Controls on zooplankton composition in the Strait of Juan de Fuca, USA

Julie E. Keister, Bethellee Herrmann, Andrew Mandovi and Parker MacCready University of Washington, School of Oceanography

The Salish Sea

JEMS time series site

Surface salinity Puget Sound

MacCready: MOSSEA Model

• 2003-present, monthly (with many gaps)

Strait of • 140 m water depth Georgia

• CTD casts (T, S, D, DO)

Strait of Juanottle chlorophyll, nutrients, de Fuca oxygen

- Zooplankton net tows
 - 75-cm diameter closing net
 - 150-µm mesh
 - Surface (o-40 m and 80-120 m) vertical net tows
 - *No flow meter until 2014

Indicator species

Cold-water, upwellingassociated species assemblage Calanus marshallae Acartia longiremis Pseudocalanus mimus

Offshore, warmwater oceanic species assemblage

Clausocalanus spp. Ctenocalanus vanus Mesocalanus tenuicornis

MacCready: MOSSEA Model

Strait of Georgia species assemblage *Pseudocalanus minutus*

Puget Sound species assemblage *Ditrichocorycaeus anglicus*

Temperature

Temperature

Zooplankton data Analysis: Non-Metric Multidimensional Scaling (NMS) Ordination of copepod species composition

- Copepod species abundances
- Relativized to species proportion in each sample
- Axis 1 rotated to SST

Axes time series:

Anomalies, Seasonal cycles removed

- Strong seasonal cycle
- Interannual anomalies

What species are primary drivers of community changes?

What controls their temporal variability?

Strongest species correlations with Axis 1:

2000

1500

1000

500

Puget Sound indicator

r = 0.51

Upwelling indicator

Pseudocalanus mimus

r = -0.93

Average seasonal cycles $(\#/m^3)$:

Strongest species correlations with Axis 1:

Puget Sound indicator

r = -0.93

PSEUDOCALANUS MIMUS

Average seasonal cycles (#/m³):

LiveOcean ROMS model – P. MacCready and the UW Coastal Modeling Group

"Cascadia 1" - 2013-2018 hindcasts

1500 m (in Salish Sea) to 4500 m (ocean) horizontal resolution

40 vertical terrainfollowing layers

Nested in HYCOM

Tides, rivers, winds, heating

Particle releases from 3 boundaries

Tested 3 approx. depth ranges (surface-trapped, mid, deep)

Released monthly, advected 30 days

Neutrally buoyant – tracked in 3D

Data = proportion of particles that entered domain from each release

Example particle trajectories: Feb 2013 – Strait of Juan de Fuca releases

Seasonal cycles of particle trajectories

particles released that reached the domain of %

Seasonal cycles of particle trajectories

Strait of Juan de Fuca - Surface **Puget Sound - Surface** eleased that reached the domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Strait of Juan de Fuca - Mid n Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

Conclusions

Zooplankton community shows interannual variability correlated with climate indices.

Coastal versus inland indicator species show contrasting seasonality

Ocean-estuary advection is important, likely in combination with life history patterns.

Thank you!

University of Washington WA Dept of Ecology The Salish Sea Marine Survival Project (SSMSP) NOAA and the Tulalip Tribe Captain and crew of the R/V Zoea Moira Galbraith

