. 4.2; VE ~20 

�

Figure 4.4: Section of multichannel seismic Line GeoB01-141; location of profile indicated in Fig. 4.2; VE ~22 

�

Figure 4.5: Section of multichannel seismic Line GeoB01-135; location of profile indicated in Fig. 4.2; VE ~20 
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OUS horizon (green line in Figs. 4.3- 4.5), which was suggested to be of late Oligocene age by Preu et 

al. (chapter 2). Seismic facies of the Oblique Unit shows an oblique-sigmoidal reflection stacking 

pattern forming clinoforms, which results in the bank-like morphology. 

The Complex Unit (Figs. 4.3 and 4.5), which has an average thickness of ~600 ms TWT, is located 

~1000 ms TWT beneath the modern seafloor of the Ewing terrace seaward of the Oblique Unit. The 

unit is bounded at the base by the regional horizons AR4 and OUS (Figs. 4.3-4.5) being either of 

Eocene/Oligocene boundary (AR4) or of Late Oligocene (OUS) age. The AR5 horizon (blue line in 

Figs. 4.3-4.5) marks the upper boundary, probably of Middle Miocene age (~16 Ma). The overall 

change from a parallel, layered reflection pattern to a wavy layered seismic facies at the base of the 

Complex Unit allows a clear identification of the AR4 horizon in most parts of the study area. In 

contrast, at the seaward and landward termination of the Ewing terrace this structural change in the 

seismic facies associated to the AR4 horizon cannot be clearly determined due to enhanced signal 

attenuation (Fig. 4.4). Overall, the Complex Unit is characterized by low amplitude reflections 

forming a complex wavy stacking pattern. 

Combined, both units, the Oblique and the Aggradational Unit, reveal a more or less uniform sediment 

thickness over the total study area (Fig. 4.6a). While the Oblique Unit is only located on the landward 

boundary of the Ewing Terrace, the Aggradational Unit shows a distinct depocenter seaward balancing 

the morphological high of the Oblique Unit (Figs. 4.3-4.5). 

The transition from the Complex Unit to the Sigmoidal Unit is given by the regional AR5 

discontinuity, marking the middle Miocene and representing an onlap surface for reflections of the 

Sigmoidal Unit. The H2 horizon (yellow line in Figs. 4.3-4.5), which is of Late Miocene age, 

terminates the Sigmoidal Unit on its upper boundary, truncating reflections seaward.  

Associated with the Sigmoidal Unit, which shows a maximum thickness of 600 ms TWT, a major 

change in the sedimentary stacking pattern occurs (Fig. 4.3-4.5). The small-scale wavy and low-

amplitude reflections of the Complex Unit are followed by a large-scale sigmoidal convex-up shaped 

reflection pattern with a high amplitude seismo-acoustic facies, typical for plastered drift sequences. 

Through time the sigmoidal reflection character becomes more pronounced, while the average slope 

angle of reflections decreases (Fig. 4.5). 

Besides the change in seismic facies, the Sigmoidal Unit differs from previous sedimentation by the 

formation of a distinct depocenter at its seaward boundary (Fig. 4.6b). This northeastward oriented 

elongated depocenter shows an almost four times higher sediment thickness than deposits beneath the 

modern center of the Ewing Terrace leading to a widening of the terrace-like shape defined by AR5 

(Figs. 4.3 and 4.6b). 

On top of the H2 horizon, which truncates the uppermost reflections of the Sigmoidal Unit, the 

Aggradational Unit is located, bounded above by the seafloor (Fig. 4.3-4.5). The Aggradational Unit 

with its 300 ms TWT thickness marks another significant change in the sedimentary pattern from a 

partly prograding to an aggradational reflection stacking pattern showing similar high amplitudes as 
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the Sigmoidal Unit (Figs. 4.3 and 4.5). The depositional character of the Aggradational Unit slightly 

changes in its center at the H1 horizon (red line in Figs. 4.3-4.5), which marks the Late Pliocene. On 

top of the H1 horizon a positive relief is formed at the seaward limit of the Ewing terrace as a result of 

a convex-up stacking pattern, representing the crest of the plastered drift sequences deposited within 

the Aggradational Unit. The crest has a height between 50-100 ms TWT above the surrounding terrace 

(Figs. 4.3 and 4.5) 

In general, in transition to the Aggradational Unit the depocenter center is shifted upslope compared to 

the Sigmoidal Unit (compare Figs. 4.6b-d). While beneath the H2 horizon the aggradational character 

of the seismic unit can be clearly identified by locally increased sedimentation (Fig. 4.6c), a new 

elongated depocenter is formed since the Late Pliocene, which represents the modern drift crest (Fig. 

