MARYLAND
 GEOLOGICAL SURVEY

Cretaceous

Upper
Text and Plates

MARYLAND GEOLOGICAL SURVEY
 UPPER CRETACEOUS
 TEXT AND PLATES

MARYLAND

GEOLOGICAL SURVEY

UPPER CRETACEOUS
TEXT AND PLATES

BALTIMORE
THE JOHNS HOPKINS PRESS
1916

Class PELECYPODA (Continued)

Subgenus GRYPHAOSTREA Conrad
[Am. Jour. Conch., vol. i, 1865, p. 15. Name only]
Type.-Ostrea subeversa Conrad $=$ Gryphcea vomer Morton.
"Shell thin, elongate, straight, narrow; lower valve rather deep and smooth; upper valve flat or slightly coneave, and ornamented with distant, regular, thin, concentric laminæ; beak of lower valve contorted, or turned to one side ; cartilage-pit narrow, oblique.-Gryphcea vomer Morton (sp.). Mr. Conrad did not publish a diagnosis of this type, but merely gave the name in a list of fossils. At my request, however, he gave me in manuseript the above diagnosis, and mentioned the above type. I would add that, in perfeetly preserved specimens, the typieal species presents the singular peculiarity of throwing out long, slender, auricular appendages (one on each side) from the lower valve near the beak. These being very Irragile, are nearly always broken away, as the specimens are found; but I observed several, with more or less of them preserved, in the New Jcrscy beds; and one I found growing in the inside of a Gryphea vesicularis with them perfectly preserved and apparently attached to the Gryphata by their extremities."-Meek, $18 \% 6$.

Gryphoostrea suggests Exogyra in the gyrate umbones of the left valve, The beak of the right valve of the former, however, is orthogyrate or at the most slightly inclined, and this, together with the inflation of the beak of the left valve, allies it more closely with Gryphcea than with Exogyra.

Gryphea (Grypheostrea) vomer Morton Plate XXV, Figs. 1-4

Gryphwa vomer Morton, 1828, Jour. Acad. Nat. Sci., Phila., vol. vi, p. 83.
Gryphca vomer Morton, 1834, Syn. Org. Rem. Cret., p. 54, pl. ix, fig. 5.
Gryphoxa vomer Conrad, 1835, Trans. Geol. Soc., Pennsylvania, vol. i, p. 336.
Gryphwa vomer Conrad, 1842, Proc. Nat. Inst., Bull. ii, p. 172.
Exogyra lateralis Meek, 1864, Check List Inv. Fossils N. A., Cret. and Jur., p. 6.

Ostrea (Gryphaostrea) subeversa Conrad, 1865, Am. Jour. Conch., vol. i, p. 15 (name only).

Etymology: γ ри π ós, hook-nosed; ostrea, oyster.

Gryphuostrea lateralis Conrad, 1868, Cook's Geol. of New Jersey, p. 724.
"Ostrea lateralis Nilsson "Coquand, 1869, Mon. Genre Ostrea, p. 96, pl. xxx, fig. 10. (Not Ostrea vomer d'Orbigny, 1850, Coquand, Mon. Genre Ostrea, p. 39, pl. xvi, figs. 13-15. $=0$. convexa Say.)
Gryphwostrea vomer Meek, 1876, Rept. U. S. Geol. Survey, Terr., vol. ix, p. 11.
Ostrea vomer White, 1884, 4th Ann. Rept. U. S. Geol. Survey, p. 302, pl. xlviii, figs. 8-10.
Gryphceostrea vomer Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 195, pl. xxvi, figs. 11, 12.
Ostrea sp. Clark, 1895, Johns Hopkins Univ. Circ., vol. xv, p. 6.
Ostrea sp. Clark, 1896, Bull. 141, U. S. Geol. Survey, p. 88, pl. xxxix, figs. 3a-3c.
Ostrea subeversa Clark, 1896, Bull. 141, U. S. Geol. Survey, p. 93.
Ostrea (Gryphaostrea) subeversa Dall, 1898, Trans. Wagner Free Inst. Sci., vol. iii, pt. iv, p. 681.
Ostrea (Gryphwostrea) vomer Clark, 1901, Md. Geol. Survey, Eocene, p. 193, pl. 1, figs. 1-5.
Ostrea (Gryphecostrea) vomer Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 11.

Gryphocostrea vomer, Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 455, pl. xliv, figs. 7-11. (Exclude fig. 6, broken valve of Gryphcea vesicularis).

Description.-" Shell subrhomboidal; upper valve small, thin, slightly concave; lower valve convex, obscurely lobed, the lobed margin obliquely produced from the hinge; a wrinkled groove each side of the latter; beak pointed, curved obliquely inwards; umbo prominent."-Morton, 1828.

Type Locality.-New Egypt, New Jersey.
Shell of moderate size, elongate, rudely ovate or elliptical, strongly inequivalve; attached left valve strongly convex, often irregular in outline over the area of attachment in the umbonal region; umbones inflated, tips prosogyrate and acutely pointed, when not flattened against the supporting surface; anterior and posterior dorsal margins of perfect and typically developed individuals produced into long, slender, auricular extensions somewhat similar to those of Gryphcea convexa Say. External surface of left valve smooth excepting for growth striations, right covervalve regularly subovate, flattened, often a little sinuous and with a slight forward twist in the flattened umbonal region; external surface sculptured with conspicuous, fine-edged concentric laminæ, five to eleven in number, regularly spaced, parallel to the outer margin and delimiting the outline of the shell during former stages of growth : hinge area small,
low, flattened as a rule, irregular in outline, submargins auriculately produced in the left valve, somewhat thickened but not produced in the right valve; not sculptured; muscle impressions elongated, rudely scmielliptical, concentrically striated.

The characters of the attached valve of G. vomer are variable, the inflated umbones and smooth external surface constituting perhaps the best diagnostic of indifferently preserved individuals. The ovate outline and the elevated concentric laminæ are sufficient to detcrmine even a fragment of the right ralve.

Occurrence.-Matawan Formation. ? Gibson's Island, ? head of Magothy River, ? Ulmstead Point, Anne Arundel Comnty, Maryland. Monmouth Formation. Two miles west of Delaware City on John Higgins farm, Briar Point, Post 156, Chesapeake and Delaware Canal, Delaware; Bohemia Mills, Cecil County; mouth of Turner's Creck, Kent County; Brightseat, railroad cut west of Scat Pleasant, Brooks estate near Seat Pleasant, Friendly, and McNeys Corners, Prince Gcorge's County, Maryland. Raxcocas Formation. Noxontown Pond, Delaware.

Collections.-Maryland Gcological Survey, Philadelphia Academy of Natural Seiences, New Jerscy Geological Survey, U. S. National Museum.

Outside Distribution.-Matawan Formation. Marshalltown clay marl, New Jerscy. Monmouth Formation. Navesink marl and Red Bank sand, New Jersey. Rancocas Formation. Vincentown limesand and Hornerstown marl, New Jerscy. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Lee and Alcorn counties, Mississippi. Ripley Formation. Exogyra costata zonc, cast-central and northern Mississippi. Extreme top of zone, Union County, Mississippi. Selma Chalk. Exogyra pondcrosa zone, Warrior and Tombigbec rivers and Pickens County, Alabama; cast-central and northcru Mississippi and Tennessee. Exogyra costata zone, Sumter and Wilcox counties, Alabama; east-central and northern Mississippi. Nanjemoy Formation. Maryland. Aquia Formation. Maryland. Jackson Formation. Alabama.

Superfamily TRIGONIACEA Family TRIGONIIDAE Genus TRIGONIA Bruguière
 [Ency. Méth. Vers., vol. I, 1789, p. xiv]

Type.-I'rigonia margaritacea Lam.

Shell heavy, naereous within, equivalve, inequilateral, subtrigonal or trapezoidal in outline. Umbones anterior, opisthogyrate, moderately inflated, lunule absent, escuteheon strongly defined; posterior area sharply differentiated by a earina extending from the umbones to the posterior ventral margin; seulpture upon medial and anterior portions of the disk usually developed and often more or less nodose; seulpture upon the posterior area eoneentrie, radial, divarieate, or absent. Hinge dentition vigorous, two divergent transversely striated eardinal teeth in the right valve, three eardinals in the left, the middle tooth stout, trigonal, medially suleate, transversely striated, the two outer cardinals compound and relatively small, transversely striated within. Ligament groove marginal, opisthodetic, musele impressions two in number, the posterior the larger, pallial line indistinet, entire.

Trigonia was one of the major elements during the Mesozoie, the epoch which marks its origin and culmination. Five species still persist in the Australian region, but they are rather distantly conneeted with the Mesozoic forms.
A. Costals not exceeding 16 in number.

Trigonia eufalensis
B. Costals exceeding 16 in number.

1. Shell semi-elliptical in outline, not rostrate posteriorly, costals coarser upon the medial portion of the shell than towards the extremities ..Trigonia cerulea
2. Shell trigonal in outline, rostrate posteriorly, costals conspicuously coarser on the anterior third of the shell, becoming abruptly finer and more regular in arrangement medially.

Trigonia marionensis

Trigonia eufalensis Gabb

Plate XXXIV, Figs. 1, 2
Trigonia eufalensis Gabb, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 396 , pl. 1 xviii, fig. 32.

Trigonia eufalensis Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 9.

Etymology: $\tau \rho \iota$, three; $\gamma \omega \nu i a$, angles.

Trigonia eufalensis Conrad, 1868, Cook's Geol. of New Jersey, p. 725.
Trigonia eufalensis Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 113, pl. xiv, figs. 1-4.
Trigonia eufalensis Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 11.
Trigonia eufalensis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 462 , pl. xlviii, figs. 5-10.

Description.-"Subtriangular, resembles T. alaformis Sow. in outline, not quite so elongate anteriorly; beaks posterior; lunule distinct; surface marked by about fourteen ribs, the more anterior of which proceed from the lunule anteriorly and then cross the shell at right angles with the lunule, exhibiting a tendency to being nodose, especially near the lunule; lunule marked by ten or twelve transverse ribs; cardinal margin somewhat incurved, anterior elongate and subbiangular, basal sinuous and deeply serrate, posterior regularly rounded; internally, hinge tecth small, muscular impressions deep ; pallial line entire; a small toothlike ridge or process exteuds along the middle of the alation, as in T. alceformis."-Conrad, 1860.

Type Locality.-Eufaula, Alabama.
Shell thick, heavy, prismatic, rudely trigonal in outline, moderately convex; umbones antcrior, incurved, opisthodetic, flattened upon their summits but prominent by reason of their position at the apex of an augle of approximately 120°; lunule not differentiated, eseutcheon defincd, not only by the sculpture but also by an abrupt change in the plane of the shell; anterior portion of the shell sculptured by twelve to fifteen prominent concentric ritlges, rather sharply rounded upon their summits, dorsally inclined, especially in the umbonal region, more prominent, symmetrical and feebly rugose ventrally, regularly arranged but much more closely spaced along the concave margin than the convex; ligament mar-ginal-the groove in which it was lodged short linear and opisthodetic; eardinal teeth of left valve massive, trigonal, transverscly striated, inner faces of hinge margins also striated in order to clasp the divergent teeth of the right valve; musele impressions decply excavated, the anterior slightly more so than the posterior; pallial line simple-distant from the hinge margin.

This speeics is the smallest and most abundant member of this remarkable genus within the confines of Maryland. It is separated from T. cerulea Whitfield by the more prominent umboncs, the more convex posterior dorsal, the more attenuated posterior extremity and the fewer rugose and relatively coarser external costre.

Occurrence.-Monmouth Formatiox. ? 2 miles west of Delaware City on John Higgins farm, Delaware; ? Bohcmia Mills, Cccil County; mouth of Turncr's Creek, Kent County; Brightscat, Brooks estate near Seat Pleasant, Friendly, 1 mile west of Friendly, McNeys Corners, Fort Washington, Prince George's County, Maryland.

Collections.-Maryland Gcologieal Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey, U. S. National Museum.

Outside Distribution.-Matawan Formation. Merehantville clay marl, Woodbury clay and Wenonah sand, New Jersey. Black Creek Formation. North and South Carolina. Peedee Sand. North and South Carolina. Eutaw Formation (Tombigbec sand member). Exogyra ponderosa zone, Mortoniceras subzone, Georgia. Ripley Formation. Exogyra costata zone, Georgia; Eufaula, Alabama. Extreme top of zone, Pataula Creek, Georgia.

Trigonia cerulea Whitfield

Trigonia cerutea Whitfeld, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 114, pl. xiv, fig. 7.
Trigonia cerulea Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 464, pl. xlviii, fig. 13.

Description.-" Shell small or below a medium size, moderately eonvex on the valves and of a triangularly-ovate outline. Beak small, appressed, obtusely pointed and erect; posterior hinge-line long and slightly concave; postcrior end narrow and rounded; anterior end broadly rounded; basal line a litle gibbous in the middle, but otherwise forming a continuous line with the anterior and posterior margins. Surfaee of the shell covered by coarse elevated ribs, which are flattened on their surfaces over a large part of the shcll, but near the posterior cardinal margin are sharp and very slightly erenulated. The ribs arc coarse and distant on the anterior and middle parts of the shell, but gradually bccome finer and more
closely arranged toward the posterior part. Interspaces concave. No postero-cardinal area is visiblc on the specimen used, the ribs apparently passing, without intcrruption, across the entire disk of the shcll and terminating on the cardinal margin. The ribs of the anterior end curve strongly forward in passing to the basal and anterior margins, while those of the hinder parts of the valves pass more directly across to the posterobasal margin. This species differs from any of the others described from these beds in its form, but more particularly in the stylc and number of the surface ribs. They are more numerous than on any of the other forms, there having been about twenty-three on the speeimen figured, which is only one inch and an cighth in length. Their flattened surface and the gradual increase backward is also opposite from that which is scen to oceur on those In coarse olive-grcen indurated marl at the deep cut on the Holmdel and Keyport Turnpike, Monmouth County, New Jersey, at the base of the Lower Marls. The substance of the shcll is entirely changed to vivianite, which is soft and of a bright blue color, very easily destroyed by handling or rubbing."-Whitfield, 1885.
This species is represented in the collections of the Maryland Cretaceous by a single valve. The speeics is somewhat larger than the more common T. eufalensis Gabb, is less trigonal and more semi-elliptical in outline, not rostrate posteriorly and less coarsely and more uniformly sculptured.

Occurrence.-Monmouth Formation. Brooks estate near Seat Pleasant, Prince George's County.

Collections.-Maryland Geologieal Survey, Columbia University, New Jersey Geological Survey.

Outside Distribution.-Monmouth Formation. Tinton beds, New Jersey.

Trigonia marionensis Stephenson n. sp.
Description.--" Shell subtrigonal, equivalvc, inequilateral, modcrately ventricose anteriorly, bceoming strongly compressed posteriorly; beak small, ineurved, situated about one-quarter the length of the shell from the anterior extremity. Hinge and dorsal arca too poorly preserved for description.
" Posterior adduetor scar apparently small and situated near the dorsul margin, at about the mid-length of the shell; a sharp erested ridge or carina extends from a short distance behind this sear backward to about the middle of the posterior extremity. Dorsal margin broadly concave; anterior margin broadly and regularly rounded; ventral margin regularly rounded anteriorly, notched, the notehes corresponding to the interspaces between the ribs; the broad eurve earries the ventral margin upward toward the high narrow posterior portion of the shell, where the margin eurves slightly dowward hecoming coneave, and meeting the posterior margin in a subright angle; posterior margin short, squarely truncated, and situated above the mid-height of the shell.
"Surface of the adult marked by 20-22 prominent ribs which originate along the lower margin of the dorsal area and extend to the anterior and ventral margins; the ribs on the anterior portion of the shell trend first forward and downward, and then sweep in a gentle curve around to the anterior margin; from the front toward the rear the ribs become successively straighter, tending first downward, and, toward the posterior extremity, backward and downward; the erests of the ribs are poorly preserved but are apparently tubereulated.
"Dimensions.-Length 37 mm . ; height 27 mm . ; convexity 7 mm .
"This speeies differs from Trigonin eufaulensis Gabb in the eloser spacing and smaller degree of curvature of the ribs, and in the greater curvature of the ribs, and in the greater elongation of the posterior portion of the shell. The species is distinguished from the young of Trigonia bartrami by the relatively eloser spaeing of the ribs and the greater posterior elongation of the shell.
" Type.-U. S. National Museum, No. 31642.
"Occurrence in South Carolina. -Snow Hill member of Black Creek formation (upper part of Exxogyra ponderosa zone). Hodge's old mil] site, $3 \frac{1}{2}$ miles southeast of Mullins, Marion County.
"Occurrence in Alabama.--Tombigbee sand member of Eutaw formation (lower part of Exogyra ponderosa zone). Seaboard Air Line Railway at bridge over Hateheehubbee Creek, 2 miles west of Pittsview, Russell County."-Stephenson, MS.

Occurrence.-Maman Formatiox. North shore Round Bay, Severil River, Anne Arundel County. Monmoutif Fommation. Millersville, Anne Arundel County.

Collections.-Maryland Geological Survey, U. S. National Museum.

C. Isodonta

Superfamily PECTINACEA

Family PECTINIDAE
Genus PECTEN Müller
[Zool. Dan Prodr., 1766, p. 248]

T'ype.-Ostrea maxima Linné.

Shell approximately equilateral, inequivalve, usually suborbicular, auriculate; right valve, as-a rule, the more convex, not adherent but attached by a byssus; hinge line straight; resilium central, internal, triangular; interlocking grooves and ridges diverging from the apex of the resilial pit; pallial line simple; monomyarian; adductor impression rounded, posterior.
The carliest Pecten known is from the Cretaceous. The recent species exceed two hundred in number and their distribution is world-wide.
A. Shell not conspicuously inequivalve.

1. External surface radially sculptured.
a. Radial sculpture of more or less arcuate linear liræ.

Pecten argillensis
b. Radial sculpture coarse to fine but not linear nor arcuate.
i. Adult shell exceeding 3 cm . in diameter; radials not sulcate, more or less scabrous, 30 to 40 in number.

Pecten whitficldi
ii. Adult shell not exceeding 3 cm . in diameter; radials medially sulcate, as a rule, but not scabrous, 12 to 18 in number.

Pecten venustus
2. External surface not radially sculptured.
a. External surface faintly sculptured concentrically.
i. Adult shell exceeding 2 cm . in diameter.

Pecten cliffwoodensis
ii. Adult shell not exceeding 2 cm . in diameter. .Pecten conradi
b. External surface smooth, adult shell not exceeding 2 cm . in
diameter Pecten simplicius
B. Shell conspicuously inequivalve. Pecten quinquecostatus

Etymology: Pecten, a comb. A reference to the series of small tooth-like spines placed on the margin of the shell at the byssal opening.

Pecten araillensis Conrad

Plate XXXIV, Figs. 3-5
Pecten argillensis Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2 ser., vol. iv, p. 283.
Pecten argillensis Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 7.

Camptonectes bellisculptus Conrad, 1869, Am. Jour. Conch., vol. v, p. 99, pl. ix, fig. 11.
Camptonectes (Amusium.) burlingtonensis Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 53, pl. viii, figs. 3-7, 9 (not fig. 8) (ex parte); not Pecten burlingtonensis Gabb, 1860.
Pecten bellisculptus Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 11.
Pecten argillensis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 472, pl. xlix, figs. 1-4.

Description.-"Suborbicular, very thin, compressed; radiated only on the upper part with minute lines; disk covered with closely arranged, fine lamelliform strix, except on the umbo and adjacent parts where they are distant; posterior margin opposite the ear carinated. (Upper valve.)"Conrad, 1860.
Type Locality.-Owl Creek, Tippah County, Mississippi.
Shell rather thin and fragile, compressed, subequivalve; outline, exclusive of the auricles, a sector of approximately 90°; hinge line straight, a little more than half as wide as the shell; auricles broad but rather low; surface ornamentation elaborate but not conspicuous, radial sculpture of finely incised lines, two to four to the millimeter, on the disks of the adults, straight in the medial portion but sweeping in gentle curves toward the lateral margins deeper and a little broader posteriorly than anteriorly; concentric lines thirty to forty in number, over-riding and intercepting the radials, finely and evenly crenulated and in the umbonal region of perfectly preserved adults, minutely moniliform; auricles very unequal, the anterior broader and relatively lower than the posterior; posterior auricle sculptured with approximately fifteen coarse lirations running oblique to the hinge margin, rendered minutely scabrous by the over-riding incrementals; anterior auricle long and narrow, alate in outline, the striations radiating from the umbonal extremity, sweeping in rather abrupt curves to the dorsal margin ; byssal sinus narrow and very
deep ; the area between the auricle and the disk not sculptured; characters of interior not known.

Pecten argillensis is identical with Pecten bellisculptus Conrad, which was doubtless described from a type on which the delicate beaded sculpture was better preserved than on the type of P. argillensis Conrad. The species is one of the most abundant representatives of its genus in Maryland, but unfortunately it is so fragile that perfectly preserved individuals are obtainable only with the greatest difficulty.

Occurrence.-Monmouth Formation. Brightseat, Brooks estate near Seat Pleasant, 1 mile west of Friendly, Prince George's County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey, U. S. National Museum.

Outside Distribution.-Matawan Formation. Merchantville clay marl, Woodbury clay, Marshalltown clay marl, and Wenonah sand, New Jersey. Monmouth Formation. Navesink marl, New Jersey. ? Black Creek Formation. North and South Carolina. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Mortoniceras subzone, Lowndes County, and ? Prentiss County, Mississippi. Ripley Formation. Exogyra costata zone, Georgia; Eufaula, Alabama; Chickasaw, Union and Tippah counties, Mississippi. Extreme top of zone, Pataula Creck, Georgia: Chattahoochec River, Alabama; Lowndes and Union counties, Mississippi.

Pecten whitfieldi Weller

Pecten tenuitestus Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 47, pl. vii, figs. 5, 6. (Not Pecten tenuitestus Gabb, 1862.)
Pecten whitfieldi Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv. p. 468, pl. l, fig. 14.

Description.-" Shell of small to medium size, broadly ovate cxclusive of the auriculations, the breadth of the shell being to the height as six is to seven. Cardinal slopes straight, more than one-third the length of the shell, and the anterior longest. Left valve very depressed convex, most ventricose above the middle; beak small and pointed. Auriculations large, the anterior double the size of the posterior, very slightly rounded on the
margin, and perceptibly narrowing below; posterior shorter on the eardinal line than below ; anterior side marked by seven sharply-elevated nodose rays, and the posterior by six, with one or two smaller ones between, near the body of the shell. Body of the shell marked by about thirty to thirty-five slender, rounded but unequal rays with much wider flattened interspaces, with an occasional incipient ray on the outer third of the shell. Ribs marked by distant, elevated or subspinose nodes, most closely arranged on the auriculations and obsolete above the middle of the body of the valve. Right valve with the ribs proportionally stronger in the specimens examined than on the left valve and showing a stronger tendency to alteration of smaller and larger ones than on the opposite, while the imbrications of the ribs are not nearly so strong, not rising into spines, as on the left ralve. Auriculations of the right valve searcely perceptibly radiate, while the concentric markings of the valve are more subdued throughout.
"So far as I have discovered the species was never figured by its author, but its clescription is more full than usual, so I think the identifieation is less likely to be questionable than in some other instances. It would seem to be the type of Pecten islandicus, although the ribs are less closely arranged and the interspaces are flattened. Among the few speeimens which I have cxamined I have seen no reason to suppose the ralves were so strongly bent as to leave them 'about half an inch apart in the middle,' as the author states.
"Formation and Locality.-In the Lower Green marls at Holmdel, New Jersey, eolleeted at G. C. Sclanck's pits, near Marlborough, and presented to the New Jersey colleetion by the Rev. Dr. Riley. It also occurs at Burlington, New Jersey."-Whitfield, 1885.
"Shell, exelusive of the auriculations, broadly ovate in outline, higher than wide, the dimensions of a left valve being: hcight 40 mm ., width 35 mm ., convexity 5 mm ., length of hinge-line about 16 mm . Left ralve depressed convex, deepest above the middle, the beak pointed, auriculations of moderate size, the antcrior one larger than the posterior. Surface marked by low, rounded, nodose, more or less unequal, radiating ribs, which increase by intercalation, thirty or more are present upon the body
of the shell where they are narrower than the interspaces, the ribs upon the aurieulations are narrower, eloser together, and more nodose than upon the body of the shell, though in some examples, especially the larger ones, they are ineonspieuous. The surface is also marked by more or less irregular, eoncentrie lines of growth.
" Remarks.-The shells which are made the types of this speeies were identified and illustrated by Whitfield as P. tenuitestus, but an examination of Gabl's type of that speeies has shown that Whitfield's identification was incorrect, the true P. tenuitestus being the same as the specimens described as P. planicostatus by that author. This speeies differs from P. tenuitestus of the same fauna, in being proportionally higher, narrower, and nore eonvex, with the radiating ribs nodose, and proportionally broader with narrower interspaces and with the concentric markings coarser and less regular."-Weller, 190\%.

A fragment of a multicostate seabrous Pecten oceurs at Brooks estate, Prince George's County, and may perhaps indieate the former presence of this species in Maryland. Fragments of another speeies, possibly elosely allied with P. whitfieldi Weller, were eolleeted in the Matawan at Camp Fox on the Chesapeake and Delaware Canal. The Matawan form has mueh more numerous costo whieh are rendered seabrous by the overriding eoneentrie seulpture.

Occurrence.-Monmocth Fommation. Brooks estate near Seat Pleasant, Prince George's County.

Collections.-Maryland Geologieal Survey, Columbia Unisersity, New Jersey Geologieal Survey.

Outside Distribution.-Monmouth Formation. Navesink marl, New Jersey.

Pecten venustus Morton
Plate XXXIV, Figs. 6, 7
Pecten venustus Morton, 1833, Am. Jour. Sci., 1st ser., vol. xxiii, p. 293, pl. v , fig. 7.
Pecten venustus Morton, 1834, Syn. Org. Rem. Cret. Group, U. S., p. 58, pl. v , fig. 7 .
Pceten venustus Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 7.

Pecten venustus Conrad, 1868, Cook's Geol. of New Jersey, p. 725.
Pecten venustus Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 45, pl. vii, figs. 1, 2.
Pecten venustus Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 11.
Pecten venustus Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 478, pl. li, figs. 1-5.

Description.-" Shell thin, depressed, about half an inch in diameter, with fifteen or twenty double costre those on the lower valve delicately beaded. From New Jersey."-Morton, 1833.

Shell small, rarely more than a centimeter and a half in diameter, more than moderately inflated, subequilateral excepting for the auricles, a little higher than wide, dorsal margins converging at an angle of approximatcly 90°, lateral ventral margins roughly subscribing the major portion of a circle; external surface sculptured with some fifteen radial costæ broader toward the ventral margin and for the most part medially sulcate, interradials deeply channeled, usually narrower than radials; auricles unequal, the posterior smooth and rudimentary, the anterior narrow, elongate, distally truncate, sculptured with four or five subequal liræ; byssal notch rather shallow; interior plicated in harmony with the eternaxl sculpture.

Pecten venustus Conrad is the only one of the small Pectens that develops a vigorous radial sculpture.

Occurrence.-Matawan Formation. Post 236, Camp Fox, Post 218 and Post 192, Camp U \& I, Chesapeake and Delaware Canal, Delaware.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, U. S. National Museum.

Outside Distribution.-Matawan Formation. Marshalltown clay marl, New Jersey. Monmouth Formation. Navesink marl, Red Bank sand and Tinton beds, New Jersey. Ripley Formation. Exogyra costata zone, Chickasaw and Union counties, Mississippi. Selma Chalk. Exogyra costata zone, Sumter County, Alabama; east-central Mississippi.

Peoten oliffwoodensis Weller

Pecten cliffwoodensis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 469, pl. l, figs. 7, 8.

Description.-"The dimensions of an average specimen, a left valve, are: Height 30 mm ., width 27.5 mm ., convexity 4 mm ., length of hinge line 14 mm . The body of the shell broadly subovate in outline; the beaks situated a little back of the middle of the hinge line, the auriculations moderately large and sharply differentiated, the anterior ones somewhat larger than the posterior, the cardinal slopes diverging from the beak at an angle of 90° or a little more, nearly straight or slightly concave, terminating at the sides of the shcll above the middle of its height. The valves subequally depressed convex, the right valve if anything slightly flatter than the left, with a moderately deep byssal sinus. Surface of both valves nearly smooth, marked only by fine concentric lines of growth which continue aeross the auriculations, and on the anterior ear of the right valve become stronger than clsewhere on the shell. Onc imperfect specimen which scems to be a member of this species had a height, when eomplete, of about 50 mm ., but the dimensions given above are those of a specimen of about average sizc. Some of the smaller individuals do not exceed 12 mm . in height. With the growth of the shell the proportionate width secms to increase. This species is unlike any of the other Pectens in these New Jersey faunas, but in general form and size the shells most closely resemble some individuals of Pecten bellisculptus Con.; the two species can always be distinguished, however, by their surface markings."-Weller, 190\%.

Type Locality.-Cliffivood Point, Middlesex County, New Jersey.
A cast of a single valve which presents no characters by which it can be separated from Pecten cliffwoodensis Weller was collected at Arnold Point, on the Scvern River in Anne Arundel County.

Occurrence.-Matawan Formation. North shorc Round Bay, Severn River, Anne Arundel County.

Outside Distribution.-Magothy Formation. Cliffwood clay of New Jersey.

Pecten conradi (Whitfield) Johnson
Pecten simplicus Conrad, 1868, Cook's Geol. of New Jersey, p. 725.
(Not Pecten simplicius Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 283, pl. xlvi, fig. 44.)
Sinsyclonema? simplicia Conrad, 1869, Am. Jour. Conch., vol. v, p. 99, pl. ix, fig. 20.

Amusium conradi Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 52, pl. vii, figs. 8-10.
Pecten conradi Johnson, 1905, Proc. Acad. Nat. Sci., Plila., p. 12.
Pecten conradi Weller, 1907, Geol. Survey of New Jersey, Pal., vol, iv, p. 474, pl. l, figs. 1-4.

Description.-" Shell small, seldom exceeding half an inch in height; erect-ovate, becoming more elongate proportionally with inereased growth. Valves slightly convex. Hinge short, from half to two-thirds as long as the width of the body of the shell, strongly and distinctly auriculated. Beaks of the ralves small and pointed, and the cardinal slopes long, straight or slightly coneave, extending to near the point of greatest width of the body of the shell. Left valve smooth or but faintly marked by fine concentrie lines, and a few (five or six) very faint radii. Ears smaller than in the opposite valve, both sloping toward the beak on the outer margin. Right valve marked with erowded eoncentrie folds or elevated lines; also by five or six radiating lines; not always present. On most speeimens there are distinetly rounded eoneentrie folds or variees, but on some they are thin, slarp lines; always more erowded and usually finer toward the front, in adult specimens. Ears very distinet; that of the posterior side sloping toward the beak and the anterior one rounded at the extremity and deeply notehed.
"This shell is very closely allied to P. simplicus Conrad, but differs in being more elevated and in the surfacc markings, that one being generally smooth or imperceptibly marked. In making these eomparisons I have used a number of each valve of the present speeies from New Jersey, and a finc scrics of A. simplicum from the typical locality, Eufaula, Alabama, and it leaves no doult in my mind as to their complete specific distinction." -Whitfield, 1886.
Type Locality.-Haddonficld, New Jersey.
A single valve from the Matawan of Anne Arundel County has been rather dubiously referred to this speeies beeause of the size and general outline and the faint traces of a concentrie seulpture.

Occurrence.-Matawan Formation. Ulmstead Point, Amne Arundel County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey.

Outside Distribution.-Matawan Formation. Merchantville clay marl and Woodbury elay, New Jersey. Monmouth Formation. Navesink marl (rare), New Jersey.

Peoten simitilicius Conrad

Plate XXXIV, Figs. 8, 9
Pccten simplicius Conrad, 1860, Jour. Acad. Nat. Sci., Phila., $2 d$ ser, vol. iv, p. 283, pl. xlvi, fig. 44.

Sincyclonema: simplicus Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 7.
Pcctcn simplicus Conrad, 1868, Cook's Geol. of New Jersey, p. 725.
Sincycloncma simplicus Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 319.
Amusium simplicum Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 51, pl. vii, figs. 11, 12.
Pecten simplicius Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 480 , pl. li, fig. 6.

Description.-" Ovate, thin, smooth and shining; ears moderate, nearly equal; both valves slightly convex; the upper valve slightly tumid on the umbo ; inner margin minutely erenulated."-Conrad, 1860.

Type Locality.-Eufaula, Alabama, or Tippah County, Mississippi.
Shell small, smooth, lustrous, moderately compressed, the left valve a little more so than the right; anterior and posterior lateral margins eonverging at all angle of from 80° to 90°, base broadly and evenly areuate; hinge-line straight, a little less than half the latitude of the shell, aurieles small, trigonal, the anterior slightly larger than the posterior and sinuated in the right valve to aceommodate the byssus; sinuses between the auricles and the disk elearly defined; external surface highly polished, smooth excepting for faint ineremental striations and an oceasional microscopically fine radial shagreening; characters of the interior unknown.

This Pecten, in spite of its small dimensions, is a conspicuous factor in the Cretaceous marls of Maryland by reason of its wide distribution and its shining surface. This shell is so thin and flaky, however, that for all it is so common it has not been possible to separate any one of the forms from its matrix.
P. simplicius Conrad has been confused in the synonymies with P. conradi Whitfield, a slightly larger shell which is characterized by the development of sharp, clevated, concentric lamellæ, approximately fifteen in number. The typical forms of the two speeies are conspicuously distinct but some of the peripheral members are diffieult to separate.

Occurrence.-Matawan Formation. Ulmstead Point, Anne Arundel County. Monmoutii Formation. Brightseat, Brooks estate near Seat Pleasant, Friendly, 1 mile west of Friendly, and MeNeys Corners, Prince George's County.

Collections.-Maryland Geologieal Survey, New Jersey Geologieal Survey, U. S. National Museum.

Outside Distribution.-Monmouth Formation. Red Bank sand and Tinton beds, New Jersey. Black Creek Formation. North and South Carolina. Pecdee Sand. North and South Carolina. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Mortoniceras subzone, Georgia. Ripley Formation. Exogyra ponderosa zone, Union Springs, Alabama. Exogyra costata zone, Georgia; Eufaula, Alabama. Extreme top of zone, Pataula Creek, Georgia ; Chattahoochee River, Alabama; Lowndes County, Mississippi.

Pecten quinquecostatus Sowerby

 Plate XXXIV, Fig. 10Pecten quinquecostatus Sowerby, 1814, Min. Conch., vol. i, p. 122, pl. lvi, figs. 4-8.
Pecten versicostatus Lamarck, 1819, Anim. sans Vert., vol. vi, p. 181.
Pecten quinquecostatus Brongniart, 1822, Géol. des Env. Paris, pl. iv, fig. 1.
Pecten quinquecostatus Nilsson, 1827, Petrif. Suecana, p. 19, tab. ix, fig. 8; tab. x, fig. 7.
Pecten quinquecostatus Morton, 1830, Am. Jour. Sci., 1st ser., vol. xvii, p. 285 ; vol. xviii, pl. iii, fig. 5.
Pecten versicostatus Deshayes, 1832, Enc. Méth., t. 3, p. 727.
Pecten quinquecostatus Morton, 1834, Syn. Org. Rem. Cret. Group U. S., p. 57, pl. xix, fig. 1.
Pecten quinquecostatus Goldfuss, 1836, Petrif. Germ., t. 93, fig. 1.
Pecten quinquecostatus Bronn, 1838, Lethæa Geogn., Bd. ii, pp. 678-680, taf. xxx, fig. 17.
Janira quinquecostata d'Orbigny, 1846, Paléont. Franc. Terr. Crêt, vol. iii, p. 632, pl. ccccxliv, figs. 1-5.

Janira mortoni d'Orbigny, 1850, Prod. Paléont. Strat., vol. ii, p. 253.
Pecten quadricostatus var. Roemer, 1852, Kreide. von Texas, p. 64, pl. vilí, figs. $4 \mathrm{a}-4 \mathrm{c}$.
Pecten quadricostatus Shumard, 1854, Marcy, Expl. Red River, Louisiana, p. 178 , pl. ii, figs. 2a, 2 b ; pl. iii, fig. 6.

Neithea mortoni Gabb, 1862, Proc. Acad. Nat. Sci., Phila. for 1861, p. 365.
Neithea mortoni Meek, 1864, Check List Inv. Fossils N. A., Cret. and Jur., p. 7.

Neithca mortoni Conrad, 1868, Cook's Geol. of New Jersey, p. 725.
Pecten quadricostatus Credner, 1870, Zeitsch. deutsch. geol. Gesell., Bd. xxii, p. 232.
Vola quinquecostata Stoliczka, 1871, Mem. Geol. Survey India, Palæont. 1ndica. Cret. Faunas of Southern India, vol. iii, p. 437, pl. xxxi, figs. 1-6; pl. xxxvili , figs. 4-9.
Neithca quinquecostata Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 56, pl. viii, figs. 12-14.
Neithea quinquecostata Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 481, pl. li, figs. 7-12.
Vola quinquecostata Böse, 1910, Bol. Inst. Geol. Mexico, p. 99, pl. xv, figs, 19, 20.

Description.-"Subtriangular, rather oblique, front semicireular, toothed ; convex valves gibbous, ribbed, principal costa six, with four lesser ones between each; surface finely transversely striated. Upper valve flattoothed. The obliquity of this shell is slight, the length not much greater than the width; the lines of growth frequently being deep and crossed by the ribs give the shell a fringed or furbellowed aspect; the flat valve has diverging striæ and notches corresponding in number with the costæ upon the hollow valve. The whole surface is covered with minute transverse striæ, which in the chalk specimens are often nearly obliterated. Figs. 4 and 5 are from the Sussex chalk near Lewes, by favor of G. A. Mantell, Esq. ; they very much accord with those of the green sand from Wiltshire, figured below, but appear to be longer, and to have the transverse striæ of growth very remarkable. The shell represented at fig. 5 is a curiosity, showing the inner side of the flat valve, which is slightly convex within. I gathered the small shell, fig. 6, at Chute farm, it is a young deep undervalve, with the transverse striæ of growth ncatly arching between the larger six costæ. Figs. 7 and 8 show the upper and under valves of different specimens, they are from the green sand at Chute, and are chiefly siliceous; for the use of one I am indebted to Thomas Meade, Esq. Such are said
to be found at Devizes and Blackdown, with the upper valve. It is possible that these are different species from those in the Chalk, the costre are less prominent, and the strix more distinct; at present, however, I can consider them only as varieties. Tab. 56 , fig. 3 , represents a specimen in ferruginous sandstone from Chute, which may possibly prove to be a distinct species. Its length exceeds its breadth by onc-fifth, and on the sides of the larger coste are two lesser ones, which are partly blended with them; the surface is nearly smooth. I have only scen this specimen."-Sowerby, 1812.

Shell rather large for a Cretaceous Pecten; cordate, very strongly inequivalve, subequilateral, lower valve highly convex, the upper flattened or feebly concave; maximum diameter at or a little behind the median horizontal; umbone of right valve very prominent, evenly inflated, rising well above the hinge line, orthogyrate; dorsal margins diverging at an angle of approximately 90°, produced so that the ventral and lateral margins subscribe an are of only about 180°; external surface of lower valve sculptured with five or rarely six elcvated, crenly rounded primarics, subequal in size and spacing and between each pair three or four more or less equal secondaries; submargins sculptured with rather fine close-set radials five in number, as a rulc; ornamentation of upper valve more uniform in character, usually of twenty to twenty-five subequal and equispaced, well rounded and elevated radials; incremental sculpture fine and sharp; hinge line rather short, not far from five-ninths of the maximum latitude, orerhung by the umbo of the right valve; auricles only slightly unequal, the anterior a little more produced and relatively lower and less strongly lirate than the posterior; posterior auricle receding below the hinge line, the anterior feebly constricted to form the byssal notch; characters of intcrior of shell not known.

The identity of the Amcrican species with the European has been questioned since the day of d'Orbigny. The Maryland representation is very meager and offers very little assistance toward the solution of the problem. As in Pycnodonte vesicularis the true affinities of the group should be worked out once for all by an exhaustive study of material from all the representative localities. If the two forms prove distinct Sowerby's name
must be retained for the European fossil and d'Orbigny's mortoni substituted for the American. It is the personal conviction of the writer that the two forms are identieal, or at least that they cannot be separated on a geographical basis. D'Orbigny's criterion certainly will not stand, i. e., that the American form differs from the European in the presence of fire instead of four secondaries betweel each pair of primaries. The normal number in the Amerieall form is four as it is in the European and South Indian, but as in the foreign types this number is oecasionally increased to five or reduced to three. The outline and relative proportions vary within rather narrow limits throughout the occurrence, and though there is a suspicion that the maximum diameter may fall a little nearer the median horizontal in the Ameriean individuals, this cannot be rerified without the examination of much more material than is available at present.

Occurrence.-Magothy Formation. Good Hope Hill, District of Columbia. Matawan Formation. Post 236, Camp Fox, Chesapeake and Delaware Canal, Post 192, Camp U \& I, Chesapeake and Delaware Canal, Delaware. Monmoutif Formation. Two miles west of Delaware City on John Higgins farm, Delaware; ? Fredericktown, Ceeil County; Waterbury, Amne Arundel County, Maryland. Rascocas Formation. ? Noxontown Pond, Delaware.

Collections.-Maryland Geologieal Survey, New Jersey Geologieal Survey, U. S. National Museum, Geological Survey of India.

Outside Distribution.-Matawan Formation. Merehantrille clay marl, Marshalltown clay marl, New Jersey. Monmouth Formation. Navesink marl, New Jersey. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Mortoniceras subzone, Georgia; Russell County, Warrior River and Tombigbee River, Alabama; Tombigbee River, Mississippi. Ripley Formation. Exxgyru costata zone, Georgia; Chattahoochee River, Alalama ; Wilcox, Pontotoc and Chiekasaw counties, Mississippi. Selma Formation. Exogyra ponderosa zone, Monroe and Prentiss counties, Mississippi ; Tennessec. Exogyra costata zone, Tombigbee River, Alabama; east-central Mississippi; Lee, Clay and Aleorn counties, Mississippi. Cenomanian. ? Mexico, and England. Turonian.

Central Europe. Senonian. Central Europe. Ootatoor Formation. Southern India. Trichinopoli Formation. Southern India. Arrialoor Formation. Southern India.

Family LIMIDAE

Genus LIMA (Bruguière) Cuvier
[Tableau elémentaire d'histoire naturelle, 1798, p. 421]
Type.-Ostrea lima Linné.
Shell auriculate, auricles unequal ; outline usually ovate, scoop-shaped and obliquely truncated laterally; valves closed inferiorly but gaping anteriorly and sometimes posteriorly ; exterior surface rarely smooth, generally sculptured with simple or imbricated radial strix; umbones rather prominent and distant; hinge edentulous; ligament internal, lodged in a subumbonal pit ; pallial line simple ; single muscular scar excentric, nearer to the postcrior than the anterior margin.

A genus indicated in the Carbonifcrous, culminating in the Cretaccous and sparsely represented in nearly all the recent seas by white or colorless shells, which may be attached by a byssus or may swim freely with a motion similar to that of Pecten.
A. Both anterior and posterior auricles developed.

1. Radial sculpture overridden by the concentric on the medial por-
tion of the shell. Lima reticulata
2. Concentric sculpture obsolete upon the medial portion of the shell.

Lima serrata
B. Posterior auricle obsolete, anterior auricle very large........ Lima obliqua

Lima reticulata Forbes
Plate XXXIV, Figs. 12, 13
Lima reticulata Forbes, 1845, Quart. Jour. Geol. Soc., London, vol. i, p. 62; two text figures.
Lima reticulata Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 7 .

Radula reticulata Conrad, 1868, Cook's Geol. of New Jersey, p. 725.
Radula reticulata Stoliczka, 1871, Mon. Geol. Survey of India, Palæont. Indica., Cret. Fauna Southern India, vol. iii, p. 416.

Etymology: Lima, a file-a name suggested, doubtless, by the rasping exterior surface.

Radula reticulata Whitfield, 1885 , Mon. U. S. Geol. Survey, vol. ix, p. 63, pl. ix, figs. 8, 9. (Synonymy excluded.)
Lima reticulata Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 492, pl. liv, figs. $3,4$.

Description.- "L. testa ovata, obliqua, inflata, tenui, longitudinaliter sulcata, sulcis reticulatis, numerosis. Habitat, Nov. Jersey."-Forbes, 1845.
"Shell small, moderately oblique, strongly ovate, and inflated. Hinge short; beaks proportionally strong, and projecting beyond the cardinal line. Valves nearly equal; anterior margin straight, and not at all gaping; auriculations small but distinct, rectangular or very slightly pointed at their outer angles. Surface radiately ribbed, those of the anterior and posterior slopes faintly marked or obsolete, ribs (about thirty) distinct, with five or more indistinct on cach side; subangular on the middle of the valves and rounded toward the sides, crenulate or subspinose on the larger specimens when well preserved, but often appearing nearly smooth. Entire surface marked by concentric lines which give a roughened surface when perfect, giving the reticulated character indicated by the specific name. The shells are all small, seldom exceeding three-fourths of an inch in length, and are very fragile. The right valve apears to be a little less ventricose and the bcak shorter than the left in all the specimens which I have seen where the two are united."-Whitfield, 1885.

There is apparently a large amount of variation in this small species, and, as the type is not in this country, it is difficult to determine its proper limits. In Maryland the forms referred to this group are all young and of rather doubtful affinities, so that they throw no light upon the characters of the race. Radula denticulicosta Gabb is probably distinct if Gabb was correct in his observation that "at both the anterior and posterior sides the ribs disappear for about one-sixth the width of the shell."
Occurrence.-Monmouth Formation. Brightseat and McNeys Corners, Prince George's County.

Collections.-Maryland Geological Survey, New Jersey Geological Surrey, U. S. National Museum.

Outside Distribution.-Matawan Formation. Merehantville elay marl, Woodbury clay, Marshalltown clay marl, Wenonah sand, New Jersey. Monmouth Formation. Navesink marl, New Jerscy. Black Creek Formation. North and South Carolina. Peedee Sand. North and South Carolina. Eutaw Formation (Tombigbee sand member). Lxogyra ponderosa zone, Mortoniceras subzone, Georgia: Russell County, Alabama. Ripley Formation. Erogyra ponderosa zone, Union Springs, Alabama; Booneville, Mississippi. Exogyra costata zone, Georgia; Eufaula, Alabama ; east-eentral Mississippi ; Aleorn, Unio11 and Tippah counties, Mississippi. Selma Chalk. Exogyra costata zone, east-central Mississippi. Extreme top of zone, Pataula Creek, Georgia.

Lima serrata n. sp.
Plate XXXIV, Figs. 14, 15
Description.-Shell small, moderately inflated, ovate in outline, inequilateral; anterior area obtusely angulated; posterior evenly rounded: base line arcuatc, somewhat obliquely produced in front; umbones moderately gibbous orthogyrate, slightly posterior in position: external surface sculptured with thirty-two primary costa (in the unique type the summits are acutely angulated and form with the more obtuse interradials a sharply serrate profile) ; radials upon the posterior portion less angular; the ten anterior coste rounded, over-run and minutely nodulated by the inerementals; minute seeondary threadlets developed in the interspaces on the posterior medial portion of the disk; posterior submargin devoid of radial sculpture; incremental sculpture obsolete over the medial portion of the shell and only feebly developed posteriorly; submargins not impressed, auricles minute, the anterior more so than the posterior, trigonal, their dorsal margins forming the straight hinge margin (unfortunately the posterior auricle was lost in shipment to the artist) ; ligament. internal, lodged in a small but relatively very wide resilium direetly beneath the umbones; linge dentition not developed; shell monomyarian, the single musele sear subeircular, placed abore and behind the medial planes of the shell ; pallial line indistinet; interior finely plieated even to the umbonal region in harmony with the external ribbing.

Dimensions.-Altitude 8 mm , latitude 7.75 mm ., semi-diameter, 2 mm . Type Locality.-Brightseat, Prince George's County.
This specics differs from its ncar relative, L. reticulata Lyell and Forbes, in the soncwhat smaller size, the much more angular costa, the absence of ally trace of eoneentrie sculpture upon the medial portion of the disk and the development of occasional secondaries.

Occurrence.-Monmoutir Formation. Brightseat and McNeys Corners, Prince Gcorge's County.

Collection.-Maryland Geological Survey.

Lima obliqua n. sp.
Plate XXXIV, Fig. 11
Description.-Shell of modcrate size for the group, very thin and fragile, inequilateral, ovate in outline, obliquely produced along the diagonal from the umbones to the anterior ventral nargin ; postcrior portion of the sliell eompressed and obtuscly rounded at the junction of the dorsal lateral and the lateral ventral inargins; maximum inflation in the umbonal region and along the dorsal half of the diagonal ; umbones acute. obliquely compressed, somewhat postcrior in position; posterior auricle obsolcte, the anterior rery large, fully onc-third as wide as the entire slell, its submargin dceply impressed and sharply differentiated from the disk; external surface sculptured with some twenty-six low, flattencd radial costre which tend to diastomose posteriorly; intercalations occasionally developed near the rentral margin; intercostal areas shallow, not quite so wide as the costals, radial sculpture absent upon the auricle, excepting for two or threc very faint threadlets upon the extreme postcrior portion; concentric sculpture absent, excepting for very faint striations upon the disk; byssal sinus probably very shallow; eharacters of hinge and interior not known; ventral margin minutcly crenated by the ribbing.

Dimensions.-Altitude 11 mm ., latitude 8.5 mm ., semi-diameter 2.5 mm .

This species is described from two imperfeet specimens, but the claracters preserved are so peculiar and so diagnostic that the form has
seemed worthy of a name. The species differs from the other East Coast forms in the obliquely produced and rather depressed outline, the low flattened posteriorly diehotomous riblets, the very large sharply differentiated anterior ear and the absence of the posterior auricle.

Occurrence.-Monmouth Formation. Brooks estate near Seat Pleasant, Prince Gcorge's County.

Collection.-Maryland Geological Survey.

Superfamily ANOMIACEA
 Family ANOMIIDAE
 Genus Paranomia Conrad

[Jour. Acad. Nat. Sci., Phila., vol. iv, 1860, p. 290]
Type.-Placunanomia saffordi Conrad.
"Inequivalve, irregular; larger valve radiate, spinous or subspinous; lower valve flat or coneave; hinge very thin and fragile, having a longitudinal flat shelly plate extending from the apex; hinge of upper valve plain, entire, extremely thin. I have often found fragments of this singular genus in the New Jersey Cretaceous beds, but never saw the hinge before Mr. Safford's specimens were reeeived from Tennessee. The muscular impression is not visible on any of the many valves I have seen." -Courad, 1860.
"In 1867 Conrad described a genus Paranomia, from the Ripley group (Upper Cretaceous) of Alabama, to which he referred his Placunanomict saffordi (Journ. Aead. Nat. Sci., 2d ser., iv, p. 290, pl. 46, fig. 21) and the Placuna scabra of Morton. The typical species is ill preserved, and the beaks almost always wanting, but, from the examination of a large number of specimens, it seems probable that the genus resembles Monia in its external characters; the presence of a triangular chondrophore reealls Anomia, but there is not sufficieut evidenee of a permanent foramen, the muselar impressions are not preserved, and there is in the right valve, assoeiated with the single ehondrophore, a pair of low, narrow erests, recalling

[^0]those of Placenta, but obviously of different function. The genus is a puzzle and cannot as yet be safely united with any other."-Dall, 1898.
A. Outline circular; radials relatively fine and crowded.... Paranomia scabra B. Outline ovate; radials relatively coarse and distant......Paranomia lineata

Paranomia scabra (Morton) Conrad
Placuna scabra Morton, 1834, Syn. Org. Rem. Cret. Group U. S., p. 62.
Placunomia scabra Meek, 1864, Check List lnv. Fossils, N. A., Cret. and Jur., p. 6.
Paranomia scabra Conrad, 1867, Am. Jour. Conch., vol. iii, p. 8.
Paranomia scabra Conrad, 1868, Cook's Geol. of New Jersey, p. 724.
Paranomia scabra Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 44, pl. x , fig. 10 .
Paranomia scabra Johnson, 1905, Proc. Acad. Nat. Scí, Phila., p. 12.
Paranomia scabra Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 500, pl. lii, figs. 10-13 (ex parte).

Description.-" With numerous beaded costæ, radiating from the hinge to the margin ; shell thin, suborbicular, compressed. From one inch to three inches in diameter."-Morton, 1834.

Typc Locality.-New Jersey.
The type specimen figured by Whitfield in 1885 is a mere fragment which, as that eminent New Jersey paleontologist has obscrved, is "scarcely sufficient for generic identification." However, its reference to Paranomia is probably justified. The species as delimited by the aid of later collections is thin, flattened and subcircular in outline, sculptured externally with approximately thirty rather fine radials which occasionally diastomose and which are quite sharply spinose toward the ventral margin. The intercostal areas are narrow, scarcely or not at all exceeding the costals in width. The incremental sculpture is quite vigorous and sufficient to imbricate the radial.

Paranomia saffordi Conrad from Tennessee and the type of the genus develop apparently a much more regular and rather coarser and more distant radial sculpture. Paranomia lineata Conrad runs smaller, is ovate rather than subcircular and has fewer, more prominent and more widely spaced radials. Although it is not impossible that a connecting series may

[^1]later be established which will include either or both P. saffordi and P. lineata, therc does not seem at present to be sufficient evidence.

Occurrence.-Matawan Formation. Opposite Post 198, Chesapeake and Delawarc Canal, Delawarc.

Collections.-Maryland Geological Survey, Philadclphia Acadcmy of Natural Scicuees, New Jcrsey Geological Survey, U. S. National Muscum.
Outside Distribution.-Matawan Formation. Merchantville clay marl, Marshalltown clay marl, New Jerscy. Peedee Sand. North and South Carolina. Eutaw Formation (Tombigbce sand member). Exogyra ponderosa zonc, Alcorn County, Mississippi. Ripley Formation. Exogyra costata zone, Georgia ; Eufaula, Alabama ; east-central Mississippi ; Pontotoc County, Mississippi. Selma Chall. Exogyra ponderosa zone, Warrior River, Alabama; Monroe and Chickasaw counties, Mississippi. Exogyra costata zone, Tombigbce River and Sumter County, Alabama ; cast-eentral Mississippi ; Chickasaw, Pontotoc and Aleorn counties, Mississippi.

Paranomila lineata Conrad

Plate XXXV, Figs. 11, 12
Placunanomia lineata Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2 ser., vol. iv, p. 291, pl. xlvi, fig. 20.
Placunomia lineata Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 6.
Paranomia lineata Conrad, 1867, Am. Jour. Conch., vol. iii, p. 8.
Paranomia lineata Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 45. pl. ix, fig. 10.
Paranomia lineata Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 12.
Paranomia scabra Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 500, pl. lii, figs. 10-13 (ex parte).

Description.-"Subovatc, thin, much eompressed, irregular; lower valve concave, obsoletely radiate; near the summit is a resemblance to a triangular plate inserted in the shell with a raised margin; this portion is longitudinally minutely striate and resembles one of the opercular ralves of a Balanus; upper valve eonvex, lobed or twisted; radiated with about thirty rugose, slightly raised, subaculeated lines; surface rugose."Conrad, 1860.

Type Locality.-Tennessee.

Paranomia lineata Conrad is separated from P. scabra (Morton) Conrad by the regularly orate outlinc and its coarser, more prominent and more distant radials. All of the specimens observed have been a little smaller than the adult P. scabra, but this may have been due only to the fortunes of collecting.
Occurrence.-Matawan Formation. One mile east of the MarylandDelaware Line, Chesapeake and Delaware Canal, Delawarc.
Collections. Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jerscy Gcological Survey, U. S. National Museum.
Outside Distribution.-Monmouth Formation. Navesink marl, New Jerscy. ? Ripley Formation. Tenncssce.

Genus ANOMIA (Linné) Müller
[Prodr. Zool. Dan., 1776, pp. xxxi, 248]
Type.-Anomia ephippium Linné.
Shell inequivalve, adherent, generally subcircular or oblong; left valve more or less convex, right valve flattened; hinge margin of left valve often incurved and slightly thickened; ligament sear found directly beneath left umbonc ; interior of disk of left valve scarred with an adductor and a major and minor byssal impression, the major byssal scar being the largest of the three and dorsal to the adductor and minor byssal scars which are usually subequal; interior of right valve containing foraminal opening and, rentral to it, the impression of the adductor musele ; posterior dorsal margill of right valve carrying inconspicuous ligamental process; pallial line simple.
"The fossil speeies of this group are very difficult things to study, since the lower valve is seldom preserved and the muscular impressions can scldom be made out. . . . To the natural difficultics is added that due to the fact that the seulpture in this genus is very variable in perfectly normal specimens and is further complicated by the differences of form and surface, due to the object upon which they are scssile. I have satisficd myself by the cxamination of a large number of recent specimens belonging to a single species from a single locality that the relative positions of the

[^2]adductor and byssal scars of the left valve are not constant in the same individual at all ages, and consequently that small diffcrences of this kind cannot safely be used as specific distinctions. The best character seems to be the more minute surface sculpture when fully developed in normal specimens."-Dall, 1898. ${ }^{1}$

Ancestral forms of this genus have been recognized in rocks as ancient as the Devonian. The reccut species number about forty and are widely ditributed along the shores from low-water to one hundred fathoms.
A. External surface not radially plicate.

1. Outline sub-circular; concentric lamination, very close excepting in the umbonal region............................... Anomia argentaria
2. Outline transversely ovate; concentric lamination rather distant.

Anomia tellinoides
B. External surface radially plicate.

1. Radial sculpture, lirate rather than cordate, primaries and secondaries not conspicuously differentiated.................. Anomia ornata
2. Radial sculpture cordate rather than lirate; primaries and secondaries conspicuously differentiated............... Anomia forteplicata

Anomifa argentaria Morton
 Plate XXXV, Figs. 1, 2

Anomia argentaria Morton, 1833, Am. Jour. Sci., 1st ser., vol. xxiii, p. 293 , pl. v, fig. 10.
Anomia argentaria Morton, 1834, Syn. Org. Rem. Cret. Group, U. S., p. 61, pl. v, fig. 10.
Anomia argentaria Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 6.
Anomia argcntaria Conrad, 1868, Cook's Geol. Survey of New Jersey, p. 724.

Anomia argentaria Conrad, 1875, Kerr's Geol. of North Carolina, Appendix A, p. 13.
Anomia argentaria Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 319.
Anomia argentaria Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 42, pl. iv, figs. 10,11 (fig. 9 excluded).
Anomia argentaria Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 12.
? Anomia argentaria Böse, 1906, Bol. Inst. Geol. Mexico, No. 24, p. 38, pl. i, fig. 8.

- Anomia argcntaria Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 496, pl. liv, figs. 11-15.
? "Anomia subtruncata" Böse, 1913, Bol. Inst. Geol. Mexico, No. 30, p. 41, pl. v , fig. 1.
Description.-" Thin, round, with numerous concentric striæ."Morton, 1833.
${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol. jii, pt. iv, p. 781.

Type Locality.-New Jersey.

Shell subcircular or irregular in outline with a silvery sheen both within and without, thin but tough, of moderate size, the adults from 15 to 30 mm . in circumference; left valve usually convex, though varying widely in the degree of convexity ; right valve, through which the byssus is extruded, flattened; umbones central, almost marginal, very inconspicuous, scarcely interrupting the regular outline of the valve; external surface ormamented with thin, concentric overlapping lamellæ which are frequently radially lineated; ligament submarginal, attached bencath the umbo of the left valve; hinge edentulous; interior scarred with a large, major byssal impression, medial in position and quite high up under the umbones and ventral to it, the minor byssal impression, and the posterior muscle adductor; a third byssal scar of minute sizc underneath the dorsal margin, a little in front of the umbones; inner ventral margins simple.

This species is one of the most abundant bivalves in the Upper Cretaceous faunas of Maryland. For all the shell is so thin, it is very tenacious and casily separable from the matrix. It is all unusually well characterized species and even the fragments can be determined with assurance by the silvery sheen, the crowded concentric laminx and in the majority of mdividuals by the fine, radial lineation.

The form varics to a certain cxtent, as do all members of this variable genns, in the outline, the degree of compression of the valves, and particularly in the development of the radial sculpture. However, limits must be placed even for variable species and it is not probable that they should be made wide enough to include A. tellinoides Conrad, which is constant in its transversely ovate outline, lack of lustre, rather distant concentric lamination and absence of radial striations.
Some puzzling little forms from the Monmouth at Brightseat are closely related genctically with the A. argentaria Morton. They are apparently young, frequently orate, rather thin, circular in outline and are sculptured with a few wide, sharp-edged concentric frills which are often radially lineated. Concentric laminæ so distantly spaced and so sharply frilled have not been observed among the A. argentaria.

Occurrence.-Matawan Formation. Post 198, Chesapeake and Delaware Canal, Delaware; head of Magothy River, Gibson's Island, Anne Arundel County, Maryland. Monmouth Formatron. Two miles west of Dclaware City on John Higgins farm, Dclaware; mouth of Turner's Creek, Kent County; Brightscat, railroad cut west of Seat Pleasant, Brooks estate near Seat Pleasant, Friendly, and 1 mile west of Friendly, Prince George's County, Maryland. Rancocas Formation (?). Noxontown Pond, Delaware.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survcy, U. S. National Muscum.

Outside Distribution.-Magothy Formation. Cliffwood clay, New Jersey. Matawan Formation. Merchantville clay marl, Woodbury clay, Marshalltown elay marl and Wenonah sand, New Jersey. Monmouth Formation. Navesink marl and Red Bank sand, New Jersey. Black Creek Formation. North and South Carolina. Peedee Sand. North and South Carolina. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Mortoniceras subzone, Gcorgia; Russell and Dallas counties, Alabama; Tombigbee River, Clay County, Mississippi. Exogyra ponderosa zone, Alcorn County, Mississippi; Georgia; Union Springs and Russell County, Alabama. Exogyra costata zone, Georgia; Chattahoochce River and Eufaula, Alabama; east-central Mississippi ; Lee, Pontotoe, Chickasaw, Union and Tippah counties, Mississippi. Selma Chalk. Exogyra ponderosa zone, Elmore County, Alabama; Clay, Monroe, Aleorn and ? Prentiss counties, Mississippi. Exogyra costata zone, Wileox and Sumter counties, Alabama ; east-eentral Mississippi ; Chickasaw, Lee, Clay, Alcorn and Prentiss counties, Mississippi. Extreme top of zone, Pataula Creek, Georgia; Lowndes County, Mississippi. Senonian. Mexico.

Anomia tellinoides Morton

Plate XXXV, Figs. 3, 4
Anomia tellinoides Morton, 1833, Am. Jour. Sci., 1st ser., vol. xxiii, p. 294, pl. v. fig. 10.
Anomia tellinoides Morton, 1834, Syn. Org. Rem. Cret. Group, U. S., p. 61, pl. v, fig. 11.

Anomia tellinoiles Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Cret. and Jur., p. 7.
Anomia tellinoides Conrad, 1868, Cook's Geol. of New Jersey, p. 724.
Anomia tellinoides Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 43.
Anomia tellinoides Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 12.
Anomia argentaria Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 496 (ex parte, description and figures excluded).

Description.-" Irregular, but mostly subovate, with concentric undulations. Both these species are common in New Jersey; the latter resembles A. cphippium, to which it is referred in the first part of this Synopsis."-Morton, 1833.

Type Locality.-New Jerscy.
Shell rather thin but tenacious, inequilateral, transverscly cllipsoidal in outline, the lower valve moderately convex; anterior portion of the shell constricted in front of the umbones; anterior margin broadly and evenly rounded; posterior portion of shell symmetrieal, rounded ; base areuate: umbones low, not very conspicuous, with ill-defined apiees placed as a rule a little behind the median line; external surface seulptured with an indistinet and rather distant concentric lamination; ligament submarginal attached beneath the umbo of the left valve; hinge plate not developed, edentulous; pcdal and byssal sears indistinet.

This species has been confused in the synonymies with A. argentaria. The forms are certainly elosely related but there is not sufficient evidence of their identity. A. tellinoides is transversely ovate in outline, rather than subeireular, the surface is less silvery, the coneentric lamination less crowded and the radial striations much less commonly developed than in the more prolific A. argentaria.

Occurrence.-Monmouti Formation. Briar Point, Chesapeake and Delaware Canal, Delaware.

Collections.-Maryland Geologieal Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey.

Outside Distribution.-Monmouth Formation. Navesink narl, New Jersey.

Anomia ornata Gabb

Plate XXXV, Figs. 5, 6
Anomia argentaria var. ornata Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 320.
"Anomia argentaria (Gabb)" Boyle, 1893, Bull. U. S. Geol. Survey, No. 102, p. 44.

Description.-" Accompanying these is another form, represented by no less than fifteen speeimens agreeing well with one another. Unlike the typieal A. argentaria, they are ornamented by a uniform pattern, clearly not the impression of a surface to which they were attached. In form and size they do not differ from A. argentaria, but the ornament is a series of radiating ribs, one set large, flattened on top, and well defined; between these are interpolated from one to three smaller ribs. In most cases this alternation is well defined; though in two or three the large ribs are nearer in size to the small ones. On the typical argentaria this radiation is never observed, evell in a rudimentary manner, and on some of my specimens it begins at the very apex ; but on scveral the first half ineh in diameter, or less, of the shell does not differ from argentaria, while after that the ribs begin, first on thread-like lines, finally developing to full size. In consequence of this I feel reluctant to separate the form as a distinct species, believing that more material will merge the two. I therefore content myself with proposing the name A. argentaria var. ornata."-Gabb, 1876.
Type Locality.-Pataula Creek, Georgia.
Ligament submarginal, lodged in a transverse pit direetly beneath the umbone of the left valve ; adductor and byssal scars grouped within an ovate area coated with lime extending from the ligament pit more than half-way to the ventral margin and oeeupying more than one-half the width of the shell, major byssal sear near the eenter of the whitish area, slightly ovate in outline; minor byssal scar and adductor ventral to the major eieatrix, subequal in size, semi-elliptical, their straight faees proximate, the adductor the posterior of the two; major and minor sears united for a short distance along the dorsal face of the latter.

Although most of the individuals which are certainly referable to A. argentaria Conrad develop a faint radial lineation, none in the abund-
ant material from the Monmouth of Maryland bridge the gap between that race of argentaria and the costate ornata of Gabb. In fact the distance is greater betwcen Conrad's species and Gabb's than between Gabb's and the A. forteplicata n. sp. A. ornata has, however, much more of the laminar argentaria texture, a finer and less differentiated radial sculpture and a relatively stronger concentric sculpture than A. forteplicata.

Occurrence.-Monmouth Formation. Brightseat and McNeys Corners, Prince George's County.

Collections.-Maryland Geological Survey, Philadelphia Acadcmy of Natural Sciences, U. S. National Museum.

Outside Distribution.-Ripley Formation. Exogyra costata zonc. Extreme top of zone, Pataula Creek, Georgia.

Anomla forteplicata n. sp.
 Plate XXXV, Figs. 7 -10

Description.--Shell nacreous, moderately large, rudcly circular, subcircular or irregular in outline; umbones inconspicuous, submarginal, medial in position, apices oltuse; external surface sculptured with fiftcen to forty cordate primary radials and betwecn each pair of primaries one to five sccondary lirations of more or less unequal strength; incremental sculpture over-riding the radial but not modifying it to any degrec; ligament submarginal, attached bencath the umbone in the left valve; hinge armature not developed; adductor and byssal scars grouped within an area thinly coated with lime, occupying the medial dorsal half of the shell; scars brownish in color, three in number, the largest of the threc the major byssal scar, minor byssal scar and adductor impression being subequal and ventral to the major cicatrix ; rentral margin sharply crenate in harmony with the external ribbing, the plications reflected on the interior of the shell in some individuals almost to the umbones; characters of right ralve not known.

Dimensions.
Altitude 24 mm ., latitude 24.5 mm ., semi-diameter 6.6 mm .
Altitude 23 mm ., latitude 17.5 mm ., scmi-diametcr 7.5 mm .
Altitude 12.8 mm ., latitude 14.5 mm ., semi-diameter 3.5 mm .

Although the representatives of this species differ so widely in general aspect, still there seems to be 110 reason to consider these differences as more than individual mutations of a rariable species in a variable genus. The ratio between the number of costals and their prominence is very constant, those individuals in which the primaries are few in number being very heavily sculptured.

Anomia forteplicata is a more solid shell than A. ornata Gabb, with a much more vigorous radial sculpture and a relatively more feeble concentric.
Occurrence.-Monmoutif Formation. Brightseat, 1 mile west of Friendly, McNeys Corners, Prince George's County.

Collection.-Maryland Geological Survey.

D. Dysodonta

Superfamily MYTILACEA Family MYTILIDAE
 Genus MODIOLUS Lamarck
 [Prodr. Nouv. Class. Coq., 1799, p. 87]

Type.-Mytilus modiolus Jinné.
Shell equivalve, inequilateral, transversely or obliquely ovate in outline; ligament external, opisthodetic ; hinge edentulous; anterior muscle impression atrophied; pallial line simple.

The genus is separated from Mytilus by the character of the beaks which are non-terminal, wider and rounded anteriorly. It has a long geologie range, at least from the begiming of the Mesozoic and possibly from the Deronian. The recent species are about seventy in number and are most abundant in the tropical seas. Unlike Mytitus, the representatives of Modiolus are nest-builders and burrow or spin a woven structure from stones and fragments of shells.
A. Latitude of adult shell exceeding 20 mm .

1. Shell obtusely angulated at the posterior dorsal extremity.

Modiolus burlingtonensis
2. Shell smoothly rounded at the posterior dorsal extremity.

Modiolus sedesclarus
B. Latitude of adult shell not exceeding 20 mm

Modiolus trigona
Etymology: Modiolus, small drinking vase.

Modiolus burlingtonensis Whitfield

Modiolus burlingtonensis Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 65, pl. xvii, figs. 8, 9.

Modiolus burlingtonensis Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 12.
Modiolus burlingtonensis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 505 , pl. 1v, figs. 18, 19.

Description.-" Shell of moderately large size, very ventricose, and with subparallel dorsal and rentral margins, large prominent umbones and incurved beaks situated near the anterior end but not terminal, the anterior margin perceptibly extending beyond them and rounded. Umbonal ridge prominent and subangular, especially near the beaks, and beeoming broader and more rounded posteriorly; surface of the valves strongly constricted and sinuate in frout of the ridge and the anterior surface again inflated; cardinal slope comparatively broad and slightly eoneare toward the postero-eardinal border. Hinge line straiglit and three-fifths as long as the shell, and rather strongly impressed in the internal east ; postero-eardinal margin rounding rapidly forward from the more narrowly rounded posterior extremity. Surface of the east, the only condition under which it is known, apparently smooth or marked only by irregular concentric lines of growth, some of which produce undulations of considerable strength on the casts. On one individual there appear on the posterior cardinal slope very faint indieations of rather coarse radiating lines, lut too faint to warrant the statement that such markings really existed on the shell."-Whitfield, 1885.

Type Locality.-Burlington County, New Jersey.
The species is much the largest of any of the Matawan Modioli, and is represented in Maryland by only a eouple of imperfeet casts.

Occurrence.-Matawan Formation. Camp U \& I, opposite Post 192, Chesapeake and Delaware Canal, Delaware.

Collection.-Maryland Geologieal Survey, Philadelphia Aeademy of Natural Sciences.

Outside Distribution.-Matawan Formation. Merchantville clay marl. New Jersey.

Modiolus trigonus n. sp.

Plate XXXVI, Fig. 3

Description.-Shell thin, naereous, equivalve, strongly inequilateral, transversely elongate, suggesting a right triangle in outline, the anterior margin eonstituting the shorter leg, the base line the longer, and the posterior keel the hypothenuse; umbones prominent, acute, prosogyrate, subterminal in position; anterior margin squarely truneate in front of the umbones; posterior dorsal and lateral margins gently rounded, merging into one another; base line horizontal; posterior keel obtuse, persistent from the umbones to the posterior ventral margin; area behind it approximately half as great as that in front of it; external surface smooth and lustrous, exeepting for feeble ineremental striations.

Dimensions.-Altitude 8.5 mm ., latitude 14.5 mm ., maximum diameter 9 mm .

The speeies is deseribed from a east of a complete individual, to one side of whieh the shell substance still adheres. The angular outline is peeuliarly eharaeteristie and nothing approaehing it has been observed elsewhere.

Occurrence.-Monmouth Formation. Brooks estate near Seat Pleasant, Prince George's County.

Collection.-Maryland Geologieal Survey.

Modiolus sedesclarus n. sp.
Plate XXXVI, Figs. 1, 2
Description.-Shell naereous in texture, exceedingly thin and fragile, transversely elongate, slightly wider posteriorly; umbones inflated, prosogyrate, almost but not quite terminal in position; anterior end obseurely truneate; dorsal margin slightly more elevated posteriorly; posterior extremity obliquely rounded, the dorsal margin merging smoothly into the lateral; ventral margin straight, not constrieted medially; umbonal ridge very prominent but evenly rounded, beeoming broader and lower toward the posterior ventral margin; external surface
smooth, excepting for the sharply laminar incremental ridges developed ncar the dorsal and anterior margins and the prominent growth lines ncar the ventral margins; characters of interior not known.

Dimensions.-Altitude 10 mm ., latitude 22 mm ., maximum diameter 7 mm .
This species is smaller than M. burlingtonensis Whitfield, not constricted along the medial ventral margin, and more smoothly rounded behind.

Occurrence.-Momaroutif Formation. Brightseat, Prince George's County.

Collection.-Maryland Geological Survey.

Genus LITHOPHAGA Bolten

[Museum Boltenianum, 1788, p. 156]
Type.-Mytilus lithophagus Linné.
Shell thin, nacreous, equivalve, strongly inequilateral, transversely elongated, more or less cylindrical in outlinc; umbones strongly anterior, but not terminal; antcrior extremity rounded; posterior extremity rostrate or cuneiform ; external surface smooth or feebly sculptured concentrically; ligament submarginal; hinge edentulous; muscle impressions unequal, indistinct.

The genus has been reported from strata as far back as the Carboniferous. The recent species number less than fifty, and are confined to the tropical and subtropical waters.

The young are attached by a byssus, but in the later stages usually perforate coral colonies, the shells of larger bivalves or even the solid rock. Two of the five subgenera into which the group has been divided are encrusted with a dense calcareous covering in the adult stages. The cavities which they excavate are characteristically flask-shaped in outline. The perforations in the columns of the temple of Serapis which served Lyell for his classic illustration of changes in the level of the sea were made by Lithophagæ.

Etymology: λ itos, stone; фareir, to eat.
A. Shell encrusted wlth concentrically laminated calcareous covering.

Lithophaga ripleyana
B. Shell not encrusted.

1. Latitude of adult shell not exceeding 18 mm .
a. Outline subcylindrical.
i. Shell occurring in hard substances especially in the tests of larger bivalves............ Lithophaga conchafodentis
ii. Shell occurring free or in clay tubes...... Lithophaga julice b. Outline transversely ovate......................... Lithophaga lingua 2. Latitude of adult shell exceeding 18 mm .; outline subcyllndrical.

Lithophaga ripleyana Gabb

Plate XXXVI, Figs. 4-6
Lithophaga ripleyanus Gabb, 1862, Proc. Acad. Nat. Sci., Phlla. for 1861, p. 326.

Lithophaga ripleyanus Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 10.
Lithophaga ripleyana Gabb, 1876, Proc. Acad. Nat. Scl., Phila., p. 311.
Lithodomus ripleyana Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 67, pl. xvii, figs. 4, 5 (ex parte).
Lithophaga ripleyana Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 13.
Lithophaga ripleyana Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 512, pl. lvl, figs. 9-12 (ex parte).
Description.-"Tube subcylindrical, nearly straight, gradually tapering, broadest on the dorsal surface; opposite face narrow, rounded; extremity abrupt, rounded and faintly subtrilobate. Shell subquadrate. Beaks terminal, and projecting beyond the buceal end of the shell, very much incurvel, so as to appear somewhat spiral. Umbones broad, slightly flattened in the middle. Cardinal margin straight anteriorly, depressed posteriorly, merging into the anal border, which is subtruncate and most prominent above. Basal edge broadly emarginate. Surface marked by numerous, irregular, concentric lincs."-Gabl, 1860.

Type Locality.-Big Timber Creek, between Gloucester and Red Bank, New Jcrsey.

Form gregarious, rudely cylindrical, constricted mesially; protective covering built up of thin, concentric layers of calcite, usually conforming rather closely to the outline of the shell; shell itself very thin, nacroous in texture; umbones terminal, prosogyrate, well rounded at their tips; anterior portion inflated, truncate; shell, in the majority of the indi-
viduals, feebly depressed in front of the obscure carina which extends from the umbones toward the postcrior ventral margin, the depression leing reflected in the slight concavity of the base; posterior end strongly and symmetrically arcuate; dorsal margin approximately horizontal; external surface smooth excepting for the incremental sculpture which is rather conspicuous, particularly in the postcrior portion of the shell; charaeters of intcrior not known.
The species frequently occurs in clusters, the individuals being attaehed at the posterior extremity. The degree of medial constriction is not eonstant.
L. ripleyana Gabb is relatively more elongated transversely than L. affinis Gabb, a co-existent species over much of the area of its oeeurrenee, and is much less inflated.

Occurrence.-Mataifan Formation. Opposite Post 239, Post 236, Camp Fox, Chesapeake and Delaware Canal, Delaware. Moxmouth Formation. Bohemia Mills, Cecil County; Brightseat, Brooks estate ncar Seat Pleasant, Friendly, Prince George's County, Maryland.

Collections.-Maryland Geological Survey, Philadelphia Aeademy of Natural Seiences, New Jersey Geological Survey, U. S. National Muscum.

Outside Distribution.-Matawan Formation. Merehantville elay marl, Wenonalı sand, New Jersey. Monmouth Formation. Navesink marl, New Jersey. Ripley Formation. Exogyra costata zone, Union County, Mississippi.

Lithophaga conchafodentis n. sp.

Plate XXXVI, Figs. 7-9

Description.-Shell nacroous in texture, moderately large for the genus, subcylindrical to rectangular in outline, exceedingly thin and fragile; umbones nearly terminal, small, full but angular, flattened upon their summits, aeute, prosogyratc ; posterior area eut off by a carina which persists from the umboncs to the posterior basal margin, acute ncar the umbones, but evanescing toward the base; anterior end very short and obscurely truncate; postcrior end much produced, strongly rounded at its extremity; the dorsal and ventral margins rudely parallel, the dorsal
slightly conrex, the ventral broadly and feebly constricted ; external surface smooth excepting for a rather vigorous incremental sculpture; ligament submarginal, opisthodetic; hinge edentulous; adductor scars and pallial characters obscure.

Dimensions.-Altitude $5 \pm \mathrm{mm}$., latitude $13 \pm \mathrm{mm}$., semi-diameter $3.5 \pm \mathrm{mm}$.

The remains of this small borer are found in the tests of Exogyra and Pycnodonte. It differs from L. ripleyana, which it most strongly resembles, not only in its habitat but also in the less inflated valves and less produced posterior extremity.

Occurrence.-Monmouth Formation. Brightseat, Prince George's County.

Collection.-Maryland Gcological Survey.

> Litiopilaga julie (Lea)
> Plate XXXVI, Figs. 10, 11

Modiola Julice Lea, 1862, Proc. Acad. Nat. Sci., Phila. for 1861, p. 149.
Modiolus Julie Meek, 1864, Check List. Inv. Fossils N. A., Cret. and Jur., p. 11.

Perna Julice Conrad, 1868, Cook's Geol. of New Jersey, p. 726.
Modiola Julia Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 64, pl. xvif, fig. 6 (not fig. 7).
Modiolus Julia Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 12.
Modiolus Jutioc Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 506 (ex parte, description and figures excluded).

Description.-" Testa transverse striata, subrhomboidea, subinflata, postice oblique truncata, infernc emarginata; valvulis fragillissimis; natibus prominulis, fere terminalibus. Length .23 , breadth .36 of an inch." -Lea, 1862.
Type Locality.-Haddonfield, New Jersey.
Shell nacreous, excedingly thin and friable; transversely ovate in outline, compressed; umbones placed within the anterior seventh of the shell, not prominent but evenly rounded, proximate, incurved and slightly prosogyrate; antcrior end of shell feebly expanding in front of the beaks; posterior dorsal margin approximatcly horizontal ; posterior lateral mar-
gin quite strongly rounded, obliquely produced at the base ; ventral margin somewhat oblique to the dorsal; posteriorly produced, in many individuals feebly and broadly contraeted medially ; basal constriction due to the broad and very shallow depression of the valves in front of the obtuse posterior carina which is initiated at the umbones and most prominent at its origin, beeoming feebler and finally evaneseing about half-way to the posterior ventral margin ; external surfaee seulptured with sharp, rather distant and irregularly spaced ineremental lirations whieh tend to beeome obsolete upon the medial portion of the shell; characters of interior of shell not known.

Casts of this small form are not rare in the Upper Cretaceous of Maryland, although the shell is so thin and so flaky that it has not been found possible to secure aly fragments large enough to give the hinge dentition, yet the exeeedingly thin and very highly naereous shell and its general outline suggest Lithophaga rather than Modiolus. The form is much more compressed than L. ripleyana Gabb, the umbones more flattened and the posterior carina more angular. Furthermore there is no evidence that a calcareous encrustation was ever developed as in the Ripley speeies, but rather that it buried itself in the soft muds near the shore.

Whitfield's restoration of Gabb's type is probably inaccurate as the material is mueh crushed and the original outline obseure.

Occurrence.-Monarouth Formation. Brightseat, Brooks estate near Scat Pleasant, Prince George's County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey.
Outside Distribution.-Matawan Formation. Merchantville elay marl, and Woodbury clay, New Jersey.

Lithopilaga lingua n. sp.
Plate XXXVI, Fig. 14
Description.-Shell small, compressed, not very thin, transversely and somewhat obliquely ovate in outline; umbones anterior, almost but not quite terminal, well rounded, but not conspieuously inflated, proximate,
incurved, prosogyrate; valves flattening in all directions away from the umbones; anterior end very short, rounded; posterior end obliquely produced along the obscurely elevated diagonal from the umbones to the posterior ventral margin; posterior dorsal and lateral areas relatively very wide, their margins forming a somewhat asymmetrical are conneeting the umbones and the base; ventral margin slightly oblique with a feeble suggestion of a mesial constriction; faint coneentrie sculpture probably developed on external surface; characters of hinge and interior not known.

Dimensions.-Maximum altitude 5 mm ., maximum latitude 8 mm ., maximum diameter 3.5 mm .

This small but apparently adult Lithophaga is separated from the coexistent members of the same genus not only by its slight dimensions but even more readily by the rery short anterior end and expanded posterior end. In no other species is the area behind the diagonal relatively so wide or so flaring. The peculiar alate aspect thus produced is not repeated in any of the co-existent specics. The form is deseribed from a cast of double ralres. The type is not unique, but the speeies has not been observed from any but the type locality.

Occurrence.-Monmoutif Formation. Brightseat, Prince George's County.

Collection.-Maryland Gcological Surrey.

Lithophaga twitchelli n. sp.

Plate XXXVI, Figs. 12, 13

Description.-Shell nacreous, apparently rather thick, large for the genus, subcylindrical in outline; umbones inflated, incurved, prosogyrate, proximate, placed within the anterior tenth; shell inflated along the diagonal from the umbones to posterior ventral margin, broadly and shallowly depressed between this obscure carina and the feebly inflated anterior end; anterior lateral margin obscurely truneatc, posterior strongly areuate; dorsal margin very feebly convex; base line somewhat constricted mcdially; exterual surfaee probably smooth; eharacters of interior of shell not known.

Dimensions.-Altitude 11.8 mm ., latitude 21.8 mm ., diameter of double ralves 11.7 mm .
Lithophaga twitchelli suggests, at first, a giant L. riplcyana Gabb. However, L. twitchelli is not only a third as large again as Gabb's speeies, but, furthermore, the valves are very mueh more inflated, particularly along the diagonal ; the umbones feebler and the medial depression more pronounced. Then, too, the shell is mueh heavier, apparently, and there is no evidence of the former presence of an enerustation.

This species is named for its collector, Dr. Mayville W. Twitehell, Assistant State Geologist of New Jersey.

The form is deseribed from a east of the double valves of a single individual to which a considerable amount of shell substance still adheres, although the external surface has been entirely deeortieated.

Occurrence.-Momarotith Formation. Railroad eut west of Seat Pleasant, Prince George's County.

Collection.-Maryland Geologieal Survey.

Genus CRENELLA Brown

[I1l. Conch. Gr. Brit., 1827, pl. xxxi, figs. 12-14; 2d ed., 1844, p. 75, pl. xxiil, figs. 12-14. Not Crenella Sowerby]
Type.-Mytilus decussatus Laskey.
"Shell oblong-oval, equilateral, ventrieose; beaks obtuse, slightly turned to one side; hinge destitute of teeth but with a flattened, horizontal, slightly erenated plate on one side of the hinge in eaeh valve; right valve with a triangular, lorizontal, projecting, reflexed plate, and the left one with an oblique plate, both of which are a little erenated externally."Brown, 1844.
"This interesting little group extends through the Tertiary and, owing to the little study given to its charaeters, has reeeived many names. The shell is usually conrex and ovoid, with more or less ineurved beaks, a naereous inner layer, thin epidermis which adheres elosely to the shell, and a fine radial, often crossed by a coneentrie striation. In young shells the provineulum is exeeptionally well developed, sometimes reealling the

Etymology: Diminutive of crena, notch.
hinge of Nucula by its strong and projecting denticulations. If the shell is thin, these become obsoletc with growth, but in some species are replaced by a serics of denticulations directly consequent on the impingement of the external sculpture on the cardinal margin, thus repeating a sccond time in the same individual the process by which the provinculum was originally initiated in its ancestors. At least that is the way in which the writer interprets the facts. When the shell is thick, or when the external sculpture is very delicatc. no secondary denticulations appear in the adult. which is then left with a practically unarmed hinge line. The appearance of the provinculum is not dependent on the existence of the external sculpture, but the secondary denticulations are so dependent. The exterior may be almost perfectly smooth and polished with only microscopic striation; finely radially striate without decussation (like C. serica), decussate, or with the radial sculpture strong and divaricate. Usually the sculpture is uniformly distributed over the surface, but occasionally there will be an area of unstriated scparating two of striated surface, as in Modiolaria, but without the impressed boundaries of the latter genus."Dall, 1898. ${ }^{1}$

This genus ranges from the Cretaceous to the Recent.
A. Adult shell not exceeding 6 mm . in altitude.................... Crenella serica B. Adult shell exceeding 6 mm , in altitude.................. . . $\begin{gathered}\text { enella elegantula }\end{gathered}$

Crenella serica Conrad Plate XXXVI, Figs. 16-18

Crenella (Stalagmium) serica Con., 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 281, pl. xlvi, fig. 23.
Crenella (Stalagmium) sericea Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 11.
Crenella serica Weller, 1907, Geol. Survey New Jersey, Pal., vol. iv, p. 510, pl. 1vi, figs. 7, 8 .

Description.-" Longitudinally oblong-ovatc, very ventricose, finely striated concentrically and with microscopic, closely arranged, radiating lines; summit very prominent. Locality: Eufaula, Barbour County, Alabama."-Conrad, 1860.
${ }^{1}$ Dall, W. H., Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. iv, p. 802.

Shell very small and gibbous, betwcen three and four millimeters in altitude, the intcrior regularly ovate in outline; umboncs inflated, strongly prosogyrate and incurved, proximate ; external surface sculptured with prominent and regularly spaced incrementals and resting stages; radial sculpture microscopically fine, not over-riding the concentric; ligament lodged in a narrow groove running backward from beneath the apices of the umbones; inner margins strongly crenulate, the area dircetly beneath the umbones slightly flattened and broadened and bcaring four or five pseudo-taxodont denticles; a more extended, but less clearly defincd, area developed in some individuals upon the medial portion of the posterior lateral margin; muscle scars and pallial lines indistinct. Crenella serica Con. is a very abundant little bivalve in the Monmouth of Prince George's County.

Occurrence.-Monmoutif Formation. Brightseat, Brooks estate near Seat Pleasant, Friendly, 1 mile west of Friendly, Prince George's County.

Collections.-Maryland Geological Survey, New Jerscy Geological Survey, U. S. National Museum.

Outside Distribulion.--Matawan Formation. Marshalltown clay marl. New Jerscy. Monmouth Formation. Red Bank sand, New Jerscy. Peedee Sand. North and South Carolina. Ripley Formation. Exogyra costata zone, Georgia; Eufaula, Alabama. Selma Chalk. Exogyra costata zone, Tombigbec River, Sumtcr County, Alabama; east-central Mississippi ; Alcorn, Union and Tippah counties, Mississippi. Extreme top of zone, Pataula Creek, Georgia; Lowndes County, Mississippi.

Crenella elegantula Meek and Hayden

Plate XXXVI, Fig. 19
Crenella elegantula Meek and Hayden, 1862, Proc. Acad. Nat. Sci., Phila., for 1861, p. 441.
Crenella elegantula Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 11.
Crenella elegantula Meek, 1876, Rept. U. S. Geol. Survey, Territories, vol. ix, p. 75, pl. xxvili, figs. 6a-6c.
Crenella elegantula Weller, 1907, Geol. Survey New Jersey, Pal., vol. iv, p. 511, pl. 1ví, fig. 6.

Description.-"Shell small, very thin and pearly, obliquely ovatocordate, ventricose; postero-basal and basal margins rounded; dorsal border sloping posteriorly with an arcuate outline, and rounding into the anal margin behind; anterior border rounding obliquely backwards into the base; umbonal region of both valves very gibbous, beaks prominent, terminal, pointed, distinctly incurved and directed obliquely forward at the extremities; hinge margin smooth ; frce border minutely crenulated. Surface (as seen by aid of a magnifier) beautifully ornamented by extremely fine, regular, closely-arranged, radiating strix, which increasc chiefly by bifurcation, and continue of uniform size on all parts of the shell ; crossing these are numerous, equally fine, but much less distinct, concentric lines, and occasional stronger marks of growth. Length, measuring obliquely forward and upward from the base to the beaks, 0.5 上 in.; diamcter, from base to hinge, measuring at right angles to the greatest length, 0.4 inch; convexity, 0.37 inch. This beautiful little shell is very closely allied to C. sericea of Conrad, but differs in being uniformly more broadly orate in form, and in having less elevated and less distinctly incurved beaks, while its concentric markings are not near so strongly defined."Mcek and Hayden, 1862.

Type Locality.-Deer Creek, near North Branch of the Platte River, Nebraska.

The specics is recognized in Maryland from casts only. It is more than double the size of C. serica Conrad, relatively broader, and less inflated and less prominently sculptured concentrically.

Occurrence.-Monmouth Formation. Brightseat, Prince Gcorge's County.

Collections.-Maryland Gcological Survey, New Jersey Gcological Survey, U. S. National Muscum.

Outside Distribution.-Monmouth Formation. Tinton beds, New Jersey. Ripley Formation. Exogyra costata zone, ? Owl Creek, Tippah County, Mississippí: Fox Hills Sandstonc. Western Interior.

Family DREISSENIIDAE

Genus DREISSENA Van Beneden
[Ann. Sci. Nat., ser. 2, vol. iii, 1835, p. 193, pl, viii]

Type.-Mytilus polymorphus Pallas.

Equivalve, inequilateral, slightly gaping as a rule, mytiliform in outline; umbones acute, terminal, bent a little forward; anterior area differentiated by a more or less obtusely angulated keel which runs from the umbones to the anterior ventral margin ; external surface smooth or inerementally sculptured; ligament internal or submarginal, lodged in a shallow groove, which extends more than a third of the way down to the base ; angle between the umbones bridged by a transverse septum upon which the anterior and pedal adductors are mounted and from whieh, in the right ralve, a small dentiform process sometimes projects; posterior adductor sear moderately large, well down towards the base; pallial line rather obseure, entire.

Dreissena is very like Mytilus in general aspeet, so much so, indeed, that there is probably a considerable amount of confusion between the two genera in the earlier deseribed species. Many authorities maintain that the genus is not initiated until the Early Tertiary. Henry Woods, ${ }^{1}$ however, has reported a species, Ireissensia lanceolata (Sowerby) Woods from the Cretaccous of England, and has so adequately figured it that there ean be no doubt about the correctness of his determination.
The shell differs most conspicuously from that of Mytilus in the development of the septum in the umbonal angle and the more internal ligament. The animal differs from that of Mytilus in the closed mantle and the two distinet siphons. All of the recent species are denizens of fresh or brackish water.

[^3]Dretssena tippana Conrad
Plate XXXVII, Figs. 8-11
Dreissena tippana Conrad, 1858, Jour. Acad. Nat. Sci., Phila., vol. iii, p. 328, pl. xxxiv, fig. 14.
Dreissena tippana Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 10 .

Description.-" Falcate, with distinct lines of growth ; front excavated, the margin acutely angular; the dorsal and posterior margin form a regular curve; base rounded; beaks acute."-Conrad, 1858.

Type Locality.-Owl Crcek, Tippah County, Mississippi.
Shell thick, prismatic, strongly falcate in outline, crenly convex. acutely keeled from the umbones to the ventral margin, the earinal angle usually more than 90° and giving to the front view of the double valves a canoe-shaped outline; outline of posterior margin evenly rounded from beaks to base; external surface smooth except for incremental striations and, toward the ventral margin, rather pronouneed resting stages; ligament groove rather shallow and elongated, hinge edentulous; umbonal septum narrow but quite high ; character of muscle impressions and pallial sinus not prescrved ; inner margins simple.

In Maryland the species is represented chiefly in the form of casts, most frequently of the double valves, to which portions of the brown, prismatic shell substance still adhere, although at some localities perfect specimens have been collected. The form differs quite widely in relative proportions, but it docs not seem wise to regard these mutations as of more than individual import.

Occurrence.-Matawan Formation. Ulmstead Point, Anne Arundel County. Monmouth Formation. ? Fredericktown, Ceeil County; Brightseat, Brooks estate near Seat Pleasant, 1 mile west of Friendly, Prince George's County.

Collections.-Maryland Geological Survey, U. S. National Museum.
Outside Distribution.-Ripley Formation. Exogyra costata zone, Gcorgia; Eufaula, Alabama; Union and Tippalı Counties, Mississippi. Extreme top of zone, Pataula, Creek, Gcorgia; Chattahoochee River, Alabama.

Order ANOMALODESMACEA

Superfamily ANATINACEA

Family PHOLADOMYIDAE
Genus PHOLADOMYA Sowerby
[Genera Recent and Fossil Shells, 1825, pp. 235, 236, pl. xxxvii]
Type.-Pholadomya candida Sowerby.
"'Ihe following gencric character being drawn up prineipally from the recent speeinen, several partieulars will be mentioned in it whieh cannot be observed in the fossils ; there is not, however, the smallest doubt as to their generie identity. Shell very thin, rather liyaline, transverse, ventricose ; inside pearly; posterior side short, sometimes very short, rounded; anterior side more or less elongated, gaping; upper edge also gaping a little; hinge with a small rather elongated, triangular pit, and a marginal lamina in each valve, to the outer part of which is attached the rather short external ligament. Muscular impressions two ; thesc, as well as the muscular impression of the mantle, in which there is a large sinus, are indistinct. This shell is the only instance we have ever seen in which the umbones are so approximated as to be worn through by the natural aetion of the animal in opening and closing its valves."-Sowerby, 1825.

Equivalved or subequivalred, inequilateral, transversely elongated or subtrigonal, gaping posteriorly and sometimes anteriorly as well; umbones inflated, anterior; exterual sculpture radial, often more or less nodose; ligament short, external, opisthodetic; cardinal margin often refleeted to form a false area behind the umbones; linge edentulous excepting a single subumbonal tubercle and pit in each valve; muscle impressions obscure, two in number; pallial sinus profound.

The genus was initiated early in the lower Lias, and though it culminated later in the Jurassic, the decline was not marked until the close of the Mesozoic. The Tertiary representation, however, was very meager and less than half a dozen species have persisted to the present day. As in so many of the ancient types, the few survivors have retreated to unfaror-

[^4]able regions where the struggle for existenee is less keen and they do not, have to compete with more virile groups. The few reeent forms, ineluding the generie type, P. candida Sowerby, inhabit the oeean depths, some of them below the one thousand fathoms line. A single speeies has been recorded off the Japan coast, one from off the Afriea coast and the rest from the Antillean region.
A. Outline subcylindrical; umbones broad, rounded, not conspicuously
high .. Pholadomya occidentalis
B. Outline ovate-trigonal; umbones relatively narrow, subangulated, con-
spicuously high
. Pholadomya conradi

Pholadomya occidentalis Morton

Plate XXXVII, Figs. 1-3

Pholadomya occidentalis Morton, 1833, Am. Jour. Sci., 1st ser., vol. xxiii, p. 292, pl. viii, fig. 3.

Pholadomya occidentalis Morton, 1834, Syn. Org. Rem. Cret. Group, U. S., p. 68, pl. viii, fig. 3.

Pholadomya occidcntalis Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 14 (ex parte).
Pholadomya occidentalis Conrad, 1868, Cook's Geol. of New Jersey, p. 727.
Pholadomya occidentalis Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 175, pl. xxiv, figs. 1-3.

Pholadomya occidentalis Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 13. Pholadomya occidentalis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 513, pl. lvi, figs. 1-3. (Synonymy excluded.)
Description.--"Oblong-angular, ventricose near the beaks; with twenty-five to thirty narrow, clevated, subtortuous costæ, having broad, slightly concave intervening spaces. Length 2 inches, breadth 3 inehes. An extremely variable species. I possess five specimens (all more or less broken), in all of which there is a difference in the number and relative position of the ribs."-Morton, 1833.

Type Locality.--Chesapeake and Delaware Canal.
"The dimensions of an average-sized specimen are: Length about $i 0 \mathrm{~mm}$., height 47 mm ., thickness 45 mm . Shell subovate or subelliptical in lateral outlinc, and cordate from in front. Hinge line straight, about two-thirds as long as the shell; anterior margin rounding from the cardinal extromity into the basal margin, or obliquely subtrun-
eate; basal margin gently eonvex, becoming straighter posteriorly; posterior margin more narrowly rounded than the anterior. Beaks large and broad, situated from one-fifth to one-fourth the length of the shell from the anterior extremity, strongly ineurved and nearly in contact, moderately elevated above the hinge line. Valves most prominent at about their mid-height in front of the middle of the shell; from this point the surface curves rather abruptly to the ventral anterior and cardinal margins, and mueh more gently to the gaping posterior margin ; the cardinal margins baek of the beaks are slightly inflected to form a rather distinet, coneare eardinal area of moderate width on each valve. Surface of each valve marked by twenty-five or thirty more or less irregular and wary, rounded, radiating costre of moderate strength, much narrower than the intervening depressions, and eloser together in the middle of the shell than at either the anterior or posterior portions; in the middle of the shell every other costa on large individuals has usually been interealated between two others at some distance below the beak; the shell is also marked by more or less irregular, concentric undulations. This species is one of the most characteristic members of the Merchantville clay marl fauna, where it sometimes oceurs in considerable numbers."-Weller, 1907.

The species is not known from Maryland, but it oecurs in the form of poorly-preserved casts along the Chesapeake and Delaware Canal in Delaware. It is readily recognizable by the well-rounded gibbous valves and the irregular elevated radial lire. The more southern and apparently later P. Conradi deseribed by Conrad under the name of P. occidentalis has been aecepted as a synonym by the later workers, although the two shells are obviously distinet. The northern form runs larger than the southern, is much more nearly eylindrieal and less trigonal in outline, the umbones are broader, more evenly rounded, set farther baek from the anterior extremity and very much less prominent.

Occurrence.-Matawan Formation. Posts 218 and 105, Briar Point, Post 156, Chesapeake and Delaware Canal, Delaware.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geologieal Survey.

Outside Distribution.-Magothy Formation. Cliffwood clay, New Jersey. Matawan Formation. Merchantville clay marl, Woodbury clay, New Jersey.

> Pholadomya contadin. np.

Plate Xxxvili, Fig. 1
Pholadomya occidentalis Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv., p. 276.
Pholadomya occidentalis Owen, 1860, 2d Rept. Geol. Recon. Ark.; pl. viii, fig. 9.

Description.-" Subovate, very inequilateral, inflated anteriorly; ribs about twenty-five, irregular, prominent, acute, posteriorly distant, crenulated by rugose concentric strix, on the umbo tuberculato-crenate; summit very prominent; anterior margin obliquely truncated. Length $3 \frac{1}{4}$ inches, height $2 \frac{3}{4}$ inches."-Conrad, 1860.

Type Locality.-Tippah County, Mississippi.
Shell very thin and nacreous, approximately equivalve, very inequilateral ; umbones rather narrow and compressed, obtusely angulated, rising high above the dorsal margin, almost at the anterior extremity; anterior end broadly and very feebly arcuate; posterior end symmetrically produced and strongly arcuate; external surface sculptured with twenty-five or twenty-six sharply elevated radial liræ, beaded in the umbonal region by the intersecting incrementals and minutcly undulated by the growth sculpture even to the ventral margin.

Pholadomya conradi n. sp. has been confused with P. occidentalis Morton, so characteristic of the New Jersey and Delaware Matawan. The later species (P. conradi) runs smaller and is less inflated in general outline, while the very high, rather narrow, subangulated umbones, rising from the extreme anterior end of the shell, lend it an aspect that is very characteristic and quite distinct from the subcylindrical outline of P. occidentalis Morton.

Occurrence.-Monmouth Formation. Brightseat, Prince Gcorge's County.

Collections.-Maryland Geological Survey, U. S. National Muscum.

Outside Distribution.-Ripley Formation. Exogyra costata zone, Eufaula, Alabama; Union and Tippah eounties, Mississippi. Extreme top of zone, Chattahooehee River, Alabama.

Family ANATINIDAE
Genus PERIPLOMYA Conrad

[Am. Jour. Conch., July, 1870, vol. vi, p. 76]
$=$ Leptomya Conrad, 186\%. Not Leptomya A. Adams, 1864.
= P'licomya Stoliezka, November, 1870.
Type.-Pcriploma applicata Conrad.
"Elongated, inequivalve, thin, perlaeeous, gaping anteriorly; hinge with a projecting spoon-shaped eartilage process, narrowing gradually towards the inferior end, whieh is aeutely rounded; this proeess joins an oblique eallosity which extends to the eardinal margin; an obsolete rib and fissure run obliquely from the anterior side of the apex. This genus, which is allied to Anatina, differs from it in having a tapering cartilage process attached to a rib or support whieh joins the hinge margin anteriorly; and in having the fissure anterior to the apex, and running obliquely towards the anterior extremity of the ventral margin. This genus is known in this country only by one speeies, whieh is found in the Ripley group of the Cretaceous era. Judging from external elaraeters and outline of the shells, I should suppose that d'Orbigny's Periploma robinaldina, P. necomiensis and P. simplex are speeies of Leptimya, which genus probably beeame extinet with the Cretaceous fauna. The gape of the anterior is moderate, and valves but slightly reflexed, in whieh respeets it differs essentially from Anatina." ${ }^{1}$ - Conrad, 186\%.

Periplonya elliptica Gabb

Anatina elliptica Gabb, 1862, Proc. Acad. Nat. Sci., Phila. for 1861, p. 324.
Anatina clliptica Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 15.

[^5]Anatina elliptica Conrad, 1868, Cook's Geol. of New Jersey, p. 727.
Periplomya elliptica Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 305.
Periplomya clliptica Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 177, pl. xxiii, figs. 14, 15.
Periplomya clliptica Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 13.
Periplomya clliptica Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 522, pl. lvii, figs. 8-11.

Description.-" Shell subelliptical, equivalve, nearly equilateral; beak central, pointing posteriorly, rery small, umbones small. Cardinal margin slightly convex. Buccal margin broad, nearly straight and sloping inwards towards the basal edge, which is very broadly rounded, bcing nearly straight just opposite the beaks. Anal cxtremity hardly more than half as broad as the buccal, and with the hinge line between it and the beaks, regularly concavc. There is a broadly rounded ridge cxtending from the umbones towards the anterior basal margin, gradually becoming obsolete as it approaches the edge. Shell thin, and marked on the surface by small, irrcgular concentric ridges. Length 0.9 inch (from beaks to basal margin), width 1.3 inch."-Gabb, 1862.

Type Locality.-Mullica Hill, New Jersey.
"Shell small, inequivalve, and very inequilateral, subovatc in outline, largest across the anterior side of the beaks, and strongly constricted just behind them, the posterior end being narrowed on the hinge line and excavated at this point. Valves somewhat ventricose, the right one less convex than the left, and vcry decidedly depressed in the central region and toward the basal line, showing a decided twist or arcuation of the valres as seen in a basal view. Anterior end broadly rounded, and the posterior pointedly rounded. Beaks small, appressed, incurved, and apparently directed backward, as is usual in this group of shells, from the expansion of inflation of the anterior side of the hinge line. Cardinal margin, as seen on the cast, inflected both in front of and behind the beaks, forming an apparent lunule and escutcheon on the cast, probably produced mainly from a thickening of the hinge plate within. Muscular imprints and pallial line and hinge not observed."-Whitfield, 1885.

A single imperfect cast has been referred to this species. It shows, however, the compressed valves, the acute umbones and the constriction behind the umbones which characterize the specics.

Occurrence.-Monmouth Formation. Brooks estate near Seat Pleasant, Prince George's County.
Collections.-Maryland Geological Survey, Philadelphia Aeademy of Natural Sciences.

Outside Distribution.-Manasquan Formation. ? New Jersey.

Superfamily ENSIPHONACEA
 Family POROMYACIDAE
 Genus IIOPiStha Meek

[Check List Invt. Foss. N. A., Cret. and Jur., 1864, p. 32]
Type.-Cardium elegantulum Roemer.
"Shell equivalve, inequilateral, transverscly subovate, being usually narrower, more compressed, and often subrostrate bchind, and ventricose in the central and umbonal regions, nearly always extremely thin; extremities rounded in outlinc, the posterior side usually a little gaping; surface granular, and varying, according to the sections and species, from radiatcly costate on the flanks and front of the valves, to strongly undulate concentrically, with only a fow impressed, radiating lines on the middle, or rarely nearly smooth, concentrically striate, or furrowed, with obsolescent radiating strix; dorsal margins generally infleeted so as to form a sort of false area along its entire length; hinge with two prominent cardinal teeth projecting out at right angles from elose up under the hinge line, beneath the beak of the right valve (the posterior tooth being larger and compressed, and the anterior pointed), and one prominent and one rudimentary eardinal tooth under that of the left; lateral teeth, none; ligament external ; fulcra short and erect. Pallial line unknown.
" Liopistha Meek (typical).--Shell transversely subovate, ornamented, excepting on the posterior dorsal portions of the valves, by regular, simple, well-defincd, sometimes subcrenate, radiating costæ."-Mcek, 1876. ${ }^{1}$

The genus is restricted in its distribution to the Cretaccous.
A. Secondary radial sculpture not developed
.Liopistha protexta
B. Secondary radial sculpture developed.

Liopistha alternata
Etymology: λ_{ϵ} ios, smooth; $\not \approx \pi \sigma \theta \epsilon \nu$, behind.
${ }^{1}$ U. S. Geol. Survey Terr., vol. ix, p. 227.

Liopistha protexta Conrad

 Plate XXXVI, Fig. 15Caraium protextum Conrad, 1853, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. ii, p. 275, pl. xxiv, fig. 12.
Fragilia protexta Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 275.
Papyridea (Liopistha) protexta Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 12.
Liopistha protexta Conrad, 1868, Cook's Geol. of New Jersey, p. 726.
Liopistha protexta Meek, 1876, Rept. U. S. Geol. Survey, Territories, vol. ix, p. 227; text figs. 20-24.
Liopistha protexta Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 140, pl. $\mathbf{x x}$, figs. 1-3.
Liopistha inflata Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 142, pl. xx , figs. 4, 5.
Liopistha protexta Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 13.
Liopistha protexta Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 526, pl. lviii, figs. 4-6.

Description.-" Suboval or subtriangular, inequilateral, ventrieose; ribs about twenty-eight in number, narrow, rounded, obsolete on the posterior submargin; posterior extremity obliquely truneated; beaks prominent; basal margin rounded; umbonal slope undefined; posterior end gaping. (A east.) "-Conrad, 1853.

Type Locality.-Burlington County, New Jersey.
Shell of moderate size and rather heavy for the genus, gaping posteriorly, transversely ovate-trigonal in outline, evenly inflated, the maximum diameter falling near the medial portion of the shell; umbones evenly rounded, the apices proximate, ineurved and feebly opisthogyrate, set a little in front of the median vertieal and well up above the dorsal margins; anterior and posterior dorsal slopes very gentle, the posterior a little more produced and not quite so low as the anterior; anterior end well rounded, posterior end obseurely truneate; base line strongly and symmetrieally areuate; external surface seulptured with twenty-six to thirty-five angular radials, approximately uniform in size and spaeing over the medial portion of the shell, separated by slightly wider eoneave interspaces; radials diminishing in prominenee anteriorly but persistent almost to the margin, evaneseing mueh more abruptly posteriorly, leav-
ing the posterior sixth of the shell smooth; incremental seulpture overrunning the radials and minutely nodulating them in the umbonal region, imbricating them away from the umbones; characters of interior not known.

Liopistha protexta Conrad is abundant and widespread in the Upper Cretaceous of the East Coast and Gulf. For that reason and because its stratigraphie distribution is apparently restricted it has been used by Stephenson ${ }^{1}$ as the guide fossil for the so-called Liopistha protexta subzone which he has traced through Georgia, Alabama and Mississippi.

Occurrence.-Monmouth Formation. Bohemia Mills, Ceeil County; Millersville, Anne Arundel County; Brightseat, Brooks estate near Seat Pleasant, railroad cut 1 mile west of Seat Pleasant, 2 miles south of Oxon Hill, Prince George's County, Maryland. Rancocas Formation. Noxontown Pond, Delaware.

Collections.-Maryland Geologieal Survey, Philadelphia Aeademy of Natural Sciences, New Jersey Geological Survey, U. S. National Muscum.

Outside Distribution.-Matawan Formation. ? Wenonah sand, New Jersey. Monmouth Formation. Navesink marl, Red Bank sand and Tinton beds, New Jerscy. l'eedee Formation. North and South Carolina. Ripley Formation. Exogyra costata zone, Eufaula, Alabama; Chickasaw, Lee, Pontotoe, Union, Tippah and Aleorn counties, Mississippi. Extreme top of zone, Pataula Creek, Georgia; Chattahooehee River, Alabama. Selma Formation. Exogyra costata zone, Wileox County, Alabama; east-eentral Mississippi.

Liopistha aliternata Weller

Liopistha alternata Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 527, pl. 1viii, figs. 7-9.

Description.- "The dimensions of an average left valve are: Length 22 mm ., height 15.5 mm ., eonvexity 7 mm . Shell, exclusive of the projecting beaks, subelliptieal in outline. Beaks central, or in some speeimens apparently a little back of the center, their apices pointed, elevated

[^6]above the hinge line, strongly incurved and nearly or quite in contact. Antero-cardinal slope slightly concave or nearly straight; anterior margin rather sharply rounded; basal margin broadly and regularly convex ; posterior margin rather sharply rounded above to the posterior extremity of the hinge line; post-cardinal slope more concave than the anterior. Valves ventricose or inflated in the umbonal region, the surface curving abruptly to the eardinal margin, convex to the anterior and ventral margins, more or less compressed to the postero-cardinal extremity; slightly gaping posteriorly. Surface marked with forty or more angular, radiating costar in adult shells, the alternate ones being conspicuously larger. The smaller costre are intercalated between the larger ones and do not reach the beak, so that in very young shells the alternation of costr does not exist; upon the posterior, more or less compressed portion of the valves the eostex are nearly or quite obsolete. Distinet impressions of the external surface of the shells show them to be marked by fine, indistinct lines of growth; they also show each costa, both the larger ones and the smaller ones, to be surmounted by a row of fine tubercles or short spines, whose distance apart is less than the spaces between the costr; the radiating lines of tubcrcles are also present upon the posterior non-costate portion of the shell. This species can be easily distinguished from L. protexta by the alternating costæ and the more central position of the beaks. These two species have never been observed associated in the same fauna, L. alternata being characteristie of the Merehantville, while L. protexta is espeeially characteristic of the Navesink."-W eller, 1907.

The occurrenee in Maryland is restricted to a single broken valve, but it is sufficient to show the diagnostic development of a sceondary radial lineation.

Occurrence.-Mataivan Fommation. Summit Bridge, Chesapeake and Dclaware Canal, Delaware.

Collections.-Maryland Geological Survey, New Jersey Geologieal Survey, U. S. National Museum.

Outside Distribution.-Matawan Formation. Merchantville elay marl, New Jersey. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Mortoniceras subzone, Georgia : Perry County, Alabana.

Family CUSPIDARIDAE

Genus CUSPIDARIA Nardo
[Ann. Sci., Lombardo Veneto, vol. x, 1840, p. 49]
Type.-Tellina cuspidata Olivi.
Shell minutely pyriform in outline, feebly inequivalve, strongly inequilateral, the anterior portion of the shell inflated, the posterior abruptly constricted and compressed; squarely truncate, gaping.
"The shells of Cuspidaria possess an internal ligament, received in eacll valve in a more or less differentiated groove or fossette, which may project from the umbonal angle of the hinge margin, or be more or less adherent to the anterior or posterior slope of this angle. They may have one anterior and one posterior cardinal and lateral tooth in valve, any one of which (or all in the genus? Myonera) may be entirely absent. Beside the teeth the hinge is reinforced in many cases by a buttress extending in a direction vertical to the valve from the hidden surface of the hinge margin, posterior to the umbonal angle. 'This buttress may consist of the vertical plate above mentioncd and a thickened rib curving round in front of the postcrior muscular scar, and then directed posteriorly, becoming almost immediately obsolete. Or the posterior inuscular insertion may be elongate and narrow, and the buttress take the form of a "clavicle" or myophore, elongated, parallel with the posterior hinge margin and separating the two posterior muscular scars. The muscles are not always inserted upon the buttress, but may be above and in front of it. Its purpose would seem to be that of strengthening the valve, almost always thin and fragile, against sudden contractions of the muscles, and to support the cardinal border, and especially the strong posterior lateral tooth found in many species. When this tooth is found in a species which has no posterior lateral in the other valve, the valve which has a tooth shows the buttress stronger than the other, indicating its function as a support for the tooth ; but when elongated and clavicular there is little difference between the buttresses of opposite valves, indicating that in such cases the function is the strengthening of the valve itself. The presence of the buttress is, in my opinion, important only in a minor degree, except

[^7]when it takes the claricular form, as, in different species of the same group, and eren in individuals of the same species, its size and prominence vary very greatly. Adriatic speeimens of the typical species, C. cuspidata, show a strong buttress; British specimens of the same species often show it faintly or not at all, while otherwise well dereloped. The names Naera, Rhinomya, Aulacophora, Spathophora, and Trophidophora, among those which have been applied to members of this group, by Gray, Adams, and Jeffreys, are all preoccupied in zoological nomenclature, some of then several times over.
"The characters of radiating and concentric sculpture in this group have no more than a specific value; there are few species where they are not more or less combined in the external ornamentation. The surface may be polished, smooth, wrinkled, sulcate, or granulous. The anterior muscular scar is double or single, the posterior scar double, in all the speeimens I have seen where the scars could be made out."-Dall, 1886.'

The genus was initiated in the Mesozoic and persists in the recent seas as one of the characteristic deep water forms. One species, C. lucifuga Fischer, has been reported from over 2500 fathoms.

[^8]Cuspidaria ampulla n. sp.
Plate XXXVII, Figs. 6,
Description.-Shell small, even for the genus, thin, approximately equivalve, strongly inequilateral, highly inflated in the umbonal region and the medial portion of the disk, flattening a little toward the anterior and ventral margins of the shell and abruptly compressed postcriorly; umbones inflated even to their apices, proximate, incurved, feebly opisthogyrate, rising well above the dorsal margin, a little in front of the median horizontal; anterior dorsal margin steeply descending; posterior dorsal

[^9]margin feebly excavated; anterior lateral margin rounding obliquely into the base ; posterior very short and squarely truncate; base line smoothly convex in the anterior and medial portion, rapidly ascending and very feebly concave behind the median vertical; external sculpture very feeble, little more, incleed, than irregular incremental striations; character of linge and interior not known.
Dimensions.-Altitude 4.75 mm ., latitude 6.75 mm ., diametcr, 4 mm .
It is separated from Cuspidaria cucurbita nl . sp. by its smaller size and less produced and less evenly inflated anterior end. The type is unique.

Occurrence.-Monmoutir Formation. Brightseat, Prince George's County.

Collection.-Maryland Geological Survey.

Cuspidaria occurbita n. sp.
Plate XXXVII, Figs. 4, 5
Description.- Shell of moderate size for the genus, oblique, minutely gourd-shaped; subequivalved, the right valve a little the more inflated; umbones gibbous, incurved, the apices proximate and opisthogyrate, placed a little behind the median horizontal; anterior dorsal margin gently sloping; lateral margin obscurely truncate; posterior portion of shell abruptly contracted and compressed behind the umbones; posterior dorsal margin fecbly excavated, the short lateral margin squarely truncate; base line arcuate in the anterior and medial portion, rapidly ascending posteriorly ; characters of surface and interior not known.

Dimensions.-Altitude 7 mm ., latitude 10.5 mm ., maximun diameter of double valves 6 mm .
The cast of the double valves from which the shell is described suggests in its outline a miniature drinking gourd, the evenly inflated anterior and medial portion forming the cup, the abruptly constricted posterior portion the neck. The species is probably a close relative of Cuspidaria ventricosa Meck and Hayden, but it is much more oblique than the latter, and differs further in that the base line is not excavated at the rostrum. From Cuspidaria ampulla. n . sp . it is separated not only by the larger size but
by the more produced and much more evenly inflated anterior portion of the shell.

Occurrence.-Matawan Formation. Three-quarters of a mile sometheast of Ulmstead Point, Anne Arundel County.

Collection.-Maryland Geologieal Survey.

Order TELEODESMACEA

Superfamily CYPRICARDIACEA
Family PLEUROPHORIDAE
Genus Veniella Stoliczka
(Mem. Geol. Survey of India, Cret. Fauna S. India, 1871, vol. 11i, p. 189)
$=$ Venilia Morton 1833, Am. Jour. Sei., 1st ser., vol. xxiii, p. 294. Not Venilia Dupoueh 1829, a Lepidopteran genus.

Type.-Venilia conradi Morton.
"Shell ventricose, inflated, with the beaks outwardly ineurved, more or less distant, a long narrow ligamental furrow running from them posteriorly, situated above strong fulcra; hinge with two cardinal and one posterior lateral tooth in each valve; right valve with the supra-posterior eardinal tooth, generally bifid anteriorly with a hook-like dowuward bent prolongation, infero-anterior eardinal smaller, lamelliform, or more or less tubercular, separated from the other tooth by a more or less horizontally extending flexuous groove into which the infero-anterior eardinal tooth of the left valve fits; the supero-posterior eardinal of this valve is moderately prolonged, single or indistinctly bifid."-Stoliczka, $18 \% 1$.

The shell is rude and heavy and, as a rule, subtrapezoidal or quadrate in outline with a more or less clearly differentiated lunule and escutcheon and an angulated posterior keel. Irregular concentrie sculpture is usually developed, but it is rarely more than a modification of the heavy incrementals. The adductor impressions, partieularly the anterior, are distinet or even excavated, as is so frequently the ease in the heavy bivalves. The pallial line is entirc.
The Cretaceous apparently marks the initiation and the culmination of Veniella, although it survived in diminished numbers into the Tertiary.

[^10]
Veniella conradi (Morton) Stoliczka Plate XXXXVIII, Figs. 2-7

Venilia conradi Morton, 1833, Am. Jour. Sci., 1st ser., xxiii, p. 294, pl. viii, figs. 1, 2.
Venilia conradi Morton, 1834, Syn. Org. Rem. Cret. Group, U. S., p. 67, pl. viii, figs. 1, 2.
Venilia trigona Gabb, 1862, Proc. Acad. Nat. Sci., Phila., for 1861, p. 324.
Venilia eonradi Meek, 1864, Check List lnv. Fossils, N. A., Cret. and Jur.. p. 13.

Venilia trigona Meek, 1864, Check List lnv. Fossils, N. A., Cret. and Jur., p. 13.

Venitia conradi Conrad, 1868, Cook's Geol. of New Jersey, p. 727.
Goniosoma inflata Conrad, 1869, Am. Jour. Conch., vol. v, p. 44, pl. i, fig. 10.
Venilia elevata Conrad, 1870, Ibidem, vol. vi, p. 74, pl. iii, figs. 7, 7a.
Veniclla conradi Stoliczka, 1871, Mem. Geol. Survey of India, Pal., Cret. Fauna Southern India, vol. iii, p. 190.
Veniella conradi Meek, 1876, Rept. U. S. Geol. Survey, Territories, vol. ix, p. 148, text figures 9-11.
Veniella conradi Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 144, pl. xix, figs. 8-10.
Veniella trigona Whitfield, 1885, Ibidem, p. 149, pl. xix, figs. 11-14.
Veniella inflata Whitfield, 1885, Ibidem, p. 147, pl. xix, figs. 4, 5.
Veniella elevata Whitfield, 1885, Ibidem, p. 148, pl. xix, figs. 6, 7.
Veniella conradi Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 13.
Veniella trigona Johnson, 1905, Ibidem.
Veniella elevata Johnson, 1905, Ibidem.
Veniella inflata Johnson, 1905, Ibidem.
Veniella conradi Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 534, pl. lviii, figs. $18,19$.
Veniella trigona Weller, 1907, Ibidem, p. 537, pl. lix, figs. 1-3.
Description.-"Trigonal, ventricose, concentrically sulcated; beaks long and incurved; diametcr an inclı and a half."-Morton, 1833.

Type Locality.-New Jersey.
Shell thick, heavy, prismatic, rudely cordate or trigonal in outline; umbones very prominent, inflated to their very apices, which are turned inward and forward, and placed in the adult forms within the anterior third; posterior carina strongly defincd, persisting from the umbones to the postcrior ventral margin; lunule very wide, differcntiated by a faintly incised line and the evanescence of the heavy concentric sculpture; escutcheon suggested by an obscure keel running from the umbones to the extremity of the dorsal margin at a distance a little more than midway
between the posterior carina and the hinge margin; escutcheon much more sharply defined in the young forms than in the adults; anterior portion of shcll smoothly roundcd, cren nasute in the young; base line approximately horizontal ; posterior dorsal and distal margins merging into one another in the adults, the lateral margin squarcly truncate in the young; external surface broadly corrugated in the umbonal region, the summits of the obtuse ridges thus formed crowned with sharp laminar plates uniform in thickness throughout their extent, although the altitude attained sometimes approaches a centimeter; laminæ often broken away leaving only a faint scar which is soon eradicated by exposure; the number of processes thus developed rarcly exceeding five; ventral portion of adult shell evenly rounded and sculptured ouly with heavy growth lines and crowded resting stages; ligament external, opisthodetic, scated upon a short but rather stout nymph; hinge plate heavy, two cardinals in the right valve, the antcrior trigonal and placed opposite the lateral, the posterior robust, obliquely elongated and compressed, fcebly sulcated medially; a stout rounded anterior lateral tubercle devcloped on the ventral side of the hinge plate near the anterior cardinal ; posterior lateral grooved, profound, the inner surfaces finely striated transversely; two cardinals present also in the left valve, both of them posteriorly produced, the anterior stout and feebly sulcated, the posterior laminar and united with the basal margin ; anterior lateral sharp, trigonal with a deep pocket behind it for the reception of the corresponding lateral in the right valve; posterior lateral elcvated, produced; muscle impressions distinct, the anterior excavated; pallial line entire.

The young of the species are subquadrate in outline and when fully armed present a very different aspect from the cordate adults from which the laminar plates have been broken away and all traces of them obliterated. However, all the changes in outline and sculpture may be observed in a single individual so that there is no doubt of the absolute identity of the V. conradi and V. trigona.

Even though there were, Morton's well-figured type is a fully adult form with all the characters of the individual described later by Gabb under the name of V. trigona.

The species is unusually abundant and well prescred at Brightseat, Prince George's County.

Occurrence.-Magothy Formation. ? Good Hope Hill, District of Columbia. Matawan Formation. Post 15\%, Chesapeake and Delaware Canal, Delaware; Ulmstead Point, Anne Arundel County, Maryland. Monmouth Formation. ? Millersville, Anne Arundel County; Bohemia Mills, right bauk of Bohemia Creek near Scotchman's Creek, Cecil County; east of mouth of T'urner's Crcek, Kent County; Brightscat, railroad cut west of Seat Plcasant, Brooks estate near Seat Pleasant, 1 milc west of Friendly, McNeys Corncrs, Fort Washington, Prince George's County, Maryland.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey, U. S. National Muscum.

Outside Distribution.-Matawan Formation. Merchantville clay marl, Wenonah sand, New Jersey. Monmouth Formation. Navesink marl, Red Bank sand and J'inton beds, New Jersey. Black Creek Formation. North and South Carolina. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Mortoniceras subzone, Georgia ; Prentiss County, Mississippi. Transition beds, Eutaw to Selma. Exogyra ponderosa zone, Mortoniceras subzone, Dallas County, Alabama. Ripley Formation. Exogyra ponderosa zone, Barbour County, Alabama. Extreme top of zone, Pataula Creek, Georgia. Selma Formation. Exogyra ponderosa zone, Lec County, Mississippi. Exogyra costata zone, Wilcox County, Alabama; east-eentral Mississippi.

Superfamily ASTARTACEA Family CRASSATELLITIDAE Genus CRASSATELLINA Meek

[Hayden, 2d Rept. Geol. Survey, Territories, 1871, p. 300]
Type.-Crassatellina oblonga Meek.
"Shell transversely trapezoidal, equivalve, inequilateral, with free margins closed and smooth within; hinge with two cardinal teeth, and one elongated antcrior and one posterior lateral tooth in each valve;

Etymology: Diminutive of Crassatella.
anterior cardinal tooth of the left valve trigonal, and deeply emarginate below; posterior very much compressed, oblique, and somewhat elongated; cardinal teeth of right valve diverging, with a triangular pit between for the reception of the larger triangular tooth of the other valve; anterior one small, oblique, and connected at its upper end with the posterior extremity of the anterior lateral ; posterior larger, oblique, longitudinally furrowed, ${ }^{1}$ and perhaps emarginated below, while just behind and above it there is a narrow oblique slit, or pit, for the reception of the thin anterior cardinal of the other valve; lateral teeth elongated parallel to the cardinal margins; the anterior one of the right valve, and the posterior of the left, apparently continued so as to connect with the upper ends of the cardinal teeth; ligament external ; pallial line simple.
" The typical species of this genus has the general external appearance of a Crassatella, from which genus, however, it is clearly removed by its hinge characters, though evidently belonging to the samc family. Its muscular impressions are faintly defined, as is also the case with the pallial line, which latter, however, can be followed so far back as to leave little or no doubt that it is really simple. The larger trigonal cardinal tooth of the left valve is probably sometimes so deeply emarginate as to give it an A-shape."-Mcek, 1876. ${ }^{2}$

Meek's belief in the identity of the two genera has been sustained by later paleontologists. There is no record of the group from other than Cretaceous strata.

Crassatellina carolinensis (Conrad) Meek
Etea carolinensis Conrad, 1875, Kerr's Geol. of North Carolina, App., p. 6, pl. i, fig. 14.
Crassatellina carolinensis Meek, 1876, Rept. U. S. Geol. Survey, Territories, vol. ix, pp. 119, 120.
Etea carolinensis Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 14.
Etea carolinensis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 541, pl. lix, figs. 4-6.

Description.-" Shell suboval, short, equilateral, compressed, with distinct lines of growth ; posterior end truncated, nearly direct."-Conrad, 18\% 5.

[^11]
Type Locality.-Snow Hill, North Carolina.

"The dimensions of a shell of average size, preserving both valves, are: Length 33 mm ., height 22.5 mm ., thiekness 14 mm . Length of the largest individual observed, 14 mm . Shell very oblique and inequilateral, the beaks obtuse, slightly ineurved, situated about three-eighths of the entire length of the shell from the anterior extremity. Anterior margin somewhat narrowly rounded and passing into the basal margin; basal margin moderately convex anteriorly, becoming straight or usually slightly eoncave posteriorly; posterior-basal extremity acutely angular; posterior margin rather short, obliquely truneate; postero-dorsal margin straight, except near the beak where it becomes slightly convex, making an angle of about 136° with the truneate posterior margin. Surface of the shell marked with a sharply angular or subearinate, usually straight, umbonal ridge passing from the beak to the postero-basal extremity of the shell; postero-dorsal slope concave from the umbonal ridge to the eardinal margin, where the shell is sharply infleeted to form a large and nearly flat eseutcheon ; in front of the umbonal ridge a broad, more or less indefinite depression passes from the beak to the sinuosity in the posterior portion of the ventral margin ; in front of the beak the surface is infleeted to form a rather large and broad lunule. Entire surface of the shell covered with strong, eoncentrie lines of growth which are more or less irregular in the strength of their development. Hinge of right valve with a large bifid eardinal tooth direeted obliquely backwards from beneath the beak, and a mueh smaller simple one directed forward; between these two teeth is a deep triangular pit, and behind the posterior one is a much narrower pit; two large lateral teeth are present, one in front and one behind the beak, the anterior one is nearer the beak with a broad and deep pit between it and the hinge line, the posterior one is more elongate and slender, and is also separated from the hinge line by a deep pit. The hinge of the left valve has two eardinal teeth, a large bifid one immediately beneath the beak and a thin, very oblique one behind, with a large, oblique, triangular pit between the two; there are two strong lateral teeth, one in front and one behind, the anterior one being nearer the beak and usually stronger but not so mueh extended longitudinally as the posterior one. Museular
impressions large and strong, of about equal size; pallial line parallel with the truncated posterior margin for a short distance below the posterior muscular impression, then bending abruptly forward and continuing subparallel with the shell margin."-Weller, 190%

Crassatellina carolinensis Conrad is represented in Maryland and Delaware by a single imperfeet east. The speeies is apparently one of the most reliable guide fossils of the Exogyra ponderosa zone.

Oceurrence.-Matawan Formation. Post 105, Chesapeake and Delaware Canal, Delaware.

Collections.-Maryland Geologieal Survey, Philadelphia Aeademy of Natural Seienees, New Jersey Geologieal Survey, U. S. National Museum.

Outside Distribution.-Matawan Formation. Marshalltown elay marl, New Jersey. Black Creek Formation. North and South Carolina. Peedee Formation. North and South Carolina. Eutaw Formation. Basal. Lixogyra ponderosa zone, Russell County, Alabama. (Tombigbee sand member). Mortoniceras subzone, Georgia; Russell County, Alabama; Prentiss County, Mississippi. Ripley Formation. Exogyra ponderosa zone, Barbour County, Alabama. Exogyra costata zone, Union County, Mississippi. Extreme top of zone, Pataula Creek, Georgia. Selma Formation. Exogyra costata zone, east-eentral Mississippi.

Genus CRASSATELLITES Krüger
[Arch. Neuest. Entd. Urwelt, vol. ii, 1828, 466]
Type.-Crassatella gibbosula Lamarck.
"Shell solid, inequilateral, slightly inequivalve, usually subtrigonal, the posterior end longer ; valves elosed, the ligament and resilium adjaeent and internal ; hinge of three cardinals in the right valve, of which the posterior is more or less effaced by the resilium, and two in the left valve ; the anterior edge of the right and the posterior edge of the left hinge margin grooved to receive the edge of the opposite valve, which is berelled to serve as a lateral lamina; sculpture ehiefly coneentrie and often obsolete exeept near the umbones."-Dall, 1903. ${ }^{1}$

[^12]The genus originated, apparently, in the Cretaceous, culminated in the Tertiary, and is represented in the Recent faunas by some thirty or forty species confined, for the most part, to the tropieal seas. In the East Coast and Gulf Eocenc, and in the Last Coast Niocenc, the genus is onc of the most prolific and conspicuous of any of the bivalves.
A. Outline ovate or ovate-trigonal, not conspicuously produced along the posterior keel.

1. External surface incrementally sculptured but not more or less regularly lineated from umbones to base.
a. Shell very heavy, escecially in the umbonal region; posterior carina usually prominent.................Crassatellites vadosus
b. Shell not very heavy and uniform in weight; posterior carina not very prominent.Crassatellites subplanus
2. External surface more or less regularly lineated from umbones to base..................................... Crassatellites linteus B. Outline alate, conspicuously produced along the posterior keel.

Crassatellites pteropsis
Crassatellites vadosus (Morton) Johnson
Plate XXXIX, Figs. 1-4
Crassatella vadosa Morton, 1834, Syn. Org. Rem. Cret. Group, U. S., p. 66, pl. xiii, fig. 12.
Crassatella ripleyana Conrad, 1858, Jour. Acad. Nat. Sci., Phila., 2 d ser., vol. iii, p. 327, pl. xxxv, fig. 3.
Crassatella vadosa Meek, 1864, Check List Inv. Foss.. N. A., Cret. and Jur., p. 11 .

Crassatella vadosa Stoliczka, 1871, Mem. Geol. Survey of India, Pal. Indica, Cret. Faunas Southern India, vol. iii, p. 295.
Crassatella vadosa Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 310.
Crassatclla vadosa Conrad, 1878, Cook's Geol. of New Jersey, p. 726.
Crassatclla vadosa Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 116, pl. xvii, figs. 12-15.
Crassatellites vadosus Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 14.
Crassatellites ripleyana Johnson, 1905, Ibidem.
Crassatellites subplanus Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 553 (ex parte), pl. lxi, figs. 1, 2 (?).
Description.-" Ovato-triangular, slightly compressed; with about thirty distinct, coneentric striæ. Length one inch and a quarter; breadth one inch."-Morton, 1834.
Type Locality.-Prairie Bluff, Alabama.
Shell of medium size, thick, heavy, rudely trigonal in outline; anterior and lateral margins rounded, posterior more or less produced and trun-
eated, ventral margin approximately horizontal; umbones orthogyrate or turned a little forward, proximate, often thickened, flattened upon their summits, placed baek from the anterior margin a distanee of one-third the total latitude; lunule broadly lentieular, sharply defined, the portion in the left valve a trifle broader and more feebly striated by the inerenentals than that of the right; eseutcheon more sharply defined, broader and a trifle larger in the right valve than in the left; posterior area outlined by an obtuse ridge passing from the umbones to the posterior ventral margin ; external surface seulptured with low, eoneentrie ridges elose set but irregular in arrangement, suggesting an exaggerated incremental sculpture; a few pronouneed resting stages, usually developed toward the reutral margin; radial seulpture manifested only in the sharp dentieulations on the inner margins; hinge plate very heavy, ligament pit a small seoopshaped affair, extending obliquely baekward from direetly beneath the tips of the umbones; eardinals two in number in the left valve, three in the right, the anterior eardinal of the right very thin and laminar, and fused at the base with the dorsal margin, the middle eardinal heavy, trigonal, transversely striated; the posterior eardinal laminar largely effaced by the resilium, originating near the base of the anterior eardinal and diverging from it at an angle of approximately 60°, cardinals of the left valve much more nearly equal than those of the right, the posterior rather thin, just under the unbones where it forms the anterior margin of the ligament pit, but expanding rapidly toward its ventral extremity; left eardinals striated on their inner faces, separated by a deep trigonal pit for the reeeption of the right anterior eardinal; small suleus near the base of the left posterior eardinal provided for the laminar posterior eardinal of the right valve; no traee of true laterals developed but the posterior dorsal margin of the right valve and the anterior dorsal margin of left valve bevelled to function as laterals and reeeived in grooves in the opposite valves; musele impressions subequal, placed near the median horizontal, the anterior more deeply exeavated than the posterior ; anterior pedal sear very distinet, set under the hinge plate a little dorsal to the anterior adduetor; pallial line entire; inner margins finely crenulated from the ventral extremity of the linule to the ventral extremity of the eseutcheon.
C. vadosus Morton shows a wide range of variation in age characters. The young are thin, rather compressed and truncated but not produced posteriorly ; with inereasing age the form bceomes apparently more inflated because of the umbonal thickening, and obliquely produced posteriorly. (Plate XXXII, Fig. 3.)

Conrad's C. ripleyana is doubtless a synonym, which includes the larger and heavier individuals. The young are quite uniform in outline and sculpture, but after the form has passed the typical C. vadosus stage there is a strong tendency for it to beeome produced posteriorly and to develop a rather heavy carina with the coneomitant medial depression stage represented by the C. ripleyana. The species differs constantly from C. subplanus in the hearier, less compressed and more inequilateral shell, the less prominnent keel and the much heavier and more trigonal hinge plate.

Although the species has not been reported from New Jersey it would be by no means surprising if the numerous easts from the Monmouth, whieh have been referred to C. subplanus Conrad, would find their true affinities with C. vadosus Morton, which is by far the most abundant representative of the genus in Maryland and constitutes, indeed, one of the major factors in the Monmouth fauna.

Occurrence-Monmouth Formation. ? Millersville, Anne Arundel County. Brightseat, railroad eut west of Seat Pleasant, Brooks estate near Seat Pleasant, Fort Washington, Prince George's County.

Collections.-Maryland Geologieal Survey, Philadelphia Aeademy of Natural Sciences, New Jersey Geologieal Survey, U. S. National Museum.

Outside Distribution.-Monmouth Formation. Navesink marl, and Tinton beds, New Jersey. Ripley Formation. Exogyra costata zonc, Union and Tippah counties, Mississippi. Selma Formation. Exogyra costata zone, Wilcox County, Alabama ; east-central Mississippi.

Crassatrllites subplanus (Conrad) Johnson
Crassatella subplana Conrad, 1853, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. ii, p. 274, pl. xxiv, fig. 9.
Crassatella subplana Meek, 1864, Check. List Inv. Foss., N. A. Cret. and Jur., p. 11.

Crassatella subplana Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 121, pl. xviii, figs. 14-16.
Crassatellites subplanus Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 14. Crassatellites subplanus Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 553 (ex parte, synonymy excluded.)

Description.-" Subtriangular, eompressed or plano-eonvex; anterior margin obtusely roundcd; posterior extremity subtruncated; posterior basal margin straight or slightly contraeted; disk marked with numerous prominent acute concentrie ridges and fine eoneentric lines."-Conrad, 1853.

Type Locality.-Arneytown, New Jersey.
"The dimensions of a small specimen, a nearly perfect right valve, are: Length 36 mun., leight 28 mm ., convexity 6 mm . Large individuals grow to a length of 50 mm . or more. Shell broadly subovate in outline, beak obtuse, situated about one-third the length of the shell from the anterior cxtremity. Antcro-cardinal margin straight or slightly concave, sloping downward from the beak; anterior margin rounding into the basal margin, moderatcly convex throughout to the postero-basal extrenity, which is obtuscly subangular; posterior margin short, truncated nearly vertically or slightly inclined; postero-eardinal margin gently convex, sloping downward from the beak and mecting the posterior margin in an obtuse angle. Surface of the shell with an obtusely angular umbonal ridge, which passes from the beak to the postero-basal angle in nearly a straight line, the postcardinal slope slightly concave to the cardinal margin ; the post-cardinal margin sharply inflected to form a rather decply excarated escutchcon; antero-eardinal margin infleeted to form a deep but rather ill-defined lunule. Surface of the shell marked by regular, somewhat imbricating, concentric lines of growth, and often by a few broader conecntric undulations towards the margin. Hinge of the right valve with a strong cardinal tooth transversely striate on its anterior surfaee, direetly beneath the beak. Behind it is a very large and broad triangular pit, with a much smaller secondary pit just behind the lower end of the tooth; in front of the cardinal tooth is a small triangular pit about equal in size to the seeondary pit behind, and in front of this pit a low, obscurc, tooth-like ridge extends obliquely forward to the upper margin of the anterior mus-
cular sear. Museular impressions strong and about equal in size. Inner margin of the free edge of the shell erenate. The above deseription is based largely upon a very perfect right valve from the Marshalltown elay marl near Swedesboro."-Weller, 1907.

The species has a very meager representation in Maryland, and is, apparently restricted in its distribution to the Matawan. It differs from C. vadosus Morton, so prolifie in the Monmouth of Maryland and the Gulf, in its more compressed valves, less anterior umbones, and much lighter shell, with the consequently thinner hinge plate and less pronounced posterior keel.

Occurrence.-Matawan Formation. Ulmstead Point, ? Arnold Point, Anne Arundel County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Seienees, New Jersey Geologieal Survey.

Outside Distribution.-Matawan Formation. Marshalltown elay marl, Wenonah sand, New Jersey. Monmouth Formation. ? Navesink marl, ? Red Bank sand, ? Tinton beds, New Jersey.

Crassatellities linteus (Conrad) Johnson

Plate XXXIX, Figs. 6, r
Crassatella lintea Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 279, pl. xlvi, fig. 5.
Crassatella lintea Meek, 1864, Check List Inv. Fossils, North America, Cret. and Jur., p. 11.
Crassatella lintea Conrad, 1868, Cook's Geol. of New Jersey, p. 726.
Crassatellites linteus Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 14.
Crassatellites subplanus Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 553, pl. lxi, figs. 3, 4 (ex parte, synonymy and figs. 1, 2 excluded.)

Description.-" Subovate or subtriangular, convex, inequilateral ; disk eoneentrieally ridged and finally striated, slightly contracted near the umbonal slope, whieh is rounded; posterior extremity subtruneated; apex slightly prominent; posterior dorsal line nearly straight, very oblique; margin within finely erenulated; lunule long and lanceolate."-Conrad, 1860.

Type Locality.-Alabama.

Shell rather small for the genus and rather thin, compressed, subovate to ovate-trigonal in outline; umbones rising a little above the dorsal margin, their apices acute and prosogyrate, slightly anterior in position; lunule and escutcheon clearly differentiated but very narrow because of the compression of the valves; anterior end broadly and symmetrically rounded in front of the umbones; posterior dorsal nargin gently sloping; lateral margin obscurely and obliqucly truncate; base line rounding smoothly into the anterior lateral margin, obtusely angulated at the union with the posterior; posterior keel obscure but persistent from the umbones to the posterior ventral margin, better defined by the change in the direction of the growth lines than by any variation in the plane; external surface sculptured with a very irregular concentric lineation, sharpest and most regular in the umbonal region, and occasional more or less accentuated growth lines and resting stages ; ligament external, lodged beneath the umbones, the resilium buttressed ventrally by the posterior cardinal which it has largely effaced; medial right cardinal stout, trigonal, subumbonal, transversely striated laterally; anterior cardinal laminar; hinge dentition in left valve restricted to two subequal cardinals, the posterior a little the larger, both of them striated upon their inner faces; no trace of laterals devcloped but anterior margin of left valve and posterior margin of right valve bevelled to function as laterals and received in shallow sockets in the corresponding valve; muscle impressions distinct, impressed in the adults, placed high up at the distal extremities of the hinge ; pallial line simple, distinct, rather distant from the base line.
C. linteus Conrad has been considered, without justification, as the young of somc of the clearly allied and larger forms, such as C. vadosus and C. subplanus. Aside from the fact that it shows no evidence of immaturity, the shell is thinner and more compressed and much less strongly carinated posteriorly than C. vadosus of the same size. The resemblance to C. subplanus is more striking, but the concentric sculpture is finer and more sharply impressed in the former, and as a rule, the umbones are set farther forward and are more strongly prosogyrate.
C. linteus has a distribution in Maryland very similar to that of vadosus. but is rery much less prolific.

Occurrence.-Monmouth Formation. Brightseat, Brooks estate near Scat Pleasant, Friendly, 1 mile west of Friendly, Fort Washington, Prince George's County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey.

Outside Distribution.-Matawan Formation. Marshalltown clay marl, Wenonah sand, New Jersey. Monmouth Formation. Navesink marl, Red Bank sand, Tinton beds, New Jersey.

Crassatellites pteropsis Conrad

Plate XXXIX, Fig. 5
Crassatella pteropsis Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 279, pl. xlvi, fig. 9.
Crassatella pteropsis Gabb, 1860, Ibidem, p. 395, pl. lxviii, fig. 28.
Crasatella pteropsis Meek, 1864, Check List Inv. Fossils N. A., Cret and Jur., p. 11.

Crassatella (Pachytherrus) pteropsis Conrad, 1869, Am. Jour. Conch., vol. v, pp. 47, 48.
Crassatella (Pachyth(crus) pteropsis Conrad, 1872, Proc. Acad. Nat. Sci., Phila., p. 50, pl. i, fig. 1.
Crassatella pteropsis Gabb, 1876, Ibidem, p. 310.
Description.-" Aliform, very inequilateral, convex anteriorly, posteriorly contracted; umbonal slope slightly carinated below the umbo; posterior side rostrated; surface with minute concentric, impressed lines, very fine and closely arranged on the umbo and summit; margin within finely crenulated."-Conrad, 1860.
Type Locality.-Owl Crcek, Tippah County, Mississippi.
Shell rather thin and compressed, not very large, very inequilateral, posteriorly produced and alate in outline; umbones flattened upon their summits, orthogyrate, proximate, set back from the anterior extremity a distance of approximately one-third the latitude; lunule and escutcheon sharply defined, narrowly lenticular, subequal in size, the portion of the lunule in the right valve and of the escutcheon in the left valve shorter, narrower and more strongly sculptured incrementally than the corre-
sponding portion in the opposite valve; anterior end of the shell broadly rounded; posterior end obliquely produced along an obtuse keel whiel extends from the umbones to the posterior rentral margin ; area in front of the keel broadly and feebly depressed, area behind it obliquely flattened; posterior dorsal margin evenly and steeply sloping to a point opposite the pallial line where it is obtuscly truncated; ventral margin gently arcuatc antcriorly, slightly constricted in front of the carina; external surface sculptured in the umbonal region with sharp concentric ridges, close set and regularly spaeed, merging ventrally into an irregular incremental sculpture ; postcrior kcel smootl execpting for faint incrementals and a few sharp ridges at the very apiees of the umbones; radial sculpture abscut; hinge rather frail, three cardinals in the right valve, two in the left; a laminar anterior, a moderatcly robust medial and an exccedingly thin, laminar posterior cardinal in the right valve, subcqual and moderately hcavy anterior and medial cardinals in the left; inner cardinal faces transversely striated ; posterior dorsal margin of right valve and anterior dorsal margin of left valve bevelled to function as laterals, received in the opposite valve by eorresponding grooves; antcrior and posterior musele and pedal adductor scars distinct; pallial line entire; inucr niargins very finely crenatc.

The species is conspieuous among all other representatives of the genus in the Upper Cretaceous of Maryland by reason of the alate outline and the sharp concentric sculpture in the umbonal region.

Occurrence.-Matawan Formation. Ulmstead Point, Ame Arundel County. Monmouth Formation. Brightseat, railroad cut west of Seat Pleasant, Brooks estate near Seat Pleasant, Friendly, 1 mile west of Friendly, MeNeys Corners, Prince Gcorge's County.

Collections.-Maryland Geologieal Survey, U. S. National Museum.
Outside Distribution.-Black Creek Formation. North and South Carolina. Ripley Formation. Exogyra costata zoue, Eufaula, Alabama; Owl Creck, Tippah County, Mississippi. Extreme top of zone, Pataula Creek, Georgia; Chattahoochee River, Alabama.

Superfamily CARDITACEA
 Family CARDITIDAE
 Genus VENERICARDIA Lamarck

[Syst. des Anim. sans Vert., 1801, p. 123]
Type.-T'enericardia imbricala Lamarck.
Shell closed; rounded, trigonal or cordate; umbones anterior, prosogyrate; lunule small but deep; cseutcheon narrow and elongate; seulpture dominantly radial ; ligament external, opisthodetic, parivincular ; hinge dentition in the right valve eonsisting of three oblique eardinals; in the left valve of two; laterals of both valves absent or very feeble; musele impressions strongly defined; pallial line entire; inner margins erenatc.

The gelus was initiated in the Cretaeeous; the Reeent representatives are, for the most part, inhabitants of cooler waters.

Venericardia? intermedia (Whitfield)
Cardita intermedia Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 209, pl. xxviii, figs. 14, 15.
Cardita intermedia Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 565, pl. lxii, figs. 6-8.

Hescription.--"Form of cast transversely elliptieal, or transversely orate, exclusive of the beaks, largest at the posterior end. Valves very rentricose, with strong projeeting beaks, which in this condition are moderately distant. Hinge line areuate. Anterior end narrowly rounded; posterior end more broadly rounded; basal margin strongly curved. museular scars on the cast small but distinct; margin of the east showing indieations of ten or twelve rather strong radiating ribs between the muscular scars. This is a very ventricose form, and has had strong, eurolled, subanterior beaks, which have been direeted slightly upwards as well as forward."-Whitfield, 1885.

The form referred to this speeies is an inside cast to which a bit of the shell substance still adheres in the umbonal region. It seems a trifle more

[^13]eompressed than Whitfield's type but this may be due merely to the conditions of preservation.

Occurrence.-Rancocas Formation. South feeder Noxontown Pond, Delaware.

Collections.-Maryland Geological Survey, Columbia University.
Outside Distribution.-Rancocas Formation. ? Vineentown sand, Manasquan marl, New Jersey.

Superfamily LUCINACEA
Family LUCINIDAE
Genus MYRTAEA Turton

[Conchy. Insul. Britt,, 1822, p. 133]

Type.-Venus spinifera Montagu.

"Shell elongatc-oval or subreetangular, moderately convex or compresscd, dorsal areas obsolete, the seulpture of the disk ehiefly coneentrie and lamellar ; the seulpture less pronouneed in the middle of the disk and frequently exhibiting a scrrate appearance when the lamellæ cross the bounding earina of lunule or eseuteheon; internally with the left laterals usually obsolete and only one right cardinal tooth; eardinals entire; ligament and resilium deep-set but not internal; anterior adduetor scar lucinoid but rather short; inner margins entire.
" This group is paralleled in Phacoides by several others which want the anterior right cardinal in the adult, but in Myrtca the single right cardinal scems to be normal, while in the subdivisions of Phacoides its absenee is due to degeneration during the growth of the individual or to the dynamic results of the inthrusting of the lunule, whieh oeeupies the space where the anterior eardinal would otherwise develop."-Dall, 1903. ${ }^{\text {. }}$

The genus is reported from strata as old as the Jurassic. There has been a tendeney to indiseriminately assign all lueinoids to Lucina, and it is probable that the oceurrence of Myrtcea in the Mesozoie strata las been underestimated.

[^14]
Myrtea stephensoni n. sp.

Plate XXXIX, Figs. 10, 11
Description.-Shell small, equivalve, inequilateral, valves compressed transversely, oblong to subrectangular in outline; lunule narrow, elongated, distinctly impressed and further differentiated by the absence of surfacc sculpture; escutcheon not defined; umbones small, broadly but fecbly inflated, the apices flattened, acute and prosogyrate, slightly overtopping the dorsal margin a little front of the median horizontal ; anterior dorsal margin slightly constricted and feebly excavated in front of the umbones; posterior dorsal margin gently sloping; anterior latcral margin broadly arcuate, the posterior widely truncate; base line fecbly conrex; external surface sculptured with fine crowded, closely over-lapping eoncentrie lamelle, attaehed along their ventral margins, the dorsal margins free and slightly raised near the anterior and posterior extremitics of the shell; ligament submarginal, opisthodetic ; hinge armature rather fceble, a singlc triangular cardinal in the right valve; posterior cardinal and anterior and posterior latcrals obsolcte; left valve armed with two slender, divergent cardinals, the laterals appearing as short, incipient laminar processes near the distal extremities of the hinge plate; muscle sears unequal, the anterior elongated, the postcrior snaller and irregular in outline; pallial line simple, distinet.

Dimensions.-Altitude 6.5 mm ., latitude 7 mm ., semi-diameter 2 mm . Type Locality.-One mile west of Friendly, Prince George's County.
Named in honor of Dr. L. W. Stephenson of the U. S. Geological Survey.
Occurrence.-Monmouth Formation. Brightscat, Brooks cstate near Scat Pleasant, 1 mile west of Friendly, Prince George's County.

Collection.-Maryland Geologieal Survey.

Genus PHACOIDES Blainville
[Manual Malacology, vol. i, 1825, p. 550]
Type.-Lucina jamaicensis Lam.
Shell more or less lenticular; compressed, as a rule, or slightly tumid; umbones low, subcentral, erect or prosogyrate ; sculpture dominantly con-

Etymology: факós, lentil; cio:s. like.
centrie; anterior and posterior dorsal areas usually differentiated; lunule frequently profound ; eseutcheon obsolete; ligament external, often deeply sunken ; normal dentition of right valve consisting of a simple anterior cardinal, a bifid posterior cardinal and anterior and posterior laterals; normal dentition of left ralve consisting of a bifid anterior eardinal, a simple posterior cardinal, and anterior and posterior lateral grooves; laterals and less frequently the eardinals often obsolete; musele impressious strongly marked, the anterior elongate, the posterior oval; inner margins smooth or erenulated ; pallial line entire.

The genus is abundantly represented in the Tertiaries, the Mesozoie, and, if it be made to inelude the Prolucina of Dall, may be traeed as far back as the Silurian. The living speeies number more than one hundred, and though they are most prolifie in the tropies, they are present in the temperate seas as well.

Phacoides noxontownensis n. sp.

Plate NXXIX, Figs. 8, 9
Description.-Shell of moderate size, compressed, subeireular ; unbones nearly central, acute, prosogyrate, not rery prominent, dorsal slopes gentle, the anterior a little less so than the posterior; lateral margins broadly rounded; base line strongly and symmetrically arcuate; external surface seulptured with acutely elevated concentric laminæ, regularly spaced, probably about twenty-five in number, and between them very faint sccondary striations; ligament external, opisthodetic, lodged in a marginal groove elongated parallel to the dorsal margin; dentition obscure, but two small diverging cardinals are distinctly present in eaeh valve; laterals apparently not developed; charaeter ot muscle scars and pallial line not known.

Dimensions.-Altitude 26 mm ., latitude $26 \pm \mathrm{mm}$., dianneter 3.5 mm .
This speeies is another of those Rancocas bivalves represented by abundant fragments. The eoncentric sculpture is so well characterized, however, that even a scrap showing the regularly arranged, acutely elevated laminæ is reeognizable. As the speeies eonstitutes so important a factor in the Raneocas fauna it does not seem wise to disregard it altogether, even though the material is so ill-preserved.

Occurrence.-Raxcocas Formation. South feeder Noxontown Pond, Delaware.
Collection.-Maryland Geological Survey.

Genus tenea Conrad
[Am. Jour. Conch., vol. vi, 1870, p. 72]
Type.-T'enea parilis Conrad.
" A V-shaped tooth under the apex of the left valve,the anterior lobe of which is continued along the margin anteriorly, forming a long, decp pit above it ; one distant very oblique eardinal tooth posterior to the apex. Right valve: Two eardinal teeth united above; anterior one faleate, with a pit on each side; posterior one curved and directed obliquely backward." -Conrad, 18 ro.
The genus in its known distribution is confined to the Cretaceous.

Texea parilis Conrad

Mysia (Diplodonte) parilis Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 278, pl. xlvi, fig. 16.
Tenea parilis Conrad, 1870, Am. Jour. Conch., vol. vi, p. 73, pl. iii, fig. 12.
Tenea parilis Conrad, 1875, Kerr's Geol. of North Carolina, App., p. 8, pl. ii, fig. 25.
Tenea parilis Tryon, 1884, Syst. and Struct. Conch., vol. iii, p. 216, pl. cxix, fig. 72.
Dosinia gabbi Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 161, pl. xxii, figs. 4, 5.
T'enea pinguis Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 163, pl. xxii, figs. 1, 2 (not T. pinguis Conrad).
Tenea parilis Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 15.
Tenea parilis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 572, pl. 1xiii, figs. 1-6.

Description.-" Shell suborbicular, equilateral, ventricose, direct; surface entire; hinge with the anterior eardinal channel very profound."Conrad, 1860.

Type Locality.-Tippah County, Mississippi.
Shell thin, fragile, orate in outline, moderately convex, slightly inequilateral. lumule and escutcheon not defined : umbones inflated to their very
apices, proximate, incurved and prosogyrate, placed a little in front of the median vertical; anterior and ventral margins well rounded, merging gradually into one another, the outline of the posterior margin sometimes rounded, sometimes obscurely truncate obliquely; external surface smooth excepting for faint incremental striations which are least feeble near the posterior extremity; ligament opisthodetic, lodged in a submarginal groove extending backward for some distance from the tips of the umbones; hinge plate narrow, very fragile ; armature in the right valve consisting of a thin, laminar, hook-shaped cardinal dircetly bencath the umbones, its posterior arm vertically directed, its anterior arm approximately horizontal; right posterior cardinal slender, laminar, obliquely elongated, parallel to the dorsal margin ; anterior lateral developed as a thin plate proximate to and directly facing the anterior portion of the hooked cardinal; hinge of left valve consisting of an anterior \wedge-shaped cardinal which fits between the left anterior lateral and the vertical arm of the cardinal hook of the right valve; a very thin, laminar, medial cardinal which is accommodated between the anterior lateral and the horizontal arm of the hook, and a thin, laminar, obliquely elongated, posterior cardinal; muscle scars small, not very distinct, placed high up near the distal extremities of the dorsal margins; pallial sinus narrow, but quite deep, steeply ascending ; inner margins simple.

This species occurs very abundantly in the form of casts in the Monmouth of Prince George's County, but the shell is so exceedingly thin and so readily flaked off that it is seldom possible to secure a perfect individual.

Occurrence.-Magothy Formation. Good Hope Hill, District of Columbia. Matawan Formation. Post 105, Chesapeake and Delaware Canal, Delaware; ? Ulmstead Point, Anne Arundel County, Maryland. Monmoutif Formation. Fredericktown, Cecil County; Brightseat, Brooks estate near Scat Pleasant, McNeys Corncrs, Friendly, 2 miles south of Oxon Hill, ? Fort Washington, Prince George's County, Maryland.

Collections.-Maryland Gcological Survey, Philadelphia Academy of Natural Sciences, Ncw Jersey Geological Survey.

Outside Distribution.-Magothy Formation. Cliffwood clay, New Jersey. Matawan Formation. Merehantville elay marl, Woodbury elay, Wenonah sand, Ncw Jersey. Monmouth Formation. Navcsink marl, Red Bank sand, Tinton beds, New Jersey.

Superfamily CARDIACEA Family CARDIIDAE
Genus Cardium Linné
[Systema Naturae, ed. x, 1758, p. 678]

Type.-Cardium costatum Linnć

Shell usually subequilateral, elosed, or slightly gaping, globose, the united valves subeordate laterally; umbones prominent, almost straight or with a slight anterior twist; true lunule and escutcheon absent; seulpture dominantly radial ; ribs often granulose, spinose or imbricated ; ornamentation of latcral areas particularly of the posterior, often differing from that of the disk; ligament external, opisthodetic; hinge charaeterized, with a few exeeptions, by two eardinals, of which the ventral is the stronger, and one of two posterior and onc of two anterior lateral lamellæ in each valve; cardinals more or less twisted; muscle impressions subequal ; pallial line simple or slightly sinuous posteriorly; internal basal margins serrate.

The cardiums form a conspicuous element in the faunas of Cretaccous and Tertiary. They are rather fragile, as a rule, and not well adapted to preservation. The external seulpture is frequently formed from a superficial shelly layer which readily breaks away leaving no scar upon the polished surface beneath. For this reason it is difficult to tell when one is dealing with a perfectly fresh specimen. The recent representatives, the so-called cockles, number about two hundred species and are most abundant in the warmer waters.
A. External sculpture not spinose.

1. Altitude of adult shell not exceeding 40 mm .; posterior area flattened; margins sharply serrate..............Cardium eufalensc
2. Altitude of adult shell exceeding 40 mm .; posterior area not flattened; margins not sharply serrate.

Cardium spillmani
Etymology: карঠía, heart.
B. External sculpture spinose; margins not serrate.

1. Altitude and latitude approximately equal; outline subequilateral..Cardium dumosum
2. Altitude greater than the latitude; outline inequilateral.
a. Anterior abductor muscle scar inconspicuous or obscure.

Cardium tenuistriatum
b. Anterior abductor muscle scar conspicuous....Cardium kiimmeli

Cardium eufalense Conrad
Plate XL, Figs. 1, 2
Cardium eufalense Conrad, 1860, Jour. Acad. Nat. Sci., Phila., $2 d$ ser., vol. iv, p. 282, pl. xlvi, fig. 13.
Cardium eufalense Meek, 1864, Check List lnv. Fossils, North America, Cret. and Jur., p. 12.
Cardium (Trachycardium) eufalense Conrad, 1868, Cook's Geol. of New Jersey, p. 726.
Cardium (Trachycardium) eufalense Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 310.
Not Cardium eufalcnse Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 132, pl. xx, figs. 17-19.

Cardium eufalense Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 577, pl. $1 \times$ iii, figs. 17-20.

Description.-" Obliquely ovate, rather thiek in substance, profoundly ventricose; ribs about thirty-eight, smooth, prominent, aeutely rounded, on the posterior slope angular, compressed or carinated ; summit prominent; beaks contiguous."-Conrad, 1860.

Type Locality.-Eufaula, Alabama.
Shell rather small for the genus, obliquely cordate in outline, inflated, the maximum diameter above the median horizontal; umbones tumid, elevated above the dorsal margin, the apiees incurved and feebly prosogyrate, subeentral in position; dorsal margins approximately straight, the posterior slightly more pronounced than the anterior; anterior lateral margin obseurely truneate, rounding rather abruptly into the dorsal margin and much more broadly into the ventral ; posterior area conspieuously flattened, the lateral margin squarely truneate; base line obliquely areuate; external surfaee seulptured with thirty-five to forty vigorous radials, erowded and inelined to be flattened upon their summits in the umbonal region, V-shaped and separated by interspaces of approximately equal width toward the ventral margins; eostæ twelve to fourteen in number
upon the posterior slope, narrower and more distinetly spaced than upon the anterior and medial portions; ineremental seulpture obscure, excepting for an oceasional resting stage near the umbonal margin; ligament external, opisthodetic, mounted on short, tlickiened nymphs; cardinals two in number in each valve, the anterior very stout and conical, springing from directly beneath the umbones, the posterior mere tubercles at the extremities of the lymphs; short but prominent anterior and posterior laterals developed in the left valve, a double anterior and a single posterior in the right; musele sears rather indistinet placed high up near the extremities of the dorsal margins, the posterior somewhat elongated; pallial line obscure, ventral and lateral margins sharply serrate.
This species is the most abundant representative of its genus within the area under discussion. It is rather smaller than the co-existing species and is best characterized by the flattening of the posterior portion of the shell and the truncation of the posterior lateral margin. The eostals are somewhat tubular in structure so that when the outer layer of the shell surface is removed, as it frequently is by weathering, the intercostal areas appear as flat-topped elevations separated by coneare depressions.

Occurrencc.-Magothi Formatiox. Good Hope Hill, District of Columbia. Matawan Formation. ? Post 105, Chesapeake and Delaware Canal, Delaware; three-quarters of a mile southeast of Ulmstead Point, Ulmstead Point, Gibson's Island, north shore Round Bay, Severn River, Anne Arundel County, Maryland. Monarouth Formation. Bohemia Mills, Fredericktorm, Cecil County; Brightseat, Brooks estate near Seat Pleasant, Friendly, 1 mile west of Friendly, MeNeys Corners, Prince George's County, Maryland.

Collcetions.-Maryland Geological Survey, New Jersey Geological Surrey, U. S. National Museum.
Outside Distribution.-Matauan Formation. Wenonah saud, New Jersey. Black Creek Formation. North and South Carolina. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Mortoniceras subzone, Blufftown, Georgia. Ripley Formation. Exogyra ponderosa zone, Georgia; Barbour County, Alabama. Exogyra costata zone,

Georgia; Eufaula, Alabama; Union and Tippah counties, Mississippi. Extreme top of zone, Pataula Creek, Georgia; Chattahoochec River, Alabama.

Cardium spillmani Conrad

Cardium (Lœvicardium) spillmani Conrad, 1858, Jour. Acad. Nat. Sci., Phila., $2 d$ ser., vol. iiii, p. 326, pl. xxxiv, fig. 3.
Cardium (Liocardium) spillmani Meek, 1864, Check List Inv. Fossils N. A., Cret. and Jur., p. 13.
Cardium (Protocardium) perelongatum Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 136, pl. xx, figs. 20-22; pl. xxi, figs. 4, 5.
Pachycardium burlingtonense Whitfield, 1885, Ibidem, p. 138, pl. xxi, figs. 6, 7. Cardium (Lavicardium) perelongatum Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 15.
Cardium (Lovicardium) burlingtonense Johnson, 1905, Ibidcm, p. 15.
Cardium (Lavicardium) spillmani Johnson, 1905, Ibidem, p. 15.
Cardium spillmani Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 583, pl. lxiv, figs. 9-11.

Description.-" Oblong or profoundly elevated, inequilateral, profoundly ventricose; umbo and summit elevated ; beaks nearly contiguous; surface with distant irregular grooves on the antcrior side, and three to five radiating slightly impressed furrows on the umbonal slope."-Conrad, 1858.

Type Locality.-Owl Creek, Tippah County, Mississippi.
"The dimensions of a nearly perfect internal cast are: Hcight 87 mm ., width 55 mm ., thickness 60 mm . Shell more or lcss narrowly subovate in lateral view, and cordate in end view. Hinge line rather short, arched, extending further downward in front than behind; anterior margin conrex, the curvature becoming greater below; basal margin regularly rounded; posterior margin longer and straighter than the anterior, usually slightly convex, sometimes straight or slightly sinuate in the casts a little above the middle. Beaks situated back of the middle of the hinge line, strongly clevated above it in the casts, pointed, incurved, and distinctly curved forward. Umbones prominent, the most prominent portion of the shell being in an oblique line from the beaks to the postero-basal margin, this umbonal prominence being not at all angular. The posterior slope much more abrupt than the anterior, its surface conspicuously
impressed above the middle of the shell about half-way between the top of the umbonal prominence and the postcrior cardinal extremity. Muscular impressions large, the anterior ones deeply impressed, the posterior ones scarcely or not at all differentiated from the surface of the casts. The left valve with two strong eardinal teeth beneath the beak with a pit between, right valve with a single cardinal tooth; anterior lateral tecth more remote from the eardinal teeth than the posterior ones, and also apparently much stronger. Inner free margin of the valves crenate along the posterior margin, smooth along the basal and anterior margins. Surface of the shell marked by radiating ribs upon the posterior slope, which in the internal casts at least, continue only from the margin up to the umbonal prominence; central and anterior portions of the shell marked by concentric lines of growth only. Both of the species described by Whitfield from New Jersey as Cardium perelongatum and Pachycardium burlingtonense, are certainly internal casts of the shell described by Conrad from Mississippi as Cardium spillmani, the example to which the last two names was applied being an exceptionally broad specimen. The species is for the most part restricted to the Navesink marl, where it attains its maximum sizc. The speeimens which have been rarely notieed in the Merehantville clay are usually small, although Whitfield's P. burlingtonense is a very large example."-Weller, 190%

The species is represented in Maryland merely by imperfect casts, one of which must have been, when perfect, fully 115 mm . in altitude.

Occurrence.-Matawan Fommation. Post 105, Chesapeake and Delaware Canal, Delaware. Monmouth Formation. Bohemia Mills, Great Bohemia Creck, 1 mile southeast of Bohemia Mills, right bank of Bohemia Creek between Scotchman's Crcek and Bohemia Fcrry Bridge, Cecil County, Maryland.

Collections.-Maryland Geologieal Survey, Philadclphia Academy of Natural Seiences, New Jersey Geological Survey, U. S. National Museum. Outside Distribution.-Matawan Formation. Merehantville elay marl, New Jersey. Monmouth Formation. Navesink marl, New Jersey. Blach Creek Formation. North and South Carolina. Peedee Formation. North and South Carolina. Eutaw Formation (Tombigbee sand mem-
ber). Exogyra ponderosa zone, Mortoniceras subzone, Blufftown, Georgia; Prentiss County, Mississippi. Ripley Formation. Exogyra costata zone, Georgia ; Eufaula, Alabama ; Lee, Union and Tippah counties, Mississippi. Extreme top of zone, Pataula Creek, Georgia. Selma Formation. Exogyra costata zone, Wilcox County, Alabama; east-central Mississippi.

Cardium dumosum Conrad

Cardium (Criocardium) dumosum Conrad, 1870, Am. Jour. Conch., vol. vî, p. 75.

Cardium (Criocardium) dumosum Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 133, pl. xx, figs. 9 and ? 13 (not figs. 10-12).
Cardium dumosum Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 15.
Cardium dumosum Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 590, pl. lxv, figs. 7-10.

Description.-" Cordate equilateral, ventricose; umbo broad; summit very prominent; ribs very numerous, small, closely arranged, convex; interstices furnished with numerous long slender spines; postcrior margin subtruncated or slightly convex ; height $1 \frac{1}{8}$ inch ; length the same."Conrad, $18 \% 0$.

Type Locality.-Haddonficld, New Jersey.
The spinose cardiums, C. kümmeli Weller, C. dumosum Conrad and C. tenuistriatum Whitfield, are represented in Maryland merely by casts of the interior or fragments of casts of the exterior. Weller has admirably differentiated the three species from material in a better state of preservation than any available from Maryland, and his diagnoses have been quoted at eonsiderable length.
"The dimensions of a large individual are: Height 18 mm ., width 18 mm ., convexity of one valve 6 mm . Shell subcircular in outline, but slightly inequilateral, moderately convex. Bcaks situated at about the middle of the hinge line, rather small and incurved; umbones prominent, the anterior and posterior eardinal slopes about equally steep; shell slightly compressed at both cardinal extremities. Surface of the shell marked with about fifty-four rounded radiating costæ, with interspaces of about equal width; from the bottom of every third interspace on the central portion of the shell there arises a row of laterally flattened spines 1 to

2 mm . in length, their distance apart being about equal to the space occupicd by two costro the two intervening interspaces are occupied by rows of much smaller tubercles a little compressed laterally, situated at intervals about one-third the distance between the spines in each row. On the anterior and posterior slopes of the shell several rows of spines altcrnate with single rows of tubcrcles. The longest spines occur upon the posterior cardinal slope."-W W cller, 190\%.

The species is represented in Maryland chiefly by casts of the interior, although a few fragments of the exterior surface have been preserved both in the form of casts and of the original shell. The casts are isloated from those of C. kümmeli and C. tenuistriatum Whitfield by their relatively broader, more globose and much more nearly equilateral outline. It is by far the most abundant of the three species within the area under discussion.

Occurrence.-Mataivan Formation. ? Post 105, Chesapeake and Delawarc Canal, Delaware. Monmoutif Formation. Brightseat, Brooks estate near Seat Pleasant, 2 miles southwest of Oxon Hill, Prince George's County, Maryland.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, U. S. National Museum.

Outside Distribution.-Matawan Formation. Woodbury clay, Wenonah sand, New Jersey. Monmouth Formation. Red Bank sand, Ncw Jersey. Eutaw Formation (Tombigbee sand member). Exoyyra ponderosa zone, Prentiss County, Mississippi. Ripley Formation. Exogyra costata zonc, Union and Tippah counties, Mississippi.

Cardium tenuistriatum (Whitfield) Weller

Cardium eufalensis Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 132, pl. xx, figs. 18, 19 (not fig. 17). (Not C. eufalense Conrad, 1860.)
Cardium (Criocardium) dumosum Whitfield, 1885, Ibidem, p. 133, pl. xx, figs. 10-12 (not figs. 9 and ? 13). (Not C. dumosum Conrad, 1870.)
Cardium (Criocardium) multiradiatum Whitfield, 1885, Ibidem, p. 135, pl. xxi, figs. 1-3. (Not C. multiradiatum Gabb, 1860.)
Fragum tenuistriatum Whitfield, 1885, Ibidem, p. 139, pl. xx, figs. 15, 16, Cardium tenuistriatum Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 591, pl. 1xv, figs. 13-19.

Description.-" Shell below a medium size, irregularly trapezoidal or subtriangular in outline, highly ventricose and sharply angular along the posterior umbonal ridge, with a nearly vertical postero-cardinal slope. Beaks large, prominent and attenuated, projecting considerably above the hinge line. Anterior side of the shell short and regularly rounded ; posterior vertically truncate and the basal line oblique, being prolonged below toward the posterior umbonal angle. Surface marked, on the body of the shell at least, by very fine, semi-obsolcte, radiating striæ, the posterior cardinal slope not showing evidences of striations on the cast, the only condition under which it has been observed. Hinge features unknown.
"The shell has all the generic features of the genus Fragum, as far as can be determined from the exterial form, while the striations of the surface are much finer than is usually the case; but no ornamentation can be detected on the striations, and the features of the hinge are not visible. It is the only form of similar character yet knowin to me in the formations of the state."—Whitfield, 1885.

Type Locality.-Marlborough, New Jersey.
"The dimensions of an internal cast are: Height 44 mml ., width 37 mm ., thickuess 35 mm . Large cxanuples sometimes attain a height of over 60 mm . Shell irregularly subovate in lateral view and cordate in end view. Hinge line arcuate; anterior and basal margins, from the extremity of the hinge line to the middle of the basal margin, describing a nearly regular, arcuate curve; postcro-basal margin curving more sharply around the postero-basal extremity of the shell into the posterior margin; posterior margin much straighter than the anterior, usually gently convex but sometimes nearly or quite straight. Beaks situated at about the middle of the hinge line, rather prominent, elevated, pointed and incurved, considerably more prominent in the casts than in the specimens with the shell preserved. Valves gibbous, most prominent, but not angular, along a line from the bcaks to the postero-basal extremity, the posterior slope more abrupt than the anterior. Muscular impressions rather large. the posterior one scarcely impressed and often scarcely dis-
tinguishable upon the casts; the anterior ones more strongly impressed. Each ralve with a strong, somewhat curved cardinal tooth beneath the beak, with a pit for the reception of the tooth of the opposite valve; in each valve is a single anterior and posterior, rather strong, lateral tooth, somewhat remote but nearly equidistant from the eardinal tooth. The inuer free margin of the valves is crenate. Externally the shell is marked by flat, radiating costre wider than the interspaces; from the interspaces rise rows of laterally compressed spinules or tubercles which are longer and stronger upon the anterior and posterior slopes towards the hinge extremities; on the eentral portion of the shell each third row of processes is more conspicuous than the two intervening rows, the spines being longer and larger, one of them oceupying the space of two or three of the smaller ones of the intervening rows, the smaller ones sometimes being scarcely more than tubercles but little elevated above the surface of the ribs of the shell; upon the anterior and posterior slopes of the shell the rows of larger and smaller spines alternate, there being but a single row of smaller spines between the larger ones.
"This species is by far the commonest and most widely distributed Cardium in the Cretaceous faunas of New Jcrsey. It exhibits considerable variation, especially in the straightness of the posterior margin of the shell and in the prominence of the postero-basal extremity, but the casts can almost always be easily recognized by the strong convexity or gibbosity of the valves, and the abrupt posterior slope as compared with the anterior. The surface markings of the shell most closely resemble those of C. dumosum, but the radiating eostre are comparatively broader and flatter with narrower interspaces, and consequently the spines upon the surface are more compressed laterally. C. dumosum is also more nearly equilateral, with less convex valves than this species, and does not attain so large a size.
"It has been a matter of much difficulty to determine to what specics this common shell should be referred. Previous to the publication of Whitfield's monograph it seems usually to have been referred to C. multiradiatum, or to C. eufalense. Whitfield has apparently illustrated dif-
ferent individual internal casts of the species under four different specific heads. His figures 18 and 19 of C. eufalense represent a more than usually gibbous cast of this species, the true C. eufalense being a fundamentally different shell without the spines rising from the interspaces between the ribs, and consequently not even a member of the subgenus Criocardium. Whitfield's figures 10 and 11 of C. dumosum represent a more than usually rounded form of the species under discussion, the specimen is larger, more convex and has a steeper posterior slope than the true C. dumosum. Figure 12 of the same author, an enlargement to illustrate the surface characters of C. dumosum, also proves, upon examination of the specimen, to be taken from a member of the species under consideration; the illustration is not an accurate representation of the characters of the specimen, the costæ being too narrow, the interspaces too wide, and the spines not enough compressed laterally. The internal cast used by Whitfield as the original for his figures 1 and 2 of 0. multiradiatum seems to be a member of this species also; a specimen ill the recent collections of the Survey from the Navesink marl near Crawfords Corner agrees almost exactly with this illustration, and it is undoubtedly a member of the species under discussion. The enlarged illustration, figure 3 , given to represent the surface characters of this same species, is much overdrawn, the original mould from which the gutta-percha impression was taken being altogether too imperfect to show to what species it belongs."-Weller, 190\%.
The casts of C. tenuistriatum Whitfield are readily separable from those of C. dumosum Conrad by the much higher relative altitude and the truncated posterior margin. The resemblance to the casts of C. kümmeli Weller is much closer, but the umbones are somewhat less elevated and less acute and the anterior adductor muscle scar much less prominent.

Occurrence.-Matawan Formation. Park Point, and ? Ulmstead Point, Anne Arundel County. Monmouth Formation. ? Jones farm, Burklow's Creek, Cecil County.

Collections.-Maryland Geological Survey, Columbia Univerisity, New Jersey Geological Survey.

Outside Distribution.-Matawan Formation.. Merchantville clay marl, Marshalltown clay marl, Wenonah sand, New Jersey. Monmouth Formation. Navesink marl, New Jersey.

Cardium kümmeli Weller

Cardium kümmeli Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 585, pl. lxvi, figs. 1-3.

Description.-"The dimensions of a rather small internal east of a right valve are: Height 45 mm ., width 34 mm ., convexity 17.5 mm . Large individuals sometimes attain a height of 70 mm . or more. Sliell suborate in lateral riew, cordate in end view. Beaks of the internal casts greatly elevated abore the hinge line, pointed and ineurved. Hinge line arcuate; anterior margin regularly rounded from the extremity of the hinge line to the middle of the basal margin ; postero-basal margin a little more sharply rounded; posterior margin convex, a little straighter than the anterior. Valves strongly convex or gibbous, most prominent, but not at all angular, along an oblique line from the beaks to the posterobasal extremity, the posterior slope more abrupt than the anterior. Muscular impressions large, the anterior ones deeply impressed above, the posterior one scarcely differentiated from the general surface of the casts. Hinge characters not seen. Inner free margins of the valves apparently not erenate. Shell substance thiek, rugose externally. The surface markings consist of strongly elevated, rounded, radiating costæ, narrower than the interspaces; on a specimen about 55 mm . in length the distance between these ribs from center to center at the middle portion of the shell margin is about 2 nmm . or a little less. Each third interspacc is occupied by a row of strong and thick spines rising 1 or 2 mm . above the tops of the costæ when complete, subcircular in cross-section, their bases occupying the entire width of the furrow, the space between successive spines being about equal to the thickness of the spines themselves; in some cases the bases of the spines are thickencd longitudinally so that they occupy essentially the entire furrow, in which ease the two bounding costee with the row of spines rising from the intervening furrow appear to form altogether one broad rib supporting a row of strong spines. The two furrows
intervening between the rows of strong spines are each occupied by a row of very much smaller, laterally compressed spines whose bases are more or less connected.
"There is considerable variation shown in the surface markings of different individuals of this species, and the extromes might be taken as the representatives of distinct species or even of distinct subgencra. In its typical form, as seen in the Tinton beds, the specics exhibits clearly the characteristics of the subgenus Criocardium, the rows of spines rising from the interspaces betwen the radiating coste of the shell. In some specimens the bases of the larger spines or nodes are confluent and appear to entirely fill the interspace occupied by them, so that the two bounding costæ with the row of spines together seem to constitutc a single broad rib crowned with a row of strong nodes. At the same time the rows of secondary nodes are sometimes confluent at their bases and form a continuons secondary rib, perhaps nodose on top, and about equaling in height and size the primary coste, so that there seem to be three costre of nearly equal size in the broad interspace between the rows of large nodes and their included bounding costr. In the extreme development of the rows of secondary nodes their bases are confluent and they increase in size and height so as to occupy the whole of the interspaces, obliterating entirely the primary costz, so that the surface of the shell is apparently marked by radiating rows of tubercles which apparently do not rise from interspaces between costæ, but directly from the surface, cach third row being much larger and stronger than the two intervening ones.
" It is possible that larger collections of more perfectly preserved material than is now available would show that more than one species has been included under this head, but so far as can be determined from present collections, all these forms seem to run together. The typical form of the species, however, is that in which the nodes rise distinctly from the interspaces, showing the characters clearly of the subgenus Criocardium, and which has been recognized only in the Tinton beds.
" In its somewhat elongate and slender form, the specics in the form of internal easts somewhat resembles the casts of C. spillmani and they have sometimes been so identified. It does not grow so large as that
speeies, however, it laeks the radiating ribs usually impressed upon the posterior slope of C. perelongatum, and the anterior museular sear is not so low in position.
"In the eollections of the National Museum at Washington this species is represented by numerous examples from the South, which have usually been referred to C. dumosum. These southern speeimens are perfeetly preserved shells whieh are smaller than the usual examples from the Tinton beds in New Jersey, but their surfaee markings are identieal with those of the type speeimen. The speeies differs from C. dumosum in its more elongate form and in the mueh coarser surfaee markings. C. tippana is another allied form in whieh the surfaee markings are fully as eoarse as in C. kümmeli, but there is only a single row of smaller tubereles between the larger ones in that species, instead of two as in C. kümmeli."Weller, 190%.

Type Locality.-Beers Hill Cut, New Jersey.
The easts of C. kiummeli are charaeterized by higher, more acute umbones than those of either C. dumosum or C. tenuistriatum. It is further differentiated from C. dumosum by the relatively higher altitude, the less equilateral outline and the more prominent anterior adduetor muscle scar.

Occurrence.-Matawan Formation. Camp Fox, Post 236, Post 218, Canp U \& I, Post 196, one-cighth of a mile west of Summit Bridge, Chesapeake and Delaware Canal, Delaware; 1 mile west of Chesterfield, Anne Arundel County, Maryland. Monmouth Formation. Two miles west of Delaware City, on John Higgins farm, Delaware; Brooks estate near Seat Pleasant, 1 mile west of Friendly, Prince George's County, Maryland.
Collections.-Maryland Geologieal Survey, New Jersey Geologieal Survey, U. S. National Museum.

Outside Distribution.-Monmouth Formation. Navesink marl, Tinton beds, New Jersey. Ripley Formation. Exogyra costata zone, Eufaula, Alabama; Quitman, Union and Tippah eounties, Mississippi. Extreme top of zone, Pataula Creek, Georgia; Barbour and Henry counties, Alabanla.

Superfamily VENERACEA Family VENERIDAE
 Genus DOSINIA Scopoli

[Introd. ad Hist. Nat. 1777, p. 399]
Type.-Dosinia africana Hanley.
" Animal with a large arcuate foot and closely united siphons. Complete dental formula (the posterior right cardinal, being extremely thin, is often broken off, eroded, or obsolete) L. $\begin{aligned} & \text { L. } 0101010.010 \text {. 'The thick } \\ & \text { R. } 1010101.101\end{aligned}$ middle cardinals are often bifid or excavated. Valves suborbicular, generally compressed, with a long and strong ligament seated in a groove and enfolding a heavy resilium, lunule small, impressed; escutcheon narrow. nearly linear or absent; hinge plate broad and thick, valve margins smooth; pallial sinus rather long and usually acute, anterior lateral teeth nearly obsolete and usually simple; sculpture usually of elegantly concentric grooves and interspaces, sometimes raised into lamellæ at the borders of the lunule and escutcheon, crossed rarely with weak radial threads; coloration of the recent species rarely disposed in patterns and usually pale, many species being white. The periostracum is usually thin and polished."-Dall, 1903. ${ }^{\text {. }}$

The genus was initiated in the Cretaceous but not very well represented. The rather large and rotund shells are, howcycr, very much in evidence in the Tertiary and Recent faunas. The Recent specics number about one hundred, and have an almost universal distribution in the temperate and warmer waters.

Dosinia obliquata Conrad
Dosinia obliquata Conrad, 1860, Jour. Acad. Nat. Sci., Phila., $2 d$ ser., vol. iv, p. 278, pl. xlvi, fig. 2.

Dosinia obliquata Meek, 1864, Check List Inv. Fossils N. A., Cret. and Jur., p. 13.

Description.-"Lentiform, very oblique; beaks - almost terminal; minute, concentric, rcgular, closely arranged, impressed lines on the anterior side."-Conrad, 1860.

Etymology: Dosin, a Sengalese name used by Adanson as a specific name.
${ }^{2}$ Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. vi, p. 1227.

Type Locality.-Owl Creek, Tippah County, Mississippi.

Conrad's figure somewhat belies his description. The shell is rather small and thin, subeireular and feebly convex; the umboncs are rather gribbous for the genus, the apices aeute and prosogyrate, rising above the dorsal margin and approximately central, not terminal in position. The area of maximum inflation extends obliqucly backward from the umbones to the posterior ventral margin widening toward the base, thus giving to the shell the eharacteristically oblique aspect which inspircd the namc. The anterior end is broadly and symmetrically rounded, the posterior obseurely truneated, the base line areuate. The external surface is seulptured with very fine, overlapping eoncentric laminæ, most sharp and most regular in the eumbonal region and along the anterior margin. The characters of the interior are not known.

The species is represented in Maryland by a single imperfect valve.
Occurrence.-Monmouth Formatiox. Brooks estate near Seat Pleasant, Prince George's County.

Collection.-Maryland Geological Survey.
Outside Distribution.-Ripley Formation. Exogyra costata zone, Tippah County, Mississippi.

Genus CYCLINA Deshayes

[Traité Elém., vol. i, 1849, p. 623]
Type.-Venus sinensis Gmelin $=$ Venus chinensis Gmelin.
"The dental formula is L. 0101010 . The fourth, or posterior, right eardinal is nearly obsolcte; the one in front of it and the anterior left eardinal are bifid. The shell is suborbicular, nearly equilateral, and plump; the ligament uneovered but deep-set; there is ncither a defined lunule nor escutcheon, the sculpture is faint and chiefly conccntrie, feebly retieulated by radial strix ; the hinge plate is broad, the inner margins of the valves crenulate, the pallial sinus moderate in size, aeutely angular in front, and obliquely ascending. There is no trace of lateral teeth; the periostracum is polished and translucent, the eoloration tinted, without

[^15]a distinet pattern. The typical forms are denizens of China, Japan, and Korea. The two American forms which have been referred to this genus by Deshayes are diseussed under the head of Cyclinella, and are probably allied to Mysia. They differ conchologically by having smooth inner margins to the valves, a defined lunule, no trace of the fourth right cardinal tooth, and purely concentric sculpture."-Dall, 1903. ${ }^{1}$

Cyolina parpa n. sp.

Plate XLI, Figs. 5, 6
Description.-Shell poreellanous, rather heary for its small size, subcircular in outline, moderately inflated, the maxinum convexity above the median horizontal; umbones subcentral, rather prominent, with fine prosogyrate apices placed a little in front of the median vertical; lunule and escutcheon not differentiated; dorsal margins obliquely truncate, the anterior shorter and more gently sloping than the posterior; anterior extremity broader and swoothly rounded ; posterior extremity obscurely truneate; base line evenly areuate; external surface smooth, excepting for faint eoneentrie striations and two or three well defined resting stages, the strix least feeble toward the lateral and ventral nargins, but absent altogether in the immediate vicinity of the umbones; ligament external, opisthodetic, mounted on a rather short and slender nymph; cardinals three in number in each valve, radiating fan-like from beneath the umbones, the anterior cardinal in the right valve thin, laminar and somewhat produced, the middle cardinal stouter, widening rentrally, the posterior obliquely produced and asynmetrically bifid; anterior and medial cardinal of the left valve united bencath the umbones, the anterior slender, laminar, elongated, the medial shorter, slightly elongated and stouter, the posterior very slender and not very much produced; adductor scars relatively large, narrow but elongated, placed well up near the extremities of the hinge line; pallial sinus distinct, aeutely angulated at about 90°, the breadth and depth approximately equal; pallial line distant; imner ventral margins simple.
${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol, iii, pt. vi, p. 1234.

Dimensions.-Altitude 3.7 mm ., latitude 4 mm ., semi-diameter 1.4 mm .
Type Locality.-Brooks estate near Scat Pleasant, Prince George's County.

This small Venerid is quite unique in the molluscan faunas of the East Coast Upper Cretaceous.

Occurrence.-Monmouth Fohmation. Brightseat, Brooks estate near Seat Pleasant, Friendly, McNeys Corners, Prince George's County.

Collection.-Maryland Geological Survey.

Genus MERETRIX Lamarck

[Prodrome Nouv. Class. Coq., 1799, p. 85]
Type.-Venus Meretrix Linné.
" Shell trigonal, plump, subequilateral, thin, smooth, with a vernicose periostracum and a peculiar olivaceous tone of coloration; lunule and escutcheon not distinctly defined ; cardinals three in eaeh valve, with wellmarked auterior laterals ; the middle left and two anterior right cardinals entire, smooth, the others grooved or bifid; right nymph and posterior left cardinal corrugated; dorsal margins, beyond the hinge plate, grooved to receive the edge of the opposite valve; internal margins smooth, the pallial line with a shallow arcuate flexuosity but no angular sinus."Dall, $1903 .{ }^{1}$

The genus was initiated in the Crctaceous. The recent species are most abundant in the Pacific.

Meretrix cretacea (Conrad) Weller
ENora cretacea Conrad, 1870, Am. Jour. Conch., vol. vi, p. 72, pl. iii, fig. 8. Eora cretacea Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 167, pl. xxiii, figs. 16, 17.
Eora cretacea Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 16.
Meretrix cretacea Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 608, pl. Ixviii, figs. 4-7.

[^16]Description.-"Subtriangular, subequilateral, convex; end margins acutely rounded; umbo slightly prominent; lunule lanceolate, slightly defined by an impressed line; ventral margin rounded."-Courad, 18%.

Type Locality.-Haddonficld, New Jersey.
"Shell below mediun size, the dimensions of an average cxample are: Height 16.5 mm ., approximate length 23 mm ., convexity of one valve 5 mm .; somewhat triangularly subelliptical in outline. Valves moderately convex, beaks small, situated antcrior to the middle; antcro-cardinal margin concave; anterior margin rather sharply rounded above, curving more gently below and passing without interruption into the broadly rounded ventral margin; posterior margin rather short, obscurely subtruncate; post-cardinal margin long, gently convex, meeting the anterocardinal margin at the beak in an angle of 120°. Postero-cardinal margin somewhat inflected, especially towards the bcak; antero-cardinal margin inflected in front of the beak to form a shallow lunule of moderate width. Surface of shell marked by more or less irregular, concentric lines of growth only. Hinge of the left valve with three cardinal teeth diverging from beneath the beak, the two anterior ones of about equal length, extending directly beneath the beak with a triangular pit between them, the posterior one much more oblique and morc elongate. In front of the cardinal teeth is a single low lateral beneath the lunule and parallel with the shell margin. In the right valve there are two divergent, bifid cardinal teeth with a pit beneath the lunule for the reception of the anterior lateral tooth of the oposite valve."-Weller, 190\%.

The only evidence of the former presence of this species in Maryland and Delaware is a single imperfect cast from the Chesapeake and Delaware Canal.
Occurrence.-Matawan Formation. Summit Bridge, Chesapeakc and Delaware Canal, Delaware.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey.

Outside Distribution.-Matawan Formation. Woodbury clay, Marshalltown clay marl, New Jersey.

Genus ANTIGONA Schumacher ${ }^{1}$
[Essai, 1817, pp. 51, 154]

Type.-Antigona lamellaria Schumacher.
"Shell smaller and more trigonal, less rotund than Oytherea s. s.; the left anterior lateral lamelliform and larger, with a perceptible socket in the right valve; the posterior right cardinal broad and deeply bifid; pallial sinus small, triangular."-Dall, 1903. ${ }^{2}$

Subgenus APHRODINA Conrad

[Am. Jour. Conch., vol. iv, 1869, p. 246]
Type.-Meretrix tippana Conrad.
" Shell rounded or suboval, striated or sulcated; hinge in the left valve with three diverging eardinal teeth, the anterior tooth as thick as the middle one or thicker, and a straight, compressed, transversely rugose lateral tooth parallel with the margin of the shell above it; pallial sinus deep, and similar to that in Caryatis Roemer."-Conrad, 1868.
"Shell concentrically striated, with a eircumscribed lunule, but no defincl escutcheon; inner margins smooth; pallial sinus ample, frec, ascending, rather rounded in front; hinge with three cardinals in each ralve, the right posterior cardinal bifid; an elongate anterior lateral corrugated on both sides and received into a corrugated pit in the right valve; nymphs plain."-Dall, 1903. ${ }^{3}$

Antigona (Aphrodina) tippana Conrad

Plate XL, Figs. 3, 4
Meretrix tippana Conrad, 1858, Jour. Acad. Nat. Sci., Phila., $2 d$ ser., vol. iii, p. 326, pl. xxxiv, fig. 18.
Dione tippana Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 13 ..

Etymology: Antigone, daughter to Cidipus.
${ }^{1}$ Cytherea Bolten, 1798, (part) Mus. Boltenianum, ed. i, p. 177; 1819, ed. ii, p. 124. Venus puerpera Linnæus. Not Cytherea Fabricius (Diptera), 1795, Lamarck, 1806, nor H. and A. Adams, 1856.

Callista Fischer, 1887, Man. de Conch., p. 1084. Venus verrucosa Linné. Not Callista Morch, 1853.
${ }^{2}$ Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. vi, p. 1273.
${ }^{*}$ Trans. Wagner Free Inst. Sci., Phila., vol. iiii, pt. vi, p. 1272.

Aphrodina tippana Conrad, 1868, Cook's Geol. of New Jersey, p. 727.
Aphrodina tippana Conrad, 1869, Am. Jour. Conch., vol. iv, p. 246, pl. xviii, fig. 5.
Aphrodina tippana Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 154, pl. xxii, figs. 6, 7.
Aphrodina tippana Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 16.
Meretrix tippana Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 607, pl. lxviii, figs. 1, 2 (ex parte).

Description.-" Subtriangular, obsoletely striated concentrically ; anterior sides slightly compressed, with an ascending basal margin, extremity rather acutely rounded, distant from the apex; base a little prominent in the middle, subtruncated on either side; posterior end but slightly more obtuse than the anterior ; beaks prominent."-_Conrad, 1858.

Type Locality.-Owl Creek, Tippah County, Mississippi.
Shell rather large and heavy, ovate-trigonal in outline, evenly but strongly inflated; lunule narrow, elongated, defined by an impressed line; area behind the umbones somewhat flattened but escutcheon not differentiated; umbones rather prominent by reason of their position at the apex of an angle of a little more than 90°; umbones evenly rounded but not strongly inflated, the apices incurved, prosogyrate, slightly anterior in position ; antcrior extremity strongly arcuate, even a little nasutc in front of the lunule; posterior dorsal margin obliquely arcuate, the lateral margin obscurely truncate; ventral margin convex, more strongly upcurved in front than behind; external surface concentrically striated with a vigorous incremental sculpture which becomes increasingly prominent toward the ventral margin; ligament external, opisthodetic, mounted on rather a slender nymph which extends a little less than half-way down the dorsal margin; cardinals three in number in each valve, the anterior cardinal of the right valve short and slender, the middle cardinal trigonal, the pasterior laminar and elongated, anterior cardinal of the left valve trigonal and stouter than that of the right, the middle cardinal rather short and slender, the posterior elongated parallel to the nymph, a single short lateral elongated parallel to the lunular margin in the right valve, received in a double socket in the left; muscle impressions distinct but not conspicuous, the anterior semi-elliptical, the postcrior subcircular ; pallial line distinct, the
sinus linguiform and obliquely ascending almost but not quite to the median horizontal.

Aphrodina tippana Conrad is one of the most widely distributed and most characteristic species of the Exogyra eostata zone. Weller has determined some casts from the Matawan of New Jersey by this namc, but they seem to show at least a subspecific difference in the shorter, relatively higher outline and the less produced, more broadly rounded posterior end.

Oeeurrenee.-Monmotth Formation. Brightseat, Prince Gcorge's County.

Colleetions.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, U. S. National Museum.

Outside Distribution.-Magothy Formation. New Jersey. Ripley Formation. Exogyra costata zone, Union, Tippah and Alcorn counties, Mississippi; Georgia; Eufaula, Alabama. Extreme top of zone, Chattahoochee River, Georgia.

Genus LEGUMEN Conrad

[Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iii, 1858, p. 325]
Type.-Legumen ellipticus Conrad $=$ L. planulatum Conrad.
"Shell equivalve, very inequilateral, flattened; hinge with two very slender teeth in the right valve under the beak, and one posterior, very oblique, prominent, lamelliform tooth."-Conrad, 1858.

Legumen like the associated Leptosolen occurs most frequently in the form of casts, but it is readily differentiated from the latter by the relatively greater altitude, the ellipsoidal rather than cylindrical outline, and particularly by the absence of a sulcus across the umbones.

The genus, though quite abundaut locally, has a restricted distribution within the Cretaceous.
A. Altitude of shell not more than half the latitude....Legumen planulatum B. Altitude of shell equal to or greater than half the latitude

Legumen earolinense

[^17]
Legumen planulatum Conrad

Plate XL, Figs, 5-8

Solemya planulata Conrad, 1853, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. ii, p. 274, pl. xxiv, fig. 11.
Legumen ellipticus Conrad, 1858, Ibidem, vol. iii, p. 325, pl. xxxiv, fig. 19
Legumen appressus Conrad, 1858, Ibidem, p. 325.
Lcgumen appressa Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 15.
Legumen elliptica Meek, 1864, Ibidem.
Legumen planata Meek, 1864, Ibidem.
Legumen ellipticus Conrad, 1868, Cook's Geol. of New Jersey, p. 727.
Legumen appressus Conrad, 1868, Ibidem.
Legumen planulatus Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 304
Legumen planulatum Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 184, pl. xxv, figs. 3, 4.
Legumen appressum Whitfield, 1885, Ibidem, p. 185, pl. xxv, figs. 6-8.
Legumen ellipticum Whitfield, 1885, Ibidem, p. 184, pl. xxv, fig. 5.
Legumen planulatum Johnson, 1905, Proc. Acad. Nat. Sci., Plila., p. 17.
Legumen appressum Johnson, 1905, Ibidem.
Legumen ellipticum Johnson, 1905, Ibidem.
Legumen planulatum Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 612, pl. lxix, figs. 3-7.

Description.-" Elliptieal, compressed, sides flattened; end margins rounded; hinge and basal margins nearly parallcl."-Conrad, 1853.

Type Locality.-Monmouth County, New Jerscy.
Shell very thin and porcellanous, much compressed, transversely cllipsoidal in outline, slightly expanding postcriorly; dorsal and ventral margins subparallel; posterior extremity strongly areuate, anterior end of shell slightly constricted directly in front of the umbones; the lateral margin evenly and strongly convex; lunule and escutcheon not defined; umbones very low and compressed with sharp and prosogyratc apices placed within the auterior third; external surface adorned with a sharp incremental sculpturc, almost obsolete in the umbonal region and along the extreme dorsal margin, sharpest and most regular near the antcrior ventral margin; radial sculpture not developed; ligament submarginal, seated on a nymph not quitc half as long as the posterior dorsal margin ; cardinals three in number in each valve; the antcrior and middle cardinals of the right valve thin, laminar and rather short, diverging beneath the
umbones at rather a small angle; the posterior cardinal also thin and laminar, fincly bifid, much elongated and set close under the nymph to which it is approximately parallcl; anterior cardinal of left valve thin and laminar, but quite prominent, fitting between the anterior and middle cardinals of the right valve; the middle and posterior cardinals of the left valve laminar and elongated, the posterior more produced and narrowly sulcate, both of them placed far back under the dorsal margin and diverging from one another and from the ligament nymph at a very small angle in order that they may reccive the posterior cardinal of the right valve; muscle impressions small, obscurc; pallial line ruming close to the ventral margin; sinus short, broad, acutely angulated at its anterior extremity.

Occurrence.-Matawan Fomation. Three-quarters of a mile southwest of Ulmstead Point, Anne Arundel County. Monmouth Fomation. Frceman's Creck, Kent County ; Brightseat, Brooks estate ncar Scat Pleasant, Friendly, McNeys Corners, 2 miles south of Oxon Hill, Prince Gcorge's County.

Collections.-Maryland Geological Survey, Philadclphia Academy of Natural Sciences, New Jersey Gcological Survey, U. S. National Muscum.

Outside Distribution.-Matawan Formation. Merchantville clay marl, Woodlury clay, Wenonah sand, New Jerscy. Monmouth Formation. Navesink marl, Red Bank sand, New Jersey. Black Creek Formation. North and South Carolina. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zonc, Mortoniceras subzone, Gcorgia. Ripley Formation. Exogyra ponderosa zone, Barbour County, Alabama. Exogyra costata zone, Schley County, Georgia; Eufaula, Alabama; Union and Tippah counties, Mississippi. Extreme top of zone, Pataula Crcek, Gcorgia. Selma Formation. Exogyra costata zone, Wilcox County, Alabaina ; east-central Mississippi.

Legumen carolinense (Conrad)
Baroda carolinensis Conrad, 1875, Kerr's Rept. Geol. Survey, North Carolina, Appendix, pp. 8, 9, pl. ii, fig. 10.
Description.-" Shell oblong, very inequilateral, convex, with a few slightly impressed concentric furrows; posterior cardinal margin long,
straight, oblique; margins rounded; umbonal slope undefined and regularly convex with post-umbonal slope. 'Ihis is the first species found in America, and represents an intcresting exclusively Cretaceous genus. The hinge fortunately can be obtained in perfection at Snow Hill. The genus is eommon to the Senonian strata in America, Europe and Southern India."-Conrad, 1875.

Type Locality.-Snow Hill, North Carolina.
Ligament external, opisthodetic, nymphs elongated and produced more than half the length of the dorsal margin; eardinals three in number in right valve, two in left; the anterior and middle cardinals of the right valve rather short, simple and not very heavy, diverging at rather a small angle from beneath the umbones, the posterior eardinal laminar obliquely elongated and placed far back toward the nymph; eardinals of the left valre two in number, the anterior laminar, the posterior shorter but rather stouter, diverging beneath the umbones at an angle of about 25°; spaee between the anterior cardinal and the dorsal margin wider than that between the posterior cardinal and the nymph; musele impressions rather large, unequal, the anterior elongated, the posterior subcireular, situated above the mectian horizontal near the extremities of the hinge plate ; pallial sinus broad, moderately deep, horizontally directed, obtuse; imer ventral margins simple.

Occurrence.-Matawan Formation. Cassidy's Landing, Cecil County.

Collections.-Maryland Geologieal Survey, U. S. National Museum.
Outside Distribution.-Black Creek Formation. North and South Carolina. Ripley Formation. Exogyra pondcrosa zone, Barbour County, Alabama.

Genus CYPRIMERIA Conrad.
[Proc. Acad. Nat. Sci., Phila., 1864, p. 212]
Type.-Cytherea excavata Morton.
Lentiform; linge of right valve broad, with a bifid oblique cardinal tooth under the apex, and two oblique acute anterior teeth, with an inter-

Etymology: Kípıs, Cypris, a surname of Venus and a Lamarckian genus of bivalves.
mediate pit for the reception of the tooth in the opposite valve."-Conrad, 1864.
"This genus is characteristically Cretaceous and has a suborbicular shell fecbly concentrically sculptured, rather heary and moderately convex, without any circumscribed lunule or eseutcheon, the ligament external, but set in a depressed area, on cach side of which the ralves rise to a rounded dorsal limit but without becoming keeled. The internal margins of the valves are smooth. The hinge formula is $\frac{\mathrm{L} .101010}{\mathrm{R} .010101}$. The first anterior left cardinal and the anterior two right cardinals arc entire, the others grooved or bifid. There is no trace of any lateral tooth. The pallial line is almost simple; a slight flexuosity, as in Circe, alone represents the sinus. It is obvious that the animal must have had very short siphons, if any, and camnot have been elosely related to Dosinia, as supposed by Stoliczka."-Dall, $1903 .{ }^{1}$
A. Adult shell not exceeding 45 mm . in altitude; valves compressed, squarely truncate posteriorly..........................Cyprimeria depressa
B. Adult shell frequently exceeding 45 mm . in altitude; valves more or less inflated, rounded posteriorly or obliquely truncate.

Cyprimeria major

Ctprimeria depressa Conrad

Plate XL, Figs. 8-10
Dosinia depressa Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 278, pl. xlvi, fig. 6.

Dosinia depressa Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 13.

Cyprimeria depressa Conrad, 1875, Kerr's Rept. Geol. Survey of North Carolina, Appendix, p. 9.
Cyprimeria depressa Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 308.
Cyprimeria depressa Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 156, pl. xxil, figs. 11, $12 . \quad$ (Synonymy excluded.)
Cyprimeria depressa Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 16.
Description.-" Longitudinally suboval, convex-depressed, inequilateral; dorsal margin somewhat arcuated, subangular at the posterior extremity; umbo flattened; beak not prominent; disk smooth or with a few distant furrows; umbo minutely and elegantly striated concentrieally; length considerably more than the height."-Conrad, 1860.

[^18]
Type Locality.-Eufaula, Alabama.

Shell rather small and thin for the genus, transvcrsely orate in outline, eonspicuously compressed; lunule and escutcheon not differentiated; umbones small, flattcned, anterior, the apices acute, prosogyrate and projeeting slightly beyond the dorsal margin; umbonal angle not far from 140°; anterior dorsal slope less gentle, more uniform, and less produced than the posterior, merging gradually into the anterior lateral margin; posterior dorsal margin produced more or less gibbous, very thin and sharp by reason of the bevelling along its inner surface ; posterior lateral margin vertically truncate; base line obliquely arcuate, much more strongly so in front than behind; external surface striated with a modified incrementai sculpture which is sharp and regular in the immediate vicinity of the umbones, but which becomes less sharp and less regular away from them; resting stages increasingly numerous toward the base line; liganent submarginal, opisthodetic ; cardinals three in number in each ralve, radiating fan-like from beneath the umbones; anterior cardinal of right valve sharp, elerated, laminar, the middlc cardinal broad, low, asymmetrically cuncate, the posterior cardinal even more elcvated than the anterior and, like it, thin and laminar, though feebly reinforced upon its anterior surface; anterior cardinal of left valve rather heavy, expanding ventrally, the middle cardinal elcvated along its posterior margin, the postcrior, thin, sharp, laminar and not very prominent; laterals not dcveloped, though there is a minute and irregular depression a little less than half-way down the posterior dorsal margin of the left valve, whieh is oceupied by a eorresponding elevation in the right; musele sears rather small and obscure, the anterior elongated, the posterior semi-elliptical, placed high up under the extremities of the hinge platc; pallial line simple but truncated posteriorly, far distant from the base line; inner ventral margins simple.

Cyprimeria depresssa Conrad might more properly have been 11amed compressa, since the extreme compression of the valve is the most striking diagnostic of the species. It is the smallest member of the genus reported from the area under discussion. The only resemblance sufficiently striking to cause confusion is that with the larger, less compressed C. cretacea

Conrad. The latter is, however, less produced posteriorly and its dorsal margin is more gibbous.

Though less conspieuous a factor than C. major n. sp., it is almost as abundant in number of individuals in the Monmouth of Prince George's County.

Occurrence.-Monmouth Formation. Brightseat, Brooks estate near Seat Pleasant, 1 mile west of Friendly, Fort Washington, Prince George's County.

Collections.-Maryland Geologieal Survey, Philadelphia Aeademy of Natural Sciences, U. S. National Museum.

Outside Distribution.-Black Creek Formation. North and South Carolina. L'utuw Formation. Exogyra ponderosa zone (basal), Russell County, Alabama. (Tombigbce sand member) Exogyra ponderosa zonc, Morloniceras sulzone, Russell County, Alabama. Ripley Formation. Exogyra ponderosa zone, Georgia; Russell County, Alabama. Exogyra costata zone, Georgia; Eufaula, Alabama; Union and Tippah counties, Mississippi. Extreme top of zone, Pataula Creek, Georgia; Chattaloochee River, Alabama.

Cyprimeria majon n. sp.

Plate XL, Figs. 11, 12 ; Plate XLI, Figs. 1-4; Plate XLII, Fig. 1;
Plate XLIII, Fig. 1

Description.-Shell porccllanous, very heary and crumbly, and far exceeding all co-existent members of the genus in maximum dimensions: altitude attained fully 95 mm ., and latitude 100 mm .; convexity moderately high for the genus, the maximum diameter falling a little above the median horizontal ; outline ovate or subtrigonal; umbones evenly but not greatly inflated, the apices rounded, acute, prosogyrate, anterior; lunule not differentiated; escutcheon suggested by the bevelling of the inner surface of the dorsal margin ; anterior dorsal slope steeper, more uniform and less produced than the posterior; general direction of the dorsal margins at right angles to one another but swing to a flexure in the posterior slope between one-third and one-fourth of the distance from the umbones to the
lateral margin increasing the angle to 130° or 140°; anterior end of shell broadly and smoothly rounded, posterior obliquely and somewhat obseurely truneate; base line asymmetrieally areuate, more strongly upeurved in front than behind; a narrow posterior area rudely differentiated by the inereased prominence of the incremental seulpture, the broad and rery shallow depression whieh is often developed in front of it, and the still more shallow depression along its medial portion ; external surface inerementally sculptured, the striations sharp and regular in the immediate vieinity of the umbones, alnost obsolete over the medial portion and irregular with oceasional resting stages toward the rentral margin, uniformly coarse over the posterior area from the umbones to the base ; ligament submarginal, opisthodetic, supported by a robust nymph; hinge plate heavy, hinge armature restrieted to three cardinals in each valve, radiating fan-like from beneath the umbones; anterior cardinal of right valve laminar, middle eardinal stout and trigonal, inelined forward, posterior cardinal obliquely elongated, deeply suleated medially; anterior cardinal in left valve rather stout, expanded ventrally; middle cardinal trigonal, inelined backward; posterior cardinal sharp and laminar, partially fused with the dorsal margin; adductor musele sears obscure, the anterior elongated, the posterior semi-elliptieal, phaced high up under the distal extremities of the dorsal margins; pallial line simple but truneated behind, rather distant from the base; inner ventral margins simple.

Dimensions.-Altitude 76.5 mm ., latitude 86 mm ., seni-diameter 23.5 mm .

Type Locality.-Brightseat, Prince George's County.
This species is much the largest and heaviest member of the genus described from the East Coast or Gulf Cretaceous. C. alta, its probable analogue in the Southern Atlantie Cretaceous, is smaller, relatively higher, and more smoothly rounded, especially along the posterior lateral margin.
The variation in outline is rather wide, the young are much more rounded, relatively lower, more cvenly inflated and more symmetrieal than the adults, white the adults vary quite widely among themselves in relative proportions and in the size of the umbonal angle. The figured speeimens are rather extreme but by no means unusual types.

The species is confined to the Monmouth and possibly to the Mommouth of Prince George's County, but within that restricted area it is, with the exeeption of Exogyra, the most conspicuous element in the bivalve faunas.

Occurrence.-Monmouth Formation. ? Bohemia Mills, Ceeil County; Brightseat, Brooks estate near Seat Pleasant, railroad eut west of Seat Pleasant,? 2 miles southwest of Oxon Hill, Fort Washington, Prince George's County.

Collections.-Maryland Geologieal Surrey, U. S. National Museum.

Superfamily TELLINACEA
Family TELLINIDAE
Gemus TELLINA (Limé) Lamarck
[Prodrome, 1799, p. 84]

Type--Tellina virgata Linné.
" The hinge of Tellina in the broad sense, when developed to the fullest extent, comprises on each valve an anterior and posterior lateral and two eardinals of which one is grooved or bifid on its distal edge. When the valves are elosed the two bifid teeth are central and the simple teeth are respectively anterior and posterior to them. Normally the teeth of the right ralve elose in advanee of the teeth of the left valve, and in the obsoleseenee of the laterals those of the left valve disappear first. The simple cardinal of the left valve is often very close to and hardly distinguishable from the anterior part of the nymphal callosity, and owing to its fragility is often broken off at the base, leaving hardly a trace, from which eireumstances proceed the erroneous diagnoses so common in the literature which aseribe a single left cardinal to sundry species or groups of Tellina. No T'ellina is without two cardinal teeth in each valve, and at least one (anterior) lateral tooth in the right valre, unless it has been deprived of these parts by erosion, fracture, senility, or abnormal growth.The ligament varies from extremely long and narrow, as in Phylloda, to short and high, as in some species of Angulus. The nymphs are usually larger and more prominent in thin shells with short ligaments ; subcireular speeies

Etymology: $\mathrm{T} \epsilon \lambda \lambda\langle\nu \eta$, a kind of shell-fish.
always have a short ligament. The resilium is usually enclosed in the hemicylindric ligament. In some forms, however, as Metis and Tellidora, the resilium is much shorter than the ligament and evinces a tendency to become intcrnal as in the Semelide. The exterior sculpture of the Tellinas is emphatically concentric, though fine radial sculpture often exists, it does not, except in the section Pseudarcopagia, rival the concentric sculpture in strength. There is no known species with only radial sculpture. Oblique or angular sculpture is rare. The posterior cnd of the shell is usually flexed to the right and exhibits one or more folds of greater or less prominenec. Occasional marked incquality of the valves is observable, and the culmination of the surface ssculpture as it passes over the ridges which radiate from the beaks toward the end of the valves sometimes results in clegant lamelliform promincnce."-Dall, 1900. ${ }^{1}$

The genus was initiated in the Jurassic and has been abundantly represented since the late Mesozoic. The recent species are numbered by the hundreds and are particularly characteristic of the tropieal and subtropical seas.
A. Altitude of shell approximately one-half the latitude....Tellina georgiana B. Altitude of shell more than one-half the latitude..............Tellina gabbi

Subgenus ARCOPAGIA Brown

[Ill. Conch. Great Britain, 1827, p. ii, pl. xvi, fig. 8]
"Shell large, solid, rounded, moderatcly eonvex, the flexure obsolete; posterior left latcral absent, and the anterior obsolete, other tecth normal; sinus free, ascending obliquely; internal radii thiek and strong but illdefined; seulpture concentric, usually smoothish or not sharply lamellate, sometimes reduced to incremental lines. Warm, temperate, and tropical seas."-Dall, 1900. ${ }^{2}$

Tellina (Arcopagia) georgiana Gabb
Tellina (Tellinella) georgiana Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 307.

Tellina georgiana Johnson, 1905, Ibidem, p. 16.
Tellina georgiana Weller,1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 615, pl. lxx, figs. $1,2$.

[^19]Description.--" Shell moderately large, elongate; beaks central, elevated, anterior end produced, rounded; base very slightly convex; posterior end subangulated below, arched above; a strong umbonal ridge runs from the beaks to the angle. Surface destroyed on the only specimen I have sech. Length 2.6 in ., width 1.25 in . The impression of the hinge is preserved in the matrix, and the shell is so strongly characterized by its form that I have not hesitated to describe it. It is from Pataula Creek, Georgia, in a hard calcareous marl."-Gabb, 1876.
"The dimensions of two specimens are: Length 32 mm . and 46 mm ., height 16 mm . and 23 mm . Shell very broadly subtriangular in outline, the beaks nearly central and pointing a little backward, the greatest anterior extension at considerably below the middle. The anterior and posterior cardinal margins meeting at the beak in an angle of about 140° to 150°, eurving gently downward in front and behind; anterior margin rather sharply rounded; ventral margin very long and gently convex; pastero-basal extremity sharply rounded or subangular ; posterior margin nearly vertically snbtruncate below, curving forward above and passing into the cardinal margin. Valves depressed convex, with a subangular umbonal ridge extending from the beak to the postero-basal extremity, the surface sloping with a very gentle convex curve to the anterior, posterior and ventral margins; curving much more abruptly to the eardinal margins, but just before reaching the margin the surface is deflected in the casts so as to form a rather narrow flattened area extending from the beak in each direction and gradually dying out before reaching the anterior and pasterior extremities of the shell; just beneath the beak this flattened area bears the impressions of the hinge teeth. Surface of the casts smooth, exeept for a few very faint and indistinct radiating costre just above the postero-cardinal slope of the valves. Pallial sinus very deep, extending beyond the middle of the shell. Hinge teeth small and weak, situated just beneath the beak, a single one in the left valve with a socket on either side, and two in the right valve with a deep socket between."Weller, 190~.

The two casts which have been referred to this species are by no means conclusive evidence of its former existence in Maryland.

Occurrence.-Matawan Formation. Three-quarters of a mile southeast of Ulmstead Point, Anne Arundel County.

Collections.-Maryland Geologieal Survey, Philadelphia Aeademy of Natural Seiences, New Jersey Geologieal Survey.

Outside Distribution.-Matawan Formation. Wenonalı sand, New Jersey. Ripley Formation. Exogyra costata zone. Extreme top of zone, Pataula Creek, Georgia.

Tellina (Arcopagia) gabbi 11. sp.
Plate XLII, Fig. 2
Peroneoderma georgiana Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 308. Peronuoderma georgiana Johnson, 1905, Ibidem, p. 16.
Peroncoderma georgiana Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 617, pl. lxx, figs. 4-6.

Description.-"Shell snıall, thin, flattened; elongate, beaks subeentral in one ease in the middle, in another a little posterior; eardinal margins sloping about equally towards both ends. Anterior end prominently and narrowly rounded ; posterior rounded, subtruncate; base broadly and regularly convex. Surface marked by finc, regular eonceutrie lines. Hinge composed of minute teeth. Length 1.2 in, width 0.8 in."-Gabb, $18 \% 6$.

Type Locality.-Pataula Creck, Georgia.
Shell rather large for the genus, compressed, orate, trigonal in outline; umbones flattened, ineonspieuous, not over-topping the dorsal margins, slightly posterior; umbonal angle approximately 135°; dorsal margins oblique, the anterior very gentle, the posterior moderately steep; anterior lateral margin broadly and smoothly rounded, the posterior obscurely truneate; base line broadly areuate; external surface seulptured with very thin, eoneentrie laminæ, their dorsal edges free, but elosely appressed; ligament external, opistlodetie, mounted on a nymph almost half the length of the dorsal margin ; hinge concentrated, that of the right valve armed with two short, divergent eardinals and an auterior lateral; hinge of left valve and characters of adductor scars and pallial sinus unknown.

Weller suggested that this species might properly be referred to Tellina, but he hesitated to do it beeause Gabb's name was already preoeeupied by
another of his speeies whieh he had deseribed at the same time from Pataula Creek.

Occurrence.-Monmouth Formation. ? Mouth of Turner's Creek, Kent County; Brightseat, Brooks estate near Seat Pleasant, Friendly, 1 mile west of Friendly and MeNeys Corneŕ, Prince George's County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Seiences, New Jersey Geological Surrey.

Outside Distribution.-Matawan Formation. Woodbury elay, Wenonah sand, New Jersey. Monmouth Formation. Red Bank sand, New Jersey. Ripley Formation. Exogyra costata zone. Extreme top of zone, Pataula Creek, Georgia.

Genus TELLINIMERA Conrad

[Am. Jour. Conch., vol. vi, 1870, p. 173]
Type.-Tellinimera eborea Conrad.
"A more perfeet hinge of the left valve of this genus gives the following charaeter: Cardinal teeth two; anterior one V -shaped, nearly direet, or slightly direeted anteriorly; the posterior tooth bifid, oblique; posterior lobe thick, and longer than the anterior lobe; eardinal plate comparatively broad laterally, posteriorly channeled; anteriorly with a small pit. apparently for the reception of a lateral tooth."-Conrad, 1870.

Conrad took the unwarranted liberty of changing the nane Tellinimera to Tellimera when he elevated the subgenus to the rank of a genus.

The genus is restricted in its known distribution to the Cretaceous.

Tellinimera mborea Conrad
 Plate XLIT, Figs. 5, 6

Tellina (Tellinimera) eborea Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 278, pl. xlviii, fig. 14.
Tellina (Tellinimera) eborea Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 14.
T'cllinomera eborea Conrad, 1868, Cook's Geol. of New Jersey, p. 727.
Tellimera eborea Conrad, 1870, Am. Jour. Conch., vol. vi, p. 73.
Tellinimera eborea Tryon, 1884, Struct. and Syst. Conch., vol. ili, p. 169, pl. cxii, fig. 100.

Etymology: Tellina; μ épos, part, share.

Tellimera eborea Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 164, pl. xxiii, figs. $12,13$.
Tellinimera eborea Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 16.
Tellinimera eborea Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 621, pl. lxx, figs. 19 (?), 21 (?).

Description.-" Equilateral, subtriangular, compressed ; reflexed posteriorly, and subangulated; anterior end rounded; dise with coneentric, regular, slightly impressed lines; substance very thin; anterior cardinal tooth slightly oblique, the posterior one very oblique."-Conrad, 1860.

Type Locality.-Alabama.
Shell thin, fragile, polished, compressed, inequilateral, transversely trigonal-ovate in outline; umbones flattened, opisthodetie, eonspicuous only by reasoll of their position at the summit of an angle of not far from 100°; posterior area flattenel, the keel rather ill-defined, however, and eranescent toward the ventral margin; anterior dorsal slope very gentle, the latcral margin rounding evenly into the horizontal base; posterior dorsal slope very stecp, the posterior lateral margin obseurely truneate; external surface sculptured with sharp, concentric striations which are absent in the umbonal region, but grow increasingly deeper toward the ventral margin; ligament external, opisthodetie; hinge with the characters of the genus.
The species superfieially rescmbles AEnona eufalensis Conrad but is more compressed, more incquilateral and more strongly striated concentrically.

Ocourence.-Monmouth Fomation. One-half mile east of Millersville, Ame Arundel County ; Brightseat. Brooks estate near Seat Pleasant, 1 mile west of Friendly, 2 miles south of Oxon Hill, Priuce Gcorge's County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey.

Outside Distribution.-Matawan Formation. Merchantville clay marl, Woodbury clay, Wenonah sand, New Jersey. Cretaceous. Alabama.

Genus AENONA Conrad

[Am. Jour. Conch., vol. vi, 1870, p. 74]
Type.-Tellina eufalensis Conrad.
"Equivalyed, without fold; hinge eharacter, two compressed very small, widely diverging teeth in the right valve; lunule very narrow, laneeolate, and marked by a deeply impressed line."-Conrad, 1870.

Restrieted in its known distribution to the Cretaceous.

Enona eufalensis Conrad
 Plate XLII, Figs. 3, 4

Tellina eufalensis Conrad, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 277, pl. xlvi, fig. 15.
Tellina eufalensis Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 14.

Enona eufaulensis Conrad, 1870, Am. Jour. Conch., vol. vi, p. 74.
EEnona eufaulensis Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 168. pl. xxiii, figs. 2, 3. (Hinge incorrectly drawn.)
Enona eufaulensis Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 16.
Enona eufaulensis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 623, pl. lxx, figs. 24, 25. (Hinge incorrectly drawn.)

Description.-"Subtriangular, convex, entire, inequilateral; anterior end subtruneated; hinge margins equally deelining; summit not prominent; posterior end aeutely rounded; left valve furnished with one bifid and one rudimentary eardinal tooth; lateral distinct."-Conrad, 1860.

Type Locality.-Eufaula, Alabama.
Shell thin, polished, very fragile, rather compressed, transversely elongated, subtrigonal in outline, subequilateral; umbones slightly bulbous at their tips, orthogyrate, plaeed a little behind the median line; umbonal angle not far from 135°; anterior slope a little more gentle and a little more produced than the posterior; base line evenly and gently areuate; exterual surfaee smooth, exeepting for a few ineremental striations near the base; bands of eoneentric eolor markings frequently retained, the umbones being, as a rule, darker than any other portion of the shell; ligament external, opisthodetic, the nymph short and rather slender; hinge plate narrow; armature of left valve moderately eoneentrated, eonsisting of a short laminar eardinal fused anteriorly with the dorsal margin and,
on the other side of the triangular pit, a very short, trigonal eardinal, feebly suleated longitudinally; anterior and posterior laterals subequal, symmetrically placed with respeet to the umbones. clouble, more elevated medially than toward the extremities; two eardinals developed in the right valve, the anterior short, thin, and laminar, the posterior placed directly beneath the umbones, short but stout and broadly suleate; dorsal margins bevelled to function as laterals but no true laterals developed ; musele sears rather large but obseure ; pallial sinus very broad, reaching approximately to the median vertieal not confluent with the pallial line.
The species differs from Tellinimera eborea Conrad, which it superfieially resembles, in the more nearly equilateral outline due to the relatively shorter and more angular anterior end of the latter. It cliffers, furthermore, in the absence of the sharp, coneentrie striations whieh characterize T. eborea.
Occurrence.-Monmoutif Formation. Brightscat, Brooks estate near Seat Pleasant, Friendly, 1 mile west of Friendly, McNeys Corners, and 2 iniles southwest of Oxon Hill, Prince George's County.

Collections.-Maryland Geologieal Survey, Philadclphia Academy of Natural Seienees, New Jersey Geologieal Survey, U. S. National Museum.

Outside Distribution.-MIatawan Formation. Woodbury elay, New Jersey. Ripley Formation. Exogyra costata zone, Quitman County, Georgia; Eufaula, Alabama; Union and Tippah counties, Mississippi. Extreme top of zone, Pataula Creek, Georgia; Chattaloochee River, Alabama.

Genus Linearia Conrad

[Jour. Acad. Nat. Sci., Phila., $2 d$ ser., vol. iv, 1860, p. 279]
Type.-Linearia metastriata Conrad.
"Oval or oblong; eardinal teeth in the left valve two, the anterior one elongated, very oblique, the other under the apex small and bifid."Conrad, 1860.
"The hinge shows two small, diverging, nearly equal teeth, direeted obliquely forward, the anterior one very oblique: and two rather long
latcral very distinct pits, the postcrior one very distant from the apex. The pallial sinus is rounded and extends to a direct line between the apex and ventral margin, according to d'Orbigny's figure 5, and beyond that point in figure 1\%. The present species approaches figure 5 most nearly in outline, but the radiating lines over the whole disk is a distinguishing character, and the height of the shell is proportionally less."-Conrad, $1870 .{ }^{1}$
The shell is rather small, cquivalved and subequilateral, moderately heavy, more or lcss elongated transvcrsely, with well-rounded lateral margins. The characteristic sculpture is a radial lineation with intersecting concentric striæ. The genus is restricted in its known distribution to the Cretaceous.

Linearia metastriata Conrad

Linearia metastriata Conrad, 1860, Jour. Acad. Nat. Sci., Phiia., 2d ser., vol. iv, p. 279, pl. xlvi, fig. 7.
Linearia metastriata Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 14.
Linearia metastriata Conrad, 1870, Am. Jour. Conch., vol. vi, p. 73, pl. iii, fig. 11.
Linearia metastriata Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 165, pl. xxiii, figs. 6, 7.
Linearia metastriata Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 16.
Linearia metastriata Weller, 1907, Geol. Survey of New Jersey, Pai., vol. iv, p. 618, pl. lxx, figs. 8, 9.

Description.-" Oblong-oval, convex, subequilateral; posterior end subtruncated ; disk with fine concentric lines and distinct radiating lines antcriorly, and larger crenulated radii posteriorly; the rest of the surface with microscopic radiating lines; cardinal tooth under the apex widely bifid; lobes small and slender."-Conrad, 1860.

Type Locality.-Eufaula, Alabama.
Shell transversely oval in outline; anterior end evenly rounded, posterior obscurcly truncate; external surface very finely cancellated, concentric sculpture of fifty to sixty acutc lirations, which evenly override the radials in the medial portion of the disk but are minutely undulated by

[^20]them anteriorly and even more sharply posteriorly; radial seulpture confined to striations on the interspaces between the concentric liræ on the medial portion of the disk, appearing posteriorly as six to nine low, radiating liræ, unequal in size and spaeing; radial seulpture on anterior portion of shell mueh finer and sharper ; radials twelve to fifteen in number, approximately uniform in size and spaeing, nodulated by the overriding coneentrie laminæ; ligament external, opisthodetie, mounted on rather a slender nymph whieh is separated from the rest of the shell by a linear suleus; hinge of left valve armed with two laminar eardinals, the posterior a little more slender than the anterior, their inner faces flattened and proximate, diverging at a very small angle and subparallel to the dorsal margin ; a single moderately robust, posteriorly directed cardinal developed in the right valve with rather a deep pit in front of it and a more shallow one behind it for the reeeption of the eardinals of the left valve; a feeble elevation on the forward margin of the anterior socket, probably the analogue of the anterior eardinal in the right valve; dorsal margins of right valve bevelled to funetion as laterals, reeeived in the left by double grooves which are developed at the distal extremitics of the hinge plate; characters of musele scars and pallial sinus obscure.

Occurrence.-Monmoutif Formation. Brightseat, Brooks estate near Seat Pleasant, Fricndly, Prince George's County.

Collections.-Maryland Geological Survey, Philadelphia Aeademy of Natural Sciences, New Jersey Geologieal Survcy.

Outside Distribution.-Magothy Formation. Cliffwood elay, New Jersey. Matawan Formation. Merchantville elay marl, Woodbury clay, Marshalltown clay marl, Wenonah sand, New Jersey. Monmouth Formation. Red Bank sand, New Jersey. Black Creek Formation. North and South Carolina. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Mortoniceras subzone, Stewart County, Georgia. Ripley Formation. Exogyra costata zone, Quitman County, Georgia; Eufaula, Alabama; Union, Tippah and Alcorn counties, Mississippi. Extreme top of zone. Pataula Creek, Georgia.

Family PSAMMOBIIDAE

Genus SOLYMA Conrad
[Am. Jour. Conch., vol. vi, 1870, p. 75]
Type.-Solyma lineolatus Conrad.
" Two direct approximate teeth under the apex of right valve. The anterior tooth thick and rounded anteriorly. This genus is allied to Leptosolen Conrad, but wants the interual rib of that genus and differs also in having two teeth in the right valve."-Conrad, 1870.

Shell equivalve, inequilateral, thin, transversely ovate in outline; an obtuse posterior earina more or less obscurely developed; external surface feebly seulptured concentrically; pallial sinus apparently profound.

If Weller was right in his observation on the pallial sinus of the type species the genus would be allied to the Psammobiidec rather than with the Solenide. Restricted in its known distribution to the Upper Cretaceous.

Solyma lineolata Conrad

$$
\text { Plate XXXVI, Figs. 20, } 21
$$

Solyma lineolatus Conrad, 1870, Am. Jour. Conch., vol. vi, p. 75, fig. 9.
Solyma lineolatus Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 305.
Solyma lineolatus Tryon, 1884, Struct. and Syst. Conch., vol. iii, p. 134, pl. cv , fig. 89.
Solyma lineolata Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 182, pl. xxv , figs. 11-13.
Solyma lineolata Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 17.
Solyma lineolata Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 629 , pl. 1xxi, figs. 3-5.

Description.-" Equilateral, ventricose, substance very thin; anteriorly slightly contracted, end margin rounded; posterior margin obtusely rounded; umbonal slope rounded: ventral margin nearly straight in the middle; disk ornamented with minute and very elosely arranged lines. Length $1 \frac{1}{8} \mathrm{in}$., height $\frac{3}{4} \mathrm{in}$. The figure represents the hinge of the right valve. Left valve unknown."-Conrad, 1870.

Type Locality.-Haddonfield, New Jersey.
"The dimensions of the type speeimen are: Length 26 mm ., height 15.5 mm . Shell subquadrangular in outline, a little broader behind than
in front; beaks broad, rather strongly elcrated above the hinge line, nearly ccutral in position and directed anteriorly. Hinge line nearly straight, the anterior and posterior portions sloping very gently on each side of the beak; autcro-cardinal margin concave; anterior margin rounding from the cardinal into the basal margin; basal margin nearly straight or slightly convex in the middle, curving upward a little more abruptly in front than behind; postero-basal extremity rounded; postcrior margin nearly vertically truncate; post-cardinal cxtremity obtusely subangular; post-cardinal margin straight. Valves moderately convex, with an obscure, rounded, umbonal ridge along both the anterior and posterior umbonal slopes; the cardinal margins inflected both in front of and behind the beaks. Surface of both valves in the casts marked by rather fine, more or less irregular, concentric lines of growth.
"This shell, in its general outline, somewhat resembles Periplomya elliptica, but with the extremities of the shell reversed, the anterior cxtremity of that species being the broader and the beak being directed backward. In Solyma lineolata, howcver, the posterior margin is truncate while the anterior margin of P. elliptica is rounded, and the anterior extremity is much broader than the posterior extremity of that shell. The two more or less obscure umbonal ridges are also a distinguishing mark of this species, but these ridges have been made too conspicuous in Whitfield's illustration of the species. Upon one of the internal casts of this species which has come under observation, there seems to be an impression of a rery deep pallial sinus extending forward to the center of the shell."-Weller, 190%.

Ligament, as implied by Conrad's figure, external, opisthodetic, scated upon a marginal nymph, armature of right valve consisting of two slender laminar tceth, diverging at a small angle from beneath the umbone.

Represented in Maryland by a single imperfect cast.
Occurrence.-Magothy Formation. Good Hope Hill, District of Columbia.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey, U. S. National Museum.

Outside Distribution.-Magothy Formation. Cliffwood clay, New Jersey. Matawan Formation. Merchantville clay marl, Woodbury clay, Wenonah sand, New Jerscy. Monmouth Formation. Red Bank sand, New Jersey.

Superfamily SOLENACEA
 Family SOLENIDAE
 Genus LEPTOSOLEN Conrad
 [Am. Jour. Conch., vol. iii, 1867, p. 15]

Type.-Siliquaria biplicata Conrad.

"Elongated, thin in substance, straight with the dorsal and ventral margins parallel; plicated anteriorly; open at both ends; bcaks not nearly terminal; hinge of the right valve with one direct tooth, convex anteriorly, truncated behind; an internal rounded direct rib commences under the cardinal margin, gradually becomes less prominent and disappears towards the ventral margin."-Conrad, 1867.

The ligament is external mounted on elongated nymphs. The pallial sinus is very shallow. Dall ${ }^{1}$ considers that the shell characters are intermediate between those of Solen and Siliqua.
The genus is restricted in its known distribution to the Middle and Upper Crctaceous.
A. Clavicular rib vertical.
.Leptosolen biplicata
B. Clavicular rib oblique, directed backward.
.Lcptosolen elongata

Leptosolen biplicata Comrad
 Plate XLII, Figs. i, 8

Siliquaria biplicata Conrad, 1858, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iii, p. 324, pl. xxiv, fig. 17.
Siliquaria biplicata Gabb, 1861, Syn. Moll. Cret. Form., p. 226 (170).
Siliquaria biplicata Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 15.
Leptosolen biplicata Conrad, 1867, Am. Jour. Conch., vol. iii, pp. 15, 138.
Leptosolen biplicatus Conrad, 1868, Cook's Geol. of New Jersey, p. 727.

Etymology: $\lambda \in \pi \tau o ́ s$, thin; solen.
${ }^{1}$ Dall, 1900, Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. v, p. 950.

Leptosolen biplicata Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 304.
Leptosolcn biplicata Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 183, pl. xxv, figs. 1, 2.
Leptosolen biplicata Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 17.
Leptosolen biplicata Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 624, pl. lxx, figs. 30, 31.

Description.-" Thin, convex, with two radiating folds or depressious anteriorly; basal line slightly contracted or incurved; anterior side short; extremity truncated; posterior margin obtusely rounded, posterior side concentrically lineated; valves somewhat contracted obliquely from beak to base."-Conrad, 1858.

Type Locality.-Owl Creek, Tippah County, Mississippi.
Shell very thin, porcellanous, compressed, rudely cylindrical in outlinc; dorsal and ventral margins parallel, the posterior symmetrically arcuatc, the anterior rounding, somewhat obliquely, into the base; lunule and escutcheon not defined ; umbones very inconspicuous, scarcely rising above the dorsal margin, set back from the anterior extremity a distance of approximately one-fourth the total latitude; posterior area differentiated by the abrupt strengthening of the concentric sculpture along a line extending from the umbones to the posterior extremity of the basal margin, concentric sculpture reduced to faint and rather irregular incremental striations upon the anterior and medial portions of the shell, least feeble medially and appearing upon the posterior area as sharp-edged, regularly overlapping concentric laminæ; radial sculpture not developed; ligament marginal, opisthodetic, seated upon a nymph about one-eighth as long as the posterior dorsal margin ; a single very prominent subumbonal cardinal in each valve; shell reinforced within by a rather heavy deposit of calcite along a vertical dropped from the umbones, the ridge thus formed broadest and most elevated dorsally and gradually evanescing toward the base; muscle scars subequal, inconspicuous; pallial sinus profound.

Casts of the interior are remarkable for their cylindrical outline and for: the deep sulcus formed by the internal rib, which cuts across the umbone and persists a little more than half-way down to the ventral margin.

Occurrence.-Monmouth Formation. Brightscat, Brooks cstate near Seat Pleasant, 1 mile west of Friendly, 2 miles southwest of Oxon Hill, Prince George's County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey, U. S. National Museum.

Outside Distribution.-Magothy Formation. Cliffwood clay, New Jersey. Matawan Formation. Merchantville clay marl, Woodbury clay, Wenonah sand, New Jersey. Monmouth Formation. Navesink marl, Red Bank sand, New Jerscy. Black Creek Formation. North and South Carolina. Eutaw Formation (basal). Exogyra ponderosa zone, Chattahoochee County, Georgia. (Tombigbee sand member.) Exogyra ponderosa zone, Mortoniceras subzone, Stewart County, Georgia. Ripley Formation. Exogyra ponderosa zone, Stewart County, Georgia. Exogyra costata zone, Eufaula, Alabama; Union, Tippah and Alcorn countics, Mississippi. Extreme top of zone, Pataula Creek, Georgia; Chattahoochee River, Alabama.

Leprosolen elongata Weller
Leptosolen? elongata Weller, 1907, Geol. Survey of New Jersey, vol. iv, p. 627, pl. lxx, figs. 27, 28.

Description.-"The dimensions of the type specimen, a cast of the left valve, are: Length 24 mm ., height 8 mm ., convexity 2.5 mm . Shell elongate, dorsal and ventral margins subparallel; anterior margin rounded, its greatest extension above the mid-height; posterior margin probably rounded or truncate, not completely preserved. Beaks small, terminal, but little elevated above the hinge line. Valves closed in front, apparently gaping behind; the surface regularly convex from the dorsal to the ventral margin, curving a little more abruptly above and inflected to the hinge line in the anterior half of the shell; curving abruptly to the anterior margin in front. In the cast a strong, deep, sharply dcfincd furrow extends downward from the beak towards the ventral margin, and a little obliquely backward, curving a little posteriorly near its lower extremity; another much less conspicuous furrow originates beneath the beak with the first one, and extends backward, parallel with the hinge line,
beeoming obsolete near the center of the shell. Surface of the cast apparently smooth."-Weller, 190%.

Type Locality.-Middletown, New Jersey.
Leptosolen elongata is mueh smaller than Leptosolen biplicata Conrad. The casts the only form in which the species is definitely known are readily separable from those of the latter by the posteriorly inelined rather than the vertieal sulcus produced by the internal rib.

Occurrence.-Monmouth Formation. Brightseat, Prince George's County.

Collections.-Maryland Geological Survey, New Jersey Geological Survey.

Outside Distribution.-Monmouth Formation. Red Bank sand, New Jersey.

Superfamily MACTRACEA
 Family MACTRIDAE
 Genus SPISULA Gray

[Mag. Nat. Hist., n. s. vol. i, 1838, p. 372]
Type.-Mactra solida Linné.
" Shell small, subequilateral, trigonal, with a thin epidermis, adjacent beaks and concentrically grooved dorsal areas; pallial sinus small, rounded; gape obsolete; valves convex ; ligament sagittate, set in a callous area close to the dorsal margin and not set off from the chondrophore by any shelly ridge; dental armature normal, strong, not concentrated ; the opposed surfaces of the laterals transversely grooved; left cardinal small, prominent, with a small posterior accessory lamella, the posterior ends of both projecting over the chondrophore; right cardinal with the arms coalescent above, the anterior arm close to the dorsal shell-margin; hinge plate thick and flattish; exterior smooth or concentrically striated; the dorsal areas ill-defined."-Dall, 1898. ${ }^{1}$

The absence of a shelly lamina between the chondrophore and the ligament separates Spisula from Mactra. Furthermore, the laterals of the

[^21]latter are smooth or finely granular, while those of the former are, as a rule, transversely striated.

The genus extends well back into the Cretaceous, and, though not abundantly represented in the recent seas, its occurrence is almost universal.

Sutgenus CYMBOPHORA Gabb ${ }^{1}$
Type.-Mactra ashburneri Gabb.
" The hinge is composed of a rather heavy hinge plate, bearing a cartilage-pit, not sunk into its substance, as in the others of the Mactridoc, but, as it were, built up on its surface; a small, delicate, spoon-shaped process, laid obliquely under the beaks, its base being on, or slightly above the level of the hinge plate; in the right valve the cardinal tooth is singlc, very delieate, and nearly at a right angle with the anterior wall of the cartilage-pit ; in the left valve the tooth is V-shaped, entirely separated from the pit, very slender, and articulated between the tooth and the pit of the opposite side; the lateral teeth are large and comparativcly very robust."-Gabb, 1869.
" A careful study of the typical species of this group shows that it differs from Spisula only in the following features: The attached ends of the resilium were convex instead of flat (as is sometimes seen in recent spccics), and the margins of the pit are thercfore elevated; while the posterior sinus, instead of being (as usually in the later types of Spisula) roofed over or fillcd up with a solid mass of callus at the apex, upon which the ligament is attached, is racant, so that the ligament was fixcd on the convex margin of the pit, or on the side of the ventral lamina, or partly on both, all being very close together. This character would scem to be trifling until it is observed that all the Mesozoic species are characterized by this feature, though, as in recent Spisula, the external form may vary, the dorsal areas be smooth or grooved, the teeth suleate or smooth. As it is common to all the Cretaceous Mactrides of which I have been able to examine a linge, I have thought it best to retain the name in a subgeneric sense for that stage of development of the group."-Dall, 1898. ${ }^{2}$

[^22]The group is restricted to the Cretaceous.
A. Latitude of adult shell rarely exceeding 25 mm .; outline ovate-trigonal ..Cymbophora berryi
B. Latitude of adult shell exceeding 25 mm .; outline high-trigonal.

Cymbophora wordeni

Spisula (Cymbophora) berryi n. sp.

Plate XLIII, Figs. 2, 3
Description.-Shell very thin and fragile, rather small for the genus, transversely ovate-trigonal in outline, smoothly inflated; umbones small but rather prominent, evenly rounded, overtopping the dorsal margin, the apices incurved and feebly prosogyrate, medial or slightly antcrior in position; umbonal angle usually exceeding 90°; dorsal margins oblique or somewhat convex, the anterior slope as a rule a little more gentle than the posterior; anterior extremity rather narrow but symmetrically rounded; posterior obscurely truncate obliquely; base line quite strongly and symmetrically arcuate; external surface sculptured with faint, incremental striations, less feeble and more crowded toward the ventral and lateral margins; anterior area cut off by a shallow and sublinear depression which persists from the umbones to the base; incremental sculpture much less feeble in front of the sulcus than behind it; posterior area evenly rounded but differentiated by a linear liration which margins a cuneate area; area clearly differentiated by the very fine evenly crowded concentric striæ; incrementals behind this oblique wedge the most elevated of any on the shell; resilium lodged in a spoon-shaped chondrophore beneath the umbones, posteriorly directed, its margins raised and quite strongly reinforced; hinge armature rather concentrated, two cardinals in the right valve, partially fused beneath the umbones and diverging at an angle of little less than 90°, anterior arm very close to the dorsal margin and diverging from it at a very small angle, posterior arm at the margin of the chondrophore; laterals double, the dorsal lamina distinct from the dorsal margin though fused with it basally; inner faccs of clasping laterals transversely striated; left cardinal short but heavy, \wedge-shaped; left laterals double, the inner laminæ elevated and flattened upon their summits, transversely striated; adductor muscle scars rather small and
obscure; pallial sinus linguiform, symmetrically rounded, obliquely ascending not reaching the median rertical of the shell.

Dimensions.-Altitude 15 mm ., latitude 21 mm ., diameter 10.2 mm .
Type Locality.-Brightseat, Prince George's County.
Cymbophora berryi is characterized by its rather small size, evenly inflated valves and regular orate-trigonal outline.

This prominent member of the Monmouth fauna is named for Prof. Edward W. Berry of Johns Hopkins University.

Occurrence.-Monmoutir Formation. Brightseat, Brooks estate near Seat Pleasant, 1 mile west of Friendly, 2 miles south of Oxon Hill, Fort Washington, Prince George's County.

Collection.-Maryland Geological Survey.

Spisula (Cymbophora) wordeni n. sp.
 Plate XLIII, Figs. 4, 5

Description.-Shell rather large, not very thin but very fragile, trigonal in outline, moderately inflated; umbones submedial, well rounded, the apices full, incurved, prosogyrate; umbonal angle not far from 90°, dorsal margin very stcep, the anterior oblique, the postcrior feebly convex; maximum latitude of shell very near the ventral margin; lateral margins very short, squarely truncate; ventral margin fecbly but evenly arcuate; both anterior and posterior areas cut off by obtusely angulated carinæ, the anterior outlined by a linear sulcus, the posterior by an irregular raised line which marks the anterior boundary of a roughened area which originates at the umbones and gradually widens so that its wider extremity is coincident with the postcrior lateral margin; anterior area and posterior portion of posterior arca quite sharply sculptured incrementally; sculpture on medial portion of disk restricted to rather inconspicuous and irregular incrementals; hinge armature rather concentrated, the hinge plate extending less than lalf-way down the margin; ligament internal, lodged in a scoop-shaped chondrophore with very strongly upcurved edges; right cardinals diverging at an angle of a little less than 90°, fuscd at the umbonal extremity of the anterior dorsal margin ; lateral lamina
double, the dorsal plate probably discrete in the young but larger and fused with the dorsal margin in the adults; left cardinal \wedge-shaped, placed directly in front of the chondrophore; lateral laminæ prominent, the anterior shorter and more elevated than the posterior, both of them flattened upon their summits and striated transversely; adductor muscle scars obscure, the anterior broadly lenticular and falling below the median horizontal, the posterior larger and rudely quadrilateral; pallial line very near the base; sinus short, uniform in width throughout its extent, obliquely ascending and rounded at its extremity, not attaining the median vertical.

Dimensions.-Altitude 31.5 mm ., latitude 37 mm ., semi-diameter, 11.5 mm .

Type Locality.-Brightseat, Prince George's County.
This species is well characterized by its high trigonal outline and obtusely angulated anterior and posterior carinæ. The species was at first mistaken for C. appressa Gabb from Pataula Creek, Georgia, but it is readily separable, whenever interiors can be obtained, by the transversely striated laterals. It is named for Stanley Worden, who has so greatly assisted in the study of the Upper Cretaceous mollusca.

Occurrence.-Monmouth Formation.-Brightseat, Brooks estate near Seat Pleasant, Friendly, 1 mile west of Friendly, ? McNeys Corners, Prince George's County.

Collection.-Maryland Geological Survey.

Superfamily MYACEA
Family CORBULIDAE
Genus CORBULA Bruguière
[Encyclopédie Méthodique, 1792, pl. ccxxx]

Type.-Corbula gallica Lam.
Shell small, thick, ovate, more or less rostrate; valves unequal, the left usually the smaller and the flatter; umbones prominent, prosogyrate or erect, the right usually higher than the left; hinge line of right valve fitted with a single prominent tooth in front of the resilial pit; lateral laminæ
absent; left valve with a deep cardinal socket and a rudimentary posterior tooth; surface sculpture rariable, offen diserepant on the two valves of the same individual, usually concentrie, never strongly radial ; adductor sears distinct; pallial line indistinet; sinus feeble or obsolete.

A prominent genus among the small bivalves since the beginning of the Mesozoic. The recent Corbulce include some seventy species of almost universal distribution but more prolifie in the warmer waters, particularly in the China seas.

The Corbulce of the Upper Cretaceous of the East Coast and Gulf are sadly in need of revision. Many of the species have been described from casts and have a doubtful right to stand. The Tertiary and recent Corbulce are so difficult to determine with any degree of assuranee, even with all their characters preserved, that it seems fareieal to attempt to make aceurate specific separations from casts of the interior, excepting in unusually well eharacterized species, suelı as C. bisulcata Conrad.
A. Area within the pallial line conspicuously inflated......Corbula bisulcata
B. Area within the pallial line not conspicuously inflated.

1. Valves very strikingly dissimilar, right valve highly lnflated, very coarsely plicated concentrically..Corbula crassiplica
2. Valves not very strikingly dissimllar.
a. Radial sculpture absent.
3. Latitude of adult shell exceeding 9 mm ., concentric sculpture fine, sharp, crowded.

Corbula monmouthensis
ii. Latitude of adult shell not exceeding 9 mm ., concentric sculpture more or less obtuse.
a^{\prime}. Valves not conspicuously compressed. Concentric plications exceeding 25 in number.

Corbula terramaria b'. Valves conspicuously compressed. Concentric plications not exceeding 25 in number.

Corbula percompressa
b. Radlal sculpture present upon the disk in the form of faint linear striations.................. Corbula subradiata

Corbula bisuloata Conrad
Corbula bisulcata Conrad, 1875, Kerr's Geol. Rept. of North Carolina, App., p. 11, pl. ii, figs. 13, 14.

Corbula foulkei Whitfield, 1885, Mon. U. S. Geol. Survey, vol. 1x, p. 180, pl. xxiii, figs. 27-29. (Not C. foulkei Lea.)
Corbula bisulcata Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 638, pl. lxxii, figs. 15-22.

Description.--" Shell ovate-acute, equilateral, concentrically striated, with two or three distant large concentric furrows; postcrior extremity acute."-Conrad, 18%.

Type Locality.-Snow Hill, North Carolina.
"The dimensions of a partially restored specimen, a plaster cast taken from a natural mould, are: Length 13.5 mm ., height 8 nm ., thickness 6.5 mm . Shell subcuneate behind, full and rounded in front. Beaks small, incurved, situated back of the middle, pointing posteriorly. Anterocardinal margin long, straight near the beaks and curving gently downward in front, subparallel with the basal margin ; anterior margin regularly rounded; basal margin nearly straight, curving upward in front; postero-basal extremity angular; post-cardinal margin concave. Valves strongly ventricose in front, compressed behind, the ventral margin of the right valve overlapping that of the left and its posterior extremity more produced, beaks of the two valves subequal; an angular umbonal ridge is present on the right valve, with a narrow, slightly concave postumbonal slope; on the left valve the umbonal ridge is obsolete. Surface of the valves marked by rather fine, concentric lines of growth.
" Perfect internal casts are subcuneate, but not so greatly produced posteriorly as the shells, the muscular impressions are conspicuous, the whole area of the casts between the muscular impressions and the pallial line being strongly inflated. Johnson states that the specimens from Haddonfield, which were illustrated by Whitfield as C. foulkei, are not that species but C. bisulcata Conrad. An examination of the type specimens in the collection of the Philadelphia Academy of Natural Sciences has confirmed the statement of Johnson. The species occurs in abundance in the Cliffwood clays, and it seems to be one of the most characteristic species in the fauna of that horizon. They occur usually in the form of internal casts, some of which are very perfect, and some good moulds of the exterior have been found."-Weller, 190%.

The species is represented in Maryland by a single cast apparently of an immature individual.

Occurrence.-Matawan Formation. Three-quarters of a mile southeast of Ulmstead Point, Anne Arundel County.

Collections.--Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey.
Outside Distribution.-Magothy Formation. Cliffwood clay, New Jerscy. Matawan Formation. Merchantville clay marl, Woodbury clay, New Jersey. Black Creek Formation. Snow Hill, North Carolina.

Corbula crassiplica Gabb

Plate XLIII, Figs. 6, \%
Corbula crassiplica Gabb, 1860, Jour. Acad. Nat. Sci., Phila., $2 d$ ser., vol. iv, p. 394, pl. lvili, fig. 25.
Corbula crassiplicata Meek, 1864, Check List Inv. Fossils, N. A., Crct. and Jur., p. 15.
Corbula crassiplicata Conrad, 1868, Cook's Geol. of New Jersey, p. 727.
Corbula perbrevis Conrad, 1875, Kerr's Geol. of North Carolina, App., p. 11, pl. i1, fig. 5.
Corbula crassiplica Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 178, pl. xxiii, fig. 30.
Corbula crassiplica Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 17.
Corbula crassiplica Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 641, pl. lxxii, figs. 27, 28.

Dcscription.--"Subtriangular, hearily ribbed, thick; beaks large and incurved; umbones large and round; umbonal ridge small and marked by a distinct groove immediately in advance of it, rest of the shcll marked by about a dozen very coarse transverse ribs exccpt on the umbones which are smooth apparently from attrition. Inside hinge large, caudal prolongation marked by two pit-like depressions. Length 15 in., width . 2 in ., height of right valve .07 in."-GGabb, 1860.
Type Locality.-" From a cut on the Memphis and Charleston R. R., where it crosses the Tennessee and Mississippi State Line."
Shell small, high, trigonal, slightly inequilateral, very conspicuously inequivalve; right valve almost as high as it is wide, strongly inflated in the umbonal region, the apices incurved, acute, prosogyrate and placed a little in front of the median vertical; left valve oblong trigonal in outline, the altitude usually less than three-fourths of the latitudc, the shell evenly inflated and the umbones rather low and subcentral; anterior dorsal and lateral margins of both valves evenly rounded, postcrior dorsal
margin oblique, much more produced in the right valve than in the left: lateral margin obliquely truncate; base line broadly and evenly rounded in the left valve, quite strongly arcuate in the anterior portion of the right but feebly constricted in front of the posterior keel, which cxtends in the form of a sharply elevated ridge from the umbonal region to the posterior basal margin; area bchind the keel sharply differentiated from that in front of it, its lateral margin in the right valve thin and slightly reflected; external surface of right valve corrugated with fifteen to twenty promisnent concentric plications about half of which are confincd to the umbonal region and become increasingly finc and sharp toward the apiccs, the other half very coarse and heavy, often somewhat irregular in size and spacing toward the base, but approximately uniform in prominence from the antcrior margin to just in front of the postcrior keel where they abruptly evancsec; keel and area behind it sculptured only with strong incrementals; left valve smooth excepting for irregular incremental sculpture: ligament internal, supported by a rather prominent lamclliform chondrophore in the left valve; resilial pit in right valve quite profound ; dentition restricted to a single, subumbonal, sharply conical tooth in the right valve and a subumbonal socket for its reception in the left; adductor scars not very distinct, quite well up toward the dorsal margins, pallial sinus broad but not very deep, pallial line much more distant from the base in the right valve than in the left, because of the overlapping ventral margin of the larger valve.

Dimensions.-Right valve, latitude 5 mm ., altitude 4 mm . ; left valve, latitude 3 mm ., altitude 2.7 mm .; maximum diameter of double valves 2.5 mm .

This species is by far the most abundant representative of the genus in the Upper Cretaccous faunas of Maryland, and is one of the most prolific of the smaller bivalves in the Monmouth of Prince George's County. It is readily recognizable by the strong discrepancy of the valves in size, outline and sculpture and by the robust concentric plications upon the disk of the right valve.

Weathered individuals of this species present a most deceptive appearance; the entire external sculpture and posterior keel and arca are decor-
ticated, leaving a high, trigonal subequilateral shell with no trace of concentric plications or posterior keel.

Occurrence.-Monmouth Fonmation. Brightseat, Brooks estate near Seat Pleasant, 1 mile west of Friendly, McNeys Corners, Prince George's County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Seiences, New Jersey Geological Survey, U. S. National Museum. Outside Distribution.-Matawan Formation. Merchantville clay marl, Woodbury clay, Wenonah sand, New Jersey. Monmouth Formation. Navesink marl, Red Bank sand, New Jersey. Black Creek Formation. North and South Carolina. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Prentiss County, Mississippi. Mortoniceras sulzone, Stewart County, Georgia. Ripley Formation. Exogyra costata zone, Schley County, Georgia; Eufaula, Alabama; Union, Tippah and Alcorn counties, Mississippi. Extreme top of zone, Pataula Creek, Georgia.

Corbula moxmouthensis n. sp.
Plate XLIV, Figs. 4-8
Description.-Shell rather large for the genus, ovate trigonal in outline, inequilateral and inconspicuously inequivalve; umbones subeentral in position, subequal in the two valres, somewhat flattened upon their summits, the apices acute and prosogyrate ; right valve more inflated than left in the anterior portion, and with a wider posterior area which is angulated near its dorsal margin and slightly reflected orer the left valve; anterior margins of both valves broadly and evenly rounded; posterior dorsal slope more gentle in the right valve than in the left; the lateral margin produced and obtusely angulated in the right, obliquely truncate in the left; base line more strongly areuate in the larger valve; external sculpture in both valves of very fine, sharp lamellæ closely overlapping, the free edges directed toward the umbones, least feeble on the anterior and rentral portions of the disk, very faint in the umbonal region and evanescent near the posterior keel; ligament internal, supported by a rather inconspicuous lamelliform chondrophore behind the umbone in the left
valve; resilial pit in the right valve broad but rather shallow, the solitary tooth subumbonal in position, stout, obtusely eonieal ; receiving soeket in left valve also subumbonal, long but not very deep; addnetor musele sears relatively long, rather indistinet; pallial sinus broad, shallow ; pallial line rather near the hasal margin.

Dimensions.-Altitude 6.9 mm ., latitude 11.4 mm ., maximum diameter of double valves 5 mm .
This is the largest of the Corbulce in the Maryland Cretaceous.
Occurrence.-Monmotth Fommation. Brooks estate near Seat Pleasant, Prince George's County.

Collection.-Maryland Geologieal Survey.

Corbula terramarta n. sp.
Plate XLIII, Figs. 8-10
Description.--Shell rather small, moderately inflated, ovate-trigonal in outline, inequilateral, inequivalved; medial and posterior ventral margins and the posterior lateral margins overlapping; anterior ends broadly rounded in both valves; posterior keel more produeed in the right valve, the area behind it wider than in the left and obtusely angulated near the dorsal margin; base line in the right valve quite strongly arcuate anteriorly and medially, recurved and slightly eontraeted toward the posterior keel ; in the left valve feebly and somewhat obliquely areuate; umbones not very prominent, of equal altitude in both valves, flattened upon their summits, incurved and prosogyrate; posterior area cut off by a sharply rounded ridge which extends from the apiees to the posterior basal line; external surfaee of both valves seulptured with about thirty rounded obtuse concentric ridges, which are strongest upon the disk but which persist with diminished strength aeross the posterior area, growing gradually finer and eloser toward the umbones; ligament internal, supported by a ehondrophore in the left valve, which judging by the resilial pit in the right is rather small; cardinal tooth in right valve stout and eonieal, sulbumbonal in position ; adductor impressions distinct, the anterior a little ventral and the posterior a little dorsal to the median horizontal; pallial
sinus rery shallow; pallial line rather distant from the base ; body eavity deeply exearated.

Dimensions.-Of double ralves: Altitude 4.2 mm ., latitude 6.4 mm ,, maximun diameter 2.8 mm . Right valve of a second specimen: Altitude 5 mm ., latitude 6.9 mm .

Type Locality.-Brightseat, Prince George's County.
Occurrence.-Momarouth Formation. Brightseat,? Friendly, Prince George's County.

Collection.-Maryland Geologieal Survey.

Corbula percompressa n. sp.

Plate XLIV, Figs. 1-3
Description.-Shell small, ovate-trigonal, both valves strongly and almost equally compressed, slightly inequilateral, very slightly inequivalve; umbones subcentral, much flattened upon their summits, prosogyrate; lunule feebly defined, less so in the left valve than in the right; anterior end rather narrow, the dorsal slope moderately steep for the genus; lateral margin evenly but strongly rounded ; posterior dorsal slope a little steeper than the anterior ; lateral margin obliquely truneate; base line gently arcute and in the right valve very feebly contraeted in front of the keel ; posterior keel acute and persistent from umbones to base, but not very conspicuous because of the eompression of the valves; external surface sculptured with about twenty broad but not greatly elevated coneentric plications, which beeome increasingly finer and more erowded toward the umbones, and which override the keel and persist to the posterior dorsal margin but with diminished vigor ; ligament internal; ehondrophore, judging by the resilial pit in the right valve, quite narrow but eonsiderably produced; right cardinal tooth rather small; adductor sears rather small, the posterior placed well up under the dorsal margin ; pallial sinus very shallow, pallial line distant from the base.

Dimensions.-Altitude 4.4 mm ., latitude 6 mm ., diameter of double valves 2.3 mm .

Type Locality.-Brightseat, Prince (ieorge's County.
C. percompressa is scparated from Cerramaria by the mueh higher eompression of the valves and the fewer and coarser eoneentrie plications.

Occurrence.-Monmouth Formation. Brightscat, ? Brooks estate near Seat Pleasant, Prince George's County.

Collection.-Maryland Geological Survey.

Corbula subradiata n. sp.

Plate NLIV, Figs. 9-15
Description.-Shell of medium size, rather thin, orate-trigonal in outline, moderately inflated, inequilateral, inequivalve, right valve slightly orerlapping the left along the posterior half of the base line and the dorsal and posterior lateral margins; anterior cnds of both valves broadly rounded; posterior cnd obliquely truncate; ventral margin arcuate in the right valve and feebly contraeted in front of the rostrum, slightly patulous anteriorly in the left valve; umbones of equal altitude, moderately inflated, flattened upon their summits, incurved, prosogyrate; posterior keel developed along a line extending from the umbones to the posterior routral margin, the angulations becoming increasingly acute toward the base; posterior area slightly wider in the right valve than in the left and slightly depressed, obtusely angulated near the dorsal margin of the right valve; external surfaee sculptured with finc and irregular conecutrie undulations which sharpen toward the ventral margin but evanesce toward the umbones and are absent altogether upon the posterior area, excepting near the base; eoneentric sculpture overridden by microscopieally fine radial striations devcloped only upon the disk and at the rentral margin of the posterior area ; ligament internal, supported by a laminar chondrophore in the left ralve; resilial pit in the right valve broad and shallow; cardinal tooth in right valve stout, conical; adductor muscle scars obscure; pallial sinus broad but very shallow.

Dimensions.-Altitude 4.5 mm ., latitude 6.5 mm ., maximum dianeter of double valves 3.2 mm .

Type Locality.-Brooks estate near Seat Pleasant, Prince George's County.

There are a number of valves of uncertain relationships occurring with C. subradiata and at nearby localities. Their affinities are undoubtedly with subradiata, but whether they are properly referable to the same species, or subspecies or an entirely distinct species, only the collection of further material will establish. 'I'hey differ from the type in the greater compression of the valves and the cousequently more obtuse posterior keel. Some are more sharply sculptured, others less sharply, but there is an aspect of consanguinity about the group that makes it seem probable that they are isolated representatives of an unbroken series.

Occurrence.-Monmouth Formation. Brightseat, Brooks estate, near Seat Pleasant, ? McNcys Corners, ? 1 mile west of Friendly, Prince George's County.

Collection.-Maryland Geological Survey.

Family SAXICAVIDAE
 Genus PANOPE Menard

[Mém. Nouveau Gen. Coq. Biv., 1807, p. 31]
T'ype.-P'anope aldrovandi Menard.
Shell equivalve, oblong, gaping at both ends; surface smooth or concentrically furrowed; ligament external, conspicuous; a single prominent conieal tooth in each valve; pallial sinus decp.
A genus that has been in existence since the close of the Cretaceous, culminated in the Tertiary and is represented to-day by about a dozen speeies occurring chiefly in cooler waters.

Dall has given the following diseussion of the genus:
"This well-known genus, after the cxclusion of the Saxicavoid species, forms a very natural group, related to the Myacide on the one hand and to Saxicava on the other. Some pcarly forms formerly confounded with it have long been eliminated, and have relations, no doubt, with Anatinacea.
" 1 have had the advantage of an opportunity to study several Pacific Coast forms in life and in their natural surrounding, as well as a rery

[^23]large series of our Tertiary speeies, and also a fair series of most of the reeent exotie speeies. For that reason, perhaps, the following eonelusions will have a eertain value, whieh is only derived from a somewhat extended range of observations of the animals themselves.
"All boring mollusks in whieh the shell has so degenerated that it no longer eovers the whole adult animal when retracted are more liable to variation in minute details than those in whieh the valves meet distally, and dynamieally influenee their own development by fixing for it certain definite limits. This is markedly the ease in the present genus. 'Those shells whieh live in an easily movable medium, such as sand or fine, solt mud, are thinner, better developed, more elongated and less distorted than their cogeners who are obliged to eonfine themselves to a gravelly or stony situs. So marked is the differenee that I have several tinles been presented with supposed new species based on these dynamie charaeters, and by a eurious reversal of logie, have been assured that the differenees nust be speeifie, beeause the animals inhabited, respectively, the different kinds of ground alluded to.
"I have observed, also, that where the ground into whieh the burrowers retire is a comparatively thin coating over a stony or rocky layer which they cannot pierce, the tendeney in Panopea, Mya, ete., is for relatively short and broad shells, with shorter siphons, to survive; which naturally have a wider, shorter, and more rounded pallial sinus and shorter and more ineurved nymphs. I believe the influence of the environment is direct and not selective; at all events, the association of situs and specimens so characterized is, as far as I have been able to determine, quite uniform, whether seleetive or not.
"In addition to the differenees more or less evidently due to situs there is a series of differenees which oceur among specimens of a single species from apparently the same situs, both in the fossil and recent forms. These inelude a nearly reetilinear as eompared with an areuate hinge line, and a slort as opposed to a long insertion of the ligament. The length of the ligament is perhaps eo-ordinated with the heaviness of the valves, but the differenees alluded to oecur so constantly that I have been led to suspect
that they might be due in part to differences eorrelated with sex in this genus."-Dall, 1895. ${ }^{1}$
A. Posterior lateral margin obliquely truncate.

1. Umbones anterior; anterior dorsal margin gently sloping.

Panope decisa
2. Umbones subcentral; anterior dorsal margin approximately straight ...Panope monmouthensis B. Posterior dorsal margin smoothly arcuate.................Panope bonaspes

Panope decisa Conrad

Panopoca decisa Conrad, 1853, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. ii, p. 275, pl. xxiv, fig. 19.

Panopaca decisa Meek, 1864, Check List Inv. Fossils N. A., Cret, and Jur., p. 15.

Glycymeris decisa Conrad, 1868, Cook's Geol. of New Jersey, p. 727.
Panopca decisa Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 181, pl. xxiv, figs. 5-8.
Panopea decisa Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 18.
Panopea decisa Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 646 , pl. lxxiii, figs. $3,4$.

Description.-"Oblong, ventricose, concentrically waved or furrowed; slightly contracted posteriorly; posterior hinge line nearly parallel with the base; posterior margin truneated obliquely inwards; basal margin nearly straight; beaks situated about one-third the shell's length from the auterior margin."-Conrad, 1853.

Type Localily.—? Burlington County, New Jersey, or ? Chesapeake and Delaware Canal, Delaware.
"Shell moderately large and ventricose, with moderately large projecting beaks, whieh are situated a little nearer the anterior end. widely gaping at the posterior end and elosed anteriorly. Anterior extremity rounded, longest below the middle, anterior end truneated, projecting near the eardinal line and reeeding below. Surface of the shell marked by very strong, broad, concentric undulations most strongly developed on the middle of the valves and beeoming nearly obsolete on some specimens both anteriorly and posteriorly. The valves are also often depressed along the posterior umbonal slope, showing a distinet furrow at the bending of the undulations of the surface at this point.

[^24]"The internal features of the speeies are not easily made out from the imperfect easts under examination, the shell having been too fragile to leave the impressions of pallial line or museular sears so as to be traced with any degree of certainty. The hinge, however, has been eonsiderably thiekened and has left the imprint of its features on some of the speeimens, so that by the use of gutta-pereha its features have been fairly shown. There is positive evidence of only a single projecting tooth in eaeh valve, which has been long and ineurved."-Whitfield, 1885.

The shell is represented in the area under discussion only by a single east eolleeted from along the eanal, one of Conrad's original localities.

It differs from Panope monmouthensis in the more eompressed valves, the more prominent and more anterior umbones and the more oblique anterior dorsal margin.

Occurrence.-Matawan Formation. Post 105, Chesapeake and Delaware Canal, Delaware.

Collections.-Maryland Geologieal Survey, Philadelphia Aeademy of Natural Seiences, New Jersey Geologieal Survey, U. S. National Museum.

Outside Distribution.-Matawan Formation. Merehantville elay marl, Woodbury elay, Wenonah sand, New Jersey. Monmouth Formation. Navesink marl, Red Bank sand, New Jersey. Peedee Formation. North and South Carolina. Eutaw Formation (Tombigbee sand member). Exogyra ponderosa zone, Prentiss County, Mississippi. Ripley Formation. Exogyra costata zone, Warrior County, Georgia; Owl Creek, Tippah County, Mississippi.

Panope monmouthensis n. sp. Plate XLV, Figs. 4, 5

Description.-Shell large, subeylindrieal in outline, inequilateral, gaping posteriorly, apparently elosed in front; umbones subeentral, not very prominent; dorsal margins straight; anterior lateral margin broadly rounded, or obseurely truneate, posterior obliquely truneate from the dorsal margin to the ventral so that the former margin is more produced posteriorly than the latter; base line approximately straight and parallel to
the cardinal margins, rounding smoothly into the anterior lateral margin and more abruptly into the posterior ; external surface undulated concentrically, rather sharply and regularly in the immediate vicinity of the umbones, broadly and irregularly over the medial portion and more closely toward the ventral and lateral margins; ligament external, opisthodetic, mounted on a short but very robust nymph; no linge plate developed, armature restrieted to a single cardinal tooth in each valve, the cardinal of the right valve in front of that of the left when interlocked; characters of muscle scar and pallial line unknown.

Dimensions.-Altitude 65.6 mm ., latitude 100.5 mm ., semi-diameter 19 mm .

Type Locality.-Brightseat, Prince George's County.
The form differs from Conrad's decisa in being more compressed, with less prominent, more central umbones and a more constrieted anterior dorsal margin.

Occurrcnce.-Monmouth Formation. John Higgins farm, 2 miles west of Delaware City, Delaware ; ? Cayots Corners, Ceeil County; Brightseat, Brooks estate near Seat Pleasant, ? MeNeys Corners, Prinee Gcorge's County, Maryland.

Collcctions.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geologieal Survey, U. S. National Museum.

Panope bonaspes n. sp.

Plate XLV, Fig. 2

Description.--Shell rather small, elliptical in outline, almost twiee as high as wide, moderately and evenly inflated; umbones compressed; subcentral, overtopping the dorsal margin; anterior portion of sleell symmetrically rounded, the posterior sliglitly wider and more broadly arcuate; base line approximately straight ; cxternal surface sculptured with irregular, concentrie corrugations whieh are most pronouneed on the medial dorsal and posterior portions of the shell, evanescing anteriorly and broader and more shallow ventrally; eharacters of interior of shell not known.

Dimensions.-Altitude 26 mm ., latitude $49 \pm \mathrm{mm}$.; semi-diameter 8 mm .

Panope bonaspes is smaller than either of the other Panopece represented within the area under diseussion and differs from them both in the smoothly rounded rather than obliqucly truncate posterior margin.

The species is perhaps the most conspicuous member of the Magotly bivalve fauna.

Occurrence.-Magothy Formatiox. Good Hope Hill, District of Columbia.

Collection.-Maryland Gcological Surver.

Superfamily ADESMACEA Family PHOLADIDAE
 Genus PHOLAS Linné
 [Systema naturæ, ed. x, 1758, p. 669]

Type.-Plolas dactylus Linné.
Shell thin, brittle, often strengthened externally by accessory plates, elongate, cylindrical, gaping anteriorly; valves reflected at the umbones, the space beneath divided by radial septa into cellular chambers; hinge plate furnished with myophorial proeess; sculpture not uniform over the surface of the valve; pallial sinus long and deep as would be inferred from the long siphons which are united excepting at the ciliatcd extremities.

The genus has been in existence since the Jurassie. It is represented to-day by about twenty species, all of them burrowers in clay, wood or even rock, and all possessing the property of phosphorescence.

Pholas pectorosa Conrad

Plate XLV, Fig. 1
? ? Pholas cithara Morton, 1834, Syn. Org. Rem. Cret. Group, U. S., p. 68, pl. ix, fig. 10.
Pholas pectorosa Conrad, 1854, Proc. Acad. Nat. Sci., Phila. for 1852-53, p. 200.

Etymology: $\phi \omega \lambda \alpha ́ s$, lurking in a hole.

Pholas pectorosa Conrad, 1854, Jour. Acad. Nat. Sci., Phila., $2 d$ ser., vol. ii, p. 299, pl. xxvii, fig. 9.

I Pholas cithara Meek, 1864, Cleck List Inv. Fossils, N. A., Cret. and Jur., p. 16.
?. Clavipholas cithara Conrad, 1868, Cook's Geol. of New Jersey, p. 728.
?. Martesia cithara Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 304.
Pholas cithara Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 187, pl. xxv, figs. 14-16. (Synonymy excluded.)
Pholas pectorosa Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 18.
Pholas cithara Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 651, pl. lxxiv, fig. 7 (ex parte).
Description.-" Ovate-euncate; anteriorly inflated, contracted in the middle ; posterior side cuneiform; disk with radiating ribs, largest anteriorly, and interrupted by concentric furrows; anterior side very short, margin obtusely rounded or subtruncated; basal margin rounded anteriorly, contracted medially, straight posteriorly."-Conrad, 1854.

Type Locality.-Tinton Falls, Monmouth County, New Jersey.
"Shell triangularly ovate, acutely pointed behind and subtruncate in front. Valves very ventricose, the depth and thickness when united about equal, giving a nearly round section. Anterior umbonal ridge inflated and nearly subangular in some cases, always sharply rounded, and the anterior surface somewhat flattened or but little conrex. Central region of the valves sulcated obliquely, more or less constricting the front margin at about or just behind the center. Hinge line straight, decply sunken betwen the large, inflated and enrolled approximate beaks. Surface of the shell marked by strong radiating ribs, numerous but somewhat irregular posterior to the umbonal angle, but few and distant in front; also by comparatively strong concentric ridges, which are distinctly deflected at the mesial sulcus and pass obliquely upward in front of it. These concentric ridges form flattened nodes of the radiating ribs by crossing them on the anterior part of the shell.
"I have seen several casts of this species, and noticed considerable variation in their characters, especially in the strength of the surface markings, in the form of the anterior end, and in the strength of the mesial sulcus of the valves, and especially in the strength and character of a sometimes deeply impressed but narrow line marking the bottom of the suleus and dividing the anterior and posterior seetions of the shell, it
being in some instances almost obsolete. Mr. Morton's type specimen, which I have not seen, seems to have been very small, and to have had the anterior end rounded from below, while Mr. Conrad's type of P. pectorosa is full and round below and sloping above, while a cast of a single valve which is figured appears to have been quite sharply truncate in front and angular on the umbonal ridge. There is also mueh difference in the proportional strength of the two sets of ribs in the different examples." Whitfield, 1885.

Morton's type of P. cithara has, apparently, been lost and his description is so meager and his figure so inadequate that it is impossible to determine with absolute assurance its relationship to the P. pectorosa of Conrad. Conrad's type now in the Philadelphia Academy of Natural Sciences is from the Monmouth at Tinton Falls, New Jersey, and there is no doubt whatever about the specific identity of this form and the casts from the Monmouth of Prince George's County. It seems not at all improbable, though by no means established, that Conrad's species is distinct from Morton's and possibly its deseendant, sinee in New Jersey and Maryland the former is restrieted apparently to the Monmouth, the latter to the Matawan.

Occurrence.-Monmouth Formation. Brightseat, Brooks estate near Seat Pleasant, Prince George's County.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jerscy Geological Survcy, U. S. National Museum.

Outside Distribution.-Monmouth Formation. Tinton beds, New Jersey. Ripley Formation. Exogyra costata zonc, ? Chickasaw, ? Union, and ? 'Tippah counties, Mississippi.

Genus MARTESIA Leach

[Blainville, Man. Mal., vol. i, 1825, p. 632]
Type.-Pholas clavata Lamarck $=$ Pholas striata Limné.
Shell ovate-oblong, euneiform, strengthened by three aecessory plates; young forms gaping anteriorly; valves closed at the completion of the burrow with a calcareous septa or "callum"; surface decply sculptured by a single radial sulcus.

Etymology: Unknown.

The genus has been reported from deposits as early as the Carboniferous. The customary habitat of the present day species is in burrows excarated in the floating timber and driftwood of the warm and temperate seas.

Martesta cretacea Gabb

Pholas cretacea Gabb, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 393 , pl. lxviii, fig. 18.
Pholas cretacea Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 16.

Pholas I cretacea Conrad, 1868, Cook's Geol. of New Jersey, p. 728.
Martesia cretacea Gabb, 1876, Proc. Acad. Nat. Sci., Phila., p. 304.
Martesia (Pholas) cretacea Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 190, pl. xxv, figs. 20-23.

Pholas cretacea Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 18.
Martesia cretacea Johnson, 1905, Ibidem, p. 18.
Martesia cretacea Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. $654, \mathrm{pl}$ lxxiv, figs. 8-11.
Description.-"Tube conical, rounded at the widest end, surface marked by oblique lines; shell (?)."—Gabb, 1860.

Type Locality.-Raritan Bay, New Jersey.
"Shell small, subhemispherical in front, euneate behind, the beaks strongly incurved, umbones prominent. The anterior margin rounding regularly from the anterior extremity of the hinge line into the straight basal margin, posterior margin subtruncate, post-cardinal margin sloping backward from the posterior extremity of the hinge linc. Surfaee of each ralve marked by a deep, narrow groove extending from the beak obliquely backward to the ventral margin which it meets in front of the middle of the shell; in most individuals a seeond groove close to and parallel with the first, but a little wider and shallower, is introduced a short distance below the beak and continues to the margin. The anterior region of the shell is marked by fine eostæ which bend abruptly upward in front of the oblique grooves, continuing to above the midale of the shell, where they make a nearly rectangular turn and continue in a horizontal direction to the anterior margin, surrounding two sides of, and sharply differentiating, a smooth, triangular, slightly raised area in the antero-ventral region of each valve. The posterior region of the shell is marked by broader. rounded costix, parallel with the margin of the valres.
"The dimensions of a speeimen of average size are: Length 8 mml . height 4.5 mm ., greatest thiekness 4.8 mm .
"The name Pholas cretacea was originally applied to a group of casts of the tubes of one of the Pholadidce, without any knowledge of the shell characters. At a later date the original author of the speeies described a single individual of a shell and referred it to the same species as the previously deseribed tubes, 'beeause it is of about the proper size to form such tubes.' In themselves, the tubes of this group of pelecypods possess no characters which ean be used for speeific determination, and consequently the species Pholas cretacea, afterwards referred to the genus Martesia, may be considered as founded upon the shell deseribed by Gabb. Whitfield has illustrated Gabb's speeimen and redeseribed it, but he saw no additional speeimens. In the recent collections of the Survey, fifty or more individuals of this speeies have been observed in a fragment of fossil wood from 1 to $1 \frac{1}{2} \mathrm{in}$. in diameter and 8 in . long. The entire surface of this wood is filled with the burrows of this speeies, and in each burrow is a well preserved shell or the internal east of a shell. These speeimens show some rariation in several characters, but a comparison with Gabb's type of M. cretacea has shown them to be not essentially different from that speeies. Some of the examples are shorter than usual and consequently taper more abruptly to the posterior extremity than the average form, but the most important variation is the presence or absence of the supplementary oblique furrow in front of the primary one extending from the beak to the ventral margin. In the majority of individuals this furrow is present and its absence is more apt to be a feature of the smaller and presumably the younger shells. In a few specimens of nearly maximum size this furrow is nearly obsolete, being noticeable only near the ventral margin, and in one specimen it is absent from one valve, although faintly indicated on the other."-Weller, 1907.

The species has a doubtful representation within the Delaware-Maryland area. A single somewhat distorted tube referred tentatively to this speeies was eollected along the canal. A east of the interior with fragments of the substance still adhering has even more dubious affinities. The surface eharacters are apparently very similar to those of M. cretaceu,
but the ralves are smaller and so much more compressed that it seems hardly probable that the limits of rariation even in Martesia are wide enough to include both forms.

Occurrence.-Matawan Fommation. ? Marl pit near Post 236, Chesapeake and Delaware Canal, Delaware. Monmouth Formation. ? Brightseat, Prince George's County, Maryland.
Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey.

Outside Distribution.-Matavan Formation. Merchantville clay marl, Marshalltown clay marl, New Jerscy.

Family TEREDINIDAE

Genus TEREDO Linné
[Systema Naturae, ed. $\mathbf{x}, 1758$, p. 651]
Type.-T'eredo navalis Linné.
Shell much reduced; ralves trilobed, widely gaping anteriorly and posteriorly; surface concentrically striated; hinge margin reflccted, edentulous; spoon-shaped process projecting from interior of hinge for attachment of pedal muscle; anterior adductor degenerate; pallial line coincident with the margins of the valves.

The recent representatives of the species, the so-called ship-worms, have been notorious since the days of the Roman Empire. To-day they occur in the temperate and tropical seas in numbers sufficient to endanger all submarine wooden constructions, whether ships, wharves, piers, bridges, piles or dikes. Protection is gained ouly by metal sheathing or by treatment with creosote.

The genus has a long pedigree. Certain burrows from the Carbonifcrous have been referred doubtfully to the Teredo, and there is no question that it existed in the Mesozoic.
A. Posterior extremity of shell lobate dorsally; tubes circular in crosssection ... Teredo irregularis B. Posterior extremity of shell slightly produced dorsally but not lobate; tubes lenticular in cross-section............................Teredo rhombica

[^25]Teredo irregularis Gabb
Teredo tibialis Morton, 1834, Syn. Org. Rem. Cret. Group U. S., p. 68 (ex parte).
Teredo irregularis Gabb, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. 1v, p. 393, pl. lxviii, fig. 19.

Teredo contorta Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jur., p. 16.

Teredo irregularis Meek, 1864, Ibidem.
Teredo contorta Conrad, 1868, Cook's Geol. of New Jersey, p. 727.
Teredo irregularis Conrad, 1868, Ibidem.
Teredo irregularis Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 191, pl. xxy, figs. 18, 19.
Teredo irregularis Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 18.
Teredo eontorta Johnson, 1905, Ibidem.
Teredo irregularis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 656, pl. lxxiv, figs. 1-3.

Description.-"Tube irregular, tortuous, dilated in plaees and sometimes transversely wrinkled. Shell twiee as large as that of T. tibialis, more abruptly truncate anteriorly."-Gabl, 1860.

Type Locality.-? New Jersey.
"Tubes as shown by their casts gregarious, excecdingly tortuous and contorted, sometimes annulated, inereasing gradually in size from their point of origin, the larger ones reaehing a diameter of 10 mm . or more. Shell subglobular, cordate in outline from in front, the beaks a little in front of the middle of the hinge line, widely gaping behind and open in front; the postero-eardinal extremity somewhat produced in a rounded lobe. Anterior margin rounding from the hinge line above into the upper margin of the large, deep, subreetangular, antero-basal hiatus whieh reaches above the mid-height of the shell; basal margin short; posterior margin obliquely subtruneate below, bent abruptly baekward near the hinge line and continuing around the postero-eardinal lobe of the shell. Valves ventrieose, the beaks prominent, much elevated above the hinge line and strongly incurved or curolled ; the surface curving stecply towards the antero-eardinal extremity and then deflected shortly before reaehing the margin, curving less abruptly to the postero-eardinal extremity. In the easts a rery deep and prominent furrow passes from the hinge line just back of the beaks to the posterior margin just below the post-cardinal lobe
of the shell ; another faint groove, which is less conspicuous upon the larger individuals, crosses the post-umbonal slope in a nearly vertical direction from the lower margin of the deep groove already described behind the beaks to the posterior extremity of the basal margin; surface of the anterior half of the shell, as shown in impressions of the extcrior, marked by exceedingly finc, regular, concentric striæ, parallel with the shell margin, twenty or more of which occupy the space of 1 mm . These striæ towards the antero-cardinal extremity are crossed by finer radiating striæ, which produee an exceedingly fine reticulate pattern upon the shell surface. Markings of the posterior half of the shell unknown.
"Casts of the irregular burrows of this species are sometimes of eommon occurrence in the Merchantville clay, penetrating masses of fossil wood, and on traeing these burrows to their termination easts of the shell ean usually be found, sometimes in excellent eondition. Some masses of the tubes are all mueh smaller than those in other masses, but all the tubes in one group are usually of approximately the same dimensions. It was at first thought possible that the different sized tubes indicated different species, but the shells are all essentially the same, whether from large or swall tubes, in all masses observed in the Merchantville clay marl. A mass of essentially identical tubes has been found in the Marshalltown clay marl, however, associated with many individuals of Martesia bisulcata, which have a very different shell, described in this report as Turnus kiummeli. Other similar tubes oeeur sometimes in the Navesink marl, but the accompanying shells have not been obscrved. These tubes, howerer, seem to be straighter and they probably belong to another speeies.
" The type speeimen of T. irregularis is without data as to loeality or horizon, and the deseription of the shell itself is too meager to be of any use in identifieation. Inasmuch, however, as the Merehantville clay marl is the horizon where burrows of this sort most frequently oeeur, and as Gabb described numerous fossils from this horizon in Burlington County, New Jersey, it is altogether probable that the type speeimen is specifically identical with the shell here described.
"Morton evidently applied the name Teredo tibialis to all the Teredolike tubes he found in New Jersey, but the name is still retained for the
tubes like those which he illustrated, which are found only in the Vineentown limesand. The specimens which he referred to from 'the friable marls' which are prescrved as 'casts in lignite' were in all probability representatives of the species T. irregularis.
" The type of T'eredo contorta Gabb, which is preserved in the collection of the Philadelphia Academy of Scicnce, has becn carcfully compared with the recently collected examples which are here refcred to T. irregularis, and there can be no doubt as to their specific identity; it also is without doubt a Merchantville clay marl specimen, and it is safe to conclude that it is a synonym of T. irregularis."-Weller, 190%.

The species is represented in Maryland only by a few fragmentary tubes, the largest of them embedded in a mass of wood from near Post 218 on the Chesapeake and Delaware Canal.

Occurrence.-Matawan Formation. Post 218, Chesapeake and Delaware Canal, Delaware; Ulmstead Point, Anne Arundel County, Maryland.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Sciences, New Jersey Geological Survey.

Outside Distribution.-Matawan Formation. Merchantville clay marl, New Jersey.

Teredo rhombica n. sp.

Plate XLV, Fig. 3
Description.--Shell composed of two small plates gaping widely at both cxtremities, feebly convex and rhombic in outline; umbones small, rounded, inconspicuous, not overtopping the dorsal margin; anterior dorsal margin horizontal, approximately parallel to the base, slightly produced bchind; posterior dorsal margin oblique, diverging from the anterior at an angle of not far from 140°, merging smoothly into the truncated lateral margin; posterior lateral margin obliquely truncate, produced but not lobate at the dorsal extremity; base line straight, less abruptly upcurved behind than in front; posterior area differentiated by a linear sulcus dropped from the umbones to the posterior ventral margin; incremental sculpture in front of the diagonal fecble and irregular, behind it slarp and minutcly laminar, the dorsal edges free and closely
and regularly overlapping; ligament obsolete; hinge margin reflected, cdentulous; produced under the umbones into a minute linguiform process for the support of the pedal muscle ; characters of interior obscure; tubes compressed, corrugated, lenticular in cross-section.

Dimensions.-Altitude 5 mm ., latitude 3.2 mm ., maximum diameter 4 mm .

The valves are scparated from those of the co-existent Teredo irregularis Gabb by the non-lobate posterior dorsal extremity, while the tubes differ from the irregular cylindrical tubes of Gabb's species in being compressed and corrugated.

Occurrence.-Monmouth Formation. Brightseat, Prince George's County.

Collection.-Maryland Geological Survey.

MOLLUSCOIDEA Cass BRACHIOPODA order TELOTREMATA Superfamily TEREBRATULACEA Family TEREBRATULIDAE

 Genus TEREBRATULA Müller (Buckman emend.)Terebratula harlani Morton.
Plate XLVII, Figs. 1-5
Terebratula harlani Morton, 1829, Am. Jour. Sci., 1st ser., vol. xvii, p. 283; vol. xviii, p. 250, pl. iii, fig. 16.
Terebratula harlani Morton, 1827, Jour. Acad. Nat. Sci., Phila., 1st ser., vol. vi, p. 73, pl. iii, figs. 1-7.
Terebratula perovalis Morton, 1827, Ibidem, p. 77, pl. iii, figs. 7, 8. (Not T. perovalis Sowerby.)

Terebratula harlani Morton, 1834, Syn. Org. Rem. Cret. Group, U. S., p. 70, pl. iii, fig. 1, pl. ix.
Terebratula camilla Morton, 1834, Ibidem, p. 70.
Terebratula harlani Marcou, 1853, Expl. Text to Geol. Map U. S. and British Provinces of N. A., p. 47, pl. vii, fig. 8.
Terebratula harlani Gabb, 1862, Proc. Acad. Nat. Sci., Phila., for 1861, p. 18.
Terebratula harlani Cook, 1868, Cook's Geol. of New Jersey, p. 375, text figs.
Terebratula harlani Conrad, 1868, Ibidem, p. 723.
Terebratula harlani Credner, 1870, Zeitsch. Deutsch. Geol. Gesell., vol. xxii, p. 221 .

Terebratula harlani Whitfield, 1885, Mon. U. S. Geol. Survey, vol. ix, p. 6, pl. i, figs. 15-23.
Terebratula gorbyi Miller, 1892, 17th Ann. Rept. Dept. Geol. and Nat. Res. Indiana, p. 687, pl. xiii, figs. 3, 4.
Terebratula harlani Bagg, 1898, Am. Geol., vol. xxiii, p. 370.
Terebratula harlani Clark and Martin, 1901, Maryland Geol. Survey, Eocene, p. 204, pl. lviii, figs. 2, 3.
Terebratula harlani Johnson, 1905, Proc. Acad. Nat. Sci., Phila., p. 6.
Terebratula harlani Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 357, pl. xxviii, figs. 1-8.

Description.-" Shell large, about twice as long as broad, sides straight and imperfectly parallel; upper valve plano-convex, obscurely biplicated except near the margin, which has three inconsiderable sinuses; lower
valve rery convex, with a longitudinal ridge and slight lateral depressions; beak incurved; umbo prominent."-Morton, 1829.
"Shell large, the dimensions of a large individual being: Length 59 mm ., width 36 mm ., thiekness 36 mm . ; elongate oval in outline with subparallel sides, often becoming more or les eylindrical in old speeimens; the front margin more or less truncated, sometimes bilobate from a flattening or lobing of the valves anteriorly. Pedicle valve very ventricose, beeoming almost gibbous in old individuals, the beak large, strong, ineurved, truneated at the apex by the large foramen whose diameter is greater externally than within, the truneation in full-grown shells being parallel with the axis of the valves; lateral margins of the beak subangular; the median portion of the valve often flattened or somewhat coneave toward the front and the lateral slopes sometimes impressed. Brachial valve much less convex than the pedicle, the beak small and strongly incurved; the median portion of this valve flattened or coneave anteriorly, the flattened portion being bounded on eaeh side by a more or less distinet angular ridge which separates it from the lateral slope, this feature often being exaggerated to so great an extent as to give the anterior half of the shell a decidedly plieate apearance ; internally the crura are slender near the junction with the valve, and expand rapidly to form a broad loop from 8 mm . to 15 mm . in length, with the width more than two-thirds of the length, the loop sharply angular at the points of reeurvature. Surface of botli ralves marked by numerous lines of growth which are often erowded towards the front of old speeimens so as to form distinet variees. Shell substance finely punetate, the punctæ usually visible under a hand lens, always more distinetly seen upon exfoliated surfaees.
"Remarks.-This speeies is perhaps the largest Terebratuloid shell known in any of the Ameriean faunas, and at the horizons where it is found in the Cretaceous formations of New Jerscy it usually oceurs in great numbers. It usually forms a very constant bed at the summit of the Hornerstown marl where, through several feet of sediments, the shells oeeur almost to the exelusion of everything else. The speeies also oeeurs in the quartz sand facies of the Vineentown formation, sometimes in great numbers, but always in the form of internal easts."-Weller, 190%.

The young are much broader relatively than the adults. None of the Maryland individuals that have come under observation exhibit the strong radial plieation which claracterizes the variety fragilis. There is seareely an individual whieh is less feebly plieate than Morton's type of T. harlemi, sensu stricto.

The speeies oceurs assoeiated with the Eocene, and quite a little literature has grown up around the question of whether or not the speeies is reworked.

Occurrence.-Rancocas Formation. Drawyer Creek, near Odessa, south side of Appoquinimink Creek between Odessa and mill-dam, Noxonville, Noxontown Millpond, Delaware; head of Sassafras River on Jaekson farm and Jacobs farm, Maryland.

Collections.-Maryland Geological Survey, Philadelphia Academy of Natural Scienees.

class BRYOZOA Order CYCLOSTOMATA
 Family DIASTOPORIDAE
 Genus STOMATOPORA Bronn
 Stomatopora reqularis Gabb and Horn Plate XLVI, Fig. 11

Stomatopora regularis Gabb and Horn, 1862, Jour. Acad. Nat. Sci., Phila., (2) vol. v, p. 172, pl. xxi, fig. 63.

Stomatopora regularis Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 313, pl. xx, figs. 1-3.
Alecto regularis Meek, 1864, Check List Inv. Fossils, N. A., Cret. and Jurassic, p. 4.

Description.-" Zoarium enerusting, ramose, the branches filiform and usually very regular, from 0.4 mm . to 0.6 mm . in width, the surface slightly eonvex, the sides sloping gently towards the lateral margins, rarely or never abrupt. Zoœeia regular in shape, usually a little wider just behind the aperture and the sides converging slightly posteriorly, this differenee in width, howerer, is frequently scareely notieeable and is never sufficient to sharply separate the sueeessive zoœecia from each other.

Zoccial apertures circular, tubular and inclined a little forward in unworn specimens."-Weller.

The type specimens were obtained from the Vincentown limesand of the Rancocas formation of New Jersey, wherc the species occurs quite abundantly.

Occurrence.-Rancocas Formation. South side of Appoquinimink Creck between mill-dam and Odessa, and at Noxontown Millpond, Delawarc.

Collection.-Maryland Geological Survey.

S'tomatopora kümmeli Ulrich and Bassler
Plate XLJI, Fig. 10
Stomatopora kiummeli Ulrich and Bassler, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 314, pl. xx, fig. 4.

Description.-Zoarium encrusting, ramose, the branches very finc and delicate, from 0.15 mm . to 0.2 mm . in width, the surface transversely convex, the slope from center to lateral margins never abrupt. Zoœcia regular in form, scarcely differentiated, although the sides converge slightly postcriorly. Zoæecial apertures circular, in unworn specimens, with the rim slightly elcvated and inclined a little forward.

This species is a very close ally of S. regularis, but may be distinguished from that species by its more delicate growth and smaller zoccia.

Occurrence.-Rancocas Formation. Noxontown Millpond, Delaware. Collection.-Maryland Geological Survey.

Genus BERENICEA L.amarck
Berenicea americana Ulrich and Bassler
Plate XLVI, Fig. 14
Berenicea americana, Ulrich and Bassler, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 315, pl. xx , fig. 7.

Description.-Zoarium encrusting, growing in more or less irregular patches upon the surfaces of other bryozoa. Zoœcia contiguously arranged in more or less regular spreading series, each zocecium about 0.5 mm . in
length and from 0.1 mm . to 0.13 mm . in width, the lateral boundaries sharply defined by impressed grooves, the surface gently eonvex transversely. Zoccial apertures nearly terminal, circular, a littlc narrower than the zoœcia, directed slightly forward, with a slightly elevated rimlike border.

This species cannot be confused with any associated bryozoa, the other American species of the genus being mainly of Ordovieian agc. The specics is particularly charaeterized by its small, narrow, clongate zoœcia, with cach zoœcium sharply marked laterally.

Occurrcncc.-Rancocas Formation. Noxontown Millpond, Delaware. Collection.-Maryland Geologieal Survey.

Family IDMONEIDAE Genus CRISINA d'Orbigny

Crisina striatopora Ulrich and Bassler Plate XLVI, Fig. 15

Crisina striatopora Ulrich and Bassler, 1904, Maryland Geol. Survey, Miocene, p. 406, pl. cxvii, figs. 1-4.
Crisina striatopora, Ulrich and Bassler, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 319, pl. xxi, figs. 15-18.

Description.-Zoarium crect, ramosc, probably not exceeding 1 cm . in height, dividing diehotomously at intervals of about 1.5 mm .; branehes subovate in eross-section, thickest uniformly convex and traversed longitudinally by from sixtcen to twenty punetate strix on the reverse side, narrower and carrying alternating series of zoocial apertures on the obverse side. Zoccial apertures rarely three, usually four in each series, in contact laterally, the inner one of each series largest, most prominent and subeircular, the outer one smallest, drawn out distally and apparently grading into the pores lying between the longitudinal ridges of the reverse side. Series of zoocia eurving first forward then slightly backward, separated by a deep interspace averaging about 0.2 mm . in width; about five rows in 2 mm . Over the basal part of the zoarium the zoceial apertures are covered one after the other by the growth of the striatopunctate dorsal integument.

The type speeimens were obtained from the Mioeene of Maryland, but apparently the same speeies oeeurs rather rarely in the Vineentown limesand of the Upper Cretaceous at Vincentown, New Jersey.

Occurrence.-Rancocas Formation. South side of Appoquinimink Creek between mill-dam and Odessa, Delaware.

Collection.-Maryland Geological Survey.

Family FASCIGERIDAE
 Genus FillfasGigera d’Orbigny

Filifascigera megera (Lonsdale)
Plate XLVI, Fig. 12
Tubulipora megora Lonsdale, 1845, Quart. Jour. Geol. Soc., London, I, p. 69, figs. a, b.
Filifascigera megera Gabb and Horn, 1862, Jour. Acad. Nat. Sci., Phila., (2) vol. v, p. 165, pl. xxi, fig. 53.

Filifascigera megara Ulrich, 1896, Zittel-Eastman, Textbook Pal., vol. i, p. 263 , fig. 421.
Filifascigera megora Ulrich and Bassler, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 325, pl. xxil, figs. 12-15.
Filifascigcra megara Ulrich, 1913, Zittel-Eastman, Textbook Pal., vol. i, p. 332, fig. 451.

Dcscription.-The enerusting zoarium of this speeies may very readily be reeognized from all eyelostomatous bryozoa by the faseieulate zoæeia, arranged in groups of from two to five, arising from the eenter of the broadest portions of the zoarium.

This is a common and charaeteristic species of the Vineentown limesand in New Jersey and Delaware.

Occurrencc.-Rancocas Formation. Noxontown Millpond, Delaware. Collection.-Maryland Geologieal Survey.

Family LICHENOPORIDAE

Genus LICHENOPORA Defrance.
Licilenopora papyracea (d'Orbigny)
Plate XLVI, Fig. 13
Unitubigera papyracea D'Orbigny, 1852, Pal. Franc., Terr. Cret. Tom. 5, p. 761, pl. 643, figs. 12-14.

Lichenopora papyraeea Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 27, pl. xxil, fig. 20.

Description.-The small encrusting subcircular eolonies of this species with a maximum diameter of 4 mm . readily separates this form from all other associated species.

Occurrence.-Rancocas Formation. Noxontown Millpond, Delawarc. Collection.-Maryland Geological Survey.

order CHILOSTOMATA
Family MEMBRANIPORIDAE
Genus MEMBRANIPORA Blainville Membranipora annuloidea Ulrich and Bassler

Plate XLVI, Fig. 3
Membranipora annuloidea UIrich and Bassler, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 335, pl. xxiii, fig. 16.

Description.-Zoarium encrusting. Zoccia from 0.5 mm . to 0.65 mm . in length, their width about three-fourths their length, more or less hexagonal in outline, sharply defined by depressed furrows. Zoocial apertures about 0.2 mm . in length, subovate in outline, surrounded by a rather broad, somewhat elevated, rounded marginal rim which is marked by a series of from ten to thirteen small subcircular pits with raised borders. Ovieells variable in their distribution, either abundant or much scattered, usually a little broader than long with the side next the zoæcial aperture somewhat flattened, about 0.15 mm . in width.

When worn, the marginal ring of pits about the zoœeeial apertures is more or less obseure and sometimes wanting entirely. The species somewhat resembles the Italian Tertiary species M. annulus Manzoni, but differs in having more rounded zoœcia and more numerous pores.

Occurrence.-Rancocas Formation. Noxontown Millpond, Delawáre. Collection.-Maryland Geological Survey.

Genus AMPHIBLESTRUM Gray
Amplitblesthum heteropora (Gabb and Horn)
Plate XLVI, Figs. 5, 6
Reptoflustrella! heteropora Gabb and Horn, 1862, Jour. Acad. Nat. Sci., Phila. (2), vol. v, p. 162, pl. ii, fig. 50.

Reptofustrella? heteropora Ulirich, 1901, Maryland Geol. Survey, Eocene, p. 213, pl. 1x, figs. 8, 9.
Amphiblestrum heteropora Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, 1907, p. 333, pl. xxiii, figs. 14-16.
Description.-Zoarium enerusting in irregular patches, usually growing upon other spccies of bryozoa. Zoœcia in a single layer, usually arranged with but little regularity, but sometimes exhibiting a tendeney to grow in radiating lines, longer than wide, pointed in front, broadly subtruncate behind; aperture about 0.15 mm . in width, subtriangular in outline with convex sides, often approaching an oval form in very long zoœeia; bordered anteriorly and laterally by a slightly elevated, rounder ridge which becomes obsolete posteriorly. Just in front of the anterior angle of the zooecial aperture is a small subcircular pore, probably the point of attachment of an avicularium. Posterior portion of the zoocia corered with a regularly eonvex, smooth wall, which in old zoaria is continued over the entire surface, totally obliterating the aperture.

Not uncommon in the Vineentown limesand at Vincentown, Mullica Hill and Timber Creck, New Jersey, and at Noxontown Millpond, Delaware. Rare in the Foeene (Aquia) at Upper Marlboro, Maryland.

Occurrence.-Rancocas Formation. Noxontown Millpond, Delaware.
Collection.-Maryland Geological Survey.

Genus ESCHARINELLA d'Orbigny

Escharinella ?? altimuralis Ulrich and Bassler
Plate XLVI, Fig. 7
Escharinella altimuralis Ulrich and Bassler, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 339, pl. xxiv, figs. 9, 10.
Description.-This very characteristie species may be readily distinguished by its suborbicular zoœcia areraging 0.5 mm . in length with their extremely thin walls and with a very large subelliptical avieularium at each zoœcial angle. The generic placement in Escharinella is entirely provisional until this group of spceies ean be thoroughly studied.

This is an abundant species in the Vineentown limesand at Vincentown, New Jersey.

Occurrence.-Rancocas Formation. Noxontown Millpond. Delaware.
Collection.--Maryland Geological Survey.

Family CRIBRILINIDAE
 Genus CRIBRILINA Gray Cribrilina sagena (Morton) Weller
 Plate XLVI, Figs. 1, 2

Flustra sagena Morton, 1834, Syn. Org. Rem. Cret. Group, N. A., p. 79, pl. xii, fig. 7.
Escharina? sagena Lonsdale, 1845, Quart. Jour. Geol. Soc., London, I, p. lxxi, figs. a-c.
Pliophleca sagena Gabb and Horn, 1862, Jour. Acad. Nat. Sci., Phila. (2), vol. v, p. 150, pl. xx, fig. 34.
Cribrilina sagena Weller, 1907, Geol. Survey, of New Jersey, Pal., vol. iv, p. 34, pl. xxiv, figs. 11, 12.

Description.--Zoarium consisting of rather broad, irregularly branching, more or less tortuous plates composed of several layers of zooceia superimposed one upon another. Zooeia in elose contact all around, elongate-subelliptical or subquadrangular in outline; from 0.3 mm . to 0.4 mm . in length, the width usually about one-half the length, arranged more or less regularly in longitudinal lines and in quineunx. Zoceial apertures terminal, small, 0.1 mm . or less in diameter, subeircular or subquadrate in outline; back of the aperture the outer surfaec of the zooceia is covered by a thin, nearly flat or slightly convex wall, which is marked by about sixteen straight rows of fine perforations, whieh extend inward from and at right angles to the margin of the zooceium. Avieularia small, subeireular or subelliptieal in outline, two in number for cach zoccium, situated one on either side of the zoœecial aperture. Ovieells seattered irregularly over the surface of the zoarium, usually not abundant; they are smooth, dome-shaped bodies, considerably larger than the zooecial apertures just above which they are always situated."-Weller, 190%.

This species is very abuudant in the Vineentown limesand at Vincentown, Mulliea Hill and Timber Creek, New Jersey, but not so abundant at Noxontown Millpond, Delawarc.

Occurrence.-Rancocas Formation. Noxontown Millpond, Dclaware. Collection.-Maryland Geologieal Survey.

Genus MEMBRANIPORELLA Smitt
Membraniporella abbotti (Gabb and Horn) Weller Plate NLVI, Fig. 4
Escharipora abbottii Gabb and Horn, 1862, Jour. Acad. Nat. Sci., Phila. (2), vol. v, p. 149, pl. xx, fig. 33.

Reptescharipora marginata Gabb and Horn, 1862, Ibidem, p. 151, pl. ii, fig. 35.

Membraniporella abbotti Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 342, pl. xxiv, fig. 13, 14.

Description.-"Zoarium encrusting or growing in bifoliate plates. Zoœecia elongate-subelliptical or subhexagonal in outline, usually arranged in more or less regular longitudinal series and in quincunx, about 0.5 mm . in length, the length about twice the width. Zoœecial apertures subeircular or subquadrate with rounded angles, sometimes rounded in front and truncate posteriorly; they are situated anteriorly and occupy about one-third of the length of the zoœcium ; back of the aperture the surface is covered by a thin, flat or slightly convex wall slightly depressed below the zooecial margin, which is marked by about fourteen or fifteen lateral grooves radiately arranged posteriorly, leaving a narrow, smooth area along the median line, these grooves are either slit-like openings through the wall or they are piereed by lines of pores, it cannot be determined which from the specimens observed. Avicularia usually two to each zoceium; suborate in outline and situated one on each side of the zocecial aperture, from the lateral margins of which they are directed obliquely outward and backward. Ovicells present or absent, subglobular in form, situated just in front of the zoocial apertures."-Weller, 190%.

Occurrence.-Rancocas Formation. Noxontown Millpond, Delaware. Collection.-Maryland Geological Survey.

Family ESCHARIDAE

Genus MUCRONELLA Hincks
Mucronella aspera UTrich
Plate XLVI, Figs. 8, 9
Mucronella aspera Ulrich, 1901, Maryland Geol. Survey, Eocene, p. 221, pl. lx, figs. 17, 18.

Description.-" Zoarium encrusting, consisting of onc or more layers; surface under a low power of magnification presenting a decidedly rough aspect. Zooecia varying from ovate-hexagonal to subrhomboidal, indistinct externally, arranged more or less irregularly, though the rows are more regular than may appear at first sight; about six in 2 mm . Apertures rounded or subquadrate, 0.13 mm . in diameter, rendered oblique by the elevation of the more or less strongly swollen posterior margin and the depression of the anterior part. The central portion of the raised lip forms a " mucro" of greater or less thickness and prominence, the same hiding a minute central tooth beneath it, and forming with the rest of the thickened portion of the lip a more or less obscure resemblance to the figure W. Behind the lip, the surface slopes rapidly and in the most nearly perfect example is granulose. In the depressed space in front of the aperture there are, normally, three small raised avicularia (? vibracula), while a few larger avicularia, differing further from the others in being divided into two unequal parts by a cross-bar, are scattered without order among the zoœcia. Oœcia are not often seen. When present they occupy the depressed space in front of the aperture, are cucullate, about as large as the zoœcial apcrture, and usually bear a furrow running from the summit to the concave edge."-Ulrich, 1901.

The encrusting zoarium, mucronate aperture, and the small raised avicularia will serve for the recognition of this species.

This species is not uncommon in the Vincentown limesand of the Upper Cretaceous at Vincentown, New Jersey. Common at the same horizon in Delaware. The species also occurs rarely in the Lower Eocene (Aquia) at Upper Marlboro, Maryland.

Occurrence-Ranoocas Formation. South side of Appoquinimink Creek between mill-dam and Odessa, and at Noxontown Millpond, Delaware.

Collection.-Maryland Gcological Survey.

Family HIPPOTHOIDAE

Genus HIPPOTHOA Lamouroux

Hippothoa tenuichorda (Ulrich and Bassler)

Plate XLVI, Fig. 16
Stomatopora tenuichorda Ulrich and Bassler, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 314, pl. xx, figs. 5, 6.
Corynotrypa tenuichorda Bassler, 1911, Proc. U. S. Nat. Mus., vol. xxxix, p. 513, fig. 11.

Description.-" Zoarium adnate, frequently branehing, consisting of uniserially arranged zoœeia. Zoocia elongate-pyriform, or club-shaped, 0.45 mm . to 0.85 mm . in length, about 0.02 mm . in width at the posterior extremity, increasing very gradually in size through about one-half their length, and then somewhat abruptly to about 0.15 mm . at the rounded anterior end. Zoceial aperture nearly terminal, small, circular, with a slightly elevated, rim-like border, from 0.035 mm . to 0.05 mm . in diam-eter."-Ulrich and Bassler, 190\%.

This neat little species was at first thought to belong to the Cyclostomata, although its relationship to Hippothoa was noted under the remarks in the original description. Further study has shown that in all probability the species is actually one of the genus Hippothoa.

Occurrence.-Rancocas Formation. Noxontown Millpond, Delaware. Collection.-Maryland Geologieal Survey.

VERMES
 class ANNELIDA
 Order POLOCHAETA
 Suborder TUBICOLA
 Family SERPULIDAE
 Genus SERPULA Linné
 [Systema Naturæ, ed. x, 1758, p. 786]

Type.-Serpula seminulum Linné.
Solitary or gregarious tubicolous annelids; tubes frec or adherent, usually more or lcss contorted or convoluted.

Etymology: Serpula, serpent.

The genus has been reported from strata as early as the Silurian. In the Purbeek beds of northwest Germany one member of the genus Serpula attains considerable importance as a rock-builder. Recent Serpulce are world-wide in distribution.

The classification of the fossil annelids is of necessity in a lamentable state, since only the most superfieial characters are available for determining the identity of species. In many eases it is impossible to tell whether the tube in question was secreted by a worm or a molluse, although, as a rule, the latter ean be isolated by the presence of internal septre and of only two instead of three constituent layers of shell substance. Howerer, it is highly probable that a large number of tubes have been referred to this group which are properly referable to the tube-seereting univalves.
A. Tubes free; subcircular in cross-section

Serpula whitfieldi
B. Tubes adherent; tubes triangular in cross-section........Serpula trigonalis

Serpula whitfieldi Weller

Diploconcha (Serpulag) cretacea? Whitfield, 1892, Mon. U. S. Geol. Survey, vol. xviii, p. 170, pl. xx, fig. 25. (Not Diploconeha cretacca Conrad.) Serpula whitfieldi Weller, 1907, Geol. Survey of New Jersey, Pal., vol. iv, p. 308, pl. xix, fig. 2.
Description.-" Tubes irregularly areuate, slightly flexuose, increasing in diameter very gradually; surface of shell lamellose where partially exfoliated, in eross-section appearing to be made up of eoncentric lamellæ. The dimensions of the largest tube observed are: Total length 70 mm ., maximum diameter 6.5 mm ."-Weller, 190%

Type Locality.-Crosswicks Creek, New Jersey.
Occurrence.-Monmoutil Fonmation. Brightseat, Brooks estate near Seat Pleasant, Princc George's County.

Collections.-Maryland Geological Survey, Columbia University.
Outside Distribution.-Monmouth Formation. Navesink marl, New Jersey.

Serpula trigonalis n. sp.
Plate XIVII, Fig. 15
Description.-Tubes of two layers, recumbent, contorted, adherent in the type to the inner surface of a bivalve; tapering from a fine cord to a mere thread, eross-section slightly ovate, medial earina developed along
the entire length of the tubc, increasing slightly in prominence with the growth of the shell; external sculpture absent, excepting for fine incremental corrugations; no trace of internal laminæ detected.

Dimensions.-Longitude when straightened 23 mm ., maximum diameter 2.02 mm ., minimum diameter 0.04 mm .

Occurrence.-Rancocas Formation. Noxontowi Millpond, Delaware. Collection.-Maryland Geological Survey.

Genus HAMULUS Morton
[Morton, Syn. Org. Rem. Cret. Group, 1834, p. 73]
Type.-IIamulus onyx Morton.
"Tubular, regular, involuted; volutions distinet; aperture eireular." -Morton, 1834.

A solitary form characterized by a falcatc or involuted and frequently alate tube, closed at the smaller end. The genus is apparently confined to the Cretaceous.

Hamulus onyx Morton.
Hamulus onyx Morton, 1834, Syn. Org. Rem. Cret. Group, p. 73, ? pl. ii, fig. 8; pl. xvi, fig. 5.
Hamulus onyx Gabb, 1859, Cat. Inv. Fossils, Cret. Form., U. S. p. 1.
Hamulus squamosus Gabb, 1859, Ibidem, U. S. p. 1.
Hamulus squamosus Gabb, 1860, Jour. Acad. Nat. Sci., Phila., 2d ser., vol. iv, p. 398, pl. lxviii, fig. 45.

Description.-" With six elevated, angular, longitudinal ribs extending from base to apex. Length about an inch. The imperfect specimen figured on plate ii was obtained by Dr. Blanding at Lynch's Creek, South Carolina, in the green sand, and on a former oceasion was supposed to be a Dentalium. Pl. xvi, fig. 5, however, represents the perfeet shell from the older cretaceous deposits at Erie, Alabama. I have a. small individual from New Jersey. It has never been found attached."-Morton, 1834.

Type Locality.-Erie, Alabama.
IIamulus squamosus was deseribed by Gabb as "very closely allied to H. onyx, but differing in having a strongly marked raphe, which nearly doubles the width of the shell." Apparently Gabb's species was described from a young form, while Morton's H. onyx represents the normal adult.

Thus the posterior portion of the shell in fully developed indiriduals represents H. squamosus Gabb, the anterior portion H. onyx Morton.
'The species is widely distributed in the Monmouth of Prince Georgc's County, but it is cxceedingly brittle and difficult to separate from the matrix.

Occurrence.-Matawan Formation. Ulmstead Point, Anne Arundel County. Monmouth Formation. Brightseat, Brooks estate near Seat Pleasant, Friendly, 1 mile west of Friendly, Prince George's County,

Collection.-Maryland Gcological Survcy.

INCERTAE SEDIS

Family SERPULIDAE (?)
Genus ornataporta n. gen.
Type.-Ornataporta marylandica Gardner n. sp.
Tube small, tapering gradually toward the aperture; operculum reticulately sculptured.

Ornataporta marylandioa n. sp. Plate XLVII, Figs. 16-19
Description.-Tubes rather small, usually more or less arcuate, slightly tapering, smaller end of tube in two individuals obliquely truncated at an angle of about 30°; truncated surface in cast subcircular to broadly elliptical in outline, elaborately sculptured both radially and concentrically; radials fine, well rounded liræ, diverging in all directions from a strongly cccentric nucleus, possibly a little coarser on the shorter side, number more than doubled near the margin by intercalation and bifurcating; concentric sculpture in part incremental in character, two to five prominent growth stages usually visible; very fine and crowded threadlets also developed, not overriding the radials but closely dissecting the interradials.

Dimensions.-Length, 18.6 mm .; diameter of larger end, 6 mm ; diameter of smaller (operculum-bearing) end, 4.5 mm .

The nature of these extraordinary impressions is very obscure. When the first was found it was thought that the association of the tube with the sculpture might be fortuitous, but the discovery of a second similarly

Etymology: Ornata. elaborate; porta, a door.
sculptured and bearing the same relation to the enclosing tube made the theory of chance association untenable. Nothing like these forms has bcen observed in any branch of the animal kingdom, but they are less unlike the worms than any other phylum. There is, too, a wider range of rariation in the Vermes than in any other of the major divisions. There are groups in which a calcarcous operculum is sccreted and groups in which the tube is gradually constricted toward the aperture and, although the combination of these two rather unusual characters is not known, yet it is not without the range of possibility. The sculpture, however, is much more rcgular and elaborate than any observed on the opercula of recent worms.

Professor Grabau, of Columbia University, to whom squeezes of the ornamented ends were shown, suggested that they might be the impressions of a test of a degenerate gastropocl, possibly allicd to the Acmæas, a hypothetical genus, which, when it lost the power to coil through lack of vitality, continued to grow in a plane at a high angle to that of the shell. So little is known of degenerate gastropods that one cannot define their limits of variation, and there is a possibility that this may be a bizarre type which arose, together with many other degenerate mollusca near the close of a great era. The writer is also under obligations to Mr. J. E. Bencdict and Mr. Austin H. Clark for their suggestive interest in these organisms.

Occurrence.-Monmoutir Formation. Brooks estate near Seat Pleasant, Prince George's County.

Collection.-Maryland Geological Surrey.

ECHINODERMATA
 class ECHINOIDEA
 order CIDAROIDA

Family CIDARIDAE
Genus CIDARIS Leske
Cidaris sp.
Description.-Scveral fragmentary spines belonging to this genus were found amongst other materials from Appoquinimink Creek, Delaware. 'Two of the specimens show the basal portions of the spine with the collar
and condyle, but all the specimens laek the outer points. All of the fragments are nearly straight with slight taperings and are covered with rows of straight granules elosely joined so as to impart a fluted appearanee to the spines. The larger spines show twelve or more sueh lines.

Dimensions.-Length of longest speeimen 14 mm ., diameter of spine 2.5 mm .

Occurrence.-Rancocas Formation. South side of Appoquinimink Creek between Odessa and mill-dam, Delaware.

Collection.-Maryland Geological Survey.

Family CASSIDULIDAE

Genus CASSIDULUS Lamarck
Cassidulus sp.
Description.-Test small, elevated, slightly truneated at the posterior end ; upper surface very eonvex, sides nearly straight, ends rounded; under surface nearly flat but mueh broken. Ambulaeral areas narrow. Apical system small, slightly anterior of the center. Peristome laeking. Periproct small and a long shallow suleus.

Dimensions.-Length 12 mm ., width, 9.5 mm ., height 7 mm .
The single speeimen of this form that has been found has the lower surfaee badly damaged, but there is little doubt that it is a representative of the genus Cassidulus so widely found in Upper Cretaccous strata farther south. It is, however, quite distinet from any other known species, but because of its fragmentary character it seems unwise to give it a name at the present time.

Occurrence.-Monmoctif Formations. Bluff northeast of mouth of 'I'urner's Creek, Ceeil County, Maryland.

Collection.-Maryland Geological Survey.

Family ECHINOCORYTHIDAE

Genus CARDIASTER Forbes
Cardiaster marylandica n. sp.
Plate NLVII, Figs. 6-10
Description.-Test small, cordate, with pronounced anterior groores; upper surface slightly convex, lower surface flat. Ambulacra widc. Apical
system moderately elongated. Peristome very near anterior margin. Periproct oval and situated rather high on truncated posterior margin.

Dimensions.-Length 18 mm ., width 18 mm ., height 11.5 mm .
Several well preserved casts of this species have been collected. 'Ihey show some points of similarity to Cardiaster smocki from the Matawan of New Jersey, but the Maryland form is more sharply contracted posteriorly and has a more pronounced anterior surface.

Occurrence.-Monmouth Formation. Brightseat, Prince George's County.

Collection.-Maryland Geological Surrey.

Family SPATANGIDAE
Genus hemiaster Desor
Hemiaster delatrareasis n. sp.
Plate XLVII, Figs. 11-14
Description.-'Test small, nearly circular, slightly cordiform, truncated posteriorly ; upper surface slightly convex, elevated posteriorly; lower surface nearly flat; sides inflated; apex nearly central, slightly posterior of the center; ambulacra slightly depressed, posterior pair short, anterior surface broad. Peristome slightly depressed. Periproct small, high above posterior margin. Peripetalous fasciole narrow, distinct.

Dimensions.-Length 22 mm .; width 22 mm . ; height 17 mm .
A single well preserved specimen of this form was collected by Dr. M1. W. Twitchell. It presents some points of similarity to IIemiaster bexeri from the Washita group of Texas, but the height of the present specimen is somewhat greater and the ambulacral furrows are on the whole less depressed. It is also somewhat similar to Hemiaster stella from the Rancocas formation of New Jersey, but the latter species has not the broad depressed anterior surface of the present species.

Occurrence.-Matawan Formation. Marl pit south side of Delaware and Chesapeake Canal 1 mile east of St. George's Delaware.

Collection.-Johns Hopkins University.

Hemiaster sp.

Description.-A few imperfect and fragmentary specimens of a Hemiaster have been found in the indurated layers of the Matawan formation on the Chesapeake and Delaware Canal. Two specimens show quite clearly the anterior ambulacral furrow with part of the adjacent anterior path. These forms may belong to the species Hemiaster welleri from the Matawan of New Jersey.

Occurrence.-Matawan Formation. One and one-half miles east of the Maryland-Delaware Line, Chesapeake and Delaware Canal, Delaware. Collection.-Maryland Geological Survey.

COELENTERATA class ANTHOZOA subclass HEXACORALLA Order MADREPORARIA Suborder APOROSA Family TURBINOLIDAE Genus TROCHOCYATHUS Milne Edwards and Haime Thochocyathus (?) vaughani sp. nor. Plate XLVIII, Figs. 5, 6

Description.-Corallum cuneiform, with no recognizable scar of attaclment; viewed from the side it is subtriangular in outline and a little elongated in the direction of the height; cross-section lenticular with dull acute angles at the ends.

Theca well developed. Corresponding to the septa are strong, subacute, tuberculated ribs with deep intercostal depressions; new ribs are intercalated as new septa are formed; on the sides bordering the acute edges are tuberculated bands broadest below, narrowing to the serrated edge above.

Septa about thirty-six, of which about twenty-four extend inward to the columella. The septa are in threc or four cycles, but the different
cycles eannot be clearly differentiated. The members of the last eyele are rery thin and frail. The inner edges of the principal septa are fused to the columella and to adjoining septa by trabecular-like proeesses. There is a suggestion of paliform lobes, though the upper edges of the septa are too imperfect to permit positive determination of this feature. Sides of septa sct with small tubereles and spine-like processes, the arrangement of which cannot clearly be seen in the specimen.

There is doubt as to the mode of origin of the columella, but it appears to be spongy and trabecular.

Dimensions.-Longest transverse axis at top, about 5 mm .; shortest transverse axis, 2.5 mm ; height, 4.5 mm .

Named in honor of Dr. T. Wayland Vaughan.
Occurrence.-Moxmouth Formation (Exogyra costata zone). Bed of small branch about seven-eighths of a mile southwest of Brightseat and three-eighths of a mile south of the Sheriff road, Prince George's County.

Collection.-Maryland Geological Survey, on deposit in the U. S. National Museum.

Suborder FUNGIDA
Family MICRABACIIDAE
Genus MICRABACIA Milne Edwards and Haime

Micrabacla rotatilis sp. nov.
Plate XLIX, Figs. 1-4
Description.-Corallum subdiseoidal; moderately high with flat to rather strongly concave base; sides steep below, rounding evenly into the subflattish top; axial depression 1.5 mm . to 2 mm . deep.

The costr on the base are thin, sharply defined, and alternate with the septa; they start with six at the eenter, and by suceessive bifureations increase to ninety-six on the periphery; they are nearly smooth and inerease slightly in thickness from the center to the periphery. The costæ are in six groups corresponding to the groups of septa. Each group starts witl one costa (first eyele), which bifurcates near the center to form two costre (second cycle) ; these bifurcatc 0.5 mm . from the center to form
four costr (third cyele); the four bifurcate about 1 mm . from the center and produce eight costæ (fourth eyele) ; and the eight bifureate 1.5 mm . to 2 mm . from the center, produeing sixteen costre (fifth eycle); in the last eyele the bifureations produeing the two outer and the two middle pairs of the group take place nearer the center than do those of the other four pairs; in the largest specimens the pairs of costæ in the last cycle are 2.5 mm . to 3 mm . long. The ends of the costæ are prow-like, but seareely project beyond the edges of the septa. The intereostal loculi are narrow and are crossed by sniall synapticulæ separated by radially elongated perforations; in the type the perforations in the intereostal loculi extending to the center number eighteen ; the intereostal synapticulæ and perforations are roughly arranged in concentric rows.

The septa are thin and form five complete cyeles arranged in six groups, one group in each of the interspaces between the primary septa. Total number of septa ninety-six. The secondaries extend to the columella; the tertiaries fuse against the sccondaries near the columella; the two outer quaternaries of the group fuse against the tertiaries nearer the eenter than do the two inner ones; the two outer quinaries of each of the subgroups formed about the tertiaries fuse against the quateriaries nearer the center than do the two inner ones. The primary septa are a little higher tlian the members of the higher cyeles, and the septa of the succeeding cyeles appear to be each a little lower than those of the preceding cycles. The edges of the septa are fincly and distinetly denticulate, the number of denticulations being eight or nine to 1 mm .; the inner edges of the primaries and secondaries are bifid, each presenting a trough-like depression with serrated margins descending to the top of the columella; sides of septa with strix, tubereles, and rows of synapticulæ radiating fanlike from near the base of the columella. Each septum is joined to the wall (base) by synapticulic which connect with the intereostal synapticule. These are separated by perforations which conneet with the intercostal perforations.

Columella elliptical in cross-section, spongy, trabecular, some of the trabeeulx terminating above in more or less seattered, irregularly dis-
tributed, small papillæ; length of eross-section about one-sixth the diameter; width about one-twentieth the diameter.

The speceies differs from other species of Micrabacia from the Coastal Plain in the greater sharpness and smoothness of the basal coste, the greater irregularity in the distanee of the bifureations of the several eyeles from the center, the greater length of the costre of the last eyele, the greater number of intercostal perforations, and the greater size attained by the adults. It is distinguishable from M. rotatilis var. georgiana ${ }^{1}$ by its smoother and slightly thicker costæ. M. americana Meck and Hayden, and its varicty, multicostata, ${ }^{1}$ have more strongly denticulate bases. In M. coronula. (Goldfuss) of the European Cretaceous the dentieulations of the septal edges are markedly eoarser than those of any of the Amcrican species.

Dimensions (of the type).-Diameter 9 mm ., height about 4 mm .
Occurrence.-Monmouth Formation (Exogyra costata zone). Bed of small braneli about seven-eighths of a mile southwest of Brightseat and three-eigliths of a mile south of the Sheriff road; near McNeys Corners, about a mile west of Friendly; questionably near Seat Pleasant, Prince George's County.

Collection.-Maryland Geologieal Survey, on deposit in the U. S. National Museum.

Micrabacla marylandica sp. nov.
Plate XLVIII, Figs. 1-4
Description.-Corallum low to moderately high, subdiseoidal ; base flat or slightly eonvex; top evenly convex with a small axial depression about 1.25 mm . deep in the type.

The underside of the base or wall is ornamented with a system of radiating bifurcating eostee which alternate with the septa; the system starts with six costre which, by suecessive bifureations, form cycles of $12,24,48$, and 96 costr. Eaeh of the original six costre (first eyele) is the focus of a group; the original of each group splits near the center into two

[^26] press.
(second cycle), and these split 0.5 mm . from the center into four (third cycle) ; about 1.5 mm . from the center each of the four costæ divides to form cight (fourth cycle), and about 2.5 mm . from the center in the type each of the eight divides, producing sixtecn costre (fifth cycle) on the outer rim. The bifurcations of each cycle are at nearly equal distances from the centcr. The costæ up to the cycle of forty-eight are relatively thick and coarsely nodular; those of the last cycle are thin, finely denticulate, and form a band about $\frac{3}{4} \mathrm{~mm}$. wide, bordering the outer margin; they appcar not to project beyond the edges of the septa. The intercostal loculi are very narrow and are occupicd by twelve or thirtecu synapticulæ separated by perforations, most of which are slightly elongated radially; the synapticulæ and perforations are arranged in concentric rows.

The septa are very thin and are arranged in six groups, one group in cach of the interspaces between the primary septa. Total number of septa ninety-six. The secondaries extend to the columella; the tertiaries fuse against the secondaries near the columella; the two outer quaternaries of the group fuse against the tertiaries nearer the center than do the two inner ones; in cach of the two subgroups formed about the tertiaries the two outer quinaries fuse against the quaternaries nearer the center than do the two inner ones. The primary septa are slightly higher than the members of the higher cycles which appear to be of about equal height. On the sides of the corallum the septa distinctly alternate in prominencc. Margins of the septa finely denticulate, the number of denticulations being about ten to 1 mm . Sides of septa with striæ and rows of synapticulæ and tubercles radiating from near the base of the columella.

Columella elliptical, spongy, trabecular, some of the trabeculix terminating in more or less scattered, irregularly distributcd, small papillæ; length of cross-section between one-fifth and one-sixth the diameter; width about onc-tenth the diameter.

This species differs from the other species of Micrabacia as follows: ${ }^{1}$ M. hilgardi differs in size, form, and ornamentation of the base. The corallum is smaller, the sides straighter and more inclined, and the septal
${ }^{1}$ The species mentioned in this paragraph, with the exception of M. americana and M. coronula, are described by the writer in Prof. Paper U. S. Geol. Survey, No. 98J, now in press.
edges on the sides of the corallum do not alternate in prominenee. The bifureations of the separate cyeles of eostæ are at more irregular distanees from the center and the costæ are thinuer and more finely denticulate. In M. cribraria the eoste and perforations of the base are largely obseured by irregular caleification and the costæ project more prominently on the periphery. In M. mississippiensis the basal costæ are narrower, smoother, and flatter, the bifureations of each cyele are more irregularly spaced with reference to the eenter, and the profile of the side of the corallum is not so steep and is slightly truneated. In M. rotatilis the basal costæ are thinner, sharper, and much smoother. In M. americana the costæ are narrower and sharper, and the bifurcations producing the last cyele take place mueh nearer the center and at less regular distances from the eenter. In M. coronula the corallum is higher and the septal dentieulations coarser.

Dimensions (of the type).-Diameter 7 mm ., height 3 mm .
Occurrence.-Monmouth Formation (Exogyra costata zone). Bed of small branch seven-eighths of a mile southwest of Brightseat and three-eighths of a mile south of the Sheriff road; about a mile west of Friendly, Prince George's County.

Collection.-Maryland Geologieal Survey, on deposit in the U. S. National Museum.

THALLOPHYTA
 Class FUNGI Order PYRENOMYCETES
 Genus SPHAERITES Unger
 [Gen. et Sp., 1850, p. 37]
 Spherites raritanensis Berry
 Plate LXXXI, Fig. 3

Sphcrites raritanensis Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 62.

Description.-Viewed negascopically these remains appear as oval or circular umbilicate dots from .25 mm . to .5 mm . in diameter, with depressed margin and enlarged central portion, the latter occupying twothirds of the total diameter.

This species was based upon a leaf-spot fungus found in abundance on the under side of leaf fragments (sp. indet.) in the matted layers of fossil leaves from the upper Raritan at the Hylton pits in New Jersey. Identical remains are not uncommon in the Magothy formation of Maryland. Their characteristic appearance is indicated on the photographic reproduction of a leaf of Eucalyptus geinitzi (Heer) Heer.

These remains are conclusively congeneric with the forms usually referred to this genus and very similar to Spharites problematicus (Knowlton) Knowlton from the Dakota group of Kansas. The latter is, however, more irregular in outline, larger in size, and infests Sterculia which is not the host of the present species. While remains of this sort are of little botanical interest to some, they nevertheless have a considerable biological significance in the evidence which they afford of the existence during the mid-Cretaceous of fungi of this order.

Occurrence.-Magotify Formation. Sullivan's Cove, Anne Arundel County.

Collection.-Maryland Geological Surrey.

Class ALGAE

Genus ALGITES Seward
[Wealden Flora, Part I, 1894, p. 4]
A generic term proposed by Seward for those fossil remains which are in all probability those of Algæ, but which from their nature cannot be decisively compared with any one genus of known botanical affinity.

Fossil algæ are common fossils at some geological horizons, but they are usually indecisive in their characters, especially when preserved as impressions, so that comparisons with modern genera altogether lack certainty. As has been pointed out by Scward (loc. cit.) for the type of this genus, Algites valdensis of the English Wealden, these forms suggest various modern genera such as Chondrus, Zonaria, Dictyota, ctc.

Algites amertcana Berry
Plate L, Fig. 1
Algites americana Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 401.
Description.-Thallus as preserved, in the form of dichtomously divided branches ranging in width from 2 mm . to 5 mm ., thin and undulating
as preserved, but rather coriaceous in life, with slightly wavy margims. These branehes are not preserved for lengths of more than a few centimeters, during whieh interval they are observed to divide but onee or not at all. 'They have the appearance in some speeimens of radiating from a eommon eenter, but as their proximal parts are invariably missing this supposition cannot be verified.

The Maryland remains are rare and in the form of impressions, along which reeent rootlets have often permeated the argillaceous matrix, sometimes giving the speeimens the appearance of having midribs. The North Carolina remains, which are abundant in the Blaek Creek beds at certain loealities along the Black River, often show eonsiderable earbonaceous residuum indieating that in life the thallus was of cousiderable consisteney.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-U. S. National Museum.

PTERIDOPHYTA Order LYCOPODIALES
 Family LYCOPODIACEAE
 Genus LYCOPODIUM Linné

[Sp. Pl., 1753, p. 1100]
Ligopodium cretaceum Berry
Plate L, Figs. 10, 11
Lycopodium cretaceum Berry, 1910, Amer. Jour. Sci., 4th ser., vol. xxx, pp. 275 , 276, figs. $1 \cdot 6$.
Lycopodium cretaceum Berry, 1914, Prof. Paper, U. S. Geol. Survey, No. 84, pl. ii, figs. 1-6.

Description.-Spikes loosely imbrieated, of modified foliage leaves or bracts. The largest spike, which is nearly complete, is 5 em . in length and 5 mm . in diameter, and is probably somewhat flattened, the bulk of the speeimens indieating somewhat smaller dimensions. Axis stout. Bracts several ranked, peduneled, with a eordate or retuse base and an abruptly
narrowed acute recurved apex, with an entire margin, each bract subtending a large spheroidal sporangium which may possibly be reniform, though in the impressions preserved in the clays it appears to be globular.

This unique species is represented by rather scanty material in the Maryland area which, however, shows the outlincs of sporangia in the axis of the bracts. It was described from very abundant remains prescrved in the clays of the Middendorf member of the Black Creek formation in South Carolina. It is also sparingly represented in the lower Tuscaloosa beds of western Alabama and is thus shown to have had a considerable geographic range. Preparations have failed to reveal any traces of spores in the sporangia.

Fossil remains of foliage resembling that of the modern club mosscs have becn frequently described, either as Lycopodium or Lycopodites Brongniart, but the majority of such determinations lack certainty in that they show neither anatomical nor fruiting characters, so that the present species is of great interest as the only post-Paleozoic fossil known to the writer which is referable with absolute certainty to the genus Lycopodium. No remains of foliage have been discovered in these clays which can be correlated with these fruiting spikes.

Occurrence.-Magothy Formation. Little Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

> Order FILICALES
> Family GLEICHENIACEAE
> Genus GLEICHENIA Smith
> [Mem. Ac. Turin, vol. v, 1791, p. 418]
> Gleichenia Zippei (Corda) Heer

Pecopteris zippei Corda, 1846, in Reuss, Versteinerungen, p. 95, pl. xlix, fig. 1.
Pecopteria zippei Unger, 1867, Kreidepflanzen aus Oestereich, p. 8, pl. ii, fig. 1.
Gleichenia zippei Heer, 1868, Fl. Foss. Arct., Bd. i, p. 79, pl. xliii, fig. 4.

Gleiehenia zippei Heer, 1874, Ibidem, Bd. iii, Ab. ii, pp. 44, 90, 97, pl. iv; pl. v; pl. vi, figs. 1-3; pl. vii, fig. 2; pl. xxv, figs. 1-3; pl. xxvi, figs. 10-13.
Gleichenia zippei Heer, 1877, Ibidem, Bd. iv, p. 49, pl. xxxii, figs. 6, 7.
Gleichenia zippei Heer, 1882, Ibidem, Bd. vi, Ab. ii, p. 36, pl. iii, fig. 2.
Gleichenia zippei Velenovsky, 1888, Farne böhm, Kreidef., p. 6, pl. iii, figs. 3-7.
Gleichenia zippei Newberry, 1896, Mon. U. S. Geol. Survey, pt. ii, p. 664, pl. clxii, fig. 9.
Gleichenia zippei Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, p. 67, pl. $i v, f i g .6$.
Gleichenia zippei Berry, 1906, Ibidem, vol. xxxiii, p. 164.
Gleichenia zippci Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 64.
Description.-" Gl. foliis bipinnatis, pinnis valde approximatis, elongatis, linearibus, parallelis, pinnatisectis, pinnulis obliquis, lanccolatis, acutiusculis, integerrimis, basi vix unitis; nervis pinnatis, nerv. secund. utrinque $3-5$, inferioribus furcatis,"-Heer, 1868.

The determinations of this species in the Atlantic Coastal Plain are ali based upon very fragmentary specimens, although some of them have traces of the sori preserved. In sharp contrast is the beautiful Gleichenia material obtaince by Professor Heer from Grcenland. As far as the Coastal Plain material goes it corresponds exactly with the more typical material from other regions, and until specimens are collceted showing adequate grounds for separation, it is justifiablc to assume that this species was present along the Middle Atlantic Coast in Raritan and Magothy time. The genus Gleichenia was a prominent onc during the Crctaceous with many characteristic species, some with a wide range. The present species which ranges through the Greenland Cretaceous serics from the Kome beds (Lower Cretaceous) to those of Patoot (Upper Cretaceous) occurs also in the Lower Cretaceous of Spitzbergen and the Black Hills; the Cenomanian of Bohemia; the Senonian of Bohemia, Saxony, and Bulgaria; the Magothy formation of New Jersey and Delaware; and it has recently been collected in the Upper Cretaceous of the Western Intcrior. It is not contained in any recent collections from the Raritan.

> Occurrence-Magothy Formation. Deep Cut, Delaware.
> Collection.-Maryland Geological Suryey.

Gleicherta delawarensis Berry

Plate L, Figs. 5, 6
Gleichenia delawarensis Berry, 1907, Johns Hopkins Univ. Circ., n. s., No. 7, p. 82, figs. 3, 3a.
Gleichenia delawarensis Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 20.

Description.-Frond unknown; pinnules subopposite, obovate, 2 mm . to 3 mm . long by 1 mm . to 1.5 mm . wide, attaehed by their greatly narrowed bases to the rather slender rachis; venation of the Gleichenia type rather indistinet in most of the pinnules.

This fragment of a pinna is 27 mm . It is doubtfully referable to Gleichenia, to whieh sueh a large number of fern impressions of Cretaceous age have been assigncd. The most similar among previously deseribed speeies is, perhaps, Gleichenia nordenskioldi Heer known from the Kome beds of Greenland, the Dakota of Kansas, and the Knoxville of California, which differs markedly in the shape of the base of the pinnules.

While a knowledge of the structure or fructification is essential for the conelusive proof of the botanieal affinity of fern fragments sueh as this, it is important for geologists that such eharaeteristie types shall be figured and deseribed in order that they may serve as horizon-makers.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Ceeil County, Maryland.

Collection.-Maryland Geologieal Survey.

Gleiciemia saundersii Berry

Plate L. Figs. 7-9
Gleichenia saundersii Berry, 1903, Amer. Nat., vol. xxxvii, p. 679, figs. 1-3. Gleichenia saundersii Berry, 1906, Ann. Rept. State Geol. of New Jersey for $1905, \mathrm{pp} .139,141$.
Gleichenia saundersii Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 163.
Description.-Pinnules broadly falcate-ovate, entire, bluntly pointed; attached by a wide base, about as wide as the pinnule is long; length 4.5 mm . ultimately beeoming mueh smaller, each with a stout mid rein whieh sends off alternately on eaeh side rather thiek veins to the margin,
those running distad are all simple exeept the basal one which is sometimes forked, those running proximad are usually once forked; texture thiek and coriaceous.

This speeies is elose to G. gracilis Heer, but the venation differs in the number of veins and their habit of forking. It was described from Cliffwood Bluff on Raritan Bay, and has also been reeorded from Kinkora on the Delaware River. It is known only from the Magothy formation.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-Maryland Geologieal Survey.

Family OSMUNDACEAE
 Genus OSMUNDA Linné
 [Sp. Pl., 1753, p. 1063]
 Osmunda delawarensis Berry

Plate L, Figs. 2-4
Osmunda delawarensis Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 164, pl. viii, figs. 2-4.
Osmunda delawarensis Berry, 1907, Md. Geol. Survey, vol. vi, pl. xx, fig. 17.
Description.-Fronds pinnate. Pinnæ simple, alternate, elorigate, linear-laneeolate, inequilateral at the base. Borders undulate, very slightly erenulate; frond substanee thiek. Pinnæ 7.5 em . long, 5-6 mm. wide near the base, tapering to a long narrow point, elosely resembling the sterile pinnæ of Osmunda presliana J. Smith of the east and south Asiatic region, exeept that the latter has a narrowed base, while the present speeies has a large base, more like that in Osmunda regalis Linné.

Whether the larger specimen figured is a pinnule of a bipinnate form like the modern cosmopolitan "Royal Fern" it is impossible to judge from the material thus far colleeted.

The Osmundaceo are rather common and widespread in the older Mesozoie, represented by structural material as well as frond genera such as Todites, etc. Various fossil speeies have been referred to Osmunda or Osmundites, ineluding two or three forms from the Lower Cretaceous deseribed by Fontaine from Virginia and showing supposed fructifieation.

The genus Osmunda contains in the existing flora some six or scren species of swamp-loving ferns, most of them confined to the northern hemisphere, where they are wide-ranging. Three of these forms occur in North America.

Occurrence.-Magothy Formation. Deep Cut, Delaware.
Collection.-Maryland Geological Survey.

Family POLYPODIACEAE

Genus ONOClea Linné
[Sp. Pl., 1753, p. 1062]
Onoclea inquirenda (Hollick) Hollick
Plate LI, Figs. 1, 2
Osmunda obergiana Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 98 (pars), pl. xxvi, fig. 9d (non figs. 9-9b or pl. xxxii, fig. 7a).
Caulinites inquirendus Hollick, 1904, Bull. N. Y. Bot. Garden, vol. iii, p. 406, pl. lxx, fig. 3.
Onoclea inquirenda Hollick, 1907, Mon. U. S. Geol. Survey, vol. i, 1906, pl. i, figs. 1-7.
Onoclea inquirenda Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 401, pl. xviil, figs. 1, 1a.
Onoclea inquirenda Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 14, pl. ii, figs. 7, 8.

Description.-Fragments of fertile fronds, not showing any lamina, which appcars to be reduced to short pinnate branches bearing one or more spheroidal bodies interpreted as sori. These are uniformly 1.5 mm . or slightly less in diameter.

This species was originally described by Hollick (loc. cit.) and referred to the genus Caulinites, but subsequently was removed to the ferns because of its resemblance to the modern genus Onoclea, a resemblance that is close and not at all fanciful. Earlier figured forms of the same character were associated by Heer with his species Osmunda obergiana because they were found in the same beds with the fronds of this species, although they were not found in organic union with the fronds. These fruits are much more like those of the modern forms of Onoclea than they are like those of Osmunda, and they are idcntical with those which are the type of the present species to which the writer has referred them.

The Long Island and Marthas Vineyard forms have these sori in a single row on each side of an axis, and some of the South Carolina speeimens seem to have a similar arrangement, while others have them definitely in threes, one terminal and two lateral. This latter arrangement also prevails exclusively in the Greenland specimen and in similar matcrial from the Magothy formation of Maryland. This variation is of minor importance and is mentioned simply because it is believed that the grouping in threes is the normal arrangement, which has been obscured during fossilization in the instances where it is not clear.

As here understood this species ranges from the Atane beds of Greenland southward in the Magothy formation of Marthas Vineyard, Long Island and Maryland, to the Middendorf beds in South Carolina.

Occurrence.-Magothy Formation. Round Bay, Maryland.
Collection.-U. S. National Museum.

Genus CLADOPHLEBIS Brongniart
[Tableau, 1849, p. 25]
This genus, which is essentially a form-genus, is usually restricted to certain fern-remains of Mesozoic age, a number of which are certainly to be referred to the family Polypodiaceæ. Cladophlebis has been fully discussed by the writer ${ }^{1}$ in a recent volume of this serics and nced not be recharacterized in the present connection. It is a waning and unimportant type in Upper Cretaccous floras everywhere, a fact due in all probability to generic evolution and consequent modernization of the Upper Cretaceous Polypodiaceæ.

Cladophlebis soclalis (Heer) Berry
Pecopteris socialis Heer, 1882, F1. Fossils Arct., Bd. vi, Ab. ii, p. 34, pl. vii, fig. 4; pl. vili, fig. 15; pl. xxxiii, fig. 9 (non Fontaine, 1890).
Cladophlebis socialis Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviil, p. 409.
Description.-" P . foliis bipinnatis, pinnis oppositis, elongatis, lanceo-lato-linearibus, inferioribus pinnatifidis, lobis, subtriangularibus, inte-
${ }^{1}$ Berry, Md. Geol. Survey, Lower Cret., 1911, pp. 239-259.
gerrimis, apice acutis, ultimis simplicibus, lanceolatis, magnis."-Hecr, 1882.

The present species was described by Professor Heer from the Atane beds of western Greenland. Subsequently Fontaine identified as this specics a very diffcrent form from the Patapsco formation of Virginia, a form that the writer has referred to Cladophlebis browniana (Dunker) Seward. ${ }^{1}$

Somewhat fragmentary remains that appear to be identical with Heer's type occur in the Raritan formation.

Occurrence.-Raritan Foramation. Shanmou Hill, Cecil County. Collection.-Maryland Geological Survey.

Genus ASPLENIUM Linné
[Sp. Pl., 1753, p. 1078]
Asplenium cecilensis Berry
Plate LI, Figs. 3, 4
Asplenium cecilensis Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. p. 403 , pl. xviii, figs. $4,5$.

Description.-Frond unknown. Pinnules linear-lanccolate, falcate, subopposite, united to the stout rachis by their entire bases, with entire margins and acute tips. The sterile pinnules are somewhat smaller than the fertile, being about 12 mm . or 13 mm . in length by 3 mm . in maximum width, which is at their base. They show a stout midrib which gives off about twenty-five branches on each side alternately above and below, and is lost in the apical region by this repeated branching. These branches subtend a considerable angle and are recurved. Thcy fork once near their base and run directly to the margin. The fertile pinnules are somewhat larger than the sterile, being about the same length and slightly wider. They show stout midribs and the poorly preserved remains of numerous linear-lanceolate sori extending nearly from the midrib to the margin and obscuring the lateral veins, there being apparently a sorus to each forked lateral.
${ }^{1}$ Berry, Md. Geol. Survey, Lower Cretaceous, p. 243, 1911.

This species greatly resembles various forms from the Upper Cretaeeous of Greenland, which Professor Heer referred to the genus Pteris, the resemblance to Pteris albertsii Heer being particularly marked. The latter is usually referred to the genus Cladophlebis, and this genus contains a number of forms that are comparable with Asplenium cecilensis. The fertile pinnules of the latter, imperfeet as is their preservation, are elearly unlike those known in Cladophlebis and are elearly of a type allying this forn with the Aspleniece.

Oecurrenee.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Asplenium dicksonianum Heer

Asplenium dicksonianum Heer, 1874, Fl. Foss. Arct., Bd. ili, Ab. ii, p. 31, pl. i, figs. 1-5.
Asplenium dicksonianum Heer, 1882, Ibidem, Bd. vi, Ab. ii, pp. 3, 33, pl. ii, fig. 2 ; pl. xxxii, figs. 1-8.
Asplenium dicksonianum Dawson, 1883, Trans. Roy. Soc. Can., vol. i, sec. iv, p. 11.
Asplenium dicksonianum Dawson, 1885, Ibidem, vol. ili, sec. iv, p. 5, pl. iii, fig. 1.
Asplenium dicksonianum Dawson, 1886, Ann. Rept. Can. Geol. Survey, n. s., vol. i, p. 76.
Asplenium dicksonianum Dawson, 1892, Trans. Roy. Soc. Can., vol. x , sec. iv, p. 91.
Asplenium dicksonianum Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 24, pl. i, fig. 1.
Asplenium dicksonianum Ward, 1894, Jour. Geol., vol. ii, pp. 259, 261.
Asplcnium dicksonianum Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 39, pl. 1, figs. 6, 7; pl. ii, figs. 1-8; pl. iii, fig. 3.
Asplenium dicksonianum Ward, 1899, 19 th Ann. Rept. U. S. Geol. Survey, pt. ii, p. 704, pl. clxx, fig. 1.
Asplenium dicksonianum Fontaine, 1899, Ibidem, p. 664, pl. clxii, figs. 6-8 (non Fontaine, 1888).
Asplenium dicksonianum Kurtz, 1902, Cont. Palæophyt. Argentina iii, Revista Museo La Plata, vol. x, p. 49 (1899).
Asplenium dicksonianum Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviil, p. 409 .

Asplenium dicksonianum Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 68, pl. v, figs. 3, 4.

Deseription.--" A. foliis triplicato-pinnatis, stipite firmo, rigido ; pinnis primariis secundariisque orato-laneeolatis, pinnulis anguste lanceolatis,
inferioribus acute serratis, superioribus integerrimis, aeutis."-Heer, 1874.

This species was deseribed originally by Heer from the Kome beds (Lower Cretaceous) of Greenland and was subsequently identified by the same author from the much later Atane beds (Upper Cretaeeous). Dawson reported it from a number of loealities in the Kootenai of British Columbia, and Fontaine and Ward deseribed it from the Lower Cretaceous of the Blaek Hills. It is also reported by both Lesquereux and Ward from the Dakota group and by Kurtz from Argentina. It seems very doubtful if these ean all refer to the same plant, and the geologie range alone suggests that the earlier and later forms may be distinct. The Lower Cretaeeous forms certainly suggest a relationship with those widespread types of sterile fronds variously identified as Thyrsopteris or Onychiopsis, and may be conmared with Onychiopsis goepperti (Schenk) Berry, while those from the Upper Cretaceous suggest Anemia rather than Asplenium and are much like an undescribed Anemia from the Lower Eocene (Wilcox) of the Mississippi embayment areas as well as the widespread Eocene species Anemia haydenii (Lesquereux) and Anemia subcretacea (Saporta) Gardner and Ettingshausen. However, in the absence of representative material from the different horizons, it seems unwise to attempt any segregation at the present time and the synonymy is cited in full for the use of some future student who may have access to enough material to enable an accurate revision and segregation of this so-called specics. Attention should also be called to its resemblanee to the form occurring in the Upper Cretaceous of Greenland, the Raritan fromation of New Jersey and the Tuscaloosa formation of Alabama, which gocs by the name of Dicksonia greenlandica Heer, although the ground for considering it a Dicksonia is as entirely inconclusive as is the reference of the present species to the genus Asplenium.

In addition to the localities enumerated above, the present species is abundant in the New Jerscy and Maryland Raritan, and material that is absolutely identical with the New Jersey material and that from the Dakota sandstone occurs in the lower Tuscaloosa formation of Alabama.

Occurrence.-Raritan Formation. Shannon Hill, Cccil County, Maryland ; East Washington Heights, District of Columbia.

Collection.-Maryland Geological Survey.

CYCADOPHYTA cass CYCADOPHYTAE order WILLIAMSONIALES

Family WILLIAMSONIACEAE
Genus WILliamsonia Carruthers

[Trans. Linn. Soc. Lond., vol. xxvi, 1868, p. 680]
Williamsonia marylandica n. sp.
Plate LI, Figs. 5, 6
Description.-Staminate bract or sporophyll of a Williamsonia-like form of small size. Sporophyll flat and relatively thin, smooth, about 14 mm . in length and 4 mm . in maximum width, spatulate-lanceolate in outline, i. e., lanceolate-acuminate, widest distad and constricted and somewhat thickened proximad. It bears on its upper (adaxial) surface a double row of papillose markings which become fainter and fainter distad until they are finally entirely obsolete toward the tip of the sporophyll. These are interpreted as the cicatrices of synangia or pollen sacs of which the basal four to eight pairs appear to have been functional.

This form is of very great intercst since the bulk of the described Williamsonice and all those showing any details of their organization are from very much older horizons. The present form is capable of interpretation in terms of the ordinary Williamsonia morphology as a single segment of the staminate disk, which may be directly compared with such well-known forms as Williamsonia whitbiensis so admirably restored by Nathorst. ${ }^{1}$ A well-marked form of this type, named Williamsonia delawarensis by the writer, is present in the Magothy formation of Maryland and Delaware. Certain facts suggest an alternative hypothesis of the organization of this Upper Cretaceous sporophyll. These are the con-

[^27]siderably narrowed and somewhat thickened lower portion of the sporophyll; its isolated oceurrenee without any evidence of its having been a member of a disk; the functional pollen saes in the proximal instead of the distal part of the series. These features all suggest that the eyelie arrangement, if present in the aneestors of Williamsonia marylandica, had been succeeded by a spiral arrangement which approximated the ordinary conifers or eyead strobilus rather than that organ as exemplified in the familiar Cycadeoidea or Williamsonia types of the older Mesozoic. There is the further possibility that Williamsonia was dioeious for if the form be considered a fragment of a foreshortened disk, it is difficult to explain the abortion of the distal pollen saes and the development of the basal ones.

Williamsonia marylandica is relatively small, much smaller than the majority of known forms, although Halle ${ }^{1}$ has deseribed a still smaller form as Williamsonia pusilla from the Jurassie of Graham Land. It is distinguished from Williamsonia delawarensis Berry by its smaller size, constricted basal portion, more acuminate tip and thinner texture. There are a number of truc Williamsoniæ that are deeply eleft as the present form would have to be, as for example, Williamsonia oregonensis Fontaine from the Oregon Jurassie or Williamsonia virginiensis Fontaine from the Lower Cretaceous of Virginia, and the same feature is noticeable in the allied genus Cycadocephalus of the Rhretie.

The only other possible interpretation of the present fossil is that it may represent some unknown eoniferous type comparable with the fruiting specimens of Palissya described by Nathorst ${ }^{2}$ from the Rhætic of Sweden. In any event it emphasizes the fact that the Upper Cretaceous contains many unknown gymnospermous types that await the lueky discovery of the field paleobotanist.

Oceurrence.-Magothiy Formation. Little Round Bay, Anne Arundel County.

Collection.-Johns Hopkins University.

[^28]
Williamsonia delatarensis Berry
 Plate LI, Fig. 7

Williamsonia delawarensis Berry, 1907, Johns Hopkins Univ. Circ., n. s. No. 7, p. 84, fig. 4.

Description.-Fructification stalked; the peduncle expanding above into a conical disk 1.2 cm . in diameter and bearing peripherally about ten thick and broad coriaceous bracts (staminate sporophylls ?) which are about 5 mm . in width and 2 cm . in length, pointed above and incurving. No further details can be made out from the specimens, which are not uncommon in the sandy clays of the Magothy formation near the deep cut of the Chesapcake and Delaware Canal near the Maryland-Delaware Line. The very arenaceous character of these clays renders it almost impossible to get out good specimens and the material rapidly disintegrates in drying, so that it has not been possible to secure permanent material of any great value. Cycadaceous leaves have not yet been found at this locality, although they are plentiful in the Magothy formation just to the northward in New Jersey, while they are very common in the underlying Raritan formation throughout its extent. The latter formation contains somewhat similar remains which Newberry ${ }^{1}$ has called Palwanthus problematicus and which he is disposed to regard as a helianthoid flower, although recognizing the difficulty in the way of preservation of an ordinary flower of this sort and the incongruity of a Composite in the Mid-Crctaccous flora. The Delaware specimen differs chiefly in having only about half as many bracts and these correspondingly wider. A comparison with Ncwberry's fig. 8 will serve to bring out the resemblance of these two forms.

Hollick has described ${ }^{2}$ a very poorly preserved and doubtful spccimen from the Staten Island Cretaceous, Williamsonia? riesii, which is somewhat similar to Newberry's Palcaanthus and to undescribed specimens from Cliffiwood, N. J. From the Dakota sandstones Lesquercux describes Williamsonia clocata, a not very characteristic specimen. From the

[^29]Atane beds of Greenland Heer describes Williamsonia cretacea, ${ }^{1}$ of which species Seward says that the type specimens are very indistinct and unsatisfactory, but this is doubtless due to subsequent desiccation and does not impugn the accuracy of Heer's figures. Williamsonia? phenicopsoides Ward ${ }^{2}$ from the lower Cretaceous of the Black Hills and Williamsonia minima Saporta ${ }^{3}$ from the Neocomian of Portugal are both very poor and of doubtful affinities. Williamsonia virginiensis Fontainc, found in the Patuxent formation of Virginia in the same layers with Dioonites buchianus is a very characteristic form and one of the best marked american Williamsoniæ. Williamsonia ? gallinacea Ward ${ }^{5}$ from the Virginia Potomac and Williamsonia? bibbinsis Ward ${ }^{\circ}$ from the Maryland Potomac are both very poor and doubtful and very probably represent fragments of Abietites cones.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County, Maryland.

Collection.-Maryland Geological Survey.

Genus PODOZAMITES F. Braun

[In Münster, Beltr. Petref., Heft vi, 1843, p. 36] Podozamites lanceolatus (L. and H.) F. Braun

Zamia lanceolata Lindley and Hutton, 1836, Fossils Fl., vol. ili, pl. exclll. Zamites lanceolatus F. Braun, 1840, Verzeich. Kreis.-Nat.-Samml. Bayreuth Petrefact, p. 100.
Podozamites lanceolatus F. Braun, 1843, In Münster, Beltr. Petrefactenkunde, Bd. ii, pt. vi, p. 33.
Podozamites proximans Conrad, 1869, Amer. Jour. Scl. (il), vol. xlvll, p. 361, tf.
Podozamites lanceolatus Schimper, 1870, Pal. Végét., tome ii, p. 160.
? Podozamites minor Heer, 1882, Fl. Foss. Arct., Bd. vl, Ab. ii, p. 44, pl. xvi, fig. 8.
Podozamites lanceolatus Velenovsky, 1885, Gymn. Böhm. Kreidef., p. 11, pl. il, figs. 11-19, 24.

[^30]Podozamites lanceolatus Dawson, 1886, Trans. Roy. Soc., Can., vol. iii, sec. iv, p. 6, pI. i, fig. 3.
Podozamites distantincrvis Fontaine, 1890, Mon. U. S. Geol. Survey., vol. xv, 1889, p. 179 (pars).
Podozamites lanceolatus Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 28, pl. i, figs. 5, 6.
Podozamites angustifolius Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 44, pl. xiii, fig. 2 (non figs. 1, 3, 4).
Podozamites angustifolius Hollick, 1904, Bull. N. Y. Bot. Garden, vol. iii, p. 410, pl. $1 \times x i$, fig. 8.

Podozamites lanceolatus Penhallow, 1905, Summary Geol. Survey, Can., 1904, p. 9.
Podozamites lanceolatus Fontaine, 1906, in Ward, Mon. U. S. Geol. Survey, vol. xlviii, p. 110, pl. xxiv, figs. 17-20.
Podozamites pedicellatus Fontaine, 1906, in Ward, Mon. U. S. Geol. Survey, vol. xlviii, p. 532, pl. cxiv, fig. 1 (non other references).
Podozamites distantinervis Fontaine, 1906, in Ward, Mon. U. S. Geol. Survey, vol. xlvili, 1905, pp. 165, 281.
Zamia washingtoniana Fontaine, 1906, in Ward, Mon. U. S. Geol. Survey, vol. xlviii, 1905, p. 503 (pars), pl. cxí, fig. 2 (non. fig. 1).
Podozamites lanceolatus Knowlton, 1907, Smith. Misc. Coll., vol. iv, pt. i, p. $120, \mathrm{pl}$. xiv, fig. 4.

Podozamites lanceolatus Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 35, pl. ii, fig. 1.
Podozamites lanceolatus Berry, 1911, Md. Geol. Survey, Lower Cret., p. 341, pl. liii, figs. 5, 6.
Podozamites lanceolatus Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 76.

Podozamites lanceolatus Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 410.

Podozamites lanceolatus Berry, 1912, Ibidem, vol. xxxix, p. 391.
Description.-" Pinnis distantibus, alternis oppositisve, elongatis, basi scnsim angustatis, inferioribus lanceolato-linearibus, superioribus elon-gato-ellipticis; nervis crebris."-Schimper, $18 \% 0$.

This species is probably composite since it is hardly possible that a single species should range from the Jurassic into the Upper Cretaceous. However, the remains, which in the Cretaccous are entirely detached leaflets, furnish no characters by means of which they can be differentiated from the Jurassic type. This is also the conclusion reached by Hollick in this country and by Velenovsky in Bohemia.

Occurrence.-Raritan Formation. Shannon Hill, Cccil County.
Collection.-Maryland Geological Survey.

Podozamites Knowltoni Berry

Zamites angustifolius Eichwald, 1868, Lethæa rossica, tome ii, p. 39, pl. ii, fig. 7.
Podozamites angustifolius Schimper, 1870, Pal. Végêt., tome ii, p. 160 (non Schenk, 1868).
Podozamites angustifolius Heer, 1876, Fl. Foss. Arct., Bd. iv, Ab. i, p. 36, pl. vii, figs. $8-11$; pl. viii, figs. $2 \mathrm{e}, 5$.
Podozamites angustifolius Heer, 1876, Ibidem, Ab. ii, p. 45, pl. xxvi, fig. 11.
Podozamites angustifolius Heer, 1878, Ibidem, Ab. ii, p. 22, pl. v, figs. 11b, 12.

Podozamites angustifolius Lesquereux, 1884, Cret. and Tert. Fl., p. 28.
Podozamites angustifolius Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 27, pl. i, fig. 4.
Podozamites augustifolius Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, 1895, p. 44, pl. xili, figs. 1, 3, 4 (non fig. 2).
Podozamites angustifolius Moller, 1903, Kgl. Svensk. Vetensk. Akad. Handl., Bd., ix, pl. i, figs. 8-12, 17 b .
Nageiopsis recurvata Fontaine, 1906, in Ward, Mon. U. S. Geol. Survey., vol. xlviii, 1905, p. 552, pl. cxvi, fig. 2 (non Fontaine, 1890).
Zamites tenuinervis Fontaine, 1906, in Ward, Mon. U. S. Geol. Survey, vol. xlviii, 1905, p. 528.
Podozamites knowltoni Berry, 1909, Bull. Torrey Bot. Club, vol. xxxvi, p. 247.

Podozamites knowltoni Berry, 1911, Ibidem, vol. xxxviii, p. 403.
Podozamites knowltoni Berry, 1911, Md. Geol. Survey, Lower Cret., p. 339.
Podozamites knowltoni Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 74 .

Podozamites knowltoni Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 16, pl. iv, fig. 5.

Description.-" Foliolis elongato-lineali-lanceolatis, centim. 6 circiter longis, infra medium millim. 5 latis, basim versus margine inferiore subitius angustatis quam superiore, decurrentibus, sat approximatis et erecto-patentibus."-Schimper, 18\%

This species has a very wide range, both geological and geographical. It is common in the Jurassic of high latitudes in Russia (the type region), Siberia, Bornholm, and Spitzbergen. In the Lower and Upper Cretaceous indistinguishable remains are rather widely distributed. These occur in the Patapsco formation of the Potomac River Valley, the Raritan formation of New Jersey, the Black Creek formation of North and South Carolina and the Dakota group of Kansas. Whether or not they were specifically identical with the Jurassic forms cannot be proven,
although they present no character aside from difference in geological horizon to warrant their separation.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-U. S. National Museum.

Podozamites marginatus Heer
 Plate LI, Fig. 8

Podozamites marginatus Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, fig. 10 (non Berry 1903).
Podozamites marginatus Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 44, pl. xiii, figs. 5, 6.
Podozamites marginatus Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 410.

Description.-" Pinnules rather large, varying from 15 cm . to 20 cm . in length, very variable in width, which ranges from 1.5 cm . to 3 cm. , the Tusealoosa specimens of minimum rather than maximum dimensions. Apex and base pointed, the angle dependent on the width of the pinnules. Base somewhat thickened and more or less abruptly narrowed in wide forms. Veins parallel, very fine and numerous, thirty or more in mumber. Texture thin but probably coriaceous.
This speeies was deseribed by Professor Heer from the Atane beds of western Greenland and was illustrated by a single rather poor figure. It was afterward tentatively identificd by Newberry from the middle Raritan of Woodbridge, New Jersey, and by the writer from the Tuscaloosa formation of Alabama where it is abundant. Whether these oeeurrences are identical with the type is not certain, although such identity is probable. The writer has recorded this same species from the Magothy formation of New Jersey, ${ }^{1}$ but this material proves to be referable to the subsequently discovered genus Doryanthites of the Blaek Creek formation in North Carolina and homotaxial deposits in Georgia and Alabama.
The present species shows considcrable similarity to the Lower Cretaceous species Zamites tenuinervis Fontaine, which is so common in the Patapseo formation of the Potomae River Valley.

[^31]It is also comparable to the several nominal species of Phyllotornia, a monocotyledonous genus described by Saporta ${ }^{2}$ from the Cenomanian of Portugal and compared with Rhizocaulon, Bambusa, etc.
Occurrence.-Raritan Formation. Drum Point Railroad, Anne Arundel County.

Collection.-Maryland Geological Survey.

CONIFEROPHYTA
 class CONIFERAE Order ARAUCARIALES

Family ARAUCARIACEAE
Genus Dammara Lamarck
[Encycl., t. 1i, 1786, p. 259]

Dammara cliffwoodensis Hollick
Plate LIV, Fig. 3
Dammara cliffwoodensis Hollick, 1897, Trans. N. Y. Acad. Scl., vol. xvi, p. 128, pl. xl, figs. 5-8.
Dammara cliffwoodensis Berry, 1903, Bull. N. Y. Bot. Garden, vol. iil, p. 61, pl. xlviii, figs. 8-11.
Dammara.cliffwoodensis Berry, 1904, Bull. Torrey Bot. Club, vol, xxxi, p. 69, p1. 1, fig. 11.
Dammara cliffwoodensis Berry, 1911, Ibidem, p. 400.
Description.--"Scales kite-shaped, abruptly narrowed from above the middle downward, one and one-half inches long by one-half inch wide at the top, abruptly short mucronate pointed, provided on inner surface with numerous prominent resin glands and ducts which extend downward almost if not quite to the base."-Hollick, 1897.

This species was describcd from the Magothy formation of New Jersey, where it is very common, from which horizon it ranges upward into the overlying Matawan formation. Remains of this sort, closely resembling the cone-scales of the modern species of Dammara, are widespread and

[^32]variable during the early Upper Cretaceous. Similar remains of smaller size are said by Hollick and Jeffrcy to have been three-seeded, and in spite of this feature to be related structurally to the Araucariacce.

The present species is not very different and may be identical with Dammara borealis Heer, which ranges northward to Greenland (Atane beds) and southward to Alabama (Tuscaloosa formation).

Occurrence.-Magothy Formation. Little Round Bay, Anne Arundel County. Matawan Formation. Cut on the W. B. \& A. Railroad, threequarters of a mile east of Millersville, Anne Arundel County.

Collection.-Maryland Geological Survey.

Genus araucaria jussieu
[Gen. Pl., 1789, p. 413]
Araucaria bladenensis Berry
Plate LIV, Fig. 1
Araucaria bladenensis Berry, 1908, Bull. Torrey Bot. Club, vol. xxxv, p. 255, pls. xii, xiii, xiv, figs. 1-3.
Araucaria bladenensis Berry, 1911, Ibidem, vol. xxxviii, p. 405.
Araucaria bladenensis Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, pp. 19, 105, pl. iii, figs. 6, 7; pl. xix, figs. $1,2$.
Description.-Foliage dense, phyllotaxy spiral, leaves decurrent, coriaccous, ovate-lanceolate, about 1.6 cm . by 8 cm ., the base rounded, apex thickened, cuspidate; veins immersed, averaging sixteen in number, straight, parallel, stomata small, in rows on ventral surface.

Leaves ranging from 1 cm . to 2.8 cm . in length by 0.5 cm . to 1.2 cm . in width, averaging 1.6 cm . by 0.8 cm ., obovate in outline, with a broad rounded base narrowing abruptly and decurrent; the blade broadest about onc-third of the distance from the base, above which point it narrows rapidly to a thickened cuspidate tip; phyllotaxy spiral; leaf substance represented by a thick shect of lignite about 0.5 mm . thick, in which the veins are immersed. These veins average fourteen to sixteen in number, although occasionally there may be as many as twenty; they are stout, incurved at the base (forking not observed), becoming parallel and running directly upward until they abut against the leaf margin, i. e., not
convergent toward the tip of the leaf. In spite of their hopeful megascopic appcarance their microscopic structure is not preserved.

In one or two instances where the specimens are in a more argillaceous matrix it has been possible to get rather inferior specimens showing the arrangement and outlines of the stomata. These are broadly ovatc in shape with very thin guard cells (at least when viewed on the surface). They are arranged in somewhat irregular rows on the ventral surface of the leaf, the number of rows between the two veins being usually four. Aside from the foregoing facts, the preservation is such that no other details can be made out.

This species is most remarkably similar to the recent Araucaria bidwilli of the Australian region. This resemblance in form, habit, and stomatal characters, reinforced by the occurrence of characteristic Araucarian cone-scales in the same beds at certain localities, renders the identification reasonably conclusive.

The most nearly related form seems to be Araucarites ovatus described by Hollick ${ }^{1}$ from the Cliffwood clays of New Jersey, which differ merely by their larger size, absence of basal characters, and much less pointed tips; in fact, if the two were found in closer association or if in the abundant material any specimens had approached Araucarites ovatus in size I should be disposed to consider then as the variants of a single species. As the case stands, it would seem better to institute a new series, since the leaves in the material from the southern Coastal Plain are sufficiently and uniformly different enough to be readily recognized, and there is the further possibility that the New Jersey species may be more or less closely related to the modern genus Dammara rather than Araucaria.

A European form, which must surely be considered as a nearly related congener of Araucaria bladenensis, is Saporta's ${ }^{2}$ Araucaria toucasi described from the Turonian of Bagnols and the Emscherian of Beausset near Toulon, France. Another similar form is Araucaria macrophylla described by Bozzi ${ }^{3}$ from the Emscherian of Italy.

[^33]Both are strikingly similar to the American species in cvery respect, and likewise closcly allicd, in appearance at least, to the recent Araucaria bidwilli of Australia.

Kerner ${ }^{1}$ records Pachyphyllum (Pagiophyllum) rigidum Saporta and Pachyphyllum (P'agiophyllum)araucarium Saporta from the Cenomanian of Lesina, an island in the Adriatic off the coast of Dalmatia, both being originally Jurassic species from the French Corallion of Verdun. Both are very similar to the American species and are of about the same age. The probable identity of Cenomanian and Corallian species, it scems to me, is extremely doubtful, and both of Kerner's species should undoubtedly be considered as new species of Aracauria, and nearly related, if not identical, with such Cretaceous forms as Araucaria bladenensis or Araucaria toucasi. This species is represented by doubtfully determined detached leaves in Maryland. It is exceedingly common in and characteristic of the Black Creek formation in North Carolina. In South Carolina it is found in the extension of these beds. It is present in the lower Eutaw and later Cretaceous dcposits in western Gcorgia and along the Chattahoochee River. Careful search has failed to discover this species in the very fossiliferous plant beds of western Alabama, of Tuscaloosa age, but it is present there is great abundance at the very base of the Eutaw deposits in Halc County.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Araucaria marylandica n. sp.

Plate LIV, Fig. 2

Description.-Cone-scales narrowly elongate-obovate in outline with an extended upturned distal acumen. Length of shaft of ovuliferous scale about 2 cm . Maximum width, which is not far from the thickened distal end, about 8 mm . to 10 mm . Minimum width, at proximal end, about 5 mm . Acuminate upturned tip about 6 mm . in length and 2.5 mm . broad at the base. Lateral margins of scale straight nearly to the thick-

[^34]ened end where they curve inward, recurving to form the acuminate tip. The ligule is prominent on the upper (ventral) surface of the scale to its base, is somewhat thickened, and conforms in its outline to that of the scale ; its distal margins are entire, and it ends medianly in a short mucronate point. The enclosed seed is oblong-obovate with straight lateral margins and rounded ends.

The present species is clearly distinct from the rather numerous Araucarian remains that have been described from the Upper Crctaceous of the Atlantic Coastal Plain. It is associated in Maryland with meagerly represented foliage of Aracauria blandenensis Berry, an exceedingly abundant and well characterized form of the Araucaria bidwilli type, which is very common in the Black Creek formation of the Carolinas and the Eutaw formation of Georgia and Alabama. In the region of its maximum abundance from North Carolina to Alabama Araucaria bladenensis is uniformly associated with the large cone-scales described as Araucaria jeffreyi Berry, and it has seemed very probable that they represented the foliage and ovulate scales of the same Cretaceous tree. Araucaria jeffreyi is a much larger, relatively wider and otherwise very different type of sporophyll from Araucaria marylandica. At the same horizon as the latter speeies of cone-scale in the New Jcrsey region there occurs foliage described as Araucarites ovatus Hollick, which may be related to the former.

Among recent species there is some resemblance to Araucaria rulei, a New Caledonian species of the Eutacta section of Araucaria, but on the whole the present fossil form is more like the sporophylls of the Colymbea section of the genus, especially those of Araucaria imbricata, the so-called Chile pine.
Occurrence.-Magothy Formation. Little Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Family BRACHYPHYLLACEAE

Genus BRACHYPHYLLUM Brongniart
[Prodrome, 1828, p. 109]

Brachypifyllum macrocarpum Newberry

Plate LIV, Figs. 4, 5
Moriconia cyclotoxon Heer, 1883, Fl. Foss. Arct., Bd. vii, pl. 11v, fig. 1c (non Heer's other figures).
Thuites crassus Lesquereux, 1884, Cret. and Tert. Fl., p. 32.
Brachyphyllum crassum Lesquereux, 1887, Proc. U. S. Nat. Mus., vol. x, p. 34. p. 34.

Brachyphyllum crassum Lesquereux, 1892, Fl. Dakota Group, p. .32, pl. 11, fig. 5.
Brachyphyllum crassum Newberry, 1896, Fl. Amboy Clays, p. 51, pl. vil, figs. 1-7.
Brachyphyllum macrocarpum Newberry, 1896, Fl. Amboy Clays, Ms. name mentioned in footnote, p. 51.
? Brachyphyllum sp. Knowlton, 1897, Bull. Geol. Soc. Amer., vol. viii, pp. 137, 140.
Prachyphyllum macrocarpum Knowlton, 1900, Bull. U. S. Geol. Survey, No. 163, p. 29, pl. iv, figs. 5, 6.
Brachyphyllum macrocarpum Hollick, 1904, Bull. N. Y. Bot. Garden, vol. iii, p. 406, pl. vii, figs. 4, 5.
Brachyphyllum macrocarpum Berry, 1905, Bull. Torrey Bot. Club, vol. xxxil, p. 44, pl. ii, fig. 9.
Brachyphyllum macrocarpum Berry, 1906, Ibidem, vol, xxxiil, p. 168, pl.ix.
Brachyphyllum macrocarpum Berry, 1906, Ann. Rept. State Geol. Survey of New Jersey for 1905, p. 139.
Brachyphyllum macrocarpum Hollick and Jeffrey, 1906, Amer. Nat., vol. $\mathrm{xl}, \mathrm{p} .200$.
Brachyphyllum macrocarpum Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 44, pl. 111, figs. $9,10$.
Brachyphyllum macrocarpum Berry, 1911, Bull. 3, New Jersey Geol. Survey, p. 81, pl. vii.
Brachyphyllum macrocarpum Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 21, pl. 11i, fig. 2.

Description.-Stout twigs with club-shaped, pinnately arranged branches, covered with large, thick, rhomboidal, squamate, densely crowded, appressed leaves attached by practically their whole ventral surfacc. Phyllotaxy spiral. Leaf more or less striated, the striæ converging toward the obtuse papillate apex. Cones not positively determined.

Brachyphyllum is chiefly an older Mesozoic type, but it remains abundant through the Lower Cretaceous, two specics having been described from the Potomae group of Maryland and Virginia. It is a waning type in the Upper Cretaceous represented by buta single spceics, the one under diseussion, and the following variety, which persist as high as the Senonian. Both are widely distributcd, and the type is recorded from Long Island, New Jersey, Delaware, Maryland, and South Carolina, and from the Dakota group of Kansas and the Montana group of Wyoming in the West. It is probably represented in the Patoot beds of Greenland by the material which Heer erroncously refers (loc. cit.) to Moriconia. While it is not reeorded from Europe, Velenovsky has deseribed remains from the Cenomanian of Bohemia which appear to be identieal with the Amcrican representatives of this species, referring them to the Jurassic genus Echinostrobus of Schimper. ${ }^{1}$

Holliek and Jeffrey have recently argued from a study of speeimens from Staten Island with structure preserved (loc. cit.), that this spccies is related to the family Araucariacece.

This speeies is extremcly common in the upper Raritan beds at South Amboy, New Jersey, and their eastward extension on Staten Island, but has not been collected from any of the plant-bearing horizons of the lower Raritan. Professor Newberry described (loc. cit.) large cones which he found associated with these twigs, and which he thought were related to them, although this seems improbable. The cones are poorly preserved and their affinities cannot be made out. They are very different from previously described cones of Brachyphyllum, and the work of Hollick and Jeffrey (loc.cit.) would seem to indieate that the present species had small cones. The eones described by Professor Newberry, while they are here retained in the synonymy of this species, are comparable to the abundant cones from the older Potomae of Maryland which are referred to the form-genus Abietites. No eones have been positively found associated with the not uneommon oceurrences of this species.
${ }^{1}$ Velenovsky, Gym, Böhm. Kreidef., 1885, p. 16, pl. vi, figs. 3, 6-8; Kvéteña českého cenomanu, 1889, p. 9, pl. i, figs. 11-19; pl. ii, figs. 1-3.

Occurrence-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County, Maryland.

Collection.-U. S. National Museum.

Brachyphyllum magrocarpum formosum Berry

Plate LIII, Fig. 1
Brachyphyllum macrocarpum Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 183 (non Newberry, 1896).
? Brachyphyllum macrocarpum Berry, 1911, Ibidem, vol. xxxviii, p. 420. Brachyphyllum macrocarpum formosum Berry, 1912, Ibidem, vol. xxxix, p. 392, pl. xxx.

Brachyphyllum macrocarpum formosum Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 106.

Description.-Slender elongated twigs, pinnately branehed, eorered with medium sized, crowded, appressed leaves, spirally arranged. Leaves bluntly pointed, smooth, thick.

In the eonsidcration of the various specimens which have been referred to Brachyphyllum macrocarpum, a very considerable variation within certain fixcd limits is at once obvious. This variation is usually one of size, the more slender specimens being at the same time smoother. This has been frequently noted by the writcr and is commented upon in print by Dr. Knowlton, ${ }^{1}$ who in discussing the younger forms from Wyoming suggests that the species on the verge of extinction became smallcr in its proportions. In studying the material from the South Atlantic and Gulf states a constant difference in size was noticed. This may reflect a slight difference in climatic conditions and all of the forms may be interpreted as the variations of a single species; in fact, Newberry's fig. 7 (loc. cit.) from the Raritan formation in Ncw Jersey is approximately the same size as the forms from the Montana group of the West and is associated with the normal, stout club-shaped type. That the variety has no particular stratigraphic significance is indicated by its abundance at a horizon as old as the basal Tuscaloosa of Alabama, and its presence in the Woodbine formation of Lamar County, Texas.

[^35]In general the present variety occurs at later and more southern horizons than the type, which might be aseribed to the fact that only the slender terminal twigs are preserved. This is regarded as improbable, however, since the same reasoning should hold good for the areas where only thicker twigs have been found.

The remains are usually mueh macerated and brokell and the immediate eause for the recognition of a new variety was the discovery of a relatively large spccimen from the Magothy formation of Maryland, whieh showed such striking unlikencss to the type that separation was demanded and specifie differentiation was even considered. In view, however, of the occurrence of both forms in association in Maryland and the well-known variation of not only the type, but of coniferous foliage in general, it seemed wiser to consider the present as a variety of the type, whieh as time progressed supplanted it to a large extent, if not altogether.

The new specimen from Maryland shows the terminal part of two approximately parallel and curved twigs about 12 em . in length, united proximad. These in their largest portion are only 6 mm . in diametcr. At intervals of from 3 mm . to 5 mm . subopposite lateral branehes are given off in a pinnate manner. These are relatively much elongated, curved, and slender, averaging about 4 cm . in length by 2 mm . in diameter, bluntly pointed and not tapering to any appreciable extent. These have been occasionally observed to fork pseudo-dichotomously and at times they give off toward their distal ends tiny lateral branchlets less than a centimeter in length and about a millimeter in diameter.

The general proportions are thus decidedly different from the supposed parent type. The leaves are slightly smaller and smoother and somewhat more elongated in their relative proportions, at the same time lacking the apical papilla and the convergent strix. The form is much more graceful in appearance, and in its general aspect suggests the Lower Cretaeeous genus Arthrotaxopsis of Fontaine.

While tiny speeies of Brachyphyllum like Brachyphyllum microcladum Saporta of the Neo-Jurassie have been deseribed, the new variety is even more slender than Brachyphyllum gracile Brongniart of the Jurassic. The most closely allied form known appears to be one from the Albian of

Buarcos in Portugal described by Saporta ${ }^{1}$ as Brachyphyllum obesiforme elongatum. There is also considerable resemblance to Brachyphyllum crassicaule Fontaine of the Patapsco formation in Maryland and Virginia.

The present variety is abundant throughout the Tuscaloosa formation and in the basal part of the Rutaw formation in Alabama and western Georgia, and occurs also in the Woodbine formation of Texas, but is known only from a single locality in Maryland.

Occurrence.-Magothy Formation. Sullivan's Cove, Round Bay, Anne Arundel County.

Collection.-Johns Hopkins University.

Order PINALES

Family PINACEAE
Genus SEQUOIA Endlicher
[Synop. Conif., 1847, p. 197]
Sequoia heterophylla Velenovsky
Plate LIII, Fig. 2 ; Plate LIV, Fig. 7
Sequoia heterophylla Velenovsky, 1885, Gymnos. Böhm. Kreidef., p. 22, pl. xii, flg. 12; pl. xiii, figs. 2-4, 6-9.
Sequoia heterophylla Velenovsky, 1888, Sitz. k. Böhm. Gesel. Wiss., Prag., p. 593 , figs. 7, 8.

Sequoia heterophylla Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xil, p. 3, pl. i, fig. 18.
Sequoia heterophylla Ward, 1895, 15th Ann. Rept. U. S. Geol. Survey, pp. 378, 380, 392.
Sequoia heterophylla Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 49, pl. vi, figs. 1-13.

Sequoia heterophylla Knowlton, 1905, Bull. U. S. Geol. Survey, No. 257, p. 132 , pl. xvi, fig. 5.
Sequoia heterophylla Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 165.

Sequoia heterophylla Berry, 1906, Ann. Rept. State Geol. of New Jersey for 1905, p. 139.
Sequoia heterophylla Berry, 1907, Bull. Torrey Bot. Club, vol. xxxiv, p. 189.
Sequoia heterophylla Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 41, pl. iil, figs. 2, 3.
Sequoia heterophylla Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 95, pl. vi.

[^36]Description.-This charactcristic species, described originally from the Cenomanian of Bohemia, may be readily recognized by the form of the foliage-the flat, lanceolate, decurrent leaves above, and the short and appressed leaves below. Newberry says of this species that it is one of the most common conifers of the Amboy clays, but mentions no localities. The writer has only found it in the Upper Raritan at South Amboy, New Jersey, where it is very common, and at the Hylton pits, which are also near the top of the Raritan, and it has been collected by Hollick from a probably equivalent horizon at Kreischerville, Staten Island.

In the overlying Magothy formation it is a common species with a recorded range from Marthas Vineyard to Maryland, and in the allicd Black Crcek formation of North Carolina. It occurs in the 'Tuscaloosa formation of Alabama and in the West it occurs in the Judith River beds of Montana. The form described by Newberry from the Cretaceous of Nanaimo, Vancouver Island, as Sequoia cuneata is vcry similar to the present species.

In 1888 (op.cit.) Velenovsky described additional twigs of this species and cones from the Cenomanian of IIloubetin, Bohemia, although he does not state that they were attached. The cones were of small size 2.3 cm . by 1.5 cm ., elliptical in outline, and were made up of a relatively small number of slender, rhomboidal, umbilicate scales of Sequoia type.

Occurrence.-Magotify Formation. Deep Cut, Delaware; Grove Point, Cecil County; Litte Round Bay, Anne Arundel County.

Collections.-Maryland Geological Survey, U. S. National Museum.

Sequoia ambigua Heer

Sequoia ambigua Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, pp. 78, 91, pl. xxi, figs. 1-11; pl. xxv, fig. 5.
Sequoia ambigua Heer, 1882, Ibidem, Bd. vi, Ab. ii, pp. 17, 52, pl. i, fig. 3.
Sequoia ambigua Bozzi, 1888, Atti Soc. Ital. Sci. Nat., vol. xxxi, p. 401, pl. vi, fig. 2.
Sequoia ambigua Fontaine, 1890, Mon. U. S. Geol. Survey, vol. xv, 1889, p. 245 , pl. cxviil, fig. 2 ; pl. cxx, figs. $1-6$; pl. cxxvii, fig. 5 ; pl. cxxxil, fig. 3.
Sequoia ambigua White, 1890, Am. Jour. Sci., vol. xxxix, p. 97, pl. ii, figs. 2, 3.
Sphenolepidium recurvifolium Fontaine, 1890, Mon. U. S. Geol. Survey, vol. xv, 1889, p. 258, pl. exxvii, fig. 2; pl. cxxx, figs. 2, 7.

Sphenolepidium dentifolium Fontaine, 1890, Mon. U. S. Geol. Survey, vol. xv, 1889, p. 258, pl. cxxviii, figs. 2-6; pl. cxxix, fig. 6; pl. cxxx, figs. 4-6, 10 .
Sequoia ambigua Bozzi, 1891, Bol. Soc. Geol. Ital., vol. x, p. 373, pl. xv, fig. 4. Sequoia ambigua Nathorst, 1893, in Felix and Lenk, Beitr. z. Geol. u. Päl. Repub. Mexico, ii Theil, 1 Heft, p. 51, figs. 1-3.
Sequoia ambigua Hollick, 1895, Bull. Geol. Soc. Am., vol. vii, p. 13.
Sequoia gracilis Fontaine, 1899, in Ward, 19th Ann. Rept. U. S. Geol. Survey, pt. ii, p. 675, pl. clxvi, fig. 2 (non Heer).
Sequoia ambigua Uhler, 1901, Trans. Md. Acad. Sci., vol. i (1892), p. 207.
Sequoia ambigua Fontaine, 1906, in Ward, Mon. U. S. Geol. Survey, vol. xlviii, 1905, pp. 272, 281, 538, 555, pl. lxix, fig. 6; pl. cx, fig. 13.
Sphenolepidium dentifolium Fontaine, 1906, in Ward, Mon. U. S. Geol, Survey, vol. xlviii, 1905, pp. 484, 528, 538, 546, 555.
Arthrotaxopsis expansa Fontaine, 1906, in Ward, Mon. U. S. Geol. Survey, vol. xv, 1889, pp. $533,535,538,555,573$, pl. cix, figs. 12,13 (non pp. 504, 520, 547, 571).
Sequoia ambigua Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 41, pl. iii, figs. 7, 8.
Sequoia ambigua Knowlton, 1907, Smith. Misc. Coll., vol. iv, pt. i, 1907, p. 126 .

Sequoia ambigua Berry, 1910, Bull. Torrey Club, vol. xxxvii, p. 20.
Sequoia ambigua Berry, 1911, Proc. U. S. Natl. Mus., vol. xl, p. 310.
Sequoia ambigua Berry, 1911, Md. Geol. Surv., Lower Cretaceous, p. 449, pl. lxxviii, figs. 1-7.

Description.-" S. ramis elongatis, foliis omnino tectis, ramulis altcrnis, gracilibus, foliis decurrentibus, brevibus, crassiusculis, falcato-incurvis, apicc acuminatis, uninerviis, strobilis globosis, squamis peltatis, planius-culis."-Heer, $18 \% 4$.
Remains of the foliage of this specics are distinguishable from those of contemporaneous conifers, which occur in the beds with them, by the relatively short and very stout, acuminate, falcate or recurved, decurrent leaves.
The cones are spheroidal and consist of relatively few, short scalcs with longitudinally striated peduncles and suddenly expanded, quadrangular, peltate, umbilicate tips. These cones are abundant in the Lower Cretaceous of Maryland, occurring usually as detached ferruginized mud casts, and are fully described in the writer's account of the Iower Cretaceous flora of Maryland.

As recorded in the literature cited above, Sequoia ambigua is widely distributed geographically and it has an equally great geological range.

Deseribed originally from the Kome beds (Urgonian) of Greenland by Professor Heer, this author soon afterward reeorded it from the Upper Cretaeeous Atane beds of that eountry. It has been reeorded by Nathorst from the Neocomian of Mexico and it is present in the Kootenai formation of Montana. It is a member of the Shasta flora of the Paeific Coast (Horsetown beds), and is probably represented in the Fuson formation of eastern Wyoming by what Professor Fontaine ealls Sequoia gracilis. In the Upper Cretaceous, remains in every way identical with these Lower Cretaceous oceurrences are present in the Magothy formation at fay Head, Marthas Vineyard, and in Maryland, as well as in the Tusealoosa formation of Alabama. A similar oeeurrenee is that in the Emscherian of Italy reeorded by Bozzi (op.cit.). After much comparison and study the writer is unable to formulate good eharaeters for the separation of the later from the earlier Cretaeeous forms that have been referred to this speeies.

The Upper Cretaceous forms resemble greatly some of the homotaxial remains referred by Heer and others to Sequoia subulata Heer and to Sequoia fastigiata (Sternb.) Heer. They are, however, different from the types of both these species, and it seems probable that the later identifieations inelude diverse species under these names. The fragments figured in $18 \% 6$ by Lesquereux from the Dakota group as S. fastigiata are also quite similar to the eastern remains referred to Sequoia ambigua.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-Maryland Gcological Survey.
Sequoia reichenbachi (Geinitz) Heer ${ }^{1}$
Araucarites reichenbachi Geinitz, 1842, Charakteristik d. Schichten u. Petrefacten sachs.-böhm. Kreide, Heft iii, p. 98, pl. xxiv, fig. 4.
Cryptomeria primava Corda, 1846, in Reuss, Versteinerungen böhm. Kreidef., Ab. ii, p. 89, pl. xlviii, figs. 1-11.

[^37]Pinus exogyra Corda, 1846, in Reuss, Ibidem, p. 91, pl. xlviii, figs. 16-18.
Geinitzia cretacea Endlicher, 1847, Syn. Conif., p. 281.
Pinites exogyrus Endlicher, 1847, Ibidem, p. 284.
Araucaria reichenbachi Debey, 1849, Entwurf. z. e. Geogn.-Geogenst. Darst. d. Gegend v. Aachen (Nachträge), p. 63.

Cryptomerites primcvus Brongniart, 1849, Tableau, p. 74.
Piceites exogyrus Göppert, 1850, Mon. Fossils Conif., p. 208.
Oycadopsis cryptomerioides Miquel, 1853, Verh. Geol. Kaart. v. Nederl., Deel i, p. 42 (10), pl. iii.
Araucarites appressus v. d. Marck, 1863, Pal., Bd. xí, p. 80, pl. xiii, figs. 10, 11.
Sequoia reichenvachi Heer, 1868, Fl. Fossils Arct., Bd. i, p. 83, pl. xliii, figs. 1d, 2b, 5a.
Sequoia reichenbachi Heer, 1869, Kreidefi. v. Quedlinburg, p. 9, pl. i, fig. 2 (Neue Denks. schweiz. Gesell. Naturw., Bd. xxiv).
Sequoia rcichenvachi Heer, 1872, Fl. v. Moletein in Mähren, p. 7, pl. 1, figs. 1-9 (Neue Denks. schweiz. Gesell. Naturw., Bd. xxiii, Mém. ii).
Sequoia reichenbachi Lesquereux, 1874, Cret. Fl., p. 51, pl. i, figs. 10, 10a, 10b.
Sequoia reichenbachi Heer, 1874, Fl. Fossils Arct., Bd. 1i1, Ab. ii, pp. 77, 101, 126, pl. xii, figs. 7c, 7d; pl. xx, figs. 1-8; pl. xxviii, fig. 2; pl. xxxiv, fig. 1; pl. xxxvi, figs. 1-8; pl. xxxvii, figs. 1, 2.
Abietites dubius Lesquereux, 1878, Tert. Fl., p. 81, pl. vi, figs. 20, 21, 21a.
Sequoia reichenbachi Hosius and v. d. Marck, 1880, Pal., Bd. xxvi, pp. 132, 179, pl. xxxvii, figs. 145, 146.
Sequoia reichenbachi Heer, 1882, F1. Fossils Arct., Bd. vi, Ab. ii, p. 52, pl. xxviii, fig. 7.
Sequoia reichenbachi Dawson, 1882, Trans. Roy. Soc. Can., p. 21.
Sequoia rcichenbachi Velenovsky, 1885, Gymn. böhm. Kreídef., p. 19, pl. viii, figs. 8, 9; pl. ix, figs. 5, 5a, 6a, 7a, 10a, 12, 12a, 13, 14.
Sequoia couttsice Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xii, p. 30, pl. i, fig. 5 (non Heer).
Sequoia reichenbachi Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xii, p. 30, pl. i, fig. 18.
Sequoia rcichenbachi Lesquereux, 1892, Mon. U. S. Geol. Surv., vol. xvli, p. 35, pl. ii, fig. 4.

Sequoia reichenbachi Smith, 1894, Geol. Coastal Plain in Ala., p. 348.
Sequoia reichenbachi Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, 1895, p. 49, pl. ix, fig. 19.
Sequoia reichenbachi Krasser, 1896, Kreidefi. v. Kunstadt in Mahren, Palæont. Oest. Ung. u. d. Orients, Bd. x, p. 124.
Sequoia reichenbachi Knowlton, 1899, Mon. U. S. Geol. Survey, vol. xxxii, p. 657.

Sequoia reichenbachi Berry, 1903, Bull. N. Y. Bot. Gard., vol. iii, p. 59, pl. xlviii, figs. 15-18, 20.
Scquoia reichenbachi Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, p. 69, pl. iv, fig. 8.
Sequoia reichenbachi Berry, 1905, Bull. Torrey Bot. Club, vol. xxx11, p. 44, pl. i, fig. 3.

Sequoia reichcnbachi Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, 1906, p. 165.

Sequoia reichenbachi Berry, 1906, Rept. State Geol. (N. J.), for 1905, p. 139.
Sequoia reichenbachi Hollick, 1906, Mon. U. S. Geol. Survey, vol. 1, p. 42, pl. ii, fig. 40 ; pl. iii, figs. $4,5$.
Sequoia reichcnbachi Berry, 1910, Bull. Torrey Club, vol. xxxvii, p. 20.
Sequoia reichenbachi Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 93.
Sequoia reichenbachi Berry, 1911, Md. Geol. Surv., Lower Cretaceous, p. 444, pl. lxxvii, fig. 7.
Sequoia reichenbachi Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84. pp. 23, 107, pl. iv, figs. 1-4.
Description.-" S. ramis elongatis, foliis decurrentibus, patentibus, falcato-incurvis, rigidis, acuminatis."-Heer, 1869.

This is one of the most wide-ranging fossil plants, both geologically and geographically, that is known, and it seems very probable that is is of a composite character, the well-knowl difficulty in distinguishing between coniferous twigs of this character prohibiting any satisfactory segregation. Described originally as a species of Araucarites, certain of these remains from the Staten Island Cretaceous have shown by their vascular structure that they are related to the Araucariece, while on the other hand a large number of exactly similar remains of leaf-bearing twigs bore cones which are unquestionably those of Sequoia. Twigs of this sort are abundant throughout the Potomac group, occurring also in the Fuson formation of the Black Hills, the Kootenai of Montana, the Sliasta of California, the Kome beds of Greenland, and the Neocomian of Central Mexico. Abroad they have been reported from the Upper Jurassic (?) of Portugal, the Ncocomian of Belgium, the Barremian of Silesia, and the Albian of Switzerland.

As might be expected from their great range, fossils of the Scquoia reichenbachi type are of slight stratigraphic value, nevertheless the remains are very abundant from New Jersey to Alabama at the MagothyBlack Creek-Middendorf-'Tuscaloosa-Eutaw horizons, apparently identical in character and frequently cone-bearing, the cones being small, prolate spheroids in shape, and consisting of relatively few, peltate, umbilicate, Sequoia-like scales. Sequoia twigs are very resistant to maceration, and frequently are about the last vegetable remains to disintegrate in marine waters. This species is rare in the Raritan formation of New Jersey and is unknown in the Maryland Raritan. It is common at later Upper Cre-
taceous outcrops in New Jersey, Delaware, Maryland (foliage and concs), North Carolina, South Carolina, Gcorgia, and Alabama.

Occurrence.-Magotify Formation. Deep Cut, Delaware; Grove Point, Cccil County; Round Bay and Little Round Bay, Anne Arundel County, Maryland.

Collection.-Maryland Geological Survey.

Cupressinoxylon? bibbinsi Knowlton, 1896, Science, n. s., vol. iii, pp. 582584, tf. 1-4.
Description.-This species was based on sections of poorly preserved lignite from the type locality of the Magothy formation at Cape Sable. The wood cells are almost obliterated by crushing : the radial sections show the walls to have been thick and with a single interrupted series of large bordered pits; the rays, as shown in tangential sections, are crushed, but appear to have been uniscriate and of about four cells.

The material upon which this species is founded is much too incomplete for cven successful generic determination. The genus Cupressinoxylon to which it has been referred was discussed by the writer in a previous report ${ }^{1}$ and need not be amplified in the present connection.

Occurrence.-Magotify Formation. Cape Sable, Magothy River, Anne Arundel County.

Collections.-U. S. National Museum, Goucher College.

Subfamily CUPRESSEAE
Genus THUJA Linné
[Sp. Pl. 1753, p. 1002]

Thuja cretacea (Heer) Newberry
Libocedrus cretacea Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 49, pl. xxix, figs. 1-3; pl. xliii, fig. 1d.
Thuja cretacea Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 53, pl. x, figs. 1, 1a.

[^38]Thuja cretacea Knowlton, 1905, Bull. U. S. Geol. Survey, No. 257, p. 133, pl. xvi, figs. 3a.
Thuja cretacea Berry, 1906, Bull. Torrey Bot. Club, vol. xxxili, p. 169.
Description.-"L. ramulis gracilibus, oppositis, compressis, foliis quadrifariam, facialibus rhombeis, minutis, dorso argute carinatis."Hecr, 1882.

This species was described originally from the Atane beds of Greenland as a species of Libocedrus. When Professor Newberry came to study the abundant remains from the Upper Raritan he changed the generic reference to Thuja on what appears to be good evidence. Similar remains have been identified by Knowlton from the Judith River beds of Montana. and the writer has noted identical remains in considerable abundance in the Magothy formation of Delaware and Maryland.

The twigs are strap-shaped with nearly parallel sides 2 mm . or slightly less in width and with four rows of short appressed leaves.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County, Maryland.

Collection.-Maryland Geological Survey.

Genus JUNIPERUS Linné

[Sp. pl., 1753, p. 1038]

Juniperus hypnoides Heer

Juniperus hypnoides Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 47, pl. xliv, fig. 3; pl. xlvi, fig. 18.
Juniperus hypnoides Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xii, p. 22, pl. i, fig. 1.
Juniperus macilenta Newberry, 1896, Mon. U. S. Geol, Survey, vol. xxvi, p. 54, pl. x, fig. 7.
Juniperus hypnoides Hollick, 1902, Bull. N. Y. Bot. Garden, vol. 1i, p. 403, pl. xli, fig. 7, 7a.
Juniperus hypnoides Berry, 1906, Bull. Torrey Bot. Club, vol, xxxili, p. 168.
Juniperus hypnoidcs Berry, 1906, Ann. Rept. State Geol. of New Jersey for 1905, p. 139.
Juniperus hypnoides Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 46, pl. 1i, figs. 26 (ex parte), 27b, 28; pl. iii, figs. 12-13a.
Description.-"J. multiramosa, ramulis tenuissimis, congestis, foliis oppositis, falcatis, apice acuminatis, uninerviis, 1 mm . longis."-Heer, 1882.

This conifer which is a common onc in the Raritan was referred by Professor Newberry to Juniperus macilenta Heer, although if the two species are to be kept separate, a not altogether certain proposition, it is clearly more closely allied to Juniperus hypnoides, under which Hollick has already placed it (loc. cit., 1907). Professor Newberry describes its association at Woodbridge with Dammara scales and was evidently of the opinion that the one was the fruit of the other. Material in the New York Botanical Garden shows this association which is probably, however, purely a mechanical one. The type material came from the Atane beds of Greenland, and additional remains are also abundant in the Raritan of Kreischerville, Staten Island and in the Magothy formation of Marthas Vincyard, New Jersey and Delaware.

Occurrence.-Magothy Formation. Deep Cut, Delaware.
Collection.-Maryland Geological Survey.
Genus widdringtonites Endlicher
[Synop. Conif., 1847, p. 271]
Widdringtonites Reichii(Ettingshausen) Heer ${ }^{1}$
Plate LV, Fig. 1
Frenelites reichii Ettingshausen, 1867, Kreidefl. von Niederschœna, p. 12 (246), pl. i, figs. 10a-10c.

Glyptostrobus gracillimus Lesquereux, 1868, Amer. Jour. Sci (ii), vol, xlvi, p. 92.

Glyptostrobus gracillimus Lesquereux, 1874, Cret. Fl., p. 52, pl. i, figs. 8, 11-11f.
Widdringtonites reichii Heer, 1882, Fl. Foss. Arct., vol. vi, Ab. ii, p. 51, pl. xxviii, fig. 5.
Glyptostrobus gracillimus Lesquereux, 1883, Cret. \& Tert. F1., p. 32, pl. i, figs. 6-6b.
Widdringtonites reichii Heer, 1883, Fl. Foss. Arct., vol. vii, p. 13, pl. lii, figs. 4, 5.
Widdringtonia reichii Velenovsky, 1885, Gym. bohm. Kreidef., p. 27, pl. viii, figs. 4-6; pl. x, figs. 1, 11, 12.

[^39]Widdringtonia reichii Velenovsky, 1887, Sitz. k. böhm. Gesell. Wiss., 1886, p. 639, pl. i, figs. 14-16.

Widdringtonia reichii Engelhart, 1891, Isis, Ab. 7, p. 92.
Frenelites reichii Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xii, p. 29, pl. i, fig. 23.
Glyptostrobus gracillimus Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 38.
Widdringtonites reichii Smith, 1894, Geol. Coastal Plain Ala., p. 348.
Sequoia gracillima Smith, 1894, Ibidem (nomen nudum).
Sequoia gracillima Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, 1895, p. 50, in part (non pl. ix, figs. 1-3).

Widdringtonites reichii Newberry, 1896, Ibidem, p. 57, pl. viii, figs. 1-5.
Widdringtonia reichii Krasser, 1896, Beitr. Pal. Oest. Ung. u. Orients, Bd. x, p. 126 (14), pl. xiv (iv), fig. 6; pl. xvii (vii), figs. 4, 7, 8.
Sequoia gracillima Newberry, 1898, Mon. U. S. Geol. Survey, vol. xxxv, p. 19 (ex partc), pl. xiv, fig. 6 (non pl. xxvi, fig. 9).
Widdringtonia reichii Marik, 1901, Prispevek k. fi. ceskeho cenomanu, p. 9, pl. i, fig. 23; pl. ii, fig. 2.
Widdringtonites reichii Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 169.

Widdringtonites reichii Berry, 1906, Rept. State Geol. of New Jersey for 1905, p. 138.
Widdringtonites reichii Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 44, pl. iv, figs. 6-8.
Widdringtonites reichii Hollick and Jeffrey, 1909, Mem. N. Y. Bot. Garden, vol. iii, p. 29, pl. v, figs. 1-4; pl. viii, figs. 7-11; pl. xx, figs. 3-5.
Widdringtonites reichii Berry, 1910, Bull. Torrey Bot. Club, vol. xxxviii, p. 21.

Widdringtonites reichii Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 87, pl. viii, figs. 1, 2.

Description.-"F. ramis suberectis fastigiatis, ramulis filiformibus confertis, foliis appressis e basi ovata subulatis, strobilis axillaribus duplo longioribus quam latis."-Ettingshausen, 186\%
Medium-sized branches with more or less crowded, slender, elongated, fastigiate twigs, bearing reduced ovate-subulate leaves, spirally arranged. Both microsporangiate and megasporangiate cones have been found. The eones are small oval bodies 5 mm . to 12 mm . long by 3 mm . to 7 mm . in diameter, usually poorly preserved, said by Ettingshausen to be axillary in position but evidently often terminal, as evinced by some of the Raritan material as well as by some of the better preserved eones from the Cenomanian of Bohemia and Moravia. The latter material clearly shows that the cones consisted of four scales. This would ally it with either the
sulgenus Widdringtonia of the genus Callitris Vent., to which Eichler in his treatment of the living species in Engler and Prantl (188\%) refers Endlicher's genus, or to the subgenus Eucallitris Brongn., which also is eharacterized by four cone-seales. The latter has a single living species of northern Africa and the former has three or four speeies of southern Africa and Madagasear. The propriety of Eiehler's elassifieation may well be questioned, and in any event paleobotanists must necessarily prefer the older segregation of Frenela and Widdringtonia and their respective form-genera.

There seems to be but little doubt that the present species should be referred to Widdringtonia, as Velenovsky and Krasser have done, but as the term Widdringtonites is equally indicative of its true affinity, little is to be gained by making the proposed change.

This species, which is probably the most common conifer of the Raritan formation, was deseribed originally by Ettingshausen from the Cenommanian of Niedersehœna, in Saxony, as a species of Frenelites. When Heer discovered it in the Greenland material, where it has been colleeted from both the Atane and the Patoot beds, he transferred it to the present gerus. It has subsequently been reported from the Cenomaniaus of Bohennia and Moravia, from the Magothy formation at numerous localities and from the southern New England islands. It has also been reported from the Iuscaloosa formation of Alabama, where it is abundant at a number of loealities. Heer made Glyptostrobus gracillimus Lesq., of the Dakota group, a synonym of this species, and he has been followed by many subsequent authors.

In a recent paper Hollick and Jeffrey (op. cit.) have studied the anatomy of fragments of twigs from the Raritan formation of Staten Island, New York. They are led to elaim a relationship with the Araucariacea for this form. This is not at all conelusively shown by the speeimens studied and even were this evidence admitted for this material it would scareely affeet the question of relationship of the great bulk of the remains referred to Widdringtonites or Widdringtonia, since Ettingshausen and Krasser (op. cit.) have conclusively shown the relationship with Widdringtonia by means of the megasporangiate cones. While these
have not been found in organic union with the leafy twigs in the American material, attached cones of this type have been found by the writer ${ }^{1}$ in the closely related species Widdringtonites subtilis Heer.

Widdringtonites reichii is closely allied to and descended from, if not identical with, a common conifer of the Patapsco formation of Maryland and Virginia described by the writer ${ }^{2}$ as Widdringtonites ramosus, and based upon Taxodium ramosum and various other species of Professor Fontaine's Flora of the Potomac Group.

Occurrence-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County; Round Bay, Anne Arundel County, Maryland.

Collections.-Maryland Geological Survey, U. S. National Muscum.

Family INCERTAE

 Genus PROTOPHYLLOCLADUS Berry[Bull. Torrey Club, vol. xxx, 1903, p. 440]
Protorhylloclades subintegrifolius (Lesquereux) Berry (?) Plate LVI, Fig. 2
Phyllocladus subintegrifolius Lesquereux, 1868, Amer. Jour. Sci., vol. xivi, p. 92.

Phyllocladus subintegrifolius Lesquereux, 1874, Cret. Fl., p. 54, pl. i, fig. 12. Thinnfeldia lesquereuxiana Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 37, pl. xliv, figs. 9, 10; pl. xlvi, figs. 11, 12a, 12b.
Phyllocladus subintegrifolius Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 34, pl. ii, figs. 1-3.
Thinnfeldia lesquereuxiana Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xi, p. 98 , pl. iii, fig. 6.

Thinnfeldia lesquereuxiana Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 59, pl. xi, figs. 1-17.
Thinnfeldia subintegrifolia Knowlton, 1898, Bull. U. S. Geol. Survey, No. 152, p. 228.
Protophyllocladus subintegrifolius Berry, 1903, Bull. Torrey Bot. Club, vol. xxx, p. 440.
Protophyllocladus subintegrifolius Berry, 1904, Ibidem, vol. xxxi, p. 69, pl. i, fig. 5.
Protophyllocladus subintegrifolius Berry, 1907, Johns Hopkins Univ. Circ., n. s., No. 7, pp. 89-91, fig. 6.

[^40]Protophyllocladus subintegrifolius Hollick, 1907, Mon. U. S. Geol. Survey, vol. l, p. 36, pl. v, figs. 1-6.
Protophyllocladus subintegrifolius Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 98, pl. ix.

Description.-Leaves oblong to linear in outline and eoriaeeous in texture, from 3 em . to 17 em . in length by 0.6 cm . to 3 em . in width. Apex usually obtusc, rarely pointcd. Base decidedly and narrowlv cuneate to the short pctiole. Margins entire below, above obtusely deutate or undulate, with occasionally tecth which are acute. Midrib stout below beeoming attenuated above and frequently disappearing some distance below the apex. Laterals numerous, close, immersed; they branch at an angle of about 20°, running nearly straight and approximately parallel to the margin, sometimes forking. Stomata scattcred on both surfaces, with typical guard cells.

This is a widespread species ranging in considerable abundance from Greenland (Atane beds) to Alabama (Tuscaloosa formation), and west to Kansas and Nebraska (Dakota sandstone). Originally referred to Plyyllocladus by Lesquereux, his type is almost identical with certain phylloclads of modern members of this genus. Subsequently discovered remains from Kansas are considcrably larger than the type, as are also a number of the Greenland specimens. Some of the Raritan forms have a somewhat different aspect, being long and narrow; sometimes the margins are entire, often they are more or less sharply toothed.

Much controversy has centered around these forms and especially around the older Mesozoic forms referred to the genus Thinnfeldia Ettingshausen, to which these later forms were once referred. The latter genus has been referred sueecssively to the conifers, ferns and eyeads. There has never been much doubt that the later forms were gymnospermous. The writer can positively affirm this conclusion, and also that they are true phylloclads and not leaves in the strict morphological sense.

Whether or not they are closely related to the modern genus Phyllocladus is still in doubt, although there are some excellent arguments for such a relationship. While fossil remains of undoubted rclationship to Phyllocladus are extremely rare, Gothan has described ${ }^{1}$ wood of a similar type

[^41]from the Jurassic of the cast coast of Greenland under the name of Phyllocladoxylon. The present species has not heretofore been recorded in the Coastal Plain south of the New Jersey area, although it is apparently represented by fragmentary material in the Magothy formation of Maryland and the Tusealoosa formation of Alabama.

Occurrence.-Magotify Formation. Grove Point, Ceeil County. Collection.-Maryland Geological Surrey.

Protophyllocladus lobatus Berry

Thinnfeldia sp. nov. Berry, 1907, Johns Hopkins Univ. Circ., n. s., No. 7, p. 81.

Protophyllocladus lobatus Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 403.

Protophyllocladus lobatus Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 17, pl. ii, figs. 9-13.

Description.-Leaves (phylloclads) of large size, lanceolate or oval in general outline, either entire with crenate margins, rounded apex and narrowly euneate base or compound through the development of opposite lateral lobes. Axial vaseular strand very stout below, becoming very thin and finally disappearing apically. When lobate, subordinate opposite vaseular strands form the axis of the lobes, and these are usually but not always lost before reaching the tips of the lobes by giving off innumerable secondary branches. Margins in all cases are rather remotely undulatecrenate and the tips are all rounded. Secondaries numerous and thin, diverging from the main axis of the phylloelad on the axis of the lobes at very acute angles, curving outward, either simple, more often diehotomously forked, and oceasionally several times forked. Lobes when present scparated by cuncate narrowly rounded sinuses which terminate some distance from the main axis. The largest specimen, which is still incomplete at both the apex and the base, measures 8 cm . in length and 5 cm . from tip to tip of the lower lobes, the upper entire portion measuring about 1.5 cm . in widtll.

These remains are superficially like fern fronds, especially in specimens that are compound, and were it not for the presence in the Cretaceous of other Phyllocladus-like remains with a demonstrated gymnospermous
strueture (e. g., Androvettia) their referenee to this genus would seem hazardous. The entire speeimens are strikingly like some of the forms of Protophyllocladus subintegrifolius (Lesquereux) Berry of the Magothy formations, or like Protophyllocladus polymorphus (Lesquereux) Berry from higher western American horizons, and even the compound specimens have an unlobed apical portion of comparable length which is also similar in appearanee to the two speeies just mentioned. The compound forms are superfieially like Thinnfeldia rhomboidalis Ettingshausen, ${ }^{1}$ the type of the genus Thinnfeldia, whose systematie position has been the oceasion of so much controversy and whieh has been variously regarded as a fern, a cycad, or a conifer. The present species shows important differences, however, aside from its much younger age, and it is confidently believed to be unrelated to the various older Mesozoie species of Thinnfeldia that have been described.

It may also be compared with various forms from the Upper Cretaeeous of Dalmatia whiel were discussed at great length by Kerner, ${ }^{2}$ who refers them to the genus Pachypteris. This he regards as cycadaceous in nature, but it is believed to be elosest to Protophyllocladus subintegrifolius, a speeics whieh is abundant in the Atane beds of Greenland, the Dakota group of Kansas and Nebraska, the Raritan of New Jersey, and the Magothy from Marthas Vineyard to New Jersey, and which often assumes a sublobate form. This is espeeially shown in unreported colleetions made by the writer in the Magothy formation of New Jersey.

The present speejes is present in the Magothy formation and frequent in the Middendorf beds of South Carolina. The latter oceurrences will be fully deseribed and illustrated in a fortheoming professional paper of the U. S. Geologieal Survey.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-Maryland Geological Surrey.

[^42]Genus Raritania Hollick and Jeffrey
[Mem. N. Y. Bot. Garden, vol. iii, 1909, p. 26]
Raritania gracilis (Newb.) Hollick and Jeffrcy
Plate LV, Figs. 2, 3
Frenelopsis gracilis Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 59, pl. xii, figs. 1-3a.
Frenelopsis gracilis Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 167. Raritania gracilis Hollick and Jeffrey, 1909, Mem. N. Y. Bot. Garden, vol. iii, p. 26, pl. vi, figs. 4-7; pl. ix, figs. 1-4; pl. x, figs. 14-17; pl. xix, figs. 3-6; pl. xx, fig. 1 .
Raritania gracilis Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 92.
Description.-Twigs of a conifer, represented in the clays by crowded cylindrical branches of graccful aspect and slender forking habit. The leaves are reduced almost to the vanishing point, in fact most specimens fail to show any traces of leaves whatever, and it is possible that these spirally-arranged scale-like leaves of Newberry's description may have been founded upon deceptive material.

These twigs are unjointed, an objection against their former reference to the genus Frenelopsis. It has bcen suggested that they represent decorticated specimens of Widdringtonites reichii (Ettingshausen) Heer, which is so common in the Raritan and overlying Magothy formation. The present species is recorded from both Delaware and Maryland.

Hollick and Jeffrey have shown (loc. cit.) from anatomical preparations that the present species is not related to Frenelopsis or Widdringtonites, but constitutes a distinct genus.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County, Maryland.

Collection.-Maryland Geological Survey.

Genus GEINITZIA Endlicher

[Synop. Conif., 1847, p. 280]
Geinitzia formosa Heer ${ }^{1}$
Plate LIV, Fig. 6
Gcinitzia formosa Heer, 1871, Kreidfl. v. Quedllnb. Neue Denks. Schw. Gesell., Bd. xxlv, No. 2, p. 6, pl. i, fig. 9; pl. ii.
Geinitzia sp. Newberry. 1873, Proc. N. Y. Lyc. Nat. Hist., 2d ser., p. 10.
Sequoia reichenbachi Lange, 1890 (ex parte), Zeits. Deutsch. Geol. Gesell., Bd. xlii, p. 770.
Geinitzia formosa Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, 1895, p. 51, pl. ix, fig. 9.

Scquoia gracillima Newberry, 1896, Ibidem, pl. ix, figs. 1-3 (non foliage description on p. 50).
Geinitzia formosa Hollick, 1897, Trans. N. Y. Acad. Sci., vol. xvi, p. 129, pl. xii, figs. $1,2$.
Sequoia retchenbachi? Stanton and Knowlton, 1897, Bull. Geol. Soc. Amer., vol. viii, p. 137.
Geinitzia formosa Knowlton, 1900, Bull. U. S. Geol. Survey, No. 163, p. 28, pl. v, figs. 1, 2.
Geinitzia formosa Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 57.
Sequoia gracillima Berry, 1903, Ibidem, pl. xlviii, figs. 21, 22.
Sequoia gracillima Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, p. 69, pl. li.
Geinitzia formosa Berry, 1904, Ibidem, p. 68, pl. iv, figs. 2, 3.
Sequoia gracillima Berry, 1904, Amer. Geol., vol. xxxiv, pl. 15.
Scquoia gracillima Berry, 1905, Bull. Torrey Bot. Club, vol. xxxli, p. 44.
Sequoia gracillima Berry, 1906, Ibidem, vol. xxxiii, p. 165.
Sequoia gracillima Berry, 1906, Rept. State Geol of New Jersey for 1905, p. 139.

Geinitzia formosa Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 97. Geinitzia gracillima Jeffrey, 1911, Bot. Gazette, vol. 1, pp. 21-27, pl. viii.

Description.-"Strobile ovato-cylindrici, squamis rachi validæ spiraliter insertis, apice peltatis, disco concavo, margine crenato, toroso; semina sub quavis squama quatuor (?), squamarum stipite crasso inserta, striata.
${ }^{1}$ This species is said to be represented by Carpolithes hemlocinus of Schlothelm. See also a work by Ernst von Otto entitled, "Additamente zur Flora des Quadergebirges in der Gegend um Dresden und Dippoldlswalde," etc., pt. 1, pl. v, figs. 1-3, 5, 6, 1852.

This species probably includes the cones from the Rarltan of Woodbridge, New Jersey, Identlfied by Newberry as Microzamia gibba (Reuss) Corda, Mon. U. S. Geol. Survey, vol. xxvi, p. 45, pl. xil, figs. 6, 7, 1896. Berry, Bull. 3, Geol. Survey of New Jersey, p. 78, 1911.

Ramulis elongatis, virgatis, foliis omnino teetis, foliis subfaleatis, angustis, apiee valde attenuatis, uninerviis, ramis adultis pulvinis rhombeis obteetis."-Heer, 1871.

The American occurrences of eones of this speeies have heretofore been referred to Sequoia gracillima Newberry, a composite made up of Geinitzia cones and Widdringtonites foliage. These cones are exceedingly abundant in the Magothy formation at Cliffwood Bluff, New Jersey, where those that are more or less pyritized are washed out of the elays by storms and high tides. When preserved as flattened lignitic inelusions they are somewhat different in appearance, and it is believed that material of this speeies in the latter condition of preservation is the basis for the Raritan forms which were identified as Microzamia gibba Corda by Newberry. ${ }^{1}$ A single eone is eontained in the Magothy eolleetions made along the Chesapcake and Delaware Canal.

The foliage, whieh resembles somewhat that of Sequoia reichenbachi (Geinitz) Heer, as well as that of Cunninghamites squamosus Heer, shows rather thick twigs with slender curved needle leaves interspersed with small seale-like leaves. It has been found at a number of localities in this country and is represented in the Tusealoosa formation of Alabama by scveral doubtful speeimens.
Occurrence.-Magothy Formation. Deep Cut, Delaware.
Collection.-Maryland Geologieal Surrey.

Genus MORICONIA Debey and Ettingshausen
[Denks. Wienakad., Bd. xvii, 1859, p. 239]

Moriconia americana Berry

Plate LVI, Fig. 1
Moriconia cyclotoxon Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 65, pl. xliii, fig. 4; pl. xlviii, figs. 1-4 (non Debey and Ettingshausen).
Moriconia cyclotoxon Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, p. 70.
Moriconia cyclotoxon Berry, 1906, Ibidem, vol. xxxiii, pp. 165-167.
Moriconia americana Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, pp. 20, 186.
Moriconia americana Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 26, pl. vii, figs. 1-4.

[^43]Description.-Leafy twigs, apparently deeiduous in habit, bifacial, phyl-loelad-like, consisting of eyelieally-arranged leaves. Along the main axis on each flat face of the branch these leaves are relatively and elosely appressed, with a narrow base and a broad semieircular apex. The corresponding lateral pairs of leaves are thin and pointed and transversely compressed. In the axis of each of these marginal leaves is a redueed branch flattened in the same plane as the main branch, so that the whole arrangement is strictly opposite and distichous. These reduced lateral branches have leaves of the same charaeter and arrangement as those of the main branch. The bifacial leaves are, however, somewhat smaller and blunter and the marginal leaves are broader and less aeute. They become rapidly smaller distad, it usually requiring not more than five or six pairs to complete the blunt lateral reduced twigs. The main vaseular arrangement is strietly opposite and distichous. These reduced lateral branches. The leaves fail to show any veins. The texture was apparently coriaceous but obviously thin in the majority of speeimens. No structural material or indieations of fruits or fruiting charaeters have been discovered. This species, formerly confused with Moriconia cyclotoxon of Debey and Ettingshausen, differs from the latter, whieh is the type and only other known species of the genus, in being more phylloclad-like and strictly eomparable to a eupressineous genus like libocedrus. It is also mueh larger (about 100 per eent) than the type of the genus, the lateral twigs are more reduced and the main axis is invariably leafy. It differs also in its geologieal range, the two species not being anywhere contemporancous in Ameriea, although the type in Europe extends as high as the later larger form of America.

Superficially these remains elosely resemble fragments of fern fronds; in fact, Debey, the original discoverer, always insisted that they were ferns, and Heer described the earliest colleeted and poorly preserved remains from Greenland as a species of Pecopteris. There ean be no doubt, however, of their gymnospermous nature. For stratigraphic purposes they are one of the most characteristic fossil plants known, since the geometrieally arranged outline of the leaves is reeognizable with certainty in the smallest fragment.

They are strikingly like the curious genus Androvettia recently described by Hollick and Jeffrey ${ }^{1}$ and which these authors refer to the Araucariece, although Moriconia has, on the cvidence of the foliage characters, been invariably referred to the Cupressincec. The present species is common in the Middendorf beds of South Carolina, and is a characteristic post-Raritan species in the Atlantic Coastal Plain, laving been recorded by the writer from numerous localitics in the Magothy formation of the northern Coastal Plain, and from the Black Creek formation in North Carolina.

Occurrence.-Magóthy Formation. Deep Cut, Delaware; Grove Point, Cecil County; Round Bay, Anne Arundel County, Maryland.

Collection.-Maryland Geological Survey.

Genus CZekanowskia Heer

[Fl. Foss. Arct., Bd. iv, Ab. ii, 1876, p. 65]
Czekanowskia capillaris Newberry
Czekanowskia capillaris Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, 1895, p. 61, pl. ix, figs. 14-16.
Czekanowskia capillaris Hollick and Jeffrey, 1909, Mem. N. Y. Bot. Garden, vol. iii, p. 63, pl. vi, figs. 1-3.
Czekanowskia capillaris Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 101.

Description.-Leaves deciduous, linear or capillary, striated, long and slender, undivided (?) or dichotomously forked. Length 8 cm . to 10 cm .

These remains occur as closely packed masses, irregular fascioles and isolated fragments, and when unforked or much broken might readily be mistaken for pine leaves. There are not uncommon in the Raritan of Maryland and are clearly identical with the remains deseribed under the foregoing name from the Middle Raritan of New Jerscy and Staten Island. No basal portious showing subtending scale-leaves like those of some of the Jurassic species have been found.

The genus Czekanowski was founded by Hecr ${ }^{2}$ in 1876 with Czekanowskia setacea from the Middle Jurassic (Bathonian) of Siberia as the
${ }^{1}$ Hollick and Jeffrey, Mem. N. Y. Bot. Gard., vol. iii, p. 22, pl. iii, figs. 1-5, etc., 1909.
${ }^{2}$ Heer, Beitr. z. Jura-Flora Ostsibiriens und des Amurlandes; Mém. 1'Acad. Imp. Sci., St. Pétersb., 7e série, tome xxii, 1876, p. 65; Fl. Foss. Arct., Bd. iv, Ab. ii.
type. He claracterized the genus in the following terms: "Folia numerosa in ranıulo abbreviato, caduco fasciculata, subulata, rigida, dichotoma, squamis compluribus persistentibus circumdata. Flores feminci racemosi. Fructus pedunclo brevi insidens, nuculis duabus valde approximatis."

The genus is discussed at length by Heer, who considers that the associated small seeds represent the samc plant which is thercfore placed among the Gymnospcrma and referred to the Ginkgoales. In this refercnee most later students coneur (vide Schenk in Zittel, Paläophytologie, p. 267, 1890 ; Seward, Jurassic Flora, pt. I, p. 276, 1900), although identical remains have constituted the genera Jeanpaulia of Unger, ${ }^{1}$ Sclerophyllina of Heer, ${ }^{2}$ and Solenites of Lindley and Hutton. ${ }^{8}$ These remains in whole or in part have been variously referred to the Algce (Lindley and Hutton), to the Rhizocarpacece (F. Braun, Unger, Brongniart), to the Isoetacea (Unger, Brongniart, Zigno, Schimper), and to the Filicales proper (Shenk, Schimper, cte.).

The genus Czekanowskia, which is intimately rclated to Trichopitys Saporta and Baicra F. Braun, is distinguished from both chiefly by the less divided, or undivided, needlc-like leaves. It is confined to the northcrn hemisphere, appearing in the Rhætic of Scandinavia (C. longissima Nathorst), and becoming differentiated and widespread in Middle Jurassic times (C. hcerii Nathorst, C. sctacea Heer, C. palmatisecta Heer, C. rigida Hecr, and C. viminea (Phillips) Berry * It is represented in the Lower Cretaceous by C. dichotoma Heer of the Arctic regions and C. ncrvosa Heer of western Europe. The latter survives into the Upper Cretaceous, and a single species, C. capillaris Newberry, is present in the early Upper Crctaccous of America. All these forms are very much alike megascopically.

The remains are often common but are usually poorly preserved and resemble masses of long slender needle-leaves like those of Pinus, and this

[^44]rescmblance is heightcned by occasional specimens (Hecr) showing the tuft of leaves subtended proximad by a few small scale-leaves, as in the short shoots of Pinus. In Czekanowski, however, unmistakable dichotomy is frequent, and this habit has been one of the main factors in its reference to the Ginkgoales which are so abundant and varied during the Mesozoic.

Occurrence.-Raritan Formation. Forked Creek, Severn River, Anne Arundel County.

Collection.-Johns Hopkins University.

ANGIOSPERMOPHYTA cass MONOCOTYLEDONAE

Genus DORYANTHITES Berry
[Bull. Torrey Bot. Club, vol. xxxviii, 1911, p. 406]
Doryanthites cretacea Berry
Plate LVI, Fig. 6
Doryanthites cretacea Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 406.

Doryanthitcs cretacea Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 108, pl. xvii, fig. 3.

Description.-Leaves, as preserved, linear, presumably lanceolate above and sheathing below, 4.5 cm . to 6 cm . in width and prescrved without any diminution in width for a length of 50 cm . Texture very coriaccous. Margins entire. Veins simple and parallel, immersed, considerably less than 1 mm . apart. Leaves alike on both surfaces. In the hollows between the veins occur rows of small stomata with the guard cells all oriented in a direction parallel with the veins and equally numcrous on both surfaces of the leaf. Leaf surfaces under the microscope appearing finely striated parallcl with the veins.

These curious remains, which call to mind the leaves of the Palcozoic Cordaites or some modern giant Bromcliad, are not uncommon in the Upper Cretaceous. They were first diseovered by the writer in the Black Creek formation of North Carolina, and it is from this matcrial that the
stomatal characters are deseribed. Recently this same form was discovered in eonsiderable abundance at the Georgia locality near Buena Vista, Marion County, in the Eutaw formation of Hale County, Alabama, and in the Magothy formation of Maryland.

Referring to similarly appearing remains previously described, it may be noted that Miquel ${ }^{1}$ in $\mathbf{1 8 5 3}$ described under the heading Phyllites monocotylei two sorts of parallel-veined leaf-fragments from the Upper Cretaceous of Aachen (Rhenish Prussia). The first (pl. i, fig. 3) he calls Yuccites (?), and the second, which suggests the fossils under diseussion, is designated "Palma vel Yuccites (?)." From the Valanginian of Portugal Heer ${ }^{2}$ described what he ealls Bambusium latifolium, which is also suggestive of the Ameriean material. Krasser ${ }^{8}$ described somewhat similarly appearing remains from the Cretaceous (Cenomanian ?) of Moravia as Typhatoipum cretaceum. These are somewhat smaller than the American forms and show transverse veinlets which are absent in the latter. Saporta 'referred forms of this kind, which are not uncommon in the Cenomanian of Portugal, to a new monocotyledonous genus, whieh he calls Phyllotania, comparing it with Bambusa, Rhizocaulon, ete. Smaller but otherwise eomparable Lower and Upper Cretaceous forms were named by Sehenk ${ }^{5}$ Eolirion, and similar older Mesozoic forms are commonly referred to the form-genus Yuccites.' Perhaps the most similar fossils known are those referred to the genus Krannera, and fully described by Velenorsky, ${ }^{\text {r }}$ who does not, however, arrive at any satisfactory conclusion regarding their relationship, although he thinks they are Cyeadaceous.

It seems undesirable to refer the present material to Tuccites, since while it is similar to the more ancient remains so named, it is eutirely improbable that it is eongenerie with the Triassic type upon which this

[^45]genus was founded, and such an idcutification would consequeutly be very misleading. Until the existing tropical Monocotyledonce are more abundantly represented in our larger herbaria, or more complete and decisive Cretaceous material is discovered, the botanical affinity of these anomalous forms must remain undetcrmined. The name chosen indicates supcrficial resemblance and does not imply actual relationship with the modern genus Doryanthes of the order Litiales.

Little reliance can be placed upon a similarity of appearance in dealing with fragmentary remains of this sort, and the forcgoing are mentioned merely as indicating the presence of undetermined Monocotyledonce of large size in the Cretaceous floras of the world.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collections.-Maryland Geological Survey, U. S. National Museun.

Order POALES
Family CYPERACEAE
Genus CAREX Linné
[Sp. Pl., 1753, p. ${ }^{972]}$
Carex clarkil Berry

Carex clarkii Berry, 1905, Amer. Nat., vol. xxxix, pp. 3-7, fig. 1.
Carex clarkii Berry, 1906, Ann. Rept. State Geol. of New Jersey for 1905, pp. 138-141.
Carex clarkii Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 169.
Carex clarkii Berry, 1907, Johns Hopkins Univ. Circ., n. s. No. 7, p. 81.
Carex clarkii Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 29.
Description.-Leaf fragments up to 6 cm . in length, varying in width from 1.5 mm . to 4 mm ., areraging betwecn 2 mm . and 3 mm ., slightly keeled, bccoming thicker and narrower proximad; midrib moderately promincut. Lateral veins, which are parallel with it, very fine and scarcely discernible except in the larger specimens.

In common with other fossil remains of grasses and sedges this species has no botanical value, except as an indication of the presence of plants of this type in the Cretaceous; it has, however, like so many fossils of vague
botanical affinities, considerable stratigraphic valuc, since it is found to characterize the Magothy formation at a large number of outcrops from New Jerscy to Maryland. It occurs also in the Middendorf beds of South Carolina.

Occurrence.-Magotify Formation. Deep Cut, Delaware; Grove Point, Cecil County, Maryland.

Collection.-Maryland Geological Survey.

Order ARALES
Family ARACEAE
Genus PISTIA Linné
[Sp. Pl., 1753, p. 963]

Pistia nordexskioldi (Hecr) Berry
Plate LVI, Fig. 3
Chondrophyllum nordenskioldi Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 114, pl. xxx, fig. 4b; pl. xxxii, figs. 11, 12.

Chondrophyllum nordenskioldi Berry, 1907, Bull. Torrey Bot. Club, vol. xxxiv, p. 198, pl. xiii, fig. 1.
Pistia nordenskioldi Berry, 1910, Ibidem, vol. xxxvii, p. 189, pl. xxi, figs. 1-15.
Pistia nordenskioldi Berry, 1911, Ibidem, vol. xxxviii, p. 405.
Description.-" P. foliis ovalibus, integerrimis, basi attenuatis, nervis primordialibus quinque, duobus lateralibus basi connatis."-Hecr, 1874.

This species, based on a few incomplete specimens from the Atanc beds of Grecnland, was described by Heer in $18 \% 4$. Thirty-threc years later the writer identified it in a small collection from the Cretaceous of North Carolina. In 190\% and 1908 it was found to be excecdingly abundant in the Black Creek formation of North Carolina, and this abundant material has enabled the writer to settle its botanical position and to somewhat amplify Hecr's diagnosis.
The leaves are elliptical or orbicular in outline, with a broadly rounded or slightly truncated apex and a decurrent base, which is broad and flat for a distance of about 1 cm . Total length of leaf varying from 3 cm . to 6 cm ., averaging about 4.5 cm . Maximum width ranging from 2 cm . to

4 cm ., averaging about 3 cm . Margins entire, slightly irregular. Texture coriaccous. A wide false midrib in the basal part of some of the leaves is formed by the convergence of the digitate veins which are thin and diverge at acute angles in a flabellate manner and pursue a relatively straight upward course, inosculating in the marginal regions. They send off frequent pseudo-dichotomous inoseulating branches. An ultimate areolation of thin transverse veins forms an open four or five-sided mesh. The epidermis is preserved in some instances. The stomata are few and seattered and are confined to one surface and are altogether absent from the broad leaf-bases.

In its size, outline, and renatiou this species is searcely to be distinguished from the modern Pistia stratiotes Linné, which is certainly a variable and widely distributed, ehiefly tropieal, species. In this country it is found from Florida to Texas. Elsewhere it oceurs in the West Indies and southward through Mexico and Central Ameriea to Paraguay and Argentina. In Africa it is found from Natal to Senegambia and Nubia, occurring also in Madagasear and the Masearcue Islands. In Asia it occurs throughout the East Indies and northward to the Philippines.

The fossil forms are more like the younger leaves of the modern plant (possibly a phylogenetic character in the latter), the later leaves tending toward a cuneate outline with a truncated apex and straighter sides.

But few fossils have been referred to this genus. Hosius and von der Marek deseribed in 1880 what they ealled Pistites loriformis from the Lower Senonian of Westphalia (Pal., Bd. xxvi, p. 182, pl. xxxviii, figs. 151, 152), but this is probably cyeadean, as Schenk suggested (in Zittel's Handbuch, p. 378, 1890). Lesquereux in 1876 (Ann. Rept. U. S. Geol. and Geog. Survey, Terr., p. 299, 1874) named a remarkably wellproserved form from Point of Rocks, Wyoming, Pistia corrugata. This was fully deseribed and illustrated in his Tertiary Flora (p. 103, pl. lxi, figs. 1, 3-7, 9-11, 1883) and included leaves of various sizes, and rootlets. It comes from beds belonging to the Montana formation (Senonian), which are of about the same age as the French beds from which the only other Cretaceous species is known. This latter, Pistia mazelii, was mentioned
and figured from the lignites of Fuveau (Provence), France, by Saporta and Marion in their popular work, L'Evolution du Règne Végétal, published in 1885 (Phanćrogames, tome ii, p. 37, figs. 114c, 114d), but has never been adequately describcd.
Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Order ARECALES
Family ARECACEAE
Genus SAbALITES Saporta
[Études, tome ii, 1865, p. 77]

Sabalites magothiensis (Berry) Bcrry
Plate LVI, Figs. 4, 5
Flabellaria magothiensis Berry, 1905, Torreya, vol. v, tf. $1,2$.
Flabellaria magothiensis Berry, 1906, Ann. Rept. State Geol. of New Jersey for 1905, pp. 139-141.
Flabellaria magothiensis Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 170 .

Flabellaria magothiensis Berry, 1910, Ibidem, vol. xxxvii, p. 21.
Sabalites magothiensis Berry, 1911, Ibidem, vol. xxxviii, p. 405.
Description.-Based on fragmentary remains of a large, palmetto-like fan-palm. Rays numerous, broad, coriaceous, longitudinally striated by thin veins, the stoutcr veins occurring at intervals of from 2 mm . to 4 mm .

Remains of these large flabellate palm leaves are very common at several localities in the Magothy formation from Raritan Bay in New Jersey to the Severn River in Maryland. They are invariably much broken, so that they baffle precise description or determination. They are of great interest, however, as being among the earliest known occurrences of undoubted palms. They are associated in New Jerscy with petrified palm wood (F'almoxylon cliffwoodensis Berry).

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County; Round Bay, Anne Arundel County, Maryland.

Collections.-Maryland Geological Survey, U. S. National Museum.

class DICOTYLEDONAE
 Order MYRICALES
 Family MYRICACEAE
 Genus MYRICA Linné
 [Sp. Pl., 1753, p. 1024]

Myrica loxga (Heer) Heer
Plate LVII, Figs. 1-3
Proteoides longus Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 110, pl. xxix, fig. 8b; pl. xxxi, figs. 4, 5.
Proteoides longus Dawson, 1883, Trans. Roy. Soc. Canada, vol. i, sec. iv, p. 22, pl. ii, fig. 8.
Myrica longa Heer, 1883, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 65, pl. xviii, fig. 9b; pl. xxix, figs. 15-17; pl. xxxiii, fig. 10 ; pl. xli, fig. 4 d.
Myrica longa Heer, 1883, Ibidem, Bd. vii, p. 21.
Myrica longa Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 67, pl. iii, figs. 1-6.
Myrica longa Bartsch, 1896, Bull. Lab. Nat. Hist., Iowa Univ., vol. iii, p. 180.
Myrica longa Knowlton, 1901, 21st Ann. Rept. U. S. Geol. Survey, pt. vii, p. 314, pl. xxxix, fig. 7.
Myrica longa Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 170.
Description.-Leaves of various sizes, linear to lanceolate in outline, with a stout midrib, numerous thin, ascending, camptodrome secondaries, entire margins, obtusely pointed apex, narrowly decurrent base and long stout petiole.

This species was described by Heer as a Proteoides and subsequently referred to the genus Myrica. It occurs in both the Atane and Patoot beds of Greenland, in the Dakota sandstones of the West, in the Magothy formation of Maryland, in the Woodbine formation of I'exas, and is very common in the I'uscaloosa formation of Alabama. Abroad it has been recorded ${ }^{1}$ from the lower Turonian of Bohemia.

Occurrence.-Magothy Formation. Grove Point, Cecil County; Bodkin Point, Round Bay, Little Round Bay, Anne Arundel County.

Collections.-Maryland Geological Survey, U. S. National Museum.

[^46]
Order SALICALES

Family SALICACEAE
Genus SALIX Linné
[Sp. Pl., 1753, p. 1015]
Salix flexuosa Newberry
Plate LVII, Fig. 4
Salix flexuosa Newberry, 1868, Later Ext. Floras, p. 21.
Salix flexuosa Newberry, 1878, Ill. Cret. and Tert. Plants, pl. i, fig. 4.
Salix protecfolia linearifolia Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 49, pl. xliv, figs. 1-3.
Salix protewfolia flexuosa Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 50, pl. xliv, figs. 4, 5.
Salix protafolia flexuosa Hollick, 1894, Bull. Torrey Bot. Club, vol. xxi, p. 50, pl. clxxiv, fig. 5.
Salix proterfolia flexuosa Hollick, 1898, Ann. N. Y. Acad. Sci., vol. xi, p. $59, \mathrm{pl}$ iv, fig. 5 a .
Salix protecfolia flexuosa Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 67 , pl. xlvili, fig. 12 ; pl. li, fig. 2.
Salix flexuosa Berry, 1906, Ann. Rept. State Geol. Survey of New Jersey for 1905 , p. 145.
Salix flexuosa Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 171.
Salix proteafolia linearifolia Hollick, 1907, Mon. U. S. Geol. Survey, vol. i, p. 52 , pl. viii, fig. 12.

Salix protecrfolia flexuosa Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 51, pl. viii, figs. 5, 6a; pl. xxxvii, fig. 8b.
Salix flexuosa Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 115.
Salix flexuosa Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, pp. 32, 109, pl. vii, figs. 14-16; pl. xi, fig. 1.

Description.-Leaves narrow, linear-lanceolate in outline, equally pointed at both ends, short petioled, ranging from 5 em . to 10 cm . in length, and from 8 mm . to 13 mm . in maximum width. Margins entire. Midrib stout below, tapering above, often somewhat flexuous. Secondaries more or less remote, about ten alternate pairs, branehing from the midrib at angles varying from 35° to 45°, camptodrome, of fine ealiber, often obsolete.

This speeies was deseribed by Newberry from the Dakota group in 1868. Lesquereux subsequently made it one of the varieties of his Salix protecofolia, although it is obviously entitled to independent speeifie rank. It is of rare occurrence in the Raritan formation of Ncw Jersey, where it
is first found in the uppermost beds at South Amboy, New Jersey, and it is pre-eminently a species which characterizes the Magothy formation from New Jersey to Maryland, and homotaxial horizons to the southward. It is recorded in beds of Magothy age from Marthas Vineyard to the Potomac River. It occurs in the Black Creek beds of North and South Carolina, and in the Middendorf member in the latter state. In Georgia, while not especially abundant, characteristic leaves of this species are found from the base to the top of the lower Eutaw formation in the western part of the state. In Alabama it is very common at a relatively large number of localities from the base to the top of the Tuscaloosa formation.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County; Sullivan's Cove, Anne Arundel County, Maryland.

Collection.-Maryland Geological Survey.

Salix lesquereuxir Berry

Plate LVII, Figs. 5-8
Salix protexfolia Lesquereux, 1874, Cret. Fl., p. 60, pl. v, figs. 1-4.
Salix protexfolia Lesquereux, 1883, Cret. and Tert. Fl., p. 42, pl. i, figs. 14-16; pl. xvi, fig. 3.
Salix protexfolia Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 49.
Salix proteafolia longifolia Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 50, pl. xliv, fig. 9.
Proteoides daphnogeoides Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 72 (pars), pl. xxxii, fig. 11.
Dewalquea greenlandica Newberry, 1896, Ibidem, p. 129 (pars), pl. xli, fig. 12.
Salix proteafolia Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 66, pl. xviii, figs. 3, 4.
Salix protexfolia Lesquereux, 1898, Amer. Jour. Sci., vol. xlvi, p. 94 (non Forbes).
Salix proteafolia Berry, 1900, Ann. Rept. State Geol. Survey of New Jersey for 1905, p. 139.
Salix proteafolia Kurtz, 1902, Revista Mus. La Plata, vol. x, p. 51.
Salix proteafolia Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 171, pl. vii, fig. 2.
Salix proteæfolia Berry, 1907, Johns Hopkins Univ., n. s. No. 7, p. 81.
Salix proteafolia Berry, 1909, Bull. Torrey Bot. Club, vol. xxxvi, p. 252.
Salix lesquereuxii Berry, 1910, Ibidem, vol. xxxvii, p. 21.

Salix lesquereuxii Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 114. Salix lesquereuxii Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, pp. 33, 109, pl. vii, figs. 11-13.

Description.-Leaves ovate-lanceolate in outline, somcwhat more acuminate above than below, variable in size, ranging from 6 cm . to 12 cm . in length, and from 1.1 cm . to 2.2 cm . in greatest width, which is usually slightly below the middle. Petiole stout, much larger than in Salix flexuosa, ranging up to 1.2 cm . in length. Midrib stout below, tapering above. Secondaries numerous, sometimes as many as twenty pairs; they branch from the midrib at angles of about 45° and are parallel and camptodrome.

This is an exceedingly variable species, as might be expected in a Salix, and Lesquereux established several varieties of which at least one, i. e., linearifolia, is referable to Salix flexuosa Newberry. Some of Lesquereux's forms are distinguishable with difficulty from the latter, and this is especially shown in the leaves which he figures on plate I of his Cretaceous and Tertiary Flora. They are, however, larger and somewhat more robust, of a thicker texture, and broadest near the base, from which they taper upward to an exceedingly acuminate tip. In general, Salix lesquereuxii is a relatively much broader, more ovatc form with more numerous and better seen secondaries and a longer petiole.

This species is an exceedingly abundant Cretaceous type in both the East and the West, ranging in the Coastal Plain from the base of the Raritan formation to the top of the Tuscaloosa formation, and possibly through the Eutaw formation as well. It is abundant in the Magothy, Black Creek, and Middendorf beds. In the West it is common in the Dakota sandstone. It is one of the forms recorded by Kurtz from the Upper Cretaceous of Argentina, indicating, if the identification is correct, a very considerable migration during the early Upper Cretaceous. In Alabama it ranges from the bottom to the top of the Tuscaloosa formation.

Occurrence.-Raritan Formation. East Washington Heights, District of Columbia. Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County, Maryland.
Collection.-Maryland Geological Survey.

Genus POPULUS Linné
 [Sp. Pl., 1753, p. 1034]
 Populus styaia Heer
 Plate LVIII, Fig. 1

Populus stygia Heer, 1873, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 107.
Populus stygia Heer, 1882, Lbidem, Bd. vi, Ab. ii, p. 64, pl. xvii, fig. 5; pl. xviii, figs. 5-8; pl. xxxix, fig. 5.
Populus stygia Heer, 1883, Ibidem, Bd. vii, p. 30, pl. Iv, fig. 6; pl. Ixiv, fig. 10.
Populus stygia Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 44, pl. iii, fig. 12.
Populus stygia Hollick, 1907, Ibidem, vol. