Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article ### Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia Atsuya Yamashita ¹, Kazi Abdus Salam ^{2,†}, Atsushi Furuta ^{3,4,†}, Yasuyoshi Matsuda ^{3,4}, Osamu Fujita ^{3,4}, Hidenori Tani ², Yoshihisa Fujita ^{5,6}, Yuusuke Fujimoto ¹, Masanori Ikeda ⁷, Nobuyuki Kato ⁷, Naoya Sakamoto ⁸, Shinya Maekawa ⁹, Nobuyuki Enomoto ⁹, Masamichi Nakakoshi ¹⁰, Masayoshi Tsubuki ¹⁰, Yuji Sekiguchi ³, Satoshi Tsuneda ⁴, Nobuyoshi Akimitsu ², Naohiro Noda ³, Junichi Tanaka ^{11,*} and Kohji Moriishi ^{1,*} - Department of Microbiology, Division of Medicine, Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan; E-Mails: atsuyay@yamanashi.ac.jp (A.Y.); yfujimoto@yamanashi.ac.jp (Y.F.) - Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; E-Mails: salam_bio26@yahoo.com (K.A.S); tani@ric.u-tokyo.ac.jp (H.T.); akimitsu@ric.u-tokyo.ac.jp (N.A.) - Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; E-Mails: atsushi.furuta@aist.go.jp (A.F.); yellow-3359@hotmail.co.jp (Y.M.); 036.fujita@gmail.com (O.F.); y.sekiguchi@aist.go.jp (Y.S.); noda-naohiro@aist.go.jp (N.N.) - ⁴ Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; E-Mail: stsuneda@waseda.jp - ⁵ University Education Center, University of the Ryukyus, Okinawa, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; E-Mail: galatheids@yahoo.co.jp - ⁶ Marine Learning Center, 2-95-101 Miyagi, Chatan, Okinawa 901-0113, Japan - Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; E-Mails: maikeda@md.okayama-u.ac.jp (M.I.); nkato@md.okayama-u.ac.jp (N.K.) - Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan; E-Mail: nsakamoto.gast@tmd.ac.jp - First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan; - E-Mails: maekawa@yamanashi.ac.jp (S.M); enomoto@yamanashi.ac.jp (N.E) - ¹⁰ Institute of Medical Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, Japan; E-Mails: mnakako@hoshi.ac.jp (M.N.); tsubuki@hoshi.ac.jp (M.T.) Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan * Authors to whom correspondence should be addressed; E-Mails: jtanaka@sci.u-ryukyu.ac.jp (J.T.); kmoriishi@yamanashi.ac.jp (K.M.); Tel: +81-98-895-8560 (J.T.); +81-55-273-9537 (K.M.); Fax: +81-98-895-8565 (J.T.); Fax: +81-55-273-6728 (K.M.). Received: 9 February 2012; in revised form: 17 March 2012 / Accepted: 19 March 2012 / Published: 28 March 2012 Abstract: Hepatitis C virus (HCV) is a causative agent of acute and chronic hepatitis, leading to the development of hepatic cirrhosis and hepatocellular carcinoma. We prepared extracts from 61 marine organisms and screened them by an *in vitro* fluorescence assay targeting the viral helicase (NS3), which plays an important role in HCV replication, to identify effective candidates for anti-HCV agents. An ethyl acetate-soluble fraction of the feather star *Alloeocomatella polycladia* exhibited the strongest inhibition of NS3 helicase activity, with an IC₅₀ of 11.7 μg/mL. The extract of *A. polycladia* inhibited interaction between NS3 and RNA but not ATPase of NS3. Furthermore, the replication of the replicons derived from three HCV strains of genotype 1b in cultured cells was suppressed by the extract with an EC₅₀ value of 23 to 44 μg/mL, which is similar to the IC₅₀ value of the NS3 helicase assay. The extract did not induce interferon or inhibit cell growth. These results suggest that the unknown compound(s) included in *A. polycladia* can inhibit HCV replication by suppressing the helicase activity of HCV NS3. This study may present a new approach toward the development of a novel therapy for chronic hepatitis C. Keywords: marine organism; Alloeocomatella polycladia; hepatitis C virus; NS3 helicase #### 1. Introduction Hepatitis C virus (HCV) is an etiological agent of liver disease including steatosis, cirrhosis, and hepatocellular carcinoma, and has infected over 170 million individuals worldwide [1,2]. HCV belongs to the genus *Hepacivirus* of the *Flaviviridae* family. The genome of HCV is a single positive-strand RNA composed of 9.6 kb flanked by 5' and 3'-untranscribed regions (UTRs) and encodes a polyprotein consisting of approximately 3000 amino acids [3]. The polyprotein is translated from a viral genome by an internal ribosome entry site (IRES), which is localized in 5'-UTR [4]. The translated polyprotein is cleaved by host and viral proteases into 10 proteins. The structural proteins consisting of core, E1, and E2 and a viroporin p7, which has not yet been classified as either a structural or nonstructural protein, are located in the *N*-terminal quarter of the polyprotein. The nonstructural proteins including [†] These authors contributed equally to this work. NS2, NS3, NS4A, NS4B, NS5A, and NS5B occupy the remaining portion of the polyprotein and form a replication complex with several host factors. HCV NS3 is well known to play a crucial role in viral replication because it possesses helicase and protease activities [5,6]. The *N*-terminal third of NS3 forms a complex with the NS4A protein and exhibits serine protease activity (NS3-4A protease) to cleave the viral polyprotein for the maturation of viral proteins [7]. The remaining portion of NS3 occupies the RNA helicase domain, characterized by the activities of ATPase and RNA binding, both of which contribute to the unwinding of duplex RNA [8,9]. The helicase activity is needed to separate duplex RNA during viral RNA replication [10]. A negative-strand RNA is synthesized based on a viral genome (positive strand) after the uncoating of a viral particle in the infected cells and then is itself used as a template to synthesize a positive-strand RNA packaged into the viral particle. Thus, helicase as well as protease activities of NS3 can be targeted for use in the development of antiviral agents against HCV. The current therapy, which combines pegylated interferon with ribavirin, is effective in only about half of patients infected with the most common genotype worldwide, genotype 1 [11–13]. However, this therapy has side effects including influenza-like symptoms, cytopenias, and depression [11]. Furthermore, no effective vaccines for HCV have been developed yet. Biotechnological advances of the past decade have led to the development of novel therapies using anti-HCV agents that directly target HCV proteins or host factors required for HCV replication. This approach has been named either "specifically targeted antiviral therapy for hepatitis C" (STAT-C) or "directed-acting antiviral agents" (DAA) [14–16]. Several compounds of STAT-C or DAA have proceeded to clinical trials. Telaprevir and boceprevir, which are categorized as advanced NS3/4A protease inhibitors, were recently approved for the treatment of chronic hepatitis C patients infected with genotype 1 in the US, EU, Canada, and Japan [17,18]. However, the emergence of drug-resistant viruses is the major problem for therapies using antiviral compounds [19,20]. Accordingly, several kinds of drugs targeting various molecules or positions will be required for the complete eradication of the virus from hepatitis C patients. The helicase activity of NS3 could be targeted by development of anti-HCV compound in addition to its protease activity. Belon *et al.* reported that 1-*N*,4-*N*-*bis*[4-(1*H*-benzimidazol-2-yl)phenyl] benzene-1,4-dicarboxamine, designated as (BIP)₂B, is a potent and selective inhibitor of HCV NS3 helicase [21]. (BIP)₂B could not affect ATP hydrolysis without RNA or at a saturated concentration of RNA. QU663 inhibits the unwinding activity of NS3 helicase by binding to the RNA-binding groove irrespective of its own ATPase activity [22]. Compound QU663 may competitively bind the RNA-binding site of NS3 but not affect ATPase activity, resulting in the inhibition of unwinding activity. Various drugs have been generated from natural products, especially those from terrestrial plants and microbes. The development of drugs from natural products has declined in the past two decades by the emergence of high-throughput screening of synthetic chemical libraries. However, recent technical advances in the determination of molecular structures and in the synthesis of chemical compounds have raised awareness about natural products as a resource for drug development [23–25]. Several groups recently reported natural products that inhibit HCV replication *in vitro*. For instance, silbinin, which is identified from the milk thistle [26,27], epigallocatechin 3-gallate, which is from green tea [28], and proanthocyanidins, which are from blueberry leaves [29], can inhibit HCV replication in cultured cells. Marine organisms including plants and animals were recently established as a representative natural resource library for drug development, since there are estimated to be more than 300,000 species of marine organisms. The products isolated from the marine organisms often possess potent biological activities corresponding to the organisms' own novel molecular structures. Thus, marine natural products are considered to include highly significant lead compounds for drug development [30,31]. For example, trabectedin (Yondelis), cytarabine (Ara-C), and eribulin (Halaven) are approved anticancer drugs developed from marine organisms [32]. However, marine organisms have not