4.6d). However, besides the upslope shift of the depocenter, as well alongslope changes occurred in 

the sedimentary pattern. From the Eocene/Oligocene boundary, marked by the AR4 horizon, to the 

Middle/Late Miocene transition, represented by the H2 reflection, the sediment accumulation reached 

until the modern axis of the Mar del Plata Canyon (Figs. 4.6a and b). Since the Late Miocene the area 

directly north of the canyon represents an area close to non-deposition (Figs. 4.6c and d).  

 

4.5 Oceanographic implications 
Marking the opening of the Drake Passage and its associated global cooling (Lagabrielle et al., 2009; 

Zachos et al., 2001), the AR4 horizon represents the change in the South Atlantic from a sluggish 

surface and deep water circulation to a highly dynamic oceanographic regime. This setting is 

dominated not only by fast flowing surface currents, but as well by bottom currents shaping the 

morphology of the Argentine continental margin (Gruetzner et al., 2011; Hernández-Molina et al., 

2009, 2010; Preu et al., chapter 2). While the Oblique Unit with its clinoform-like structures (Figs. 

4.3-4.5) was probably formed under shallow water conditions, the Complex Unit was influenced by 

intermediate water as indicated by the small scale wavy seismic facies. The difference between both 

major seismic units is therefore more controlled by margin subsidence and sea-level variations than by 

changes within the global oceanographic regime (Preu et al.; chapter 2).This is indeed indicated by the 

more or less uniform thickness of sediments deposited from the Early Oligocene until the Middle 

Miocene, which includes both the Oblique Unit and the Complex Unit (Fig. 4.6a). The sedimentary 

style suggests over the study area a uniform flow pattern of the Southern Sourced Intermediate Water 

(SSIW), in recent times known as AAIW, which was the shaping bottom current in this part of the 

margin during the Early Miocene (Preu et al., chapter 2). 

During the middle Miocene with the formation of the Sigmoidal Unit a distinct NE elongated 

depocenter was formed (Fig. 4.6b). With estimated accumulation rates of ~10 cm/kyr in the 

depocenter, it clearly differs from the sedimentary pattern imaged further upslope showing ~5 times 

smaller values. The elongated depocenter, typical for contourites (Faugères et al., 1999; Faugères and 

Stow, 2008), was formed during the middle Miocene beneath the upslope migrating interface between 
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Figure 4.6: Isopach map of seismic units of northern Argentina; only seismic lines crossing the Ewing Terrace are 
considered; time-depth conversion was calculated based on a constant sound velocity of 1500 m/s; a) sediment thickness 
between the AR4 and AR5 horizon (Eocene/Oligocene boundary – Middle Miocene); b) sediment thickness between the AR5 
and H2 horizon (Middle Miocene – Late Miocene); c) sediment thickness between the H2 and H1 horizon (Late Miocene – 
Late Pliocene); d) sediment thickness between the H1 horizon and the seafloor (Late Pliocene – today) 

the SSIW and the Upper Southern Sourced Deep Water (USSDW), which is in modern times 

represented by the UCDW (Preu et al, chapter 2). 

The upslope shift of the SSIW/USSDW interface and the depocenter during the Middle Miocene is 

linked to a major reorganization of the oceanographic regime triggered by the onset of massive deep 

water production in the North Atlantic. Although the overall onset of northern sourced deep water is 

heavily discussed at the moment, the submergence of the Faeroe-Iceland-Greenland ridge clearly has 

increased deep water production in the North Atlantic (Knutz, 2008; Vogt, 1972). This had a major 

impact on the ocean stratification in the South Atlantic as well (Kennett, 1982). Corresponding to the 
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vertical shift of Antarctic Water mass boundaries during this time, the depocenter shifted upslope, as 

well, following the low energetic flow conditions of the USSDW (Preu et al., chapter 2).  

As the estimated sedimentation rates of ~1-1.6 cm/kyr and the position of the local depocenter suggest 

(Fig. 4.6c), during the Late Miocene the depositional environment was limited due to high energetic 

current conditions and only depressions, which were the result of the sigmoidal stacking pattern of the 

underlying unit, were leveled by locally increased deposition. Major sediment deposition was 

prohibited by the SSIW/USSDW interface, which slowly shifted upward since the Late Miocene due 

to the successive closure of the Central American Seaway (Hermann, 1990; Newkirk and Martin, 

2009; Preu et al., chapter 3). 

After northern sourced deep water production was fully established with the final closure of the 

Central American Seaway (Burton et al., 1997; Nisancioglu et al., 2003), a new elongated depocenter 

was formed oriented to the NE showing sedimentation rates of ~ 3 cm/kyr in its center (Fig. 4.6d). 

Since then, sedimentation in the study area is mainly controlled by variations in ocean stratification 

associated with glacial/interglacial cycles, leading to an upslope shift of the SSIW/USSDW interface 

during cold periods (Preu et al., chapter 2).  

