MAIZE GENETICS COOPERATION

NEWS LETTER

8

November 24, 1934

Department of Plant Breeding
Cornell University
Ithaca, N. Y.

CORNELL UNIVERSITY ITHACA, NEW YORK

November s4, 1934
vol. 8

To Naize Geneticists :-
This letter is composed of data and information hich you have generously contributed so that we cun all keep in closer contact and be better informed about the work in the different laboratories. The response to our request for news items has been good and the information included in this letter will be of interest and value to everyone. Wost, if not all, of the information listed in this letter has not been publishod so we wish to emphasize, in order that there will be no misunderstanding, that the appearance of information in these series of corn letters does not constitute publication. If you wish to refer to any data you should ask the diroct consent of the contributar.

Since these corn letters are a cooperative affeir it seems just that only those who show sufficient interest to cooperate should receive the letters. Not everyone will have something to contribute ond no one will be dropped from the mailing list for that reason. This office should, homever, receive an acimonledgement of the request for nows items even though you have nothing to contribute. We feel that anyone who does not value these letters sufficiently to include his own data his no claim to the unpublished dati of others who have generously cooperated.

Neas itens from Ithaca

1. Zebra $5\left(\mathrm{zb}_{5}\right)$ which shows in seedlings as a virescent and in mature plants as a zebra stripe (transverse bands of green and yellow tissue) shows no crossing over with d_{7}. Order is $2 \mathrm{~b}_{5}-\mathrm{R}-\mathrm{g}_{1}$. Classification excellent and viability good. Singh.
2. Zigzag stalk $\left(\mathrm{zg}_{2}\right)$ is linked closely with Pl and sm. Exact order unknown. Classification satisfactory. Singh.
3. h dominant gene (Dt) interacts with ε_{1} to give dotted aleurone. Dt does not interact with a_{2}, c or r. Seeds of $a_{1} \hat{F} a_{1} A_{2} C R$ Dt constitution have a pale purple background on which appear the more intense dots. The ratio of the number of dots on
 dots on seeds of $a_{1} a_{1} a_{1} A_{2} C R$ Dt Dt dt constitution is $2: 3$, while the ratio for seeds of $a_{1} a_{1} p a_{1} p A_{2} C R D t d t$ dt to seeds of $a_{1} a_{1} a_{1}{ }^{A_{2}}$ C R Dt dt dt constitution is 1 : 3.8. These ratios suggest that the dosage of a_{1} affects the number or else that $a_{1} p$ has an inhibitory effect which is
proportional to the dosage of $a_{1} p$. Dt is not linked but is independent of a_{1}, a_{2}, c, r, su and $1 g$. Rhoades.
4. Plants which have 20 chromosomes plus the short ariz of chromosome 5 arc intermediate in appearance between disomes and trisomes for chromosome 5. The fragment has a terminal insertion region as the break occurred exactly at the spindle fiber region. In 50\% of the cases a trivalent group is formed at metaphase I, and in 50% of the cases a bivalent and the fragment as a univalent are formed. When a trivalent is formed the disjunction in anaphase I is such that the fragment passes to the same pole as one of the normel 5 chro mosomes. The two normal chromosomes rarely, if ever, pass to the same pole and fragment plants have never thrown the primary trisome. Through a study of genetic ratios in plants carrying the fragment it has been possible to assign certain genes in chromosoze 5 to the long and short arms, respectively. The available data suggest that $v_{2} y s p r$ and bt are in the long arm of chromosome 5, while bm_{1} and a_{2} are in the short ara. Whether a gene shows a $5: 3$ or a 1 : 1 ratio in a back cross using the fragment plants as fomale determines if a given gene is in the long or short arm. Rhoades.
5. n inbred strain gave in F_{2} approximately 65% of luteus seedlings. This aberrent ratio was caused by the linkage of a genc for smell pollon with the normel allelomorph of the luteus gene. Small pollen (sp) has 2% crossing over with luteus. h variable percentage of the eggs with the small pollen gene abort giving in different F_{2} populations a range from 55 to 90% of luteus seedlings. Small pollen germinates as rapidly as normil pollon but never, or raroly, succeeds in fertilization. Cytological examinetions at pechytenc showed no visible deficiency. The gene for small pollen is being tested with Sp_{1}. Rhoades.
6. White sheath ${ }_{3}\left(\mathrm{ws}_{3}\right)$ is in chromosome 8 according to trisomic tests. ws 3 shows is seedling and can be classified until shortly ufter flowering. Rhoudes.
7. $\frac{+\mathrm{bn}_{1}}{\mathrm{bt} \mathrm{t}_{1}+} \times \mathrm{bt}_{1} \mathrm{bm}_{1}$ gave $128+\mathrm{bm}_{1}: 1++: \varepsilon b t_{1} \mathrm{bm}_{1}: 119 \mathrm{bt}+$ which gives 1.2% crossing over. Rhoades.
8.

9. Brinched etr (be) is :llelomorphic with brinched silkless (bd). Rhocdes.
10. The studies on mutation and tetriploidy inducod by heat treatmonts irc being continued. The first seedling crop in the grwenhouse this fall geve two nuw mutitions, a glossy and \& White scodling, from less than $100 \mathrm{~F}_{2}$ eirs tested. Rendolph.
11. Pecitmonts to obtiin $4 N$ commercicl hybrid strains were repeated this pist sumacr. \& number of 4 N plints from commercial inbreds troited i. year ago looked very promising eerly in the soason but failed to miture seod, due lirgely to unfivorable culturil conditions. Rindoloh.
12. The B-type chrobosones produce marked sterility won prescht in nuaburs highor than 16 or 18 , inc are structurelly unstable. Rindolph.
15. 1. Survey of chromosome horphology in different strains of mize his revouled types of Indian corn from the southinest which aro more nearly like teosinte then iny proviously known. Riandolph.
14. Peronnial tuosintc in the Ereonhouse this fall was pollinated cbundently with corn wollen from lieuless brom plints to obtain hiploids, and odds are boing offored $(3: 1)$ that if any are obtianed they will be innual. Randolph.
15. A sumary of all data now available indicate recombination percentages us follows for the group of genes near the end of the known linkige iap for chromosone 1 ;-

Number of
individuals

$\mathrm{P}-\mathrm{ts}_{2}$	3296
$\mathrm{P}-21^{2}$	2567
$\mathrm{P}-\mathrm{IIS}_{17}$	2706

Tho order of those four gones is unknown.
Per cent of
recombinition 1.3 1.6 3.0

Emerson.
16. My colluction includes the following ileurone, enther, and silk color conibinitions, in which $"+1$ indicates colored end " - " colorless :-

	a.lurone		anther
R^{rg}	+	+	silk
Rgg	+	-	-
rrr	+	+	-
rgr	-	+	+
rgg	-	-	+
rgg	-	-	-

I need the following :-
$\mathrm{R}^{\mathrm{rr}} \frac{\text { Eleurone }}{+} \frac{\text { anther }}{+} \quad \frac{\text { silk }}{+}$

The nearest approach to this in ny former collections was Navajo-patter colored aleurone, colored anthers, and colored silks. Colored anthers appear always to be associated wita some color in glumes, sheuths, brice roots, etc. and, excopi in the prescnce of B, colorless unthers with colorless glumes, sheaths, and brace roots. It is of interest to notc thét, if this series of supposed alleloworphs is an example of very close linkage, Webber was probibly the first to report linkuge in corn (Vebber, H. J. - Rept. Amer. Broedors' hssoc. ¿: 76-81, 1906). Emerson.

News itens fron Columbia. Mo.