yet been screened for development into anti-HCV agents. In this study, we screened extracts of marine organisms by using an *in vitro* fluorescence NS3 helicase assay and HCV replicon system to find candidates for safe and effective anti-HCV agents. The marine feather star *Alloeocomatella polycladia* may produce anti-HCV helicase agents that suppress HCV replication. #### 2. Results and Discussion #### 2.1. Primary Screening of Marine Organism Extracts on HCV NS3 Helicase Activity We employed high-throughput screening using a photoinduced electron transfer (PET) assay to identify inhibitors of HCV NS3 helicase activity from extracts of marine organisms (Figure 1). The EtOAc- and MeOH-soluble extracts were prepared from marine organisms obtained from the sea around Okinawa Prefecture, Japan. We identified 16 extracts possessing an arbitrary level of inhibitory activity, which is defined as below 60% of the control in this study (Table 1). Five extracts exhibited high inhibition levels (<30%), and eleven extracts exhibited intermediate inhibition levels (30% to 60%). The EtOAc extract prepared from the feather star *Alloeocomatella polycladia* (Figure 2) exhibited the strongest inhibitory activity among them, and was designated SG1-23-1 in this study. Treatment with SG1-23-1 inhibited the helicase activity in a dose-dependent manner (Figure 3A). The value of IC₅₀ is calculated as 11.7 \pm 0.7 μ g/mL. We confirmed the effect of SG1-23-1 on NS3 helicase unwinding activity by the RNA helicase assay using ³²P-labeled double-stranded RNA (dsRNA) as a substrate. Treatment with SG1-23-1 inhibited dsRNA dissociation at concentrations of 16 μ g/mL and above (Figure 3B). These results suggest that treatment with SG1-23-1 inhibits the unwinding ability of HCV NS3 helicase. **Table 1.** Inhibitory effects of marine organism extracts on hepatitis C virus (HCV) NS3 helicase activity. | | Helicase
Activity | | | | | |----------------|----------------------|---------------------------|------------------|---------|-----------------| | Sample | (% of control) | Specimen | Phylum | Extract | Collection Site | | OK-99-2 | 78 | Agelas sp. | Porifera | EtOAc | Shimoji Island | | OK-99-3 | 73 | Plakortis sp. | Porifera | EtOAc | Shimoji Island | | OK-99-4 | 60 | Dysidea arenaria | Porifera | EtOAc | Shimoji Island | | OK-99-5 | 96 | Theonella cupola | Porifer <u>a</u> | EtOAc | Shimoji Island | | <u>OK-99-6</u> | 52 | Theonella conica | Porifera | EtOAc | Shimoji Island | | OK-99-7 | 85 | Epipolasis kushimotoensis | Porifera | EtOAc | Shimoji Island | | <u>OK-99-9</u> | 51 | Hyrtios sp. | Porifera | EtOAc | Shimoji Island | Table 1. Cont. | OK-99-10 75 Theomella sp. Porifera EtOAc Shimoji Island OK-99-13 68 Acanthella sp. Porifera EtOAc Shimoji Island OK-99-15 64 Phyllospongia sp. Porifera EtOAc Shimoji Island OK-99-17 59 Petrosia sp. Porifera EtOAc Shimoji Island OK-99-17 59 Petrosia sp. Porifera EtOAc Shimoji Island OK-99-18 80 Fasciospongia rimova Porifera EtOAc Shimoji Island OK-99-20 77 Echinoclathria sp. Porifera EtOAc Shimoji Island OK-99-20 77 Echinoclathria sp. Porifera EtOAc Shimoji Island OK-99-21 78 Echinoclathria sp. Porifera EtOAc Shimoji Island OK-99-23 74 Dysidea herbaceae Porifera EtOAc Shimoji Island OK-99-23 74 Dysidea herbaceae Porifera EtOAc Shimoji Island OK-99-24 123 Plakortis sp. Porifera EtOAc Shimoji Island OK-99-25 55 Dysidea cf. arenaria Porifera EtOAc Shimoji Island OK-99-31 118 Spongia sp. Porifera EtOAc Shimoji Island OK-99-31 118 Spongia sp. Porifera EtOAc Shimoji Island OK-99-32 108 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-34 119 Thennella swinhoei Porifera EtOAc Okinawa Island OK-99-36 90 Acanthella sp. Porifera EtOAc Okinawa Island OK-99-37 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-41 62 Dysidea cf. arenaria Porifera EtOAc Okinawa Island OK-99-43 85 Acetospongia sp. Porifera EtOAc Okinawa Island OK-99-43 85 Acetospongia sp. Porifera EtOAc Okinawa Island OK-99-47 108 Dysidea arenaria Porifera EtOAc Okinawa Island OK-99-49 90 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-52 78 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-52 78 Petrosia sp. Porifera EtOAc Kuro Island OK-99-52 78 Petrosia sp. Porifera EtOAc Kuro Island OK-99-64 98 Acenthella sp. Porifera EtOAc Kuro Island OK-99-64 98 Acenthella sp. Porifera EtOAc Kuro Island OK-99-65 77 Phanogenia graculis Echinodermata MeOH Kume Island OK-99-64 98 Acenthella sp. Porifera EtOAc Kuro Island OK-99-65 77 Phanogenia graculis Echinodermata MeOH Kume Island OK-99-66 66 Cenometra bella Echinodermata MeOH Kume Island SG1-1-2 77 Comarter nobilis Echinodermata MeOH Kume Island SG1-1-2 78 Comarter nobilis Echinodermata MeOH Kume Island SG1-1-2 32 Oc | | | | | | | | |--|-----------------|-----|-----------------------------|---------------|-------|----------------|--| | OK-99-13 68 | OK-99-10 | 75 | Theonella sp. | Porifera | EtOAc | Shimoji Island | | | OK-99-15 64 | | | | | | • | | | OK-99-17 59 Petrosia sp. Porifera EtOAc Shimoji Island OK-99-18 80 Fasciospongia rimosa Porifera EtOAc Shimoji Island OK-99-20 77 Echinoclathria sp. Porifera EtOAc Shimoji Island OK-99-21 68 Strongylophora sp. Porifera EtOAc Shimoji Island OK-99-23 74 Dysidea cf. arenaria Porifera EtOAc Shimoji Island OK-99-26 55 Dysidea cf. arenaria Porifera EtOAc Shimoji Island OK-99-28 123 Plokortis sp. Porifera EtOAc Shimoji Island OK-99-31 118 Spongia sp. Porifera EtOAc Okinawa Island OK-99-32 108 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-33 108 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-37 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-37 102 | | | - | | | • | | | OK-99-18 80 Fasciaspongia rimosa Porifera EtOAc Shimoji Island OK-99-20 77 Echinoclathria sp. Porifera EtOAc Shimoji Island OK-99-21 68 Strongylophora sp. Porifera EtOAc Shimoji Island OK-99-23 74 Dysidea herbacea Porifera EtOAc Shimoji Island OK-99-23 74 Dysidea cf. arenaria Porifera EtOAc Shimoji Island OK-99-26 55 Dysidea cf. arenaria Porifera EtOAc Shimoji Island OK-99-28 123 Plakortis sp. Porifera EtOAc Shimoji Island OK-99-31 118 Spongia sp. Porifera EtOAc Okinawa Island OK-99-31 119 Theonella swinhoei Porifera EtOAc Okinawa Island OK-99-32 108 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-35 108 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-36 90 Acanthella sp. Porifera EtOAc Okinawa Island OK-99-37 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-41 62 Dysidea cf. arenaria Porifera EtOAc Okinawa Island OK-99-43 85 Xestospongia sp. Porifera EtOAc Okinawa Island OK-99-44 61 Dysidea arenaria Porifera EtOAc Okinawa Island OK-99-47 108 Dysidea cf. arenaria Porifera EtOAc Okinawa Island OK-99-49 90 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-49 90 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-55 65 Acanthella sp. Porifera EtOAc Chibishi OK-99-57 84 Petrosia sp. Porifera EtOAc Chibishi OK-99-57 84 Theonella swinhoei Porifera EtOAc Kuro Island OK-99-5 | OK-99-15 | 64 | Phyllospongia sp. | Porifera | EtOAc | • | | | OK-99-20 77 | OK-99-17 | 59 | Petrosia sp. | Porifera | EtOAc | Shimoji Island | | | OK-99-21 68 Strongylophora sp. Porifera EtOAc Shimoji Island OK-99-23 74 Dysidea herbacea Porifera EtOAc Shimoji Island OK-99-26 55 Dysidea cf. arenaria Porifera EtOAc Shimoji Island OK-99-28 123 Plakortis sp. Porifera EtOAc Okinawa Island OK-99-31 118 Spongia sp. Porifera EtOAc Okinawa Island OK-99-31 119 Theonella swinhoei Porifera EtOAc Okinawa Island OK-99-35 108 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-36 90 Acanthella sp. Porifera EtOAc Okinawa Island OK-99-37 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-38 108 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-39 100 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-30 100 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-31 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-31 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-41 62 Dysidea cf. arenaria Porifera
EtOAc Okinawa Island OK-99-41 108 Dysidea cf. arenaria Porifera EtOAc Okinawa Island OK-99-42 108 Dysidea cf. arenaria Porifera EtOAc Okinawa Island OK-99-47 108 Dysidea cf. arenaria Porifera EtOAc Okinawa Island OK-99-50 109 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-51 69 Isis hippuris Cnidaria EtOAc Chibishi OK-99-52 78 Petrosia sp. Porifera EtOAc Chibishi OK-99-53 84 Theonella swinhoei Porifera EtOAc Kuro Island OK-99-63 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-63 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-63 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-65 112 Stephanometra indica Echinodermata McOH Kume Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-65 112 Stephanometra indica Echinodermata McOH Kume Island OK-99-66 104 Colobometridae sp. Echinodermata McOH Kume Island OK-99-67 105 Phanogenia gracilis Echinodermata McOH Kume Island OK-99-69 106 Colobomet | OK-99-18 | 80 | Fasciospongia rimosa | Porifera | EtOAc | Shimoji Island | | | OK-99-23 74 Dysidea herbacea Porifera EtOAc Shimoji Island OK-99-26 55 Dysidea cf. arenaria Porifera EtOAc Shimoji Island OK-99-28 123 Plakortis sp. Porifera EtOAc Okinawa Island OK-99-31 118 Spongia sp. Porifera EtOAc Okinawa Island OK-99-34 119 Theonella swinhoei Porifera EtOAc Okinawa Island OK-99-35 108 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-36 90 Acanthella sp. Porifera EtOAc Okinawa Island OK-99-37 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-37 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-41 62 Dysidea cf. arenaria Porifera EtOAc Okinawa Island OK-99-41 61 Dysidea arenaria Porifera EtOAc Okinawa Island OK-99-47 108 Dysidea of. arenaria Porifera EtOAc Okinawa Island OK-99-47 108 Dysidea of. arenaria Porifera EtOAc Okinawa Island OK-99-49 90 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-51 69 Isis hippuris Cnidaria EtOAc Okinawa Island OK-99-52 78 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-52 78 Petrosia sp. Porifera EtOAc Chibishi OK-99-53 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-63 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-65 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-65 27 Phanogenia gracilis Echinodermata MeOH Kume Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-65 112 Stephanometra indica Echinodermata MeOH Kume Island OK-91-22 112 Stephanometra indica Echinodermata MeOH Kume Island OK-91-24 117 Comaster schlegelii Echinodermata MeOH Kume Island OK-91-25 79 Phanogenia gracilis Echinodermata MeOH Kume Island OK-91-26 66 Cenometra bella Echinodermata MeOH Kume Island OK-91-27 78 Comaster nobilis Echinodermata MeOH Kume Island | OK-99-20 | 77 | Echinoclathria sp. | Porifera | EtOAc | Shimoji Island | | | OK-99-2655Dysidea cf. arenariaPoriferaEtOAcShimoji IslandOK-99-28123Plakortis sp.PoriferaEtOAcShimoji IslandOK-99-31118Spongia sp.PoriferaEtOAcOkinawa IslandOK-99-34119Theonella swinhoeiPoriferaEtOAcOkinawa IslandOK-99-35108Petrosia sp.PoriferaEtOAcOkinawa IslandOK-99-3690Acanthella sp.PoriferaEtOAcOkinawa IslandOK-99-37102Luffariella sp.PoriferaEtOAcOkinawa IslandOK-99-4162Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4385Aestospongia sp.PoriferaEtOAcOkinawa IslandOK-99-4461Dysidea arenariaPoriferaEtOAcOkinawa IslandOK-99-47108Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4990Petrosia sp.PoriferaEtOAcChibishiOK-99-5169Isis hippurisCnidariaEtOAcChibishiOK-99-5278Petrosia sp.PoriferaEtOAcKuro IslandOK-99-5384Theonella swinhoeiPoriferaEtOAcKuro IslandOK-99-6498Aestospongia sp.PoriferaEtOAcKuro IslandSG1-2-2112Stephanometra indicaEchinodermataMeOHKume IslandSG1-2-233Comanthus gisleniEchinodermataMeO | OK-99-21 | 68 | Strongylophora sp. | Porifera | EtOAc | Shimoji Island | | | OK-99-28 123 Plakortis sp. Porifera EtOAc Shimoji Island OK-99-31 118 Spongia sp. Porifera EtOAc Okinawa Island OK-99-34 119 Theonella swinhoei Porifera EtOAc Okinawa Island OK-99-35 108 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-36 90 Acanthella sp. Porifera EtOAc Okinawa Island OK-99-37 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-37 102 Luffariella sp. Porifera EtOAc Okinawa Island OK-99-41 62 Dysidea cf. arenaria Porifera EtOAc Okinawa Island OK-99-43 85 Xestospongia sp. Porifera EtOAc Okinawa Island OK-99-44 61 Dysidea arenaria Porifera EtOAc Okinawa Island OK-99-47 108 Dysidea cf. arenaria Porifera EtOAc Okinawa Island OK-99-49 90 Petrosia sp. Porifera EtOAc Okinawa Island OK-99-50 69 Isis hippuris Cnidaria EtOAc Chibishi OK-99-51 69 Isis hippuris Cnidaria EtOAc Chibishi OK-99-52 78 Petrosia sp. Porifera EtOAc Kuro Island OK-99-55 65 Acanthella sp. Porifera EtOAc Kuro Island OK-99-63 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-65 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island OK-99-65 277 Comanthus gisleni Echinodermata MeOH Kume Island SG1-1-2 77 Comanthus gisleni Echinodermata MeOH Kume Island SG1-2-2 112 Stephanometra indica Echinodermata MeOH Kume Island SG1-1-2 39 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-1-2 117 Comaster schlegelii Echinodermata MeOH Kume Island SG1-1-2 78 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-1-2 78 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-1-2 78 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-1-2 78 Comanthus sp. Echinodermata MeOH Kume Island SG1-1-2 78 Comanthus sp. Echinodermata MeOH Kume Island | OK-99-23 | 74 | Dysidea herbacea | Porifera | EtOAc | Shimoji Island | | | OK-99-31118Spongia sp.PoriferaEtOAcOkinawa IslandOK-99-34119Theonella swinhoeiPoriferaEtOAcOkinawa IslandOK-99-35108Petrosia sp.PoriferaEtOAcOkinawa IslandOK-99-3690Acanthella sp.PoriferaEtOAcOkinawa IslandOK-99-37102Luffariella sp.PoriferaEtOAcOkinawa IslandOK-99-4162Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4385Xestospongia sp.PoriferaEtOAcOkinawa IslandOK-99-4461Dysidea arenariaPoriferaEtOAcOkinawa IslandOK-99-47108Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4990Petrosia sp.PoriferaEtOAcChibishiOK-99-5169Isis hippurisCnidariaEtOAcChibishiOK-99-5278Petrosia sp.PoriferaEtOAcKuro IslandOK-99-5565Acanthella sp.PoriferaEtOAcKuro IslandOK-99-63117Epipolasis kushimotoensisPoriferaEtOAcKuro IslandOK-99-6498Xestospongia sp.PoriferaEtOAcKuro IslandSG1-1-277Comanthus gisleniEchinodermataMeOHKume IslandSG1-2-2112Stephanometra indicaEchinodermataMeOHKume IslandSG1-12-239Comanthus parvicirrusEchinodermata | OK-99-26 | 55 | Dysidea cf. arenaria | Porifera | EtOAc | Shimoji Island | | | OK-99-34119Theonella swinhoeiPoriferaEtOAcOkinawa IslandOK-99-35108Petrosia sp.PoriferaEtOAcOkinawa IslandOK-99-3690Acanthella sp.PoriferaEtOAcOkinawa IslandOK-99-37102Luffariella sp.PoriferaEtOAcOkinawa IslandOK-99-4162Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4385Xestospongia sp.PoriferaEtOAcOkinawa IslandOK-99-4461Dysidea arenariaPoriferaEtOAcOkinawa IslandOK-99-47108Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4990Petrosia sp.PoriferaEtOAcChibishiOK-99-5169Isis hippurisCnidariaEtOAcChibishiOK-99-5278Petrosia sp.PoriferaEtOAcKuro IslandOK-99-5565Acanthella sp.PoriferaEtOAcKuro IslandOK-99-63117Epipolasis kushimotoensisPoriferaEtOAcKuro IslandOK-99-6498Xestospongia sp.PoriferaEtOAcKuro IslandGG1-1-277Comanthus gisleniEchinodermataMeOHKume IslandGG1-5-233Comantella sp. cf. maculataEchinodermataMeOHKume IslandGG1-12-239Comanthus parvicirrusEchinodermataMeOHKume IslandGG1-15-226Colobometridae sp.Echin | OK-99-28 | 123 | Plakortis sp. | Porifera | EtOAc | Shimoji Island | | | OK-99-35108Petrosia sp.PoriferaEtOAcOkinawa IslandOK-99-3690Acanthella sp.PoriferaEtOAcOkinawa IslandOK-99-37102Luffariella sp.PoriferaEtOAcOkinawa IslandOK-99-4162Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4385Xestospongia sp.PoriferaEtOAcOkinawa IslandOK-99-4461Dysidea arenariaPoriferaEtOAcOkinawa IslandOK-99-47108Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4990Petrosia sp.PoriferaEtOAcChibishiOK-99-5169Isis hippurisCnidariaEtOAcChibishiOK-99-5278Petrosia sp.PoriferaEtOAcKuro IslandOK-99-5565Acanthella sp.PoriferaEtOAcKuro IslandOK-99-5784Theonella swinhoeiPoriferaEtOAcKuro IslandOK-99-63117Epipolasis kushimotoensisPoriferaEtOAcKuro IslandOK-99-6498Xestospongia sp.PoriferaEtOAcKuro IslandSG1-1-277Comanthus gisleniEchinodermataMeOHKume IslandSG1-2-2112Stephanometra indicaEchinodermataMeOHKume IslandSG1-9-257Phanogenia gracilisEchinodermataMeOHKume IslandSG1-15-226Colobometriabe sp.Echinodermata | OK-99-31 | 118 | Spongia sp. | Porifera | EtOAc | Okinawa Island | | | OK-99-3690Acanthella sp.PoriferaEtOAcOkinawa IslandOK-99-37102Luffariella sp.PoriferaEtOAcOkinawa IslandOK-99-4162Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4385Xestospongia sp.PoriferaEtOAcOkinawa IslandOK-99-4461Dysidea arenariaPoriferaEtOAcOkinawa IslandOK-99-47108Dysidea cf. arenariaPoriferaEtOAcOkinawa IslandOK-99-4990Petrosia sp.PoriferaEtOAcChibishiOK-99-5169Isis hippurisCnidariaEtOAcChibishiOK-99-5278Petrosia sp.PoriferaEtOAcKuro IslandOK-99-5565Acanthella sp.PoriferaEtOAcKuro IslandOK-99-5784Theonella swinhoeiPoriferaEtOAcKuro IslandOK-99-63117Epipolasis kushimotoensisPoriferaEtOAcKuro IslandOK-99-6498Xestospongia sp.PoriferaEtOAcKuro IslandSG1-1-277Comanthus gisleniEchinodermataMeOHKume IslandSG1-2-2112Stephanometra indicaEchinodermataMeOHKume IslandSG1-9-257Phanogenia gracilisEchinodermataMeOHKume IslandSG1-14-2117Comaster
schlegeliiEchinodermataMeOHKume IslandSG1-15-226Colobometriabe sp.Echinoderm | OK-99-34 | 119 | Theonella swinhoei | Porifera | EtOAc | Okinawa Island | | | OK-99-37 102 | OK-99-35 | 108 | Petrosia sp. | Porifera | EtOAc | Okinawa Island | | | OK-99-41 62 | OK-99-36 | 90 | Acanthella sp. | Porifera | EtOAc | Okinawa Island | | | OK-99-44 61 | OK-99-37 | 102 | Luffariella sp. | Porifera | EtOAc | Okinawa Island | | | OK-99-44 61 | OK-99-41 | 62 | Dysidea cf. arenaria | Porifera | EtOAc | Okinawa Island | | | OK-99-47 108 | OK-99-43 | 85 | Xestospongia sp. | Porifera | EtOAc | Okinawa Island | | | OK-99-49 90 Petrosia sp. Porifera EtOAc Chibishi OK-99-51 69 Isis hippuris Cnidaria EtOAc Chibishi OK-99-52 78 Petrosia sp. Porifera EtOAc Kuro Island OK-99-55 65 Acanthella sp. Porifera EtOAc Kuro Island OK-99-57 84 Theonella swinhoei Porifera EtOAc Kuro Island OK-99-63 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island SG1-1-2 77 Comanthus gisleni Echinodermata MeOH Kume Island SG1-5-2 33 Comantella sp. cf. maculata Echinodermata MeOH Kume Island SG1-9-2 57 Phanogenia gracilis Echinodermata MeOH Kume Island SG1-14-2 117 Comaster schlegelii Echinodermata MeOH Kume Island SG1-15-2 26 Colobometridae sp. Echinodermata MeOH Kume Island SG1-16-2 66 Cenometra bella Echinodermata MeOH Kume Island SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island | OK-99-44 | 61 | Dysidea arenaria | Porifera | EtOAc | Okinawa Island | | | OK-99-51 69 | OK-99-47 | 108 | Dysidea cf. arenaria | Porifera | EtOAc | Okinawa Island | | | OK-99-52 78 Petrosia sp. Porifera EtOAc Kuro Island OK-99-55 65 Acanthella sp. Porifera EtOAc Kuro Island OK-99-57 84 Theonella swinhoei Porifera EtOAc Kuro Island OK-99-63 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island SG1-1-2 77 Comanthus gisleni Echinodermata MeOH Kume Island SG1-2-2 112 Stephanometra indica Echinodermata MeOH Kume Island SG1-5-2 33 Comantella sp. cf. maculata Echinodermata MeOH Kume Island SG1-9-2 57 Phanogenia gracilis Echinodermata MeOH Kume Island SG1-12-2 39 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-14-2 117 Comaster schlegelii Echinodermata MeOH Kume Island SG1-15-2 26 Colobometridae sp. Echinodermata MeOH Kume Island SG1-16-2 66 Cenometra bella Echinodermata MeOH Kume Island SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | OK-99-49 | 90 | Petrosia sp. | Porifera | EtOAc | Chibishi | | | OK-99-55 65 | OK-99-51 | 69 | Isis hippuris | Cnidaria | EtOAc | Chibishi | | | OK-99-57 84 Theonella swinhoei Porifera EtOAc Kuro Island OK-99-63 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island SG1-1-2 77 Comanthus gisleni Echinodermata MeOH Kume Island SG1-2-2 112 Stephanometra indica Echinodermata MeOH Kume Island SG1-5-2 33 Comantella sp. cf. maculata Echinodermata MeOH Kume Island SG1-9-2 57 Phanogenia gracilis Echinodermata MeOH Kume Island SG1-12-2 39 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-14-2 117 Comaster schlegelii Echinodermata MeOH Kume Island SG1-16-2 66 Colobometridae sp. Echinodermata MeOH Kume Island SG1-16-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | OK-99-52 | 78 | Petrosia sp. | Porifera | EtOAc | Kuro Island | | | OK-99-63 117 Epipolasis kushimotoensis Porifera EtOAc Kuro Island OK-99-64 98 Xestospongia sp. Porifera EtOAc Kuro Island SG1-1-2 77 Comanthus gisleni Echinodermata MeOH Kume Island SG1-2-2 112 Stephanometra indica Echinodermata MeOH Kume Island SG1-5-2 33 Comantella sp. cf. maculata Echinodermata MeOH Kume Island SG1-9-2 57 Phanogenia gracilis Echinodermata MeOH Kume Island SG1-12-2 39 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-14-2 117 Comaster schlegelii Echinodermata MeOH Kume Island SG1-16-2 66 Colobometridae sp. Echinodermata MeOH Kume Island SG1-16-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | OK-99-55 | 65 | Acanthella sp. | Porifera | EtOAc | Kuro Island | | | OK-99-64 98 | OK-99-57 | 84 | Theonella swinhoei | Porifera | EtOAc | Kuro Island | | | SG1-1-2 77 Comanthus gisleni Echinodermata MeOH Kume Island SG1-2-2 112 Stephanometra indica Echinodermata MeOH Kume Island SG1-5-2 33 Comantella sp. cf. maculata Echinodermata MeOH Kume Island SG1-9-2 57 Phanogenia gracilis Echinodermata MeOH Kume Island SG1-12-2 39 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-14-2 117 Comaster schlegelii Echinodermata MeOH Kume Island SG1-15-2 26 Colobometridae sp. Echinodermata MeOH Kume Island SG1-16-2 66 Cenometra bella Echinodermata MeOH Kume Island SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | OK-99-63 | 117 | Epipolasis kushimotoensis | Porifera | EtOAc | Kuro Island | | | SG1-2-2 112 Stephanometra indica Echinodermata MeOH Kume Island SG1-5-2 33 Comantella sp. cf. maculata Echinodermata MeOH Kume Island SG1-9-2 57 Phanogenia gracilis Echinodermata MeOH Kume Island SG1-12-2 39 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-14-2 117 Comaster schlegelii Echinodermata MeOH Kume Island SG1-15-2 26 Colobometridae sp. Echinodermata MeOH Kume Island SG1-16-2 66 Cenometra bella Echinodermata MeOH Kume Island SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | OK-99-64 | 98 | Xestospongia sp. | Porifera | EtOAc | Kuro Island | | | SG1-5-233Comantella sp. cf. maculataEchinodermataMeOHKume IslandSG1-9-257Phanogenia gracilisEchinodermataMeOHKume IslandSG1-12-239Comanthus parvicirrusEchinodermataMeOHKume IslandSG1-14-2117Comaster schlegeliiEchinodermataMeOHKume IslandSG1-15-226Colobometridae sp.EchinodermataMeOHKume IslandSG1-16-266Cenometra bellaEchinodermataMeOHKume IslandSG1-19-278Comaster nobilisEchinodermataMeOHKume IslandSG1-21-232Oxycomanthus sp.EchinodermataMeOHKume Island | SG1-1-2 | 77 | Comanthus gisleni | Echinodermata | MeOH | Kume Island | | | SG1-9-2 57 Phanogenia gracilis Echinodermata MeOH Kume Island SG1-12-2 39 Comanthus parvicirrus Echinodermata MeOH Kume Island SG1-14-2 117 Comaster schlegelii Echinodermata MeOH Kume Island SG1-15-2 26 Colobometridae sp. Echinodermata MeOH Kume Island SG1-16-2 66 Cenometra bella Echinodermata MeOH Kume Island SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | SG1-2-2 | 112 | Stephanometra indica | Echinodermata | МеОН | Kume Island | | | SG1-12-239Comanthus parvicirrusEchinodermataMeOHKume IslandSG1-14-2117Comaster schlegeliiEchinodermataMeOHKume IslandSG1-15-226Colobometridae sp.EchinodermataMeOHKume IslandSG1-16-266Cenometra bellaEchinodermataMeOHKume IslandSG1-19-278Comaster nobilisEchinodermataMeOHKume IslandSG1-21-232Oxycomanthus sp.EchinodermataMeOHKume Island | <u>SG1-5-2</u> | 33 | Comantella sp. cf. maculata | Echinodermata | МеОН | Kume Island | | | SG1-14-2 117 Comaster schlegelii Echinodermata MeOH Kume Island SG1-15-2 26 Colobometridae sp. Echinodermata MeOH Kume Island SG1-16-2 66 Cenometra bella Echinodermata MeOH Kume Island SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | SG1-9-2 | 57 | Phanogenia gracilis | Echinodermata | MeOH | Kume Island | | | SG1-15-226Colobometridae sp.EchinodermataMeOHKume IslandSG1-16-266Cenometra bellaEchinodermataMeOHKume IslandSG1-19-278Comaster nobilisEchinodermataMeOHKume IslandSG1-21-232Oxycomanthus sp.EchinodermataMeOHKume Island | SG1-12-2 | 39 | Comanthus parvicirrus | Echinodermata | МеОН | Kume Island | | | SG1-16-2 66 Cenometra bella Echinodermata MeOH Kume Island SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | SG1-14-2 | 117 | Comaster schlegelii | Echinodermata | МеОН | Kume Island | | | SG1-19-2 78 Comaster nobilis Echinodermata MeOH Kume Island SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | SG1-15-2 | 26 | Colobometridae sp. | Echinodermata | МеОН | Kume Island | | | SG1-21-2 32 Oxycomanthus sp. Echinodermata MeOH Kume Island | | 66 | Cenometra bella | Echinodermata | МеОН | Kume Island | | | • | SG1-19-2 | 78 | Comaster nobilis | Echinodermata | MeOH | Kume Island | | | SG1-23-1 -3 Alloeocomatella polycladia Echinodermata EtOAc Kume Island | SG1-21-2 | 32 | Oxycomanthus sp. | Echinodermata | МеОН | Kume Island | | | | <u>SG1-23-1</u> | -3 | Alloeocomatella polycladia | Echinodermata | EtOAc | Kume Island | | Table 1. Cont. | SG1-24-1 | 24 | Comanthus sp. | Echinodermata | EtOAc | Kume Island | |-----------------|-----|-------------------------|---------------|-------|------------------| | SG1-26-2 | 51 | Oxycomanthus benetti | Echinodermata | МеОН | Kume Island | | SG1-28-2 | 38 | Lamprometra palmata | Echinodermata | МеОН | Kume Island | | SG1-30-1 | 25 | Colobometra perspinosa | Echinodermata | EtOAc | Kume Island | | <u>SG1-31-1</u> | 26 | Comanthus sp. | Echinodermata | EtOAc | Kume Island | | <u>SG1-33-1</u> | 32 | Basilometra boschmai | Echinodermata | EtOAc | Kume Island | | SG3-1 | 82 | Stereonephthya sp. | Cnidaria | EtOAc | Tokashiki Island | | SG3-4 | 73 | Dysidea cf. arenaria | Porifera | EtOAc | Tokashiki Island | | SG3-6 | 74 | Stylotella sp. | Porifera | EtOAc | Tokashiki Island | | SG3-10 | 139 | Epipolasis sp. | Porifera | EtOAc | Tokashiki Island | | SG3-11 | 97 | Nephthea sp. | Cnidaria | EtOAc | Tokashiki Island | | SG3-21 | 106 | Myrmekioderma sp. | Porifera | EtOAc | Tokashiki Island | | SG3-25 | 111 | Pseudoceratina purpurea | Porifera | EtOAc | Tokashiki Island | | SG3-26 | 95 | Leucetta sp. |
Porifera | EtOAc | Tokashiki Island | | SG3-28 | 65 | <i>Lyngbya</i> sp. | Cyanobacteria | EtOAc | Tokashiki Island | | SG3-29 | 61 | Dysidea sp. | Porifera | EtOAc | Tokashiki Island | Total number of marine organisms: 61; Marine organisms that strongly inhibit NS3 helicase activity (<30%) (boldface and underlined): 5; Extracts of organisms that exhibit intermediate inhibition of NS3 helicase activity (30%–60%) (underlined): 11; EtOAc: Ethyl acetate; MeOH: Methanol. **Figure 1.** Schematic representation of the PET assay system for unwinding activity of HCV NS3 helicase. The fluorescent dye (BODIPY FL) is attached to the cytosine at the 5'-end of the fluorescent strand and quenched by the guanine base at the 3'-end of the complementary strand via photoinduced electron transfer. When the helicase unwinds the double-strand RNA substrate, the fluorescence of the dye emits bright light upon the release of the dye from the guanine base. The capture strand, which is complementary to the complementary strand, prevents the reannealing of the unwound duplex. **Figure 2.** Alloeocomatella polycladia belongs to a class of feather star (Echinodermata, Crinoidea). The ethyl acetate fraction prepared from the marine organism was designated SG1-23-1 in this study. **Figure 3.** Effect of SG1-23-1 on the unwinding activity of NS3 helicase. (**A**) NS3 helicase activity was measured by PET assay. The reactions were carried out in the absence or presence of SG1-23-1. Helicase activity in the absence of SG1-23-1 was defined as 100% helicase activity. Each value represents the mean of three independent reactions. Error bars indicate standard deviation. The data represent three independent experiments. (**B**) The unwinding activity of NS3 helicase was measured by RNA unwinding assay using radioisotope-labeled RNA. The heat-denatured single-strand RNA (26-mer) and the partial duplex RNA substrate were applied to lanes 1 and 2, respectively. The duplex RNA was reacted with NS3 (300 nM) in the presence of SG1-23-1 (lanes 4 to 9, 16 to 500 μg/mL). The resulting samples were subjected to native polyacrylamide gel electrophoresis. 2.2. Effect of SG1-23-1 on HCV NS3 ATPase and RNA Binding Activities The unwinding ability of HCV helicase is dependent on ATP binding, ATP hydrolysis, and RNA binding [8,9]. We examined the effect of SG1-23-1 on the ATPase activity of NS3 helicase. The ratio of free phosphate (³²P-Pi) in ATP (³²P-ATP) was measured in the presence of SG1-23-1. The reaction was carried out between 16 and 500 μg of SG1-23-1 per milliliter. ATPase activity was slightly increased at 16 μg SG1-23-1 per milliliter and slightly decreased at 500 μg SG1-23-1 per milliliter (Figure 4A). However, the helicase activity was decreased to less than 10% in the presence of 50 μg of SG1-23-1 per milliliter (Figure 3A,B). Next, we examined the effect of SG1-23-1 on the binding of NS3 helicase to single-strand RNA (ssRNA). A gel-mobility shift assay was employed to estimate the binding activity of NS3 to 21 mer of ssRNA. The binding of NS3 to ssRNA was inhibited with SG1-23-1 in a dose-dependent manner (Figure 4B). These results suggest that SG1-23-1 contains the compound that inhibits RNA binding to NS3 helicase. **Figure 4.** Effect of SG1-23-1 on ATPase and RNA-binding activities of NS3 helicase. (A) The reaction mixtures were incubated with $[\gamma^{-32}P]$ ATP as described in Materials and Methods. The reaction mixtures were subjected to thin-layer chromatography. The start positions and migrated positions of ATP and free phosphoric acid are indicated as "Origin", "³²P-ATP", and "³²P-Pi", respectively, on the left side of this figure. The data represent three independent experiments. (B) Gel mobility shift assay for RNA-binding activity of NS3 helicase. The reaction was carried out at the indicated concentration of SG1-23-1. The reaction mixture was subjected to gel mobility shift assay. The data represent three independent experiments. 2.3. Effect of SG1-23-1 on HCV RNA Replication in HCV 1b Replicon Cells We investigated the effect of SG1-23-1 on both viral replication and growth of the replicon cell lines. The cell lines possess viral subgenomic RNAs derived from three genotype 1b strains (strains N [33], Con1 [34], and O [35]) or a full genomic RNA derived from the O strain [35]. Each cell line was treated with various concentrations of SG1-23-1. The treated cells were harvested 72 h post-treatment. Treatment with SG1-23-1 suppressed HCV RNA replications of all cell lines in a dose-dependent manner irrespectively of full- and sub-genome replicons; it exhibited no effect below 25 µg/mL and little effect on cellular viability at the highest concentration, $50 \mu g/mL$ (Figure 5C,D). Both HCV NS3 and NS5A were decreased at the protein level in a dose-dependent manner, corresponding to the viral replication, but beta-actin was not changed in the cell line harboring subgenome replicon RNA of the Con1 strain (Figure 5E). The inhibitory effect of SG1-23-1 on HCV replication is summarized in Table 2. The inhibitory effects on the HCV replication of the subgenome replicon derived from Con1, O, and N strains were 22.9 ± 0.4 , 19.9 ± 1.8 , and 44.2 ± 1.5 µg/mL, respectively, as EC₅₀; and 48.1 ± 1.5 , 48.5 ± 0.3 , and >50 µg/mL, respectively, as EC₉₀. Treatment with SG1-23-1 inhibited the replication of the subgenome replicon of the O strain (EC₅₀: 19.9 \pm 1.8 μ g/mL; EC₉₀: 48.5 \pm 0.3 μ g/mL) at a more potent level than the replication of the full genomic replicon of the O strain (EC₅₀: 39.5 \pm 0.8 μ g/mL; EC₉₀: >50 μg/mL). When luciferase of firefly or *Renilla* was expressed under the control of the EF promoter, neither showed a significant change in activity in the presence of SG1-23-1 (Figure 5F). The replicon RNA of HCV is composed of the 5'-UTR of HCV, indicator genes (luciferase and drug-resistant genes), encephalomyocarditis virus (EMCV) IRES, the viral genes encoding complete or nonstructural proteins, and the 3'-UTR of HCV in that order [33-35]. The replican RNA replicated autonomously in several HCV replication-permissive cell lines derived from several hepatoma cell lines. Nonstructural proteins in replicon cells were polycistronically translated through EMCV IRES. The cap-dependent translated mRNA, including Renilla luciferase, EMCV IRES, and the firefly luciferase/neomycin-resistant gene in that order, was constructed to examine the effect of the extract on EMCV-IRES-dependent translation (Figure 5G). When the expression of the mRNA was transcribed by an EF promoter of the transfected plasmid in the presence of SG1-23-1, the ratio of firefly luciferase activity to Renilla luciferase activity was not changed, suggesting that treatment with SG1-23-1 exhibited no effect on EMCV-IRES-dependent translation (Figure 5H). Thus, the inhibitory effect of SG1-23-1 on the luciferase activity must correspond to the replication efficiency of the replicon RNA but not to the inhibition of luciferase activity or the inhibition of EMCV-IRES-dependent translation. The inhibitory effect of the extract on the viral replication is similar to that of the extract on the helicase activity with respect to the values of IC₅₀ and EC₅₀ (Figure 3A and Table 2). These results suggest that treatment with SG1-23-1 inhibits HCV replication in a manner similar to that of the inhibitory effect on NS3 helicase activity. Figure 5. Effect of SG1-23-1 on viral replication in replicon cell lines. (A–D) Huh7 Lunet/Con1 LUN Sb #26 (A), Huh7 rep Feo (B), Huh7#94/ORN3-5B#24 (C), and OR6 (D) cell lines were incubated in medium containing various concentrations of SG1-23-1. Luciferase and cytotoxicity assays were carried out as described in Materials and Methods. Error bars indicate standard deviation. The data represent three independent experiments. (E) Protein extract was prepared from Huh7 Lunet/Con1 LUN Sb #26 cells treated for 72 h with an indicated concentration of SG1-23-1 and then was subjected to Western blotting using antibodies to NS3, NS5A, and beta-actin. (F) Huh7 cell line transfected with pEF Fluc IN vector or pEF Rluc IN was established in the presence of G418. Both cell lines were incubated without (control) and with 50 μg/mL SG1-23-1. Firefly or *Renilla* luciferase activity was measured 72 h post-treatment. Luciferase activity was normalized with protein concentration. Error bars indicate standard deviation. The data represent three independent experiments. (G) Schematic structure of the plasmid, pEF Rluc EMCV IRES Feo. The bicistronic gene is transcribed under the control of elongation factor 1α (EF1 α) promoter. The upstream cistron encoding *Renilla* luciferase (RLuc) is translated by a cap-dependent mechanism. The downstream cistron encodes the fusion protein (Feo), which consists of the firefly luciferase (Fluc) and neomycin phosphotransferase (Neo^r), and is translated under the control of the EMCV IRES. (H) Huh7 cell line transfected with pEF Rluc EMCV IRES Feo was established in the presence of G418. The cells were incubated for 72 h without (control) and with 50 μ g/mL of SG1-23-1. Firefly or *Renilla* luciferase activity was measured by the method described in Materials and Methods and was normalized by the protein concentration. F/R: Relative ratio of Firefly luciferase activity to *Renilla* luciferase activity. F/R is presented as a percentage of the control condition. Error bars indicate standard deviation. The data represent three independent experiments. | Replicon Cell Line | Virus Strain | EC ₅₀ a | EC ₉₀ b | CC ₅₀ c | | |--------------------|---------------|--------------------|--------------------|--------------------|--| | | (Genotype 1b) | (μg/mL) | (μg/mL) | (μg/mL) | | | Subgenome | | | | | | | Huh7 Lunet/ | | | | | | | Con1 LUN Sb #26 | Con1 | 22.9 ± 0.4 | 48.1 ± 1.5 | >50 | | | Huh7 rep Feo | N | 44.2 ± 1.5 | >50 | >50 | | | Hu7#94/ORN3-5B#24
| O | 19.9 ± 1.8 | 48.8 ± 0.3 | >50 | | | Full genome | | | | | | | OR6 | O | 39.5 ± 0.8 | >50 | >50 | | Table 2. Anti-HCV activity of SG1-23-1 in different replicon cell lines of genotype 1b. All data represent means \pm standard deviation for three independent experiments; ^a Fifty percent effective concentration based on the inhibition of HCV replication; ^b Ninety percent effective concentration based on the inhibition of HCV replication; ^c Fifty percent cytotoxicity concentration based on the reduction of cell viability. #### 2.4. Effect of SG1-23-1 on the Interferon (IFN) Signaling Pathway It has been reported that the HCV replication in cultured cells is potently inhibited by interferon (IFN) [36,37]. We examined whether or not treatment with SG1-23-1 induces interferon from replicon cells. The replicon cells were treated with various concentrations of interferon-alpha 2b or 50 μg of SG1-23-1 per milliliter. The treated cells were harvested at 72 h post-treatment. The interferon-inducible genes, MxA and 2',5'-OAS, were induced with IFN-alpha 2b but not with SG1-23-1 (Figure 6). These results suggest that the inhibitory effect of SG1-23-1 on the replication of the HCV replicon is independent of the IFN signaling pathway. **Figure 6.** Effect of SG1-23-1 on interferon signaling pathway. Huh7 Lunet/Con1 LUN Sb #26 cells were treated without (lane 1) or with 1, 10, or 100 U/mL IFNa-2b (lanes 2–4), and 50 μg/mL SG1-23-1 (lane 5) for 48 h. The mRNAs of MxA, 2',5'-OAS, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control were detected by reverse-transcription polymerase chain reaction (RT-PCR). Error bars indicate standard deviation. The data represent three independent experiments. Treatment with SG1-23-1 suppressed the helicase activity of NS3 in a dose-dependent manner and exhibited an IC₅₀ of 11.7 μg/mL. Interestingly, treatment with SG1-23-1 inhibited the RNA binding activity of the helicase but not the ATPase activity of NS3. Treatment with SG1-23-1 inhibited the luciferase activity corresponding to the HCV replication in the replicon cell lines, but not the enzymatic activity of luciferase or the translational activity of EMCV IRES, suggesting that treatment with SG1-23-1 decreases HCV replication. Figure 4 shows that the viral proteins NS3 and NS5A in replicon cells were decreased by treatment with SG1-23-1, supporting the notion that SG1-23-1 inhibits HCV replication but not the enzymatic activity of luciferase. The inhibition of cell growth would not contribute to the inhibition of HCV replication by SG1-23-1 (Figure 3 and Table 2). Treatment with SG1-23-1 did not induce the interferon-stimulated genes in the replicon cell lines (Figure 6), suggesting that inhibition of HCV replication by treatment with SG1-23-1 is not due to interferon induction or interferon signaling. The extract SG1-23-1 inhibited the HCV replicon with an EC₅₀ of 22 to 44 μg/mL, which is similar to the value of IC₅₀. These results suggest that the anti-HCV compound(s) included in *A. polycladia* can suppress viral replication by inhibiting NS3 helicase activity. #### 3. Experimental Section #### 3.1. Preparation of Extracts from Marine Organisms All marine organisms used in this study were collected by hand during scuba diving off Shimoji, Okinawa, Chibishi, Kuro, Kume, and Tokashiki Islands in Okinawa Prefecture, Japan. In the case of OK-99-tagged extract, a specimen was soaked in ethanol. The ethanol-soluble fraction was concentrated, and the resulting aqueous material was suspended in ethyl acetate (EtOAc). The organic fraction was used for screening. Each specimen from Kume was soaked in ethanol. The ethanol-soluble fraction was concentrated. The resulting material was suspended in EtOAc. The EtOAc-soluble fraction was used for screening and tagged with SG1 and the last