 

4.6 Implications of material transport influenced by the Mar del Plata Canyon 
The Mar del Plata canyon has no modern connection to the Rio de la Plata River. The existence of a 

former, older connection to this major river system can be excluded, as well, based on high-resolution 

seismic data (Krastel et al., 2011). The additional absence of smaller gullies and channels, in which 

material could be transported in larger amounts off the shelf, excludes the Rio de la Plata and the 

northern Argentine shelf as a major sediment source for the Mar del Plata canyon and the margin 

segment as a whole (Krastel et al., 2011; Preu et al., chapter 3).  

Two different processes, the upslope-erosion and the downslope-erosion model (Pratson et al., 1994; 

Twichell and Roberts, 1982), were discussed during the last decades explaining the presence of 

canyons detached from major river systems. While the upslope model assumes local slope failures as 

possible trigger, which successively cut back the canyon head, the downslope-erosion model requires 

buried, pre-existing erosional channels, which are episodically re-eroded by downslope sediment 

transport. 

Both evolution schemes describe a pure feeding of the canyon by downslope processes and sediment 

supply sourced upslope from the shelf. However, slope parallel processes controlling drift deposition 

may present another possible sediment source for the Mar del Plata Canyon, which represents a natural 

obstacle for topography-guided contour currents (Zenk, 2008). The cyclic vertical migration of the 

SSIW/USSDW interface (Preu et al., chapter 2) and the low to moderate tabular current conditions 

enforced by the Ewing terrace morphology (McCave et al., 1982; Preu et al., chapter 3) should provide 

an areawide uniform forcing which controls plastered drift formation. Instead, the lack of 

sedimentation (Figs. 4.6c and d) and the missing drift crest north of the Mar del Plata Canyon (Fig. 
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4.4) indicate a major disturbance in the sedimentary regime.  

This sedimentary pattern can be explained by assuming that northward flowing bottom currents, 

transporting sediments along the Ewing Terrace, are disturbed by the presence of the canyon. Once the 

bottom current reaches the canyon, it loses its topographic constraint within the ~1.5 km deep and 20 

km wide Mar del Plata Canyon, which results in a drop of flow velocity and transport capacity. 

Consequently, the suspended sediment load associated with the AAIW (Preu et al.; chapter 2) would 

be released into the canyon and would not be available for plastered drift formation directly north of 

the canyon. The presence of another plastered drift further north (Fig. 4.3 and 4.6d) at some distance 

from the canyon indicates a reestablishment of the bottom current conditions.  

This interpretation is in agreement with previous work regarding the interaction of alongslope and 

downslope processes, which indeed documented that bottom currents are significantly influenced by 

large topographic incisions (e.g.:Faugeres et al., 1999; Marchès, 2008; Marchès et al., 2010; Mulder et 

al., 2006, 2008; Salles et al., 2010; Zenk, 2008). Especially, in the northern Gulf of Cadíz detailed 

studies were conducted in close proximity to the Portimao Canyon. This system is characterized by 

trapping of the bottom current within the structure, which flows thereafter along the canyon axis 

(Marchès, 2008; Mulder et al., 2008). Furthermore, this down-welling leads to erosion on the 

downstream flank of the canyon and results in a slow migration of the canyon (Marchès, 2008). 

Both mechanisms cannot be identified at the Mar del Plata Canyon due to massive differences in 

spatial dimensions. Since the Mar del Plata Canyon is ~10 times wider and ~15 times deeper than its 

northern hemisphere counterpart (c.f. Mulder et al., 2008),the decrease in flow velocity and loss of 

transported material are more pronounced across the canyon axis resulting in lower erosive forces at 

the down-stream located flank and therefore, no thalweg migration. Furthermore, the AAIW, which 

forms the bottom current, cannot be deeply down-welled into the canyon due to the local water mass 

stratification. However, the loss of topographic constraint above the canyon probably leads to minor 

downwelling phenomena along the AAIW/UCDW interface, which further decreases flow velocities 

and increases the amount of dropped material. 

The above described difference in spatial dimensions is as well reflected in the sedimentary pattern of 

both systems. While sedimentation downstream of the Portimao Canyon in the Gulf of Cadíz is only 

depleted in coarse material (Marchès, 2008; Mulder et al., 2008), more or less no sediment is 

deposited north of the Mar del Plata Canyon (Figs.4.4 and 4.6d). Accordingly, we propose that the 

Mar del Plata Canyon is mainly fed by alongslope processes, which control the surrounding CDS. The 

canyon pirates material transported within the above flowing bottom currents, which are disrupted by 

the major change in physiography. In turn, this leads to a major lack in sedimentation down-stream 

within the CDS. 
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4.7 Genesis and evolution of the Mar del Plata canyon 
Since the Late Miocene sedimentation on the northern flank of the Mar del Plata canyon significantly 

weakens compared to earlier times (Figs. 4.6c and d), where this area does not distinguish from the 

surrounding sedimentary pattern (Figs. 4.6a and b). Progressing through time, this part of the margin is 

characterized by close to non-depositional conditions, while major depocenters were formed 

northward in the same water depth with accumulation rates of ~3 cm/kyr (Figs.4.3, 4.6c and d). Due to 

the above described impact of the Mar del Plata Canyon on sedimentary processes in recent times, the 

absence of sediments on the northern canyon flank may reveal the origin of the canyon. We can 

conclude that since Late Miocene times the Mar del Plata Canyon likely dominates locally the 

sedimentary regime. 

