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Asymmetric Wavefront Aberrations and Pupillary Shapes
Induced by Electrical Stimulation of Ciliary Nerve in Cats
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Abstract

To investigate the changes in the wavefront aberrations and pupillary shape in response to electrical stimulation of the
branches of the ciliary nerves in cats. Seven eyes of seven cats were studied under general anesthesia. Trains of monophasic
pulses (current, 0.1 to 1.0 mA; duration, 0.5 ms/phase; frequency, 5 to 40 Hz) were applied to the lateral or medial branch of
the short ciliary nerve near the posterior pole of the eye. A pair of electrodes was hooked onto one or both branch of the
short ciliary nerve. The electrodes were placed about 5 mm from the scleral surface. The wavefront aberrations were
recorded continuously for 2 seconds before, 8 seconds during, and for 20 seconds after the electrical stimulation. The
pupillary images were simultaneously recorded during the stimulation period. Both the wavefront aberrations and the
pupillary images were obtained 10 times/sec with a custom-built wavefront aberrometer. The maximum accommodative
amplitude was 1.19 diopters (D) produced by electrical stimulation of the short ciliary nerves. The latency of the
accommodative changes was very short, and the accommodative level gradually increased up to 4 seconds and reached a
plateau. When only one branch of the ciliary nerve was stimulated, the pupil dilated asymmetrically, and the oblique
astigmatism and one of the asymmetrical wavefront terms was also altered. Our results showed that the wavefront
aberrations and pupillary dilations can be measured simultaneously and serially with a compact wavefront aberrometer. The
asymmetric pupil dilation and asymmetric changes of the wavefront aberrations suggest that each branch of the ciliary
nerve innervates specific segments of the ciliary muscle and dilator muscle of the pupil.
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Introduction spherical wave-front surface. If the eye has an ocular aberration,
the wavefront of light reflected from the ocular fundus deviate
from an ideal spherical surface, and the deviation in the wavefront
is called the wavefront aberrations [9]. Many studies have
demonstrated changes in the wavefront aberrations induced by
lens accommodation using different techniques in humans.
Atchison et al. studied the aberrations with the Howland
aberroscope technique [10], and He et al. applied psychophysical
ray tracing methods [11]. Recently, Shack-Hartmann wavefront
aberrometer (SHWA) techniques allowed the rapid and accurate
measurements of the wavefront aberrations [12-14]. With a
SHWA, changes of the Zernike terms, e.g., astigmatism, coma,
and spherical aberration, can be evaluated during and after
accommodative changes. Some studies have demonstrated a
significant increase of mnegative spherical aberration during
accommodation using SHWA [15,16]. Animal models have also
been used to evaluate changes in the wavefront aberrations with
SHWA. For example, Huxlin et al. measured up to sixth order

Lens accommodation and pupillary dilation or constriction
elicited by electrical stimulation of the peripheral nerves or the
brain have been extensively studied. The changes in the refractive
power of the eye, i.e., accommodation, to electrical stimulation of
the ciliary ganglion have been studied in cats and other animals
[1-3]. The amplitude of accommodation was dependent on the
frequency and voltage of the electrical stimulus. The maximum
amplitude of accommodation was about 2 diopters. The accom-
modative responses elicited by microstimulation of the midbrain or
cerebellum have also been studied in cats [4-6]. Glasser et al.
demonstrated the accommodative responses elicited by stimulation
of the preganglionic Edinger-Westphal nucleus in rhesus monkeys
[7,8]. In monkeys, the maximum amplitude of accommodation
was 10 to 20 diopters.

The changes in the accommodation not only affected the
refractive power but also the ocular aberrations. An ideal
monochromatic ray of light from a point source has a perfect
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wavefront aberrations in wake cats [17]. Ramamirtham et al. also
measured the wavefront aberrations in young monkeys [18].

The dynamic pupillary dilation and constriction evoked by light
stimulation or by electrical stimulation of the ciliary nerve have
also been studied in cats [19,20]. In addition, the dynamic
pupillary dilations and eye movements in response to micro-
stimulation of the superior colliculus or the optic tectum have been
studied in monkeys and birds [21,22]. Dearworth et al. studied the
pupillary constriction evoked in vitro by stimulating the ciliary
nerve in turtles [23].