digit of "1". The water layer was concentrated to dryness and suspended in methanol (MeOH). The MeOH-soluble fraction was used for screening and tagged with SG1 and the last digit of "2". Each specimen from Tokashiki was extracted three times with acetone. After removal of acetone from the solution, the residual material was suspended in EtOAc. The EtOAc-soluble fraction was used for screening and tagged with SG3. All samples were dried and then solubilized in dimethyl sulfoxide (DMSO) before testing. #### 3.2. High-Throughput Screening of NS3 Helicase Inhibitors oligonucleotide was purchased from J-Bio 21 Corporation. BODIPY FL was attached to the 5'-end via an aminohexylphosphate linker with a six-carbon spacer. Unlabeled oligonucleotides were purchased from Japan Bio Services Co., Ltd. The PET NS3 helicase assay was carried out in 22 μ L of 25 mM MOPS-NaOH (pH 6.5) containing 3 mM MgCl₂, 2 mM dithiothreitol (DTT), 4 U RNasin, 50 nM of the double-strand RNA described above, 100 nM DNA capture strand, 5 mM ATP, and the extract (25 μ g/mL) and 240 nM HCV NS3 helicase. The reaction was started by the addition of HCV NS3 helicase. The reaction mixture was incubated at 37 °C for 30 min. The fluorescence intensity was recorded every 5 s until 5 min post-reaction, and then every 30 s between 5 and 30 min post-reaction by using a LightCycler 1.5 (Roche Diagnostics, Tokyo, Japan). The initial reaction velocity was calculated and represented as NS3 helicase activity. #### 3.3. ATPase Assay NS3 ATPase activity was determined by the method of Gallinari *et al.* [39] with slight modifications. The reaction was carried out at 37 °C for 10 min in 10 μ L of the reaction mixture containing 25 mM MOPS-NaOH (pH 7.0), 1 mM DTT, 5 mM MgCl₂, 5 mM CaCl₂, 1 mM [γ -³²P] ATP (Muromachi, Tokyo, Japan), 300 nM NS3, and 0.1 μ g poly (U) per microliter and an indicated concentration of SG1-23-1, and then was terminated by the addition of 15 microliters of 10 mM EDTA. Two microliters of the reaction mixture were spotted onto a polyethyleneimine cellulose sheet (Merck, Darmstadt, Germany) and then developed in 0.75 M LiCl/1 M formic acid solution at room temperature for 20 min. The sheet was air-dried completely and then exposed to an image plate. Radioactive bands were visualized with an Image Reader FLA-9000 and quantified by Multi Gauge V 3.11 software (version 3.11; Fujifilm: Tokyo, Japan, 2008). #### 3.4. RNA Helicase Assay SG1-23-1 extract was added at various concentrations to a helicase reaction mixture consisting of 25 mM MOPS-NaOH (pH 7.0), 2.5 mM DTT, 2.5 U of RNasin Plus (Promega), 100 μg of BSA per milliliter, and 3 mM MgCl₂. The mixture was supplemented with 300 nM NS3 protein and 5 fM ³²P-labeled partial duplex RNA substrate. It was then preincubated at 23 °C for 15 min. After adding ATP at a final concentration of 5 mM, the reaction mixture (20 μL) was incubated at 37 °C for 30 min and stopped by adding 5 μ L helicase termination buffer consisting of 0.1 M Tris-HCl (pH 7.5), 20 mM EDTA, 0.5% SDS, 0.1% Nonidet P-40, 0.1% bromophenol blue, 0.1% xylene cyanol, and 25% glycerol. The terminated reaction mixture was subjected to native TBE 10% polyacrylamide gel electrophoresis. The radioactive RNAs in the gel were visualized with an Image Reader FLA-9000 (Fujifilm) and quantified by Multi Gauge V 3.11 software. #### 3.5. RNA Binding Assay RNA binding to NS3 helicase was analyzed by gel mobility shift assay [40]. First, let-7 single-strand RNA (5'-UGAGGUAGGUAGGUUGUAUAGU-3') was incubated with $[\gamma^{-32}P]$ ATP (Muromachi, Tokyo, Japan) and T4 polynucleotide kinase (Toyobo) at 37 °C for 60 min for labeling at the 5'-end of the single-strand RNA. The reaction mixture was subjected to phenol chloroform extraction for purification of labeled RNA. The reaction was carried out at room temperature for 15 min in 20 μ L of the mixture consisting of 30 mM Tris-HCl (pH 7.5), 100 mM NaCl, 2 mM MgCl₂, 1 mM DTT, 1 unit of RNasin Plus (Promega) per microliter, 300 nM NS3, 5 fmol let-7-labeled ssRNA, and an indicated concentration of SG1-23-1. The reaction was stopped by adding an equal volume of dye solution consisting of 0.025% bromophenol blue, 10% glycerol, and 0.5× Tris/borate/EDTA (TBE). The resulting mixture was subjected to native 6% polyacrylamide gel electrophoresis (acrylamide: bis acrylamide = 19:1). The radioactive RNA was visualized with the Image Reader FLA-9000 and quantified by Multi Gauge V 3.11 software. #### 3.6. Cell Lines The following Huh-7-derived cell lines used in this study were maintained in Dulbecco's modified Eagle's medium containing 10% fetal calf serum and 0.5 mg/mL G418: The Lunet/Con1 LUN Sb #26 cell line, which harbors the subgenomic replicon RNA of the Con1 strain (genotype 1b) [34]; the Huh7/ORN3-5B #24 cell line, which harbors the subgenomic replicon RNA of the O strain (genotype 1b) [35]; the Huh7 Rep Feo cell line, which harbors the subgenomic replicon RNA of the N strain (genotype 1b) [33]; and the OR6 cell line, which harbors the full genomic RNA of the O strain (genotype 1b) [35]. #### 3.7. Determination of Luciferase Activity in HCV Replicon Cells HCV replicon cells were seeded at 2×10^4 cells per well in a 48-well plate 24 h before treatment. The extract SG1-23-1 was added to the culture medium at various concentrations. The treated cells were harvested 72 h post-treatment and lysed in cell culture lysis reagent (Promega) or *Renilla* luciferase assay lysis buffer (Promega). Luciferase activity in the harvested cells was estimated with a luciferase assay system (Promega) or a *Renilla* luciferase assay system (Promega). The resulting luminescence was detected by the Luminescencer-JNR AB-2100 (ATTO, Tokyo, Japan) and corresponded to the expression level of the HCV replicon. Mar. Drugs **2012**, 10 **758** #### 3.8. Determination of Cytotoxicity in HCV Replicon Cells HCV replicon cells were seeded at a density of 1×10^4 cells per well in a 96-well plate and incubated at 37 °C for 24 h. The extract fraction of the sample code SG1-23-1 was added to the culture
medium at various concentrations. These cells were treated with an indicated concentration of the extract fraction and then were harvested 72 h post-treatment. Cell viability was measured by dimethylthiazol carboxymethoxy-phenylsulfophenyl tetrazolium (MTS) assay using a CellTiter 96 aqueous one-solution cell proliferation assay kit (Promega). #### 3.9. Effects on Activities of Luciferase and Internal Ribosome Entry Site (IRES) The plasmid pEF Fluc IN and pEF Rluc EMCV IRES Feo were described previously [41]. The firefly luciferase gene was replaced with the *Renilla* luciferase gene in the plasmid pEF Fluc IN. The resulting plasmid was designated as pEF RlucIN in this study. The Huh7 cells were transfected with the pEF Fluc IN, pEF Rluc IN, or pEF Rluc EMCV IRES Feo and then were established in a medium containing 0.25 mg/mL G418 as described previously [41]. These cell lines were seeded at 2×10^4 cells per well in a 48-well plate 24 h before treatment, treated with 50 μ g/mL extract SG1-23-1, and then harvested at 72 h post-treatment. Activities of firefly and *Renilla* luciferases in pEF Rluc EMCV IRES Feo were measured with the dual luciferase reporter assay system (Promega). Total protein concentration was measured using the BCA Protein Assay Reagent Kit (Thermo Scientific, Rockford, IL, USA) to normalize luciferase activity. #### 3.10. Western Blotting The cells were lysed in lysis buffer containing Cell Culture Lysis Reagent (Promega). The cell lysate was subjected to SDS-10% polyacrylamide gel (SDS-PAGE). The proteins in the gel were transferred onto a polyvinylidene fluoride (PVDF) membrane. The resulting membrane was incubated with the primary antibodies at 4 °C overnight and then was washed three times with PBS containing 0.02% Tween 20 (PBS-T). The resulting membrane was reacted with a horseradish peroxidase-labeled anti-IgG antibody at room temperature for 2 h and then was washed three times with PBS-T. The reacted proteins were visualized with ImmunoStar LD (Wako Pure Chemical, Osaka, Japan). The antibodies to NS3 (Abcam, Cambridge, UK), NS5A (ViroGen, Watertown, MA, USA) and beta-actin were purchased from New England Biolabs (Beverly, MA, USA) and were used as the primary antibodies in this study. #### 3.11. Reverse-Transcription Polymerase Chain Reaction (RT-PCR) The previously described method of RT-PCR [41] was slightly modified, as described below. Total RNA was isolated from cultured cells with the RNAqueous-4PCR kit (Ambion, Austin, TX, USA) and then was reverse-transcribed with a Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA). The transcribed mRNA was amplified with PCR using AmpliTaq Gold DNA polymerase (Applied Biosystems, Foster City, CA, USA) and an appropriate primer pair. Primer sequences targeting the genes encoding 2',5'-oligoadenylate synthetase (2',5'-OAS), myxovirus resistance protein A (MxA), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were described previously [41]. #### 4. Conclusions In conclusion, we showed that the ethyl acetate extract from *Alloeocomatella polycladia* significantly inhibits HCV replication by suppressing viral helicase activity. The purification of an inhibitory compound from the extract of *Alloeocomatella polycladia* will be required in order to improve the efficacy of chemical modification of the compound(s). #### Acknowledgments We thank R. Bartenschlager for kindly providing cell lines and plasmids, and H. Kasai and I. Katoh for their helpful comments and discussions. This work was supported in part by grants-in-aid from the Ministry of Health, Labor (H22-kanen-004, 006 and 009), and Welfare and from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. #### References - 1. Baldo, V.; Baldovin, T.; Trivello, R.; Floreani, A. Epidemiology of HCV infection. *Curr. Pharm. Des.* **2008**, *14*, 1646–1654. - 2. Seeff, L.B. Natural history of chronic hepatitis C. *Hepatology* **2002**, *36*, S35–S46. - 3. Moriishi, K.; Matsuura, Y. Host factors involved in the replication of hepatitis C virus. *Rev. Med. Virol.* **2007**, *17*, 343–354. - 4. Tsukiyama-Kohara, K.; Iizuka, N.; Kohara, M.; Nomoto, A. Internal ribosome entry site within hepatitis C virus RNA. *J. Virol.***1992**, *66*, 1476–1483. - 5. Bartenschlager, R.; Ahlborn-Laake, L.; Mous, J.; Jacobsen, H. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. *J. Virol.* **1993**, *67*, 3835–3844. - 6. Kim, D.W.; Gwack, Y.; Han, J.H.; Choe, J. C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity. *Biochem. Biophys. Res. Commun.* **1995**, *215*, 160–166. - 7. Failla, C.; Tomei, L.; de Francesco, R. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. *J. Virol.* **1994**, *68*, 3753–3760. - 8. Belon, C.A.; Frick, D.N. Helicase inhibitors as specifically targeted antiviral therapy for hepatitis C. *Future Virol.* **2009**, *4*, 277–293. - 9. Frick, D.N. The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target. *Curr. Issues Mol. Biol.* **2007**, *9*, 1–20. - 10. Kwong, A.D.; Rao, B.G.; Jeang, K.T. Viral and cellular RNA helicases as antiviral targets. *Nat. Rev. Drug Discov.* **2005**, *4*, 845–853. - 11. Manns, M.P.; Wedemeyer, H.; Cornberg, M. Treating viral hepatitis C: efficacy, side effects, and complications. *Gut* **2006**, *55*, 1350–1359. - 12. McHutchison, J.G.; Everson, G.T.; Gordon, S.C.; Jacobson, I.M.; Sulkowski, M.; Kauffman, R.; McNair, L.; Alam, J.; Muir, A.J.; Team, P.S. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. *N. Engl. J. Med.* **2009**, *360*, 1827–1838. - 13. Zeuzem, S.; Hultcrantz, R.; Bourliere, M.; Goeser, T.; Marcellin, P.; Sanchez-Tapias, J.; Sarrazin, C.; Harvey, J.; Brass, C.; Albrecht, J. Peginterferon alfa-2b plus ribavirin for treatment of chronic hepatitis C in previously untreated patients infected with HCV genotypes 2 or 3. *J. Hepatol.* **2004**, *40*, 993–999. - 14. Asselah, T.; Marcellin, P. New direct-acting antivirals' combination for the treatment of chronic hepatitis C. *Liver Int.* **2011**, *31 Suppl 1*, 68–77. - 15. Jazwinski, A.B.; Muir, A.J. Direct-acting antiviral medications for chronic hepatitis C virus infection. *Gastroenterol. Hepatol. (NY)* **2011**, *7*, 154–162. - 16. Lange, C.M.; Sarrazin, C.; Zeuzem, S. Review article: specifically targeted anti-viral therapy for hepatitis C—A new era in therapy. *Aliment. Pharmacol. Ther.* **2010**, *32*, 14–28. - 17. Hofmann, W.P.; Zeuzem, S. A new standard of care for the treatment of chronic HCV infection. *Nat. Rev. Gastroenterol. Hepatol.* **2011**, *8*, 257–264. - 18. Kwong, A.D.; Kauffman, R.S.; Hurter, P.; Mueller, P. Discovery and development of telaprevir: An NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. *Nat. Biotechnol.* **2011**, *29*, 993–1003. - 19. Kieffer, T.L.; Kwong, A.D.; Picchio, G.R. Viral resistance to specifically targeted antiviral therapies for hepatitis C (STAT-Cs). *J. Antimicrob. Chemother.* **2010**, *65*, 202–212. - 20. Thompson, A.J.; McHutchison, J.G. Antiviral resistance and specifically targeted therapy for HCV (STAT-C). *J. Viral. Hepat.* **2009**, *16*, 377–387. - 21. Belon, C.A.; High, Y.D.; Lin, T.I.; Pauwels, F.; Frick, D.N. Mechanism and specificity of a symmetrical benzimidazolephenylcarboxamide helicase inhibitor. *Biochemistry* **2010**, *49*, 1822–1832. - 22. Maga, G.; Gemma, S.; Fattorusso, C.; Locatelli, G.A.; Butini, S.; Persico, M.; Kukreja, G.; Romano, M.P.; Chiasserini, L.; Savini, L.; *et al.* Specific targeting of hepatitis C virus NS3 RNA helicase. Discovery of the potent and selective competitive nucleotide-mimicking inhibitor OU663. *Biochemistry* **2005**, *44*, 9637–9644. - 23. Chin, Y.W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. *AAPS J.* **2006**, *8*, E239–E253. - 24. Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. *Nat. Rev. Drug Discov.* **2005**, *4*, 206–220. - 25. Li, J.W.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? *Science* **2009**, *325*, 161–165. - 26. Ahmed-Belkacem, A.; Ahnou, N.; Barbotte, L.; Wychowski, C.; Pallier, C.; Brillet, R.; Pohl, R.T.; Pawlotsky, J.M. Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. *Gastroenterology* **2010**, *138*, 1112–1122. - 27. Wagoner, J.; Negash, A.; Kane, O.J.; Martinez, L.E.; Nahmias, Y.; Bourne, N.; Owen, D.M.; Grove, J.; Brimacombe, C.; McKeating, J.A.; *et al.* Multiple effects of silymarin on the hepatitis C virus lifecycle. *Hepatology* **2010**, *51*, 1912–1921. - 28. Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; *et al.* The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. *Hepatology* **2011**, *54*, 1947–1955. - 29. Takeshita, M.; Ishida, Y.; Akamatsu, E.; Ohmori, Y.; Sudoh, M.; Uto, H.; Tsubouchi, H.; Kataoka, H. Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. *J. Biol. Chem.* **2009**, *284*, 21165–21176. - 30. Donia, M.; Hamann, M.T. Marine natural products and their potential applications as anti-infective agents. *Lancet Infect. Dis.* **2003**, *3*, 338–348. - 31. Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. *Nat. Rev. Drug Discov.* **2009**, *8*, 69–85. - 32. Mayer, A.M.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. *Trends Pharmacol. Sci.* **2010**, *31*, 255–265. - 33. Yokota, T.; Sakamoto, N.; Enomoto,
N.; Tanabe, Y.; Miyagishi, M.; Maekawa, S.; Yi, L.; Kurosaki, M.; Taira, K.; Watanabe, M.; *et al.* Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. *EMBO Rep.* **2003**, *4*, 602–608. - 34. Frese, M.; Barth, K.; Kaul, A.; Lohmann, V.; Schwarzle, V.; Bartenschlager, R. Hepatitis C virus RNA replication is resistant to tumour necrosis factor-alpha. *J. Virol.* **2003**, *84*, 1253–1259. - 35. Ikeda, M.; Abe, K.; Dansako, H.; Nakamura, T.; Naka, K.; Kato, N. Efficient replication of a full-length hepatitis C virus genome, strain O, in cell culture, and development of a luciferase reporter system. *Biochem. Biophys. Res. Commun.* **2005**, *329*, 1350–1359. - 36. Blight, K.J.; Kolykhalov, A.A.; Rice, C.M. Efficient initiation of HCV RNA replication in cell culture. *Science* **2000**, *290*, 1972–1974. - 37. Guo, J.T.; Bichko, V.V.; Seeger, C. Effect of alpha interferon on the hepatitis C virus replicon. *J. Virol.***2001**, *75*, 8516–8523. - 38. Tani, H.; Akimitsu, N.; Fujita, O.; Matsuda, Y.; Miyata, R.; Tsuneda, S.; Igarashi, M.; Sekiguchi, Y.; Noda, N. High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon. *Biochem. Biophys. Res. Commun.* **2009**, *379*, 1054–1059. - 39. Gallinari, P.; Brennan, D.; Nardi, C.; Brunetti, M.; Tomei, L.; Steinkuhler, C.; De Francesco, R. Multiple enzymatic activities associated with recombinant NS3 protein of hepatitis C virus. *J. Virol.* **1998**, *72*, 6758–6769. - 40. Huang, Y.; Liu, Z.R. The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. *J. Biol. Chem.* **2002**, *277*, 12810–12815. - 41. Jin, H.; Yamashita, A.; Maekawa, S.; Yang, P.; He, L.; Takayanagi, S.; Wakita, T.; Sakamoto, N.; Enomoto, N.; Ito, M. Griseofulvin, an oral antifungal agent, suppresses hepatitis C virus replication *in vitro*. *Hepatol*. *Res.* **2008**, *38*, 909–918. - © 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). VIRUS-95660; No. of Pages 5 ## **ARTICLE IN PRESS** Virus Research xxx (2012) xxx-xxx Contents lists available at SciVerse ScienceDirect #### Virus Research journal homepage: www.elsevier.com/locate/virusres #### Short communication ## Suppression of hepatitis C virus replicon by adenovirus vector-mediated expression of tough decoy RNA against miR-122a Fuminori Sakurai^a, Norihisa Furukawa^b, Maiko Higuchi^b, Sayuri Okamoto^a, Kaori Ono^a, Takeshi Yoshida^c, Masuo Kondoh^c, Kiyohito Yagi^c, Naoya Sakamoto^d, Kazufumi Katayama^a, Hiroyuki Mizuguchi^{a,b,e,*} - ^a Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan - ^b Laboratory of Stem cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan - c Laboratory of Bio-functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan - ^d Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan - e The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan #### ARTICLE INFO # Article history: Received 5 December 2011 Received in revised form 27 January 2012 Accepted 3 February 2012 Available online xxx Keywords: Adenovirus vector Tough decoy RNA miR-122a Hepatitis C virus microRNA #### ABSTRACT Recent studies have demonstrated that the liver-specific microRNA (miRNA) miR-122a plays an important role in the replication of hepatitis C virus (HCV). Antisense nucleotides against miR-122a, including locked nucleic acid (LNA), have shown promising results for suppression of HCV replication; however, a liver-specific delivery system of antisense nucleotides has not been fully developed. In this study, an adenovirus (Ad) vector that expresses tough decoy (TuD)-RNA against miR-122a (TuD-122a) was developed to suppress the HCV replication in the liver hepatocytes. Ad vectors have been well established to exhibit a marked hepatotropism following systemic administration. An in vitro reporter gene expression assay demonstrated that Ad vector-mediated expression of TuD-122a efficiently blocked the miR-122a in Huh-7 cells. Furthermore, transduction with the Ad vector expressing TuD-122a in HCV replicon-expressing cells resulted in significant reduction in the HCV replicon levels. These results indicate that Ad vector-mediated expression of TuD-122a would be a promising tool for treatment of HCV infection. © 2012 Elsevier B.V. All rights reserved. Hepatitis C virus (HCV) is a hepatotropic human virus belonging to a member of the family *Flaviviridae* and possessing a 9.6-kb positive-sense RNA genome. HCV infection causes chronic hepatic inflammation and fibrosis, leading to hepatocellular carcinoma (Hoofnagle, 2002). Currently, 170 million people worldwide are infected with HCV, and suffering from or at risk for the diseases described above. In order to suppress the replication of HCV, PEGylated interferon alpha and ribavirin, which is a nucleotide analogue, have been used as standard-of-care therapy; however, the therapeutic efficiency has been limited, in spite of relatively severe side effects, including fever and malaise (Chisari, 2005; Feld and Hoofnagle, 2005). Another therapeutic strategy should be developed to efficiently suppress the HCV infection and HCV-caused diseases. Among several host factors involved in HCV infection, the abundant liver-specific microRNA (miRNA), miR-122a has been demonstrated to be crucial for efficient replication and/or translation of the HCV genome (Henke et al., 2008; Jopling et al., 2005; Randall et al., 2007). The HCV genome has two closely spaced miR-122a-binding sites in the 5'-untranslated region (UTR), which contains overlapping cis-acting signals involved in translation and RNA synthesis (Jopling et al., 2005). Although the mechanism of the miR-122a-mediated enhancement of HCV replication is controversial (Henke et al., 2008; Jopling et al., 2005; Machlin et al., 2011; Roberts et al., 2011; Wilson et al., 2011), antisense oligonucleotides complementary to miR-122a, including locked nucleic acid (LNA) oligonucleotides, have been shown to significantly inhibit miR-122a and reduce the HCV genome, and thereby to exhibit superior therapeutic effects (Henke et al., 2008; Jopling et al., 2005; Krutzfeldt et al., 2005; Lanford et al., 2010). Intravenous administration of LNA oligonucleotides against miR-122a into HCVinfected chimpanzees resulted in the long-lasting suppression of HCV viremia without viral resistance or severe side effects (Lanford et al., 2010). In addition, the 5'-UTR of the HCV genome is composed of highly conserved structural domains, suggesting that a mutant lacking the miR-122a-binding sites in the genome is unlikely to appear. These results indicate that miR-122a is a promising target for the treatment of HCV-related diseases; however, LNA oligonucleotides accumulate in the kidney immediately after intravenous administration and are excreted into the urine (Fluiter et al., 2003). 0168-1702/\$ – see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.virusres.2012.02.003 Please cite this article in press as: Sakurai, F., et al., Suppression of hepatitis C virus replicon by adenovirus vector-mediated expression of tough decoy RNA against miR-122a. Virus Res. (2012), doi:10.1016/j.virusres.2012.02.003 ^{*} Corresponding author at: Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel.: +81 6 6879 8185; fax: +81 6 6879 8186. E-mail address: mizuguch@phs.osaka-u.ac.jp (H. Mizuguchi). ## ARTICLE IN PRESS F. Sakurai et al. / Virus Research xxx (2012) xxx-xxx **Fig. 1.** Structure of Ad vectors used in this study. The human U6 promoter-driven TuD-RNA expression cassette was inserted into the E1-deleted region of the Ad vector genome. The CMV promoter-driven GFP expression cassette was inserted into the E3-deleted region of the Ad vector genome. Systems which efficiently deliver or express anti-miR-122a drugs in the liver are necessary to efficiently treat HCV-related diseases. Recently, tough decoy (TuD)-RNAs against miRNAs, which efficiently and specifically inhibit miRNAs, were developed by Haraguchi et al. (2009). TuD-RNAs are composed of two miRNAbinding sequence (MBS) regions and two stem structures with 3-nucleotide linkers. The MBS in the TuD-RNA is considered to tightly bind to miRNAs, leading to the inhibition of miRNAs. The inhibition activity of the TuD-RNA against miRNAs is higher than that of LNA oligonucleotides and miRNA sponges (Haraguchi et al., 2009). Another advantage of the TuD-RNA is that it can be expressed by viral and non-viral vectors. miRNAs can be persistently suppressed by lentivirus vector- and retrovirus vectormediated expression of the TuD-RNA. Furthermore, liver-specific expression of the TuD-RNA is thought to be achievable by an adenovirus (Ad) vector and adeno-associated virus vector, because these vectors can express transgenes in a liver-specific manner after systemic administration. These properties of the TuD-RNA are highly promising for inhibition of miR-122a in the liver and suppression of HCV replication. In the present study, we developed an Ad vector expressing the TuD-RNA against miR-122a (TuD-122a) to efficiently inhibit miR-122a and to suppress the HCV replication. Transduction with an Ad vector expressing TuD-122a efficiently inhibited miR-122a in vitro. In HCV replicon-expressing cells, HCV replicon levels were significantly reduced by Ad vector-mediated TuD-122a expression. First, in order to examine the transduction efficiencies of the Ad vectors constructed in this study in the HCV
replicon-expressing cells, Huh-7.5.1 1bFeo cells, which is a genotype 1b HCV replicon cell line (Yokota et al., 2003), were transduced with an Ad vector expressing TuD-122a (Ad-TuD-122a) or the control TuD-RNA (Ad-TuD-NC). Ad-TuD-122a and Ad-TuD-NC were prepared as described in Supplemental materials and methods. Structure of Ad vectors used in this study is shown in Fig. 1. The ratio of particles-to-biological titer was between 6 and 9 for each Ad vector used in this study. Both Ad-TuD-122a and Ad-TuD-NC carry the TuD-RNA expression cassette and the green fluorescence protein (GFP) expression cassette in the E1-deleted and E3-deleted region, respectively (Fig. 1). Both Ad-TuD-NC and Ad-TuD-122a efficiently transduced Huh-7.5.1 1bFeo cells (Fig. 2). More than 80% of the cells were found to be GFP-positive following transduction with Ad-TuD-122a and Ad-TuD-NC, respectively, at a multiplicity of infection (MOI) of 100. The averages of GFP-positive cells following transduction with Ad-TuD-NC were slightly higher than those with Ad-TuD-122a; however, statistically significant differences were not found for either group. Apparent cellular toxicity was not found following transduction with Ad-TuD-122a or Ad-TuD-NC (data not shown). These results indicate that Ad-TuD-122a and Ad-TuD-NC efficiently transduce Huh-7.5.1 1bFeo cells. Next, in order to examine the inhibitory effects of TuD-122a expressed by the Ad vector on miR-122a, a reporter gene assay using the miR-122a complementary sequence-encoded plasmid, psiCheck-122aT, was performed in Huh-7 cells. Huh-7 cells endogenously express a high level of miR-122a (Suzuki et al., 2008). Huh-7 cells were transduced with the Ad vectors at MOIs of 25 and 100 for 1.5 h. After a 24-h incubation, the cells were transfected with **Fig. 2.** Transduction efficiencies of Ad-TuD-122a and Ad-TuD-NC in Huh-7.5.1 1bFeo cells. The cells were transduced with Ad-TuD-122a or Ad-TuD-NC at multiplicities of infection (MOIs) of 25, 50, and 100 for 1.5 h. At 48 h after transduction, GFP expression was evaluated by flow cytometry. The data are expressed as the means \pm S.D. (n = 3). The percentage of GFP-positive cells in the mock-transduced group was less than 0.2%. N.S.: not significant. psiCheck-2 or psiCheck-122aT. The renilla and firefly luciferase expression was evaluated 48 h after transfection with the plasmid DNA, psiCheck-122aT, plasmid DNA containing the two copies of miR-122a complementary sequences in the 3'-UTR of the renilla luciferase gene, was constructed by ligation of NotI/XhoI-digested psiCheck-2 (Promega, Madison, WI) with the oligonucleotides 122aT-F and 122aT-R. The sequences of the oligonucleotides 122aT-F and 122aT-R are described in the Supplemental information. In mock-transduced cells, the relative renilla luciferase expression level by psiCheck-122aT was about 5-fold lower than that by the control plasmid psiCheck-2, which does not possess miR-122a target sequences, due to the endogenous expression of miR-122a in Huh-7 cells (Fig. 3). The renilla luciferase expression profiles following transfection with psiCheck-122aT were similar in the mock-transduced cells and Ad-TuD-NC-transduced cells, indicating that expression of the control TuD-RNA does not inhibit the miR-122a. Ad-TuD-122a did not alter the renilla luciferase expression level by psiCheck-2; on the other hand, psiCheck-122aT-mediated renilla luciferase expression was significantly restored by Ad-TuD-122a. The cells transduced with Ad-TuD-122a exhibited 2.8-fold and 3.5-fold higher renilla luciferase expression at MOIs of 25 and 100, respectively, than the mock-transduced cells following transfection with psiCheck-122aT. These results indicate that miR-122a is efficiently inhibited by Ad-TuD-122a. We also performed quantitative RT-PCR analysis for miR-122a following transduction with Ad-TuD-122a and Ad-TuD-NC in Huh-7 cells. No significant differences in the miR-122a expression levels were found in the cells transduced with Ad-TuD-122a and the cells transduced with Ad-TuD-NC (data not shown), probably because TuD-RNA does not induce degradation of miRNA, although TuD-RNA tightly binds to the target miRNA (Haraguchi et al., 2009). Next, in order to examine whether TuD-122a-mediated inhibition of miR-122a suppresses the HCV replicon, Huh-7.5.1 1bFeo cells were transduced with Ad-TuD-122a and Ad-TuD-NC at the indicated MOIs. Huh-7.5.1 1bFeo cells express an mRNA consisting of the HCV 5'-UTR and the upstream part of the core region, connected in-frame with the firefly luciferase gene, which allows the simple evaluation of the HCV replicon levels by measuring the firefly luciferase activity in the cells (Yokota et al., 2003). Huh-7.5.1 1bFeo cells were transduced with the Ad vectors at MOIs of 25, 50, and 100 for 1.5 h. After a total 48-h incubation, Please cite this article in press as: Sakurai, F., et al., Suppression of hepatitis C virus replicon by adenovirus vector-mediated expression of tough decoy RNA against miR-122a. Virus Res. (2012), doi:10.1016/j.virusres.2012.02.003