The Mar del Plata Canyon is located directly north of the Salado Transfer Zone (STZ) separating two 

major South American tectonic segments: III and IV (Fig. 4.1; Franke et al., 2007; Hinz et al., 1999). 

Associated to the STZ and the general South American tectonic regime, a period of strongly enhanced 

subsidence was described for the Middle Miocene (Aceñolaza, 2000; Kennett, 1982; Potter and 

Szatmari, 2009). The impact of this tectonically active time on sedimentary structures in particular in 

the northern study area is reflected by a varying inclination of reflections within the Sigmoidal Unit 

through time and has been described in detail by Preu et al. (chapter 2).  

During this time period the Mar del Plata formed under the influence along the STZ, which defines the 

border between margin segments of different subsidence history. This hypothesis is supported by the 

presence of gas indicated by strong acoustic signal attenuation beneath the Sigmoidal Unit north of the 

canyon (Fig. 4.4). Since this signal anomaly can only be observed close to the Mar del Plata Canyon, 

gas from deeper sources probably migrates along minor fault zones upward until it reaches the 

plastered drift sequences of the Sigmoidal Unit. 

A slow subsidence would, of course, not directly result in the genesis of a canyon, but may have 

created weak zones within the sedimentary column. The sediments may have started to fail as a result 

of the additional loading due to horizontally uneven sedimentation and non-uniform pore pressure 

distribution within the plastered drift, which was deposited during the Middle Miocene in the study 

area (Laberg and Camerlenghi, 2008). Afterwards, due to upslope erosion, the canyon head migrated 

landward due to successive back-cutting triggered by episodic sediment failures. While during the 

Middle Miocene the canyon did probably not reach a width to control the sedimentary pattern in the 

study area (Figs. 4.6a and b), latest since the Late Miocene the local current regime is disturbed (Figs. 

4.6c and d).  

Therefore, based on the sedimentary pattern we propose that the genesis of the Mar del Plata Canyon 

is associated to the Salado Transfer Zone and evolved during the Middle Miocene as a consequence of 

tectonic activity followed by continuous sediment failure. Since then the Mar del Plata canyon disturbs 

the local flow pattern, decreases the bottom water sediment transport capacity and catches the 
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sediments drop out of the water column, leading to a deficit of sediment supply north of the canyon 

since Late Miocene times. 

 

4.8 Conclusions 
Analysis of sedimentary sequences in time and space revealed major vertical and lateral depocenter 

shifts along the northern Argentine margin. Based on established regional stratigraphy vertical 

changes in the sediment distribution were linked to different stages in the development of the 

oceanographic regime. Coeval with the opening of the Drake Passage, unfocused and areawide 

uniform sedimentation marks the onset of the Malvinas Current and its associated northward flowing 

water masses during the Oligocene and the Early Miocene as a result of global cooling. Indicated by 

the formation of plastered drift sequences and the related elongated depocenter in the Middle Miocene, 

Northern Sourced Deep Water (NSDW) production had started or had at least significantly increased. 

Due to strengthening of NSDW as a result of the successive closure of the Central American Seaway 

an upslope depocenter shift occurred in the early Miocene. Since the final closure of this major ocean 

gateway the recent oceanographic regime was established and a new elongated depocenter 

representing a plastered drift is formed. 

This particular modern depocenter is missing on the northern flank of the Mar del Plata Canyon, 

which is the result of a decrease in flow velocity and sediment transport capacity of bottom currents 

across the Mar del Plata Canyon. As the Mar del Plata Canyon disturbs the regional current pattern 

and pirates sediments from alongslope processes controlling the surrounding contourite depositional 

system. Tracing this distinct signature within the sedimentary deposits trough time indicates that the 

Mar del Plata Canyon interacts with the current regime at least since the Late Miocene and was 

probably created during the Middle Miocene as a result of non-uniform subsidence and local sediment 

failure. 
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Bottom currents controlling sediment transport over longer distances and time periods were for the 

first time described in detail in the early 60’s, when (Heezen and Hollister, 1964; Heezen et al., 1966) 

had revealed the impact of contour currents on sediment accumulation patterns by taking photographs 

of sediment traction structures in the deep sea. This observation has initiated during the 80’s the High 

Energy Benthic Boundary Layer Experiment (HEBBLE; Hollister and McCave, 1984; McCave and 

Hollister, 1985; Richardson et al., 1981), which demonstrated the impact of eddies on sedimentary 

patterns by transporting material at the seafloor and in the water column. Following these findings 

several studies determined the existence and the characteristics of bottom nepheloid layers (BNLs) and 

intermediate nepheloid layers (INLs; Anderson et al., 1983; Bacon and Rutgers van der Loeff, 1989; 

McCave, 1986).  