1. V_{3} is located on the longer arm of chromosone 5 , not far from the insertion region. This is the cytological position of Df 5_{1}, which includes V_{3}. Linkige data indicate the $D f$ is between Bn_{1} and Bv , very close to Bv . The Df does not include Ba_{1}, Bt, or Bv. This internal deficiency markedly reduces crossing over, both in the $\mathrm{Bin}-\mathrm{Bv}$ region and in the $\mathrm{Bv}-\mathrm{Pr}$ region. This shows that in maize crossing over may be inhibited by deficiency outside the region homologous to the $D f_{\text {, which }}$ appears not to be the case in Drosophila.

Stadler.
2. I new high-mosaic strain gives endosperm moseics with a frequency higher than that ordinarily found in heavily X-rayed ears. The various endosperm loci show differing frequencies of loss corresponding at least roughly to their relative frequencies in comon milze. The high frequency of chromosoinal aberrations is limited to the early divisions in endosperm development, the proportion of small sectors being hardiy more than norial. The factor responsible for this effect is transmitted through both male and fomale gimetes. The chromosomes derived frow both the male and the female parent are affectod in endosporias which have received this factor frow either paront. In in F_{2} progeny segfegeting for in unknown yellow seedling factor and for the high-mosaic fictor, seedlings sectorial for the yollow soediling character were comon in the progonies with high mosaic frcquancy. Plants heterczygous or homozygous for the high-mosaic factor arc noral in dovelopmont and have nomally fertile pollon and ears. Stadler.
3. Dr. Sprague and I have begun sowe work on ultrs-violet treatment of pollon, with the collaboration of Dr. F. S. Brackett of the Smithsonian Institution. The experiments haven't gone very fur is yet, but it is clear thit ultra-violet treatment of pollen induces genetic changes which show up as both whole endosperm and mosaic endosperm deficiencios at rutos rather
suryrisingly high, A single progeny now growing in the greenhouse : Iso shons about lo\% of the plents ith sogregiting pollon starility. The results thus fir therefore correspond to the cherges to be expected from an X-ray troetrant of pollon, with frequoncies corresponding to a dose.ge of X-reys considerably lonor than the maximum. However, the doses of ultri-violet radiation used woro also vell belo: the meximum. Fesults fron filterod ind monochronatic ultre-violet radiätions arc not yet ivailible. Stedler.
4. Linkuge detc. :-

Recombinations No. \% $56 \quad 89.5$ 123.5

$$
16.5
$$

$$
21.5
$$

Spregue.

News itcin fron iorgentown

1. New Iinkage stceirs :-

Chrumosome 1

$$
\begin{aligned}
& \begin{array}{llll}
p & \hat{f}_{1} & \text { an } \\
p & b n_{2} & f_{1} \quad b i_{2}
\end{array} \text { (pale yollow endospern) } \\
& p_{1} f_{1} b_{H_{2}} y \\
& \mathrm{Pf}_{1} \mathrm{ba}_{2}\left(\text { segroguting } \mathrm{ts}_{2}\right) \text {. }
\end{aligned}
$$

Chromusone 5 pr bt bra (not homozy:̈ous for iCR).
Chroinoso:io 7 ra El_{1} ig (or at laust the F_{1} in coupling). Burnhesi.
2. New characters :-

Severil charicters are eithor sugregating or aro in homozygous condition in the inbrea lines hero at liorgentown. fmong thon are the following: glossy seodling, tissel seed, remosa tassel with normel ears, purple secaling leaf color which is ailute sun red in mature plant. This last chwracter is a dominant. Burnhan.
3. Linkege dita incluaing a fow tests with unlinked genes - a point tusts:-

*Those include those in the 3 -point teste.
Burnhan.
4. Linkuge dati frua a 3 point F_{2} tust :-

* Not certein thet thesc are vp_{z} griins. The recombination percentages are calculeted as though these were VP_{2}.

$$
\begin{aligned}
& \mathrm{pr}-\mathrm{v} p_{\mathrm{Z}}=23 \% \\
& \mathrm{bt}-\mathrm{v} p_{\mathcal{Z}}=10 \% \\
& \mathrm{pr}-\mathrm{bt}=15 \%
\end{aligned}
$$

5. Linkage data frow 3 point back crosses :-

* v_{2} clässirication we.s not entiroly sutisfectory.

Burnhon.
6. Notes on the ebove diati. :-

The linkige of $T L_{4}-5 c$ with yg_{1} is the first found for yg_{1}. If it is in chromosone 5 it must bo out in region where v_{2} is or oven neerer the end. Or course it mey be in chrono soue 4. The break in each chromosome ves near the subterainal knob. The datia on chroanosic 7 are a astly from interchenges. In T5-7a both breaks vore near the subterminel knobs, while in T1-7 the break in 7 was on the long arm not fir froin the spindle fibur insertion. The deitic indicate that Bn is out tovard the end of the long irin, with re near the break in 1-'7 and $81_{玉}$ in between. $V_{P_{2}}$ apparontly is on the brl_{1} side of pr . Burnharin.

Nows itens frow New Hivon

1. Tochnique.
thep asasure (K \& E) has beon found vory usoful in det suring the length of chromowes. By tricing the cemeri lucid. draving vith the uap we.sure the length (in inches or contiweters) is reelistered on the ditl of the nee sure. This is useful in dotermining cral longths and rolitive lengths of the chromosomes. The mis aeasure was sugeosted by in engincer, George W. Burke, on in FERs project hore at the Experinent Station. singleton.
2. idaitions or Corrcetions to lest yoar's notes.
a) The gone rinose has appocred in tinother stock, a. Leeming inbrod. It heis proved dilelomorphic with ri.f. This makes the fourth occurrence of this gone in our stocks.
b) Prelininury tests with lag give in indication of linkage with su. No crossovers occurred in a row of $\dot{2} 0$ plents. It is probebly alluloworphic to lag.
c) Hicropylo color is is a nodifying factor of the factor, rathor than ollelomorphic. Backerosses of $\frac{\mathrm{PMC}}{\text { pac }}$ to pac showed a sogrugation into Plic, Puc and p plants, wifh could not vecur if iic were allcloworphic to P. Singleton.
3. Nov: ditin.
a) The fector hes shom linkege with raiuse (C.0. 18 por cont on the basis of F_{2} dicti). Bickeross dati will be availcble noxt yuer.
b) Buckeruss di.ta havo shown thi.t both lu and sp are on the Ts 5 side of su. They mey be illelomorphic.
c) Backeross dita of aeterial sent by Dr. Emerson indicate that wl is betreen Ts_{5} :nd su. The order probibly is $\mathrm{Ts}_{5}-\mathrm{v}, 1-\mathrm{su}-\mathrm{Tu}$. Singleton.
4. Nev genes or reocurrence of known genes
a) rumusu Swecpstakes inbred. It is buing testod with ra ${ }_{1}$.
b) brown miurib - Sweepstakes inbred.
c) glossy y_{1} Country Gentleicn inbred.
d) Elossy (not 1, í, or 3) Sweepstikes inbred.
e) crinkly - Sweopstakes inbred.
f) \&dherent tassel - Sweepstaikes inbred.
g yellow stripe - Sweepstakes inbred.
h yollowish japonici - Sweopstakes inbred
i) yelluwish throaded - Swoepstikes inbrod.
j) dwiurf - Sweepstikes inbred.
k) finc stripe (nay be cillel. to \hat{r}_{1}) - Sweepstakes inbred.
Singleton.
5. Soft starch (h) of is difforent from both opaque 1 and opaque 2. Singleton.

News itcus fron College Station, Texas

1. hilylaceous sugary ($s u^{\text {man }}$) is allelomorphic with su. This new sugary genc is oxpressed only when another gone, du, which produces a cull endosperm similar in appearance to waxy but stainine blue instuad of red, is also presont in the recessive conulition. Ratios in Host crosses are $15: 1$. The gene suail shows the same linkage relations as su whilc the gene du is located in the R-g eroup. The new sugary is not as good a character as the original sugary but it has some bearing on the inheritance of pseudo-starchiness. fo synthetic pseude-starchy can be produced by crossing amylaceous sugary vith true sugary. Seed are available. Mangelsdorf.
2. In Tripsacurn hybrids with neize the number of Tripsacurn chronosolles can be deterained by in exiwination of the pollon. Plents with $\dot{\text { co }}$ Zea chronusozics plus one Tripsacum chromosone havc 50 per cont noriaki and 50 per cent saall pollen. Plants With two Tripsacua chrouosoues have $£ 5$ per cent normei, 50 per cont suill, and ¿5 per cont eupty pollon. hpparently 2. singlo Tripsucuia chromosoac ccusos roduction in size whilo two or zore ceuso coliplote zabortion of the pollon. Extra chronos mie liants can be roidily identifice in the ficid by pollon eximination. We now have a lirge nuwber of stocks till heving 50 iaize chroussucs and no extra Tripsacum chr wasome. We are ittonpting to idontify these extra Tripsicuul chrumos mies by crossing with curn st:cks in which the chrumsuacs are. .erked by tri or ture recessives. We are bedily in need of wultiple recessive stacks for this work. Hingelsdorf.
3. I. fell stucis which we have developed for Texus cunditions and shich ure ive.ilablo t, ther maize geneticists in the South ure :-

4. Wie have c. number of F_{1} plants of diploic Zei. x tetraploid Tripsacurn which can be propegeted by division. Anyone wishing sme this witerisil is weleme to it. ifongelsdurf.

News items from hines, Iowa

1. Linkage data :-

1) i new recessive anthocyon gene.
2) Assigned w_{4} because the original w_{4} in the mimeographed sheets is not show to be linked with chything, and since the bene is on the new 4th chromosome.

Lindstron.
2. New genes not described or tosted for linkage :-
e) Dominant chlorophyll striping. Old gold striping (Og).
b) h new uominent sorghuia tisscl. Will not be nemed until tested with Ts_{5} and Ts_{6}.

Lindstron.

Nevs itens fron Wushinuton, D.C.

1. In back cross counts involving ach plints rootless (rt) showed 18.5\% crossing over with Rg_{1}. Jenkins.
2. Lazy (1a) shovs 11.4% crossing ovor with su und is on the opposite side of su from Tu and Cl_{3} as bused on a 4-point back cross test. Jenkins.
3. i. 3-point buck cross test with ray, Tp and ij indicates the order to be ri-Tp-ij with the totil ru-ij distince about 11 units. Jonkins.
4. Branched silkless (bd). Our results agree with those of Hadjinov in that (bd) is not located in the fourth chromosone with Tu. our latest progeny in repulsion phase with su gives Su Bd 261 : $5 u$ bd 82 : su Bd 42 : su bd 14 with x^{2} less than 1. The deficiency of su plants is cecounted for by the poor stand. Kempton.
5. $\frac{H_{1} 1 \varepsilon_{2} r g}{i_{1}-\varepsilon_{2} R g} \times c_{1} 1 g_{2} r g$

Brink.

$$
\begin{aligned}
& \frac{h_{1} \mathrm{Ni} \cdot \mathrm{ts}_{4} \mathrm{rg}}{\mathrm{a}_{1} \mathrm{Na} \mathrm{Ts}_{4} \mathrm{Rg}} \times \mathrm{a}_{1} \mathrm{na} \mathrm{ts}_{4} \mathrm{rg}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \begin{array}{l}
\mathrm{A}_{1} \mathrm{Nu} \mathrm{Ts} 4 \\
\mathrm{Ts}_{4}=42 \\
\mathrm{n}_{1} \mathrm{Nu} \mathrm{ts} \\
\hline
\end{array} \\
& \begin{array}{lll}
\mathrm{F}_{1} & \mathrm{Ni} & \mathrm{Ts}_{4} \begin{array}{l}
\mathrm{Rg}=140 \\
\mathrm{a}_{1} \\
\mathrm{ni} \\
\mathrm{ts}_{4}
\end{array} \mathrm{rg}=105
\end{array} \\
& \mathrm{~K}_{1} \mathrm{Na} \mathrm{ts}_{4} \mathrm{Rg}=24 \\
& \underline{\mathrm{a}_{1} \mathrm{na} \mathrm{Ts}_{4} \mathrm{rg}=27-51}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \& 3 \begin{array}{l}
\mathrm{A}_{1} \mathrm{ni} \mathrm{Ts}_{4} \mathrm{rg}=4 \\
\mathrm{a}_{1} \mathrm{Ni} \cdot \mathrm{ts}_{4} \mathrm{Rg}=9 \\
\hline
\end{array} \\
& 2 \& 3 \begin{array}{l}
\mathrm{Na} \mathrm{Ts}_{4} \mathrm{rg}=14 \\
\mathrm{a}_{1} \mathrm{ni} \mathrm{ts}_{4} \mathrm{Rg}= \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tot:il }=\overline{993}
\end{aligned}
$$

3. $\left(\lg _{2} x n a\right)$ (x)

No lg_{2} ne plants appeared among about 5000 offspring. This result does not tally, with expectation on the basis of the above results, viz. $\left(1 \mathrm{~g}_{2}-\mathrm{Rg}=15.7 \% \mathrm{c} .0 .\right.$, nd na $-\mathrm{R}_{\mathrm{E}}=$ 40.9% c.0. $) \quad\left(a_{1}-\right.$ na $=23.1 \%$, and $\left.a_{1}-1 g_{2}=36.0 \%\right)$. Brink.

$$
\frac{\mathrm{Lg}_{2} \mathrm{c}_{1}}{\lg _{2} \mathrm{D}_{1}}=1 g_{2} \mathrm{~d}_{1}
$$

$\left.\begin{array}{ll}D_{1} & 1 \varepsilon_{2} \\ d_{1} & L_{2}\end{array}\right\} 16 \varepsilon_{2}$
$\left.\begin{array}{lll}\mathrm{D}_{1} & \mathrm{Lg}_{2} \\ \mathrm{a}_{1} & \mathrm{Ig}_{2}\end{array}\right\} \quad 96$
Crossing $=2$ yer
$1 g_{2}-d_{1}=37.2 \%$
Total 258
Brink.
5.

$$
\frac{d_{1} R_{g}}{D_{1} r g} \times d_{1} r g
$$

$\left.\begin{array}{ll}\mathrm{d}_{1} & \mathrm{Rg} \\ \mathrm{D}_{1} & \mathrm{rg}\end{array}\right\}: 291$
$\left.\begin{array}{ll}\mathrm{D}_{1} & \mathrm{Rg} \\ \mathrm{d}_{1} \mathrm{rg}\end{array}\right\}, 94$
Total 1385

Crossing-over

$$
\mathrm{Rg}-\mathrm{d}_{1}=24.2 \%
$$

Brink.

$$
p \mathrm{pL}=\mathrm{p} \cdot 1 \mathrm{le} \text { midrib }
$$

7. $\frac{A_{1} B c_{1} \operatorname{Rg}}{a_{1} b E_{1} r g} x$ a ban $r g$
$\left.\begin{array}{lll}\text { A. } \mathrm{Ba}_{1} & \mathrm{Rg} \\ \text { a. } \mathrm{ba}_{1} & \mathrm{rg}\end{array}\right\} \quad 20$
$\left.\begin{array}{lll}\text { i. } B i_{1} & \mathrm{rE} \\ \text { i. } B i_{1} & \mathrm{FE}\end{array}\right\} \quad 18$

Crossing-ovor

$\left.\begin{array}{l}\text { A. Bin } \\ \text { c. } \mathrm{De} \\ \mathrm{Rg} \\ \mathrm{Rg}\end{array}\right\} \quad 10$
r. $-b a_{I}=38.8 \%$
${ }^{D_{1}}-\mathrm{Rig}_{8}=2 \dot{2} .48$

1. $-\mathrm{Rg}=61.5 \%$
$\left.\begin{array}{lll}\text { A. } \mathrm{be}_{1} & \mathrm{Rg} \\ \text { \&. } B a_{1} & \mathrm{rg}\end{array}\right\} \quad 1$

$$
\text { Totil }=49 \quad \text { Brink. }
$$

$\frac{R_{g} R a_{2}}{r_{g} r u_{2}} \times r r_{2}$

$\mathrm{Rg}_{8} R a_{2}=38$
$r_{6} \mathrm{ra}_{2}=67$
RE raz $=26$
$r_{6} R_{2}=29$
Total 160
Crossing-ovor $\mathrm{Rg}-\mathrm{ra} \mathrm{a}_{2}=34.4 \%$

Brink.
9.

$$
\frac{\mathrm{c} B P 1}{\mathrm{rO}} \times \operatorname{same}
$$

A. $\hat{i n}_{2}=152$

н $r a_{2}=29$
$\therefore R a_{2}=43$
© $\mathrm{ra}_{2}=9$

$$
\begin{aligned}
& \frac{a c}{b c}=\frac{1368}{1847}=1.1 \\
& c .0 .=c a 50 \%
\end{aligned}
$$

Nevs itons from Pusadena

1. New stocks - chrumosome \mathcal{Z}
$l_{g_{1}} \mathrm{gl}_{2} \quad \mathrm{~b} \mathrm{v}_{4}$ segregiting c sh wx
$l_{1} \quad g_{2} \quad B \quad v_{4}$
b sk v_{4} segregating $\lg _{1}$ and gl_{2}
$\begin{array}{lll}\mathrm{t} & \text { sk } & \mathrm{v}_{4} \\ \mathrm{~b} & \mathrm{ts} \\ \mathrm{B} & \mathrm{ts}_{1}^{1} & \mathrm{v}_{4}\end{array}$
$\begin{array}{lll}11 & 11 & n \\ \text { in } & \end{array}$
it it it il
Clokey.

Chronosunt 5

$$
\begin{aligned}
& \frac{a_{2}}{\mathrm{v}_{2} \mathrm{pI} \mathrm{HI}_{1}} \times \frac{\mathrm{c}_{2}}{\mathrm{v}_{2} \mathrm{pr} \mathrm{bn}_{1}} \\
& \frac{\mathrm{u}_{2}}{\mathrm{ChCh}} \times \frac{\mathrm{c}_{2}}{\mathrm{Ch} \mathrm{Ch}} \\
& \mathrm{Ch} \mathrm{Ch} \times \mathrm{v}_{2} \mathrm{pr} \mathrm{bu}_{1}
\end{aligned}
$$

Clokey.

Chrunosone? 7

$$
r a_{1} E l_{1} i j
$$

Clskey.
2. Linkuge dits :-

On a beck cross of 1100 plints for $r_{1} \mathrm{gl}_{1}$ ij the order from the lirst 700 plants is ra_ $\mathrm{gl}_{1}-i j$ with i cross over valuo
of $4-5$ per cent between $r a_{1}$ ind gl_{1}. Clokey.
3. Data fros cross $\frac{+\sin +}{\mathrm{Pl}+\mathrm{py}} \mathrm{Xl}$ san PY

wy plints
$\mathrm{P} 1+: 131$
$\mathrm{pl}+: 37$

Fron Py plints only-P1-sm $=\frac{17}{193}=8.8 \%$

$$
\sin -p y=\frac{66}{195}=13.5 \%
$$

From all plants -Pl-py $=\frac{80}{361}=$ zi. in
Ordur is thurefure Pl-sin-py.
Anderson.

News itoms from Sao Piulo, Brizil

 No. of striinsa) Ler and sced cherictors

1) pronature geraination ($3: 1$)
2) Severci kinds of defoctive endusperms (shrunisen, floury, etc.)
3) Viriogited poricurp
4) nottlea i.leurone
5) brown pericarp
6) slcurone colors

7 7) semi-tunicute grains*
8) brenched sir

No. of strains
uvailable \qquad 1 E
b) Leef churicters

1) concentric sputs**

1
2) oily spots (?)*
3) crinkly (?) 3
4) rolled lecves 1ん

5 rigued (?) 6
6) narrow leaves
7) huiry shecth
c) Chlorophyll-deficient types

1) white soculings

7
\%) yellow seedlings
${ }_{2}$
3) several kinds of striped
4) zebri striped seedlings (?)
d) Genes affocting the whule plant

1) several types of dwarfs

13
2) ultri-dmarf
3) ranose (?)
e) abnornial sux-distribution

1) tassel-ear, tassel-seed 4
2) hermephr flovers on the our 1
(upper half of ear is 2)
3) fomile plunts*

1
The charactors murked with * aro supposed to be new onos: Sone of the conormalities appeired in more than one strain, but they mi-y not be allolomorphs.

Results of first inbreedine three corn varieties :-

In 193\% we selfed about 3,000 plants of these three varieties. wiong the selfed ears we found a grect many with defective endosperia secds, one case of "premiture germination" (3:1), one with somitunicate grains, besides a great number of divorsily diseased ears which wore eliminated. From these 3,000 ears we selected only 181 k for further planting; the variations found abong these car-rows are given in the above table.

Krug.

Suncu's vork with plant culor pigments

In a furwer paper Suncio and Bartlett showed that the piezent in aa BB P1 P1 plants was a Yellow flavonol glucoside, isoquercitrin. Sando, Hilner and Sherain have a peper in press on the nature of the pignent in his. BB P1 Pl plents. This purple pigment proves to be the inthocyanin of isoquercitrin, chrysanthemin.

To quote Sencio: "If" it is assuricd that the anthocyanin in purple-husked milze i.s formed directly frora the flevonol glucoside the ruduction resresenting the possible furmation of chrysanthemin (as chlorido) froan isoquarcitrin may bo expressca briufly as follows:

isoquercitrin - $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{12}$
Chrysanthemin $\mathrm{Cl}-\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{11} \mathrm{HCl}$.

Inbreds rosistant to smut

In the corn lettor of Septomber 13, 1934, wo staited that We had several inbreds which were rosistant to smut under field conditions here at Ithaca ind that it scomed desirable to cross some of the more susceptible genetic stocks to those inbreds providing they provod resistint when erown at other stitions. Hayes writes that they have mede extensive tests for smut resistance at minnesuta and have inbreds which were resistant to smut brought in frow various localities. This material should be ideal for our purposes and Hayes has kindly offered to supply a limited amount of seed for testing next suminer. We should like vory much to send sriall lots of seed to four or five difforent stations. If you are willing to grow this material and note its resistance to smut under your fiicld cunditions, please notify this office.

Miscellaneous

The following changes and corrections should be noted :-

1. The symbol dit was originally given to the character dotted leaf. No description of this character was ever published, it was never linked, and the stock has been lost. Therefore, the symbol Dt has been assigned to dotted aleurone (see news items from Ithaca).
2. ${ }^{g} 1_{10}$ was erroneously reported in the news letter of last year as being linked with f_{1}. Tho striped character proved to be v_{5} instead of f_{1} and the glossy is $E l_{1}$ instead of a new gene. ${ }^{N 1} 2$ was reported as shoving linkage with a_{1}. More extensive counts failed to substantiate this linkage.
3. The names of A. E. Langley and C. E. Sando have been added to the mailing list. Both are with the U. S. Department of agriculture at Washington, D. C.

We hope to issue another corn letter in the spring. This letter will include such news items as are sent in and a more complete list of genetic stocks.

I MR: B

$$
\begin{aligned}
& \text { Sincerely yours, } \\
& \text { M. M. Rhoades } \\
& \text { M. M. Rhoades B. }
\end{aligned}
$$

if. M. Rhoades

