Viruses of Freshwater Mussels expanding the invertebrate "virosphere" in the pursuit of mussel health and conservation

Tony L. Goldberg, Ph.D., DVM, MS

University of Wisconsin-Madison, School of Veterinary Medicine Associate Director for Research, Global Health Institute, University of Wisconsin-Madison

Other Affiliations

UW-Madison Nelson Institute for Environmental Studies, Center for Sustainability and the Global Environment
UW-Madison Departments of Population Health Sciences, Zoology, and African Studies Program
Wisconsin National Primate Research Center
Makerere University, Uganda, Department of Zoology

Viruses

 "A piece of bad news wrapped up in a protein"

• Peter Medawar (1960 Nobel Prize for work on immunity and organ transplantation)

Viruses

- Annoyingly small
 - Hard to see/diagnose/confirm
- Obnoxiously diverse
 - No unifying genetic features
- Irritatingly clever
 - Evolve around vaccines and antivirals
- Maddeningly emergent
 - Ebola, SARS, West Nile, Zika, HIV, etc.

Viruses of bivalves

Risk in Brief

Hepatitis A Virus in Shellfish

Centre for Food Safety, Hong Kong

Oyster herpes

- OsHV-1 mVar
 - Malacoherpesviridae; Ostreavirus
- Massive mortality in *Crassostrea gigas* since 1998
- France → Portugal → Spain → Italy → Ireland
 →Norway → Australia → New Zealand → Asia
- No vaccines or treatments
- Epidemiologically informed management is the current best strategy.

Pernet, F., C. Lupo, C. Bacher and R. J. Whittington (2016). Infectious diseases in oyster aquaculture require a new integrated approach. *Philos Trans R Soc Lond B Biol Sci* 371(1689).

Viruses of Unionids: n = 1

- Lea plague Virus (HcPV) in *Hyriopsis cumingii* (triangleshell)
- Arenaviridae (very distant relative of Lassa virus)
- "Explosive" epidemics in China, in freshwater pearl aquaculture facilities

Zhong et al. (2011). *Acta Hydrobiologica Sinica* 35(4): 666-671.

Next-Generation Sequencing (NGS)

Metabarcoding

The "Virosphere"

Phages: there are a lot

- "Using a new method for quantitative enumeration, we have found up to 2.5×10^8 virus particles per millilitre in natural waters."
 - Bergh, O., K. Y. Borsheim, G. Bratbak and M. Heldal (1989). High abundance of viruses found in aquatic environments. *Nature* 340(6233): 467-468.

Shi, M., X. D. Lin, J. H. Tian, L. J. Chen, X. Chen, C. X. Li, X. C. Qin, J. Li, J. P. Cao, J. S. Eden, J. Buchmann, W. Wang, J. Xu, E. C. Holmes and Y. Z. Zhang (2016). **Redefining** the invertebrate **RNA** virosphere. *Nature* doi: 10.1038/nature20167.

- Examples
 - The smoking gun
 - The red herring (?)
 - "Musselbola"

The Clinch River, TN

- Massive die-off in Fall, 2017
- Multiple species, but not all equally affected
- Some sites severely affected, others less so
- Some animals at affected sites moribund while others at the same sites healthy (apparently).

[Talk to Jordan Richard]

Samples and results

- Hemolymph from 84 mussels
 - 61 pheasantshells (Actinonaias pectorosa)
 - 18 muckets (Actinonaias ligamentina)
 - 5 purple wartybacks (Cyclonaias tuberculata)
- 2 dates
 - -10/20/2017 and 11/3/2017
- 4 sites
 - Kyle's Ford
 - Sycamore Island
 - Frost Ford
 - Wallen's Bend.
- New viruses discovered.

New viruses: cool, but so what?

Case-Control Study

Plan: analyze data in terms of a casecontrol study design, with controls being apparently healthy mussels and cases being moribund mussels.

What we have from all this

Hypothesis

Caveats

- Small sample size
- Type 1 error
- Direction of causality
 - Virus causes disease.
 - Disease causes virus.
 - Something else causes both.
- All sorts of bias (probably)

The key: incisive comparisons

Epidemiology and Risk Assessment

- Count cases or health events, and describes them in terms of time, place, and person (or mollusk)
- **Divide** the number of cases by an appropriate denominator to calculate rates; and
- Compare these rates over time or for different groups of people (or mollusks).

Principles of Epidemiology in Public Health Practice, Third Edition An Introduction to Applied Epidemiology and Biostatistics

Some relevant comparisons

- Sick vs. healthy
- Affected species vs. Unaffected species
- Affected locations vs. Unaffected locations
- Before vs. After

Some next steps

- Bacteriology (including microbiomes)
- Parasitology
- Toxicology
- Metabolomics
- Other -omics
- Virus isolation
- Specific diagnostics (e.g. qPCR)
- Additional sampling (species and locations)
- Experimental studies (infection/translocation)
- Risk assessment (*informed* risk factor analysis and ecological/epidemiological modeling).

The Plan

Acknowledgments

- Jordan Richard
- Chris Dunn
- Diane Waller
- Eric Leis
- Joel Putnam
- Jay Levine
- Susan Knowles
- Many others!

Contact info for questions

Tony L. Goldberg, PhD, DVM, MS
 Professor of Epidemiology, Department of Pathobiological Sciences, School of Veterinary Medicine
 and

Associate Director for Research, UW-Madison Global Health Institute

University of Wisconsin-Madison

Hanson Laboratories, room 137

1656 Linden Drive

Madison, Wisconsin 53706

Phone: 608-890-2618 (office); 608-890-3255 (lab)

FAX: 608-262-7420

e-mail: tony.goldberg@wisc.edu

Website: http://www.vetmed.wisc.edu/goldberglab