Principally, these layers are the result of material remobilized by and transported within the eroding 

water mass away from continental slopes (McCave et al., 2009). Visualization and mapping of BNLs 

and INLs were carried out using predominantly the Lamont nephelometer (Thorndike, 1975) and still 

today, investigations are more or less restricted to optical measurements (McCave et al., 2009). 

Figure 5.1: Map of SE Africa in the boundary region between South Africa and Mozambique; black arrows indicate main
surface current directions highlighting the Mozambique Current (MOC), the East Madagascar Current (EMC), the Agulhas
Current (AC) and the semi-permanent Delagoa Bight Eddy (DBE); grey box marks the study area,  presented in detail in Fig.
2  
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Acoustic mapping of suspended particles so far was concentrated on shallow water and ultra high 

frequencies within the range of megahertz (e. g.: Shi et al., 1999; Thorne et al., 1993; Thorne et al., 

1991), by analyzing signal attenuation and energy scattering by particles in the water column. Here we 

present a new approach combining Acoustic Doppler Current Profiler (ADCP) and single beam 

echosounder backscatter data sets (18 kHz parametric echosounder) to document active sediment 

transport and its mechanisms in a water depth of 0-700 m along the SE African slope (Fig. 5.1). 

This area is well suited to study the highly dynamic processes of BNLs and INLs as it is located in the 

confluence of the Mozambique Current (MOC) and the East Madagascar Current (EMC), which 

merge into the Agulhas Current (AC), the second largest surface current of the modern ocean (Fig. 

5.1). The AC is mainly characterized by large-scale anti-cyclonic eddies which originate in the source 

region of the MOC and the EMC (Lutjeharms, 2006). In addition to eddies inside the AC, at 25°S a 

major lee eddy system exists in front of the Limpopo River, known as the Delagoa Bight Eddy (DBE), 

as a result of the southward flowing currents (Lutjeharms and Da Silva, 1988). This lee eddy drives a 

coast parallel counter current, which transports sediment eastward along the coast (Flemming, 1981; 

Preu et al., 2011). 

The presented Acoustic Doppler Current Profiler (ADCP) and backscatter data sets (18 kHz 

parametric echosounder) were acquired during R/V Meteor Cruise M75/3. For acoustic imaging of the 

Figure 5.2: Close-up map of the study area; black lines mark locations of hydro-acousitc profiles; black arrows indicate the
regional oceanographic regime dominated by the Agulhas Current and the Delagoa Bight Eddy (DBE); orange circles
represent two eddy features including their rotation direction based on ADCP data 
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water column, the parametric echosounder ‘Parasound P70’ (Grant and Schreiber, 1990; Medwin et 

al., 1999) was used. Signal generation is based on the parametric effect, which occurs when very high 

(finite) amplitude sound waves are generated (Medwin and Clay, 1997; Spiess, 1992). In case of the 

the Parasound System, the Primary High Frequency (PHF) is fixed to 18 kHz, which distributes 

energy within a beam of ~4.5° for a transducer of ~1 m length. The (variable) second primary 

frequency was set to 22 kHz, resulting in a Secondary Low Frequency (SLF) at 4 kHz being generated 

and travelling within a narrow 4.5° beam. The PHF was used to record signals in the full water column 

whereas SLF data provides information about the subsurface sediment.  

The Acoustic Doppler Current Profiler (ADCP, RD Instruments) was operated with a main frequency 

of 75 kHz, allowing measurements of current velocity and current direction versus water depth. The 

data were recorded with a vertical bin size set to 16 m and during the final processing the data set was 

averaged over 300 s, which corresponds to 750 m by a mean ship speed of 5kn. 

ADCP and Parasound data were used for surveying and spatial mapping on the Inharrime Terrace 

(Fig. 5.2), which is a crest-like feature formed under the influence of strong bottom current forcing 

(Martin, 1981) as part of major contourite drift sequences (Preu et al., 2011). 

As seen in Fig. 5.3B the main current direction east of the Inharrime Terrace points towards SSW in 

contrast to the eastward directed current in the center of the Inharrime Terrace. Spatial analysis within 

the transition between the flow patterns of opposite direction ADCP data revealed two small scale 

eddy features of ~5.5 km diameter seaward and of ~10.5 km landward of the crest, located within the 

large-scale circulation pattern of the DBE (Fig. 5.2). Fig. 5.3A indicates the current direction 

variability induced by the smaller eddy as a change of current direction of ~180° between 3 and 4 km 

offset. Comparing current direction measurements to the horizontal current velocity (Fig. 5.3), the 

lowest approximated velocities are present landward of the eddy centre. Velocities significantly 

Figure5.3: Collected ADCP data along profile GeoB08-226; A) estimated current direction; B) estimated horizontal current
velocities; location of profile is indicated in Fig. 2 
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increase further offshore from 0.1 m/s to 1.3 m/s. From the crest towards the centre of the Inharrime 

Terrace, velocities increase to 0.5 m/s. 

The smaller eddy on the seaward side of the crest is likely a result of the interplay between the crest 

morphology and the southward flowing AC (Fig. 5.2), reaching in its center 1.3 m/s. On the opposite 

site of the crest, the larger feature probably originates from interaction of terrace morphology and the 

large-scale south-eastward circulation at the Inharrime Terrace as part of the large scale DBE system.  

Parasound data (Figs. 5.4 and 5.5A) reveal distinct water column high backscatter anomalies and 

indications for surface erosion in sections, which are characterized by either low or high current 

velocities (Fig 5.3B). The most prominent one appears on the Inharrime Terrace directly on the 

landward side of the crest directly above the seafloor in conjunction with truncated reflections in the 

subsurface (Figs. 5.4 and 5.5).  

Considering the erosion processes in this area as suggested by the SLF data (Fig. 5.4), these 

backscatter signals might be related to reworked fine grained material within the water column. 

However, it is unclear at this stage, how a suspension cloud causes higher backscatter, as the particle 

size/signal wavelength ratio seems insufficient, and individual particles are not expected to be imaged 

by the 18 kHz Parasound signal. Dense particle accumulations forming nepheloid layers, on the other 

hand, are likely to interact with the acoustic signal not as single particles, but rather generate volume 

scattering of the acoustic energy, whose spatial variation indicates changes not only in particle size but 

as well in particle concentration. Consequently, these backscatter signals (PHF) recorded in close 

proximity to both eddies suggest an interaction between eddy related kinetic energy and the particulate 

matter in the water column and at the seafloor, which had been documented by previous studies (e.g.: 

Richardson et al., 1993). Accordingly, we assume that higher backscatter areas in our data indeed 

Figure5.4: 4 kHz parametric echosounder data showing  truncated reflections at the seafloor, in particular on the Inharrime
Terarce; location of profile is indicated in Fig. 2 
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point to higher particle concentration in the water column, which is likely related to sediment 

resuspension or winnowing and active particle transport processes in this area (Fig. 5.5B).  

This interpretation is also supported by the apparent current velocity field measured by ADCP, which 

reach velocities as low as 0.2 cm/s (Fig. 5.3B). In case of exceptionally high particle concentration, as 

we expect in the vicinicty of the Inharrime Terrace, current velocity approximations using an 75 kHz 

ADCP are no longer trustworthy, since the Doppler Shift effect depends on single particles, but the 

suspension cloud appears as a uniform nepheloid layer without apparent movement. As a 

consequence, very low current velocities are measured. However, the generally high horizontal 

velocities on the Inharrime Terrace (0.3-0.5 m/s) measured further landward in some distance from the 

high energetic eddies (Fig. 5.3B) are still sufficient to transport even sandy particles (McCave, 2005). 

Consequently, the northwestern eddy (Fig. 5.2) concentrates winnowed and reworked material in a 

very small patch along the crest, which by its morphology forms a natural barrier for the E-W 

sediment transport. This morphology and the associated current controlled particle trap leads to a high 

concentration of particulate matter in the BNL, which can be imaged using ADCP and 18 kHz 

Parasound (Figs. 5.3 and 5.5).  

A similar feature of lower magnitude (Fig. 5.5) could be identified downslope of the smaller eddy 

(Fig. 5.2), which suggests smaller particle sizes and/or lower particle concentrations in the water 

column compared to the situation on the Inharrime Terrace. The backscatter signal in this case is not 

restricted to the BNL, but in fact can be traced away from the slope, where schlieren-like features 

emerge into the water column (Fig. 5.5A). The layer appearance of the backscatter anomaly strongly 

Figure 5.5: A) 18 kHz parametric echosounder data indicating backscatter anomalies within the water column; profile
location is indicated in Fig. 2; B) Interpretation of 18 kHz profile marking schematically areas of sediment resuspension and
transport in intermediate nepheloid layers (INLs) and benthic nepheloid layers (BNLs); interpretation of plankton layer in the
uppermost 50 meters is based on (Medwin and Clay, 1997); location of profile indicated in Fig. 2 
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indicates the presence of INLs, which are maintained within the AC. Once in suspension, the AC, 

which is deflected westward by the Coriolis Force, detaches the material from the slope and keeps the 

matter in suspension due to its high internal velocities (Fig. 5.3). The backscatter distribution (Fig. 5.5) 

is the result of variations in particle density and size, since particles are forced to align along the 

isopycnal, determined by changes in temperature and salinity (McCave et al., 2009). The base of the 

INL is probably defined by the transition from the equatorial surface waters transported within the AC 

and the underlying subantarctic AAIW (Martin et al., 1982). The major density gradient at the 

interface of these water masses forms a physical barrier for sinking particles (c.f.: McCave, 1986). 

Along this interface even larger particles accumulate, which therefore reveal the highest backscatter 

amplitudes (Fig. 5.5). The water mass interface might as well be the trigger for the BNL by generating 

internal waves. Due to their erosive force, these energetic patterns can generate both, BNLs and INLs 

(Puig et al., 2004). 

Beyond these observations, the INLs are not the only signals present in the water column within the 

AC. Directly on the crest layered acoustic backscatter anomalies indicate a strong vertical stratification 

within the uppermost 200 m of the Agulhas Current. While the stratification is probably related to the 

deep thermocline within the AC (Lutjeharms, 2006), the acoustic backscatter is likely produced by 

particles captured on top of this large density gradient.  

The vertical stratification is lost in the center area of the smaller eddy, where the acoustic backscatter 

anomaly is sloping down to 280 m water depth (at 20-30 km offset in Fig. 5.5A). This spatial variation 

is the result of the smaller cyclonic eddy itself producing upwelling in its center. Due to the associated 

turbulence water mass stratification weakens and isopycnals spacing widens, which explains the 

deepening and weakening of the backscatter signal. These findings are in agreement with earlier 

studies, which have shown the impact of the AC- and DBE-induced upwelling on the sedimentary 

composition (Du Toit and Leith, 1974; Lutjeharms and Da Silva, 1988). However, the downward 

bending of the signal might be as well explained by down-welling, acting as counterforce to the 

upwelling in the eddy center. Whether either upwelling or downwelling prevails, might strongly 

depend on the seasonal or even short period variability of the system, which has been already shown in 

several studies using satellite and current measurements (Lutjeharms, 2006; Lutjeharms and Da Silva, 

1988; Saetre and Da Silva, 1984) 

In summary, our results reflect the highly dynamic oceanographic and sedimentary regime associated 

with the AC and DBE. Based on the integration of 18 kHz Parasound and 75 kHz ADCP data, INLs 

and BNLs were identified within the AC. Thereby, for the first time sediment resuspension and 

transport under the influence of high kinetic energy eddies could be visualized in situ using 18 kHz 

Parasound signals, whose amplitudes likely represent volume backscatter. Spatial variations in 

backscatter strength and current parameters were not only used to describe the sedimentary regime in 

the transition to the Inharrime Terrace but also to characterize the regional oceanographic setting, in 

particular two minor lee eddies. Our most significant conclusion is that massive sediment 
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resuspension, erosion and transport indeed occur due to the interaction of a high energetic flow pattern 

and the topographic framework. This might be in particular apply to the interplay between the two lee 

eddies located at the eastern boundary of the Inharrime Terrace and the sedimentary crest.  
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6. Conclusions and future perspectives 
This thesis presents for the first time a detailed and integrated approach to differentiate between the 

impact of alongslope and downslope sedimentary transport processes on slope architecture and to 

assess their interaction within the dynamic, high energetic oceanographic setting off northern 

Argentina. The research in this study followed a comprehensive approach: (1) reconstructing the 

oceanographic setting on geological timescales; (2) assessing the impact of the margin topography on 

alongslope sediment transport processes and vice versa; (3) determining the influence of a large 

seafloor irregularity like the Mar del Plata Canyon on alongslope sedimentary processes; (4) 

identifying sediment transport processes within the water column and at the seafloor. 

First of all, seismic facies analysis of high-resolution multichannel seismic data revealed the presence 

of major drift sequences along the northern Argentine margin as part of a contourite depositional 

system (CDS). Based on established regional seismostratigraphy these contouritic deposits are the 

result of the current regime developing since Late Eocene times, which is dominated by the presence 

of the Brazil-Malvinas Confluence (BMC) and the associated convergence of northern and southern 

sourced water masses. While until the Early Miocene sedimentary processes were dominated by 

Antarctic water masses, the data analysis revealed that the Middle Miocene is marked by the 

increasing influence of Northern Sourced Deep Water (NSDW), which controls the spatial sediment 

distribution by vertically altering water mass stratification.  

Second, based on the excellent seismic and hydroacoustic data coverage from R/V Meteor Cruises 

M49/2 (2001) and M78/3 (2009), which was further complemented by conventional seismic and 

single-beam echosounder data from Argentine und Uruguayan authorities, recent morpho-sedimentary 

features of the CDS were mapped in great detail. Correlation of erosive and depositional features to 

local hydrographic data sets allowed for the first time to link sedimentary structures to the regional 

ocean current regime. In particular, the existence of contourite terraces can be explained by the 

interplay between margin physiography and turbulent flow patterns associated with water mass 

interfaces and alongslope high velocity bottom currents.  

Third, tracing the above described erosive and depositional signatures related to the CDS through time 

and space, a major lack of sedimentation was identified in a confined area north of the Mar del Plata 

Canyon, which is located in the center of the study area. This area of non-deposition is the result of a 

decrease in bottom current velocity and transport capacity across the Mar del Plata Canyon related to 

the loss in topographic constraint. This interaction of alongslope and downslope sediment transport 

processes occurs at least since Late Miocene times, which allows to allocate at least an approximate 

age to the time, when the canyon structure start to influence local depositional patterns. 

At last, to determine the capability of bottom currents to transport the massive amounts of sediments, 

18 kHz water column backscatter data were analyzed in conjunction with Acoustic Doppler Current 

Profiler (ADCP) measurements within the Agulhas Current, SE Africa. This novel approach revealed 

the impact of fast flowing bottom currents, in this case induced by small-scale lee eddies, on sediment 
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dynamics by eroding and resuspending off particles and the formation of nepheloid layers. This study 

confirmed that high energetic bottom currents in interaction with the topographic framework are 

indeed capable to transport the massive amounts of sediments required for the above described 

interplay of the Argentine CDS and the Mar del Plata Canyon. 

This study provides a representative regional example for the interaction of along-slope and down-

slope oriented sediment transport processes and its margin shaping character. Within the framework of 

a highly dynamic oceanographic setting the impact of the regional topographic framework on bottom 

current flow patterns is emphasized. This interplay may represent a major sediment feeding 

mechanism for submarine canyons, in particular for those which are not connected to rivers or shelf 

edges at all. While on short timescales the morphology dictates the dynamics of bottom currents, on 

longer timescales these dynamic flow patterns shape the ocean margin. Consequently, the existence of 

morphological features like terraces might represent paleoceanographic archives by itself, and the 

dynamics of former and recent circulation patterns can be inferred, in this case of the BMC. Overall, to 

study the interplay between ocean currents and the topography in greater detail a new method has been 

introduced using an integrated approach of 18 kHz parametric echosounder and ADCP data. 

An important task for future research will be to compare the results of this thesis to continental 

margins, which are located in different oceanographic settings but offer a comparable physiographic 

configuration including contourite terraces and large incisions into the seafloor. Analysis of these 

systems would reveal, based on similarities and differences, the dependence of the above described 

interaction of alongslope and downslope processes on water mass stratification and bottom current 

velocity. Additionally, it would allow validating the suggested model for the evolution of contourite 

terraces along water mass interfaces.  

Moreover, detailed mapping of small-scale structures and depocenter shifts within the sedimentary 

stacking pattern off the northern Argentine CDS is needed based on sediment echosounder data to 

study the response of this particular system during short-term climate variations. This analysis would 

provide new insight into the lateral migration of the BMC on glacial/interglacial cycles and would 

allow in particular reconstructing the associated varying impact of NSDW on along-slope sedimentary 

processes. 

Further work is also required to improve water column imaging using an 18 kHz parametric 

echosounder. Linking the measured backscatter signals to particle sizes measured in situ and 

concentrations determined by particle camera images, optical backscatters measurements and in-situ 

pump samples would allow establishing quantitative analysis of the acoustic signal. This would not 

only offer remarkable new insight into the dynamics of large-scale marine sediment dispersal systems, 

but as well allow to infer plankton concentrations and their migration in the water column, which 

would enhance the understanding of the biological pump. 
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Abbreviations 

AABW     Antarctic Bottom Water 

AAIW     Antarctic Intermediate Water 

AC     Agulhas Current 

ACC     Antarctic Circumpolar Current 

BC     Brazil Current 

BMC/BMCZ    Brazil-Malvinas Confluence (Zone) 

CAS     Central American Seaway 

CDS     Contourite Depositional System 

CDW     Circumpolar Deep Water 

DBE     Delagoa Bight Eddy 

EMC     East Madagascar Current 

LCDW     Lower Circumpolar Deep Water 

MC     Malvinas Current 

MCS     Multichannel seismic 

MOC     Mozambique Current 

NADW     North Atlantic Deep Water 

PHF     Primary High Freqeuncy 

SACW     South Atlantic Central Water 

SLF     Secondary Low Frequency 

SSDW     Southern Sourced Deep Water 

SSIW     Southern Sourced Intermediate Water 

TW     Tropical Water 

UCDW     Upper Circumpolar Deep Water 

USSDW    Upper Southern Sourced Deep Water 
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