Clinically, patients with Adie’s syndrome have tonically dilated
pupils and accommodative palsy. In addition, the pupillary
reactions in these patients are usually segmental due to sector
iridoplegia. Bell and Thompson reported that astigmatism was
induced with accommodation in one-third of Adie’s patients, and
they suggested that this may be related to the segmental paralysis
of the ciliary muscle [24].

Because both lens accommodation and pupillary constriction
and dilation are controlled by postganglionic nerve fibers
travelling in the short ciliary nerves, measurements of pupillary
diameter and circularity, as well as lens accommodation and
wavefront abberrations should be effected by clectrical stimulation
of the short ciliary nerves. In cats, the short ciliary nerve is made
up of a lateral and a medial branch, so segmental stimulation is
possible.

The purpose of this study was to determine the dynamic
changes in the accommodation, wavefront aberrations, and
pupillary size and shape evoked by electrical stimulation of one
or both branches of the short ciliary nerve near the posterior pole
of the eye in cats. The responses were measured with a custom-
made, compact SHWA (Topcon Corporation and Aston Univer-
sity) which allowed us to determine the dynamic changes of
accommodation, wavefront aberrations, pupillary size and shape
simultancously [25].

Materials and Methods

Experimental Animals

Seven healthy adult cats between 10- to 14 months-of-age were
studied. These cats were raised in a breeding colony in the
Institute of laboratory Animals, Osaka University, Graduate
School of Medicine. The cats were initially injected with atropine
sulfate (0.1 mg/kg) intraperitoneally and after 30 minutes they
were anesthetized with an intramuscular injection of ketamine
hydrochloride (25 mg/kg). The anesthesia was maintained by a
continuous intravenous infusion of pentobarbital sodium (1 mg/
kg/hr). The cats were paralyzed by an infusion of pancuronium
bromide (0.2 mg/kg/hr) mixed with Ringer’s solution and glucose
(0.1 g/kg/hr), and artificially ventilated with equivalent mixture of
nitrous oxide (N?0O) and oxygen (O for auxiliary anesthesia and
alleviation of pain.

The end-tidal CO? concentration was controlled at 3.5 to 5.0%
by altering the frequency and tidal volume of ventilation. The
intratracheal pressure and electrocardiogram were also monitored,
and the body temperature was maintained at 38°C with a heating
pad. The cornea of cats was kept moist using custom made contact
lenses during the experiments.

This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of Animals of
the National Institutes of Health. The procedures were approved
by the Animal Research Committee of the Osaka University
Medical School, document number 20-145. All surgery was
performed under pentobarbital sodium anesthesia, and all efforts
were made to minimize pain. All animals were sacrificed by a
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rapid intravenous infusion of pentobarbital sodium (64.8 mg/ml)
after a completion of all experimental procedures.

Electric Stimulation of Ciliary Nerve

In cats, the ciliary ganglion gives rise to a lateral and a medial
branch of the short ciliary nerve. Additionally, one or two fine
communicating branches from the long ciliary nerve are [used
with the short ciliary nerve. Electrical currents were applied to
either the lateral or medial branch or to both branches of the short
ciliary nerves to study the changes in the accommodation,
pupillary size and shape, and wavefront aberrations. A schematic
diagram of the experimental sctup is shown in Figure 1. The
stimulating electrodes were bipolar hook-shaped electrodes made
of 0.3 mm diameter stainless steel wire (OK212-069, Unique
Medical, Tokyo, Japan). The wire was coated with insulating resin
with a small region of the tip bared where the electrode contacted
the ciliary nerve. The clectrodes were hooked onto the branch of
the short ciliary nerve about 5 mm from sclera. Trains of
monophasic square wave electrical pulses were applied to either
the lateral or the medial or to both branches of the short ciliary
nerve. All pulses were generated by an isolated pulse generator
(STG2008, Multi Channel Systems MCS GmbH, Reutlingen
Germany). The pulse parameters were: current intensities of 0.1,
0.3, 0.5, and 1.0 mA; frequencies of 5, 10, 20, and 40 Hz; pulse
duration of 0.5 ms/phase; and the duration of the pulse trains was
8 s. Changes in the accommodation, wavefront aberrations and
pupillary shape evoked by electrical stimulation of short ciliary
nerve were simultaneously recorded with a compact wavefront
aberrometer.

Dynamic Measurements of Wavefront Aberrations Using
Compact Wavefront Aberrometer

The wavefront aberrations were measured with a compact
wavefront aberrometer. This device consisted of an open-field
dichroic mirror and a cuboid shaped body (12x12x4.5 cm),
which can be attached to a standard flex holder (Figure 1).
Because of the flexibility and compactness of this aberrometer, it

Isolated pulse generator

Bipolar
electrodes I

SCL__ W
ON

SCM

Tt
Objective lens

Compact /
wavefront

aberrometer

Figure 1. Photograph of the compact wavefront aberrometer
attached to a flex holder arm.
doi:10.1371/journal.pone.0105615.g001
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can be easily used for in vivo animal studies or clinical studies.
The experimental setup and optical arrangement are shown in
Figure 2. The aberrometer contained two complementary metal-
oxide semiconductor (CMOS) image sensors. The wavefront
aberrations were measured with the first CMOS sensor (CMOSI).
A lenslet array plate located in front of CMOSI focused the
Shack-Hartmann spot images. The digitized Shack-Hartmann
spot images were recorded sequentially at 10 frames/sec.
Therefore, we were able to measure the changes of accommoda-
tion and aberrations every 100 ms. The digitized Shack-Hart-
mann spot images were analyzed quantitatively for up to the 6th
order by expanding the set of Zernike polynomials with custom
written software.

The second CMOS sensor (CMOS2) obtained the images of the
anterior segment of the eye to evaluate the pupillary shape. Both
the aberrometer and the isolated pulse generator were synchro-
nously controlled by a commercially available laptop computer.

The accommodative responses were assessed by the changes of
the refractive power (spherical equivalents). The wavefront
aberrations were evaluated by the changes of the Zernike
coefficients, and the wavefront aberrations were specified using
the standard nomenclature defined with reference to the standard
coordinate system recommended by the Optical Society of
America [26]. A color map diagram of Zernike polynomials of
up to 4th order is shown in Figure 3. The with- and against-the-
rule astigmatism (Z%), the oblique astigmatism (Z %), the trefoil
terms (Z_33 and Z?’g), the x coma (Zlg), the y coma (Z_lg), and
spherical aberration term (Z”4) were determined.

To study the dynamic changes of accommodation, we
determined the velocity of the accommodative responses where
the velocity was defined in diopters/sec and we assessed the
maximum amplitude of accommodation and the time required to
reach 80% of the maximum amplitude. Then the velocity ratio
was calculated as 80% of maximum amplitude divided by the time
to reach this level, ie., 0.8 amplitude of accommodation in
diopters/time in msec. In cases where the wavefront aberration

Figure 2. Schematic diagram of experimental setup. ON, optic
nerve; SC_L, lateral branch of the short ciliary nerve; SC_M, medial
branch of the short ciliary nerve. CMOS1, complementary metal-oxide
semiconductor (CMOS) image sensor for Shack-Hartmann spot image;
CMOS2, CMOS image sensor for anterior eye (pupil) image.
doi:10.1371/journal.pone.0105615.g002
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Figure 3. Color map diagram of Zernike polynomials up to the
4th order. Astig 45, oblique astigmatism (45 deg); Astig 0, with-the-
rule astigmatism (0 deg); Trefoil 0, vertical trefoil aberration (0 deg);
Trefoil 30, oblique trefoil aberration (30 deg); Sphere, spherical
aberration.

doi:10.1371/journal.pone.0105615.g003

was not measureable due to pupillary constriction, the pupil was
dilated by 5% phenylephrine HCI (Neosynesin). Earlier studies
showed that 10% neosynephrine eye drops did not alter the
accommodation in cats [27].

Measurements of Pupillary Shape

To study pupillary dilation and constriction, the pupil was
photographed by CMOS image sensor incorporated into the
wavefront aberrometer. The images were analyzed with a custom
written software. The contour of the pupil was first outlined to
calculate the area of the pupil (mm?) and to evaluate the pupil
shape. The coordinates of the center of gravity of the pupil were
also calculated to determine whether there was an asymmetrical
change in the pupillary shape. This program can determine both
the size and shape of the pupil. To study the relationship between
the changes in the wavefront aberrations and pupillary shape, both
were recorded simultaneously and sequentially at 10 frames/sec
for 2 seconds before, 8 seconds during, and for 20 seconds after the
stimulation. The ambient illumination of light was kept steadily
during measurements to avoid changing pupil size due to pupillary
reaction to light.

Statistical Analyses

Data were statistically analyzed using commercial software
(SigmaPlot, version 12.0; HULINKS, Inc.). Comparisons between
two groups were made by Student’s ¢ tests. The level of statistical
significance was set at P<0.05. To analyze the degree of
association between velocity and maximum amplitude of accom-
modation, Pearson’s correlation coefficient was calculated.

Results

Amplitude of Accommodation

The average amplitude of accommodation due to stimulation of
the medial or the lateral ciliary nerves was 0.64%0.34 D (mean *
standard deviations) by a stimulation of the medial or lateral
branch of ciliary nerve with a range of 0.25 to 1.19 D (Table 1).
The amplitude of accommodation increased with increasing
currents and frequencies of stimulation (Figure 4). However,
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doi:10.1371/journal.pone.0105615.g004

increasing the currents >1 mA or the frequencies >40 Hz did not
increase the amplitude of accommodation significantly. When
both branches of the ciliary nerve were stimulated, the accom-
modative responses were greater than when only one branch was
stimulated in 3 of 4 cats.

Dynamic Accommodative Responses

The accommodative responses were obtained by a sequential
recording of the wavefront aberrations. The latency of accommo-
dation was always shorter than the detection limit, <100 ms, of
our instrument. The accommodation amplitude continued to
change during the 4 seconds after the onset of stimulation
(Figure 5A). With longer stimulus durations, the amplitude of
accommodation reached and maintained a steady state during the
stimulation (Figure 5B). After the stimulation, the accommodation
decreased slowly to the original level within 10 sec.

The velocity of accommodation varied among the trials. A
comparison of the velocities of accommodation and the maximum
amplitude of accommodation are shown in Figure 6. The

-1Table 1. Maximum accommodative response.

velocities increased significantly with increasing maximum ac-
commodation (Pearson’s correlation; r=0.839, £<0.001).

Dynamic Pupillary Dilation

The pupil dilated asymmetrically when one branch of the ciliary
nerve was stimulated, but if both branches of the ciliary nerve were
stimulated, the pupil dilated symmetrically. The pupil never
constricted in response to the stimulation parameters used.
Representative images of the pupils are shown in Figure 7. The
pupillary image before stimulation is shown in Figure 7A.
Stimulating the lateral branch (7B) or the medial branch (7C) of
the short ciliary nerve produced asymmetric dilation. The
pupillary image when both short ciliary nerves were stimulated
by the same parameters is shown in Figure 7D.

The time course of the pupillary dilation is shown in Figure 8.
The pupil dilated laterally in the case of lateral branch of the short
ciliary nerve was stimulated and the pupil dilated medially in the
case of medial branch of the short ciliary nerve was stimulated.
The pupil dilated symmetrically when both branches were
stimulated (n=2).

Maximum Accommodative Response (Diopter)

#3 119 0.30*

#7 0.18* 0.20*

0.41%

amplitudes were evaluated by the changes in the refractive power.
# 1 or 2 drops of Phenylephrine Hydrochloride was instilled.
doi:10.1371/journal.pone.0105615.t001
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Trains of monophasic square pulses were applied to the lateral, medial or both branches of the short ciliary nerve(1 mA, 40 Hz, 8 sec). The maximum accommodative
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were applied. Shaded areas: Time stimulation was applied.
doi:10.1371/journal.pone.0105615.g005

The latencies of the pupillary responses were always shorter
than the detection limit (less than 100 ms). After the stimulation,
the pupil gradually returned to the original state within several
tens of seconds.

Wavefront Aberrations

The wavefront aberrations changed with accommodation. A
typical example of the time course of the Zernike coefficients and
accommodative responses are shown in Figure 9. The time
courses of changes in Zernike terms were similar to those of the
accommodative responses. The averages and standard deviations
of the Zernike coefficients in the seven cats are shown in
Figure 10. Zernike coefficients up to 6th order can be calculated
with our software. However, the 4 to 6th order of the Zernike
terms except for spherical aberration term (Z°,) are not shown in
the results because these terms changed only slightly in almost all
trials. The changes of the Zernike coefficients were determined by
subtracting the maximum value during the stimulation from the
pre-stimulation value. The stimulation parameters were fixed with

Velocity of accommodation [D/s]

0 02 04 06 08 1 12 14 16
Maximum accommodation [D]

Figure 6. Changes in the velocity of accommodation as a
function of maximum accommodation. Stimulus was applied to
the lateral or medial or both branches of the ciliary nerve. The data from
all seven cats are plotted. Correlations between the velocity of
accommodation and maximum accommodation made by Pearson’s
correlation (r=0.839, P<0.001).

doi:10.1371/journal.pone.0105615.g006
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a peak current of 1 mA, frequency of 40 Hz, and pulse width of
0.5 msec.

We compared the findings between stimulating the lateral and
medial branches of the short ciliary nerve. Significant statistical
differences were found in the oblique astigmatism term. However,
significant statistical differences were not found for all of the other
Zernike terms.

Discussion

Our results showed that stimulation of the short ciliary nerve
leads to simultaneous changes in the accommodation, pupillary
diameter, and wavefront aberrations. The pupil was never
constricted during the stimulation of the branches of short ciliary
nerve. Lens accommodation is under the control of the
parasympathetic system, while the pupil is under the control of
the sympathetic system. Our findings indicate that the nerve
bundles which were stimulated contained both sympathetic and
parasympathetic nerve fibers. In fact, Kuchiiwa et al. showed in
their anatomical studies that the short and long ciliary nerves fuse
close to the eye in both the medial and lateral divisions of the short
ciliary nerve [28,29]. The other possible cause of these responses is
due to stimulating the sensory nerve in the short ciliary nerve.

The amplitude of accommodation increased with an increase in
the frequency and the current of stimulation (Figure 4). The
maximum amplitude of accommodation was 1.19 diopters, and
increasing the currents >1.0 mA and frequencies >40 Hz did not
increase the amplitude of accommodation.

In earlier studies, the maximum accommodation in cats was
around 2 diopters when the ciliary ganglion was stimulated [1-3].
In addition, the near point of physiological accommodation in cats
was estimated to be between 25 to 36 cm or 2.8 to 4.0 D [30]. The
maximum amplitude of accommodation under our conditions was
less than these values. This disagreement might be caused by the
contact between hook shaped electrodes and nerve bundle, and
the hook electrodes placed on the nerve bundle might have
stimulated only a part of it.

The latencies of accommodation were always less than the
detection limit of our recording system (Figure 5). Earlier studies
showed that the latencies were >200 ms in the case of ciliary
ganglion or midbrain stimulation in cats [27,31,32]. This
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Figure 7. Pupillary images before and after electrical stimulation of the ciliary nerve (Cat #2 right eye). A: Before stimulation. B:
Maximum dilation when the lateral branch of the short ciliary nerve was stimulated. C: Maximum dilation when medial branch was stimulated. D:
Maximum dilation when both side of branch was simultaneously stimulated. Solid line: Detected contour of the pupil. X: The center of the pupil that
is represented as the center of gravity that was calculated from contour data.

doi:10.1371/journal.pone.0105615.g007
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Figure 8. Time course of the changes in the pupillary response to electrical stimulation of one or both branches of the short ciliary
nerve (Cat #2). A: Horizontal movement of the center of the pupil. The direction of medial side is represented by positive x-axis, the lateral side is
represented by negative x-axis. B: Vertical movement of the center of the pupil. The superior direction is represented by upward dilation, and the
inferior direction is represented by downward dilation. C: Changing of the pupil size calculated from the detected contour data. Shaded areas:

Stimulation (the pulse train was continuously applied).

doi:10.1371/journal.pone.0105615.g008
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Figure 9. The time course of the changes in the Zernike coefficients and accommodative changes. (Cat #1) S. E.: Spherical Equivalent of
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continuously applied). The current of T mA, the frequency of 40 Hz, the duration of pulse train of 8 seconds were applied to the lateral branch of the

short ciliary nerve.
doi:10.1371/journal.pone.0105615.g009

discrepancy might be caused by a difference of the stimulation
sites.

The maximum velocity of accommodation was 0.6 D/s in this
study taking 4 seconds to reach the peak of accommodation
(Figure 4). In addition, we found that the velocity of accommo-
dation was significantly correlated with the amplitude of accom-
modation (Figure 6). This is in good agreement with previous
studies in humans and rhesus monkeys [7,8,33]. The latencies
might depend on the region stimulated, and the velocity of
accommodation may depend on the mechanical properties of the
ciliary body and the crystalline lens.

The pupil was asymmetrically dilated when one branch of the
ciliary nerve was stimulated (Figures 7 and 8). This suggests that
each branch innervates localized areas of the dilator muscle of the
pupil. Asymmetric pupillary dilation indicates that the ciliary
muscle may also be asymmetrically constricted by stimulation of
the short ciliary nerve on one side. If ciliary muscle constricted
asymmetrically, asymmetric terms of wavefront aberrations should
be changed.

In all trials, the pupil was dilated or was kept stable in size, but
never constricted to any of the stimulation parameters. This might
be explained by a concurrent stimulation of both parasympathetic
and sympathetic nerve fibers. In cats, the sympathetic fibers are
reported to be incorporated in the short ciliary nerves after the
nerves have been joined by the long ciliary nerves somewhere
between the ciliary ganglion and the eye [34]. At the area of the
branch of short ciliary nerve which was stimulated in this study,
about 5 mm from sclera, the parasympathetic and sympathetic
fibers might be mixed. Our results indicated that the stimulation of
mixed sympathetic and parasympathetic fibers will cause a
dilation. The discharge rate of the mixed ciliary nerve is increased
with spontaneous pupillary dilation in cats [35].

The wavefront aberrations change with accommodation in
humans, and the spherical aberration (Z%) shows the greatest
change among all the Zernike terms [12]. The changes in the
astigmatism and the coma terms were smaller than that for
spherical aberration. In contrast, the changes in the spherical
aberration was smaller than for the astigmatism and coma terms

PLOS ONE | www.plosone.org

(Figures 9 and 10). These discrepancies may be due to differences
in the shape of the crystalline lens between humans and cats. The
crystalline lens of cats is more spherical in shape than that of
humans.

The differences in the changes in the oblique astigmatism term
(Z™?,) between stimulation of the lateral or the medial branch of
the short ciliary nerve were significant (Figure 10). This suggests
that an asymmetrical constriction of ciliary muscle is induced by
unilateral ciliary nerve stimulation, which may induce the
deformation of crystalline lens. In patients with Adie’s syndrome,
astigmatism is reportedly induced after accommodation [23]. Our
findings in cats support the hypothesis that a segmental
constriction of ciliary muscle occurs when patients with Adie’s
syndrome accommodates which eventually causes the increase of
asymmetrical astigmatism.

Further study is necessary to confirm the localized innervation
of the short ciliary nerve that lead to the asymmetric contraction of
the ciliary muscle. It is also necessary to make a computer
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Figure 10. The average change of Zernike coefficients among
the seven cats. Error bars represent the standard deviations. A current
of 1 mA, frequency of 40 Hz, and duration of pulse train of 8 seconds
were applied. Comparisons between the two cases (lateral or medial
branch of short ciliary nerve stimulation) were made by Student's t
tests. The level of statistical significance was set as P<0.05. (*: P<0.05).
doi:10.1371/journal.pone.0105615.g010
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simulation if the asymmetric movement of ciliary muscle induces
the deformation of crystalline lens.

In conclusion, we measured the dynamic change of the
wavefront aberrations, pupillary size and shape, and accommo-
dation simultaneously and serially with a custom-built compact
wavelront aberrometer. The asymmetric pupillary dilation and
asymmetrical changes of the wavelront aberrations with accom-
modation elicited by electrical stimulation on one branch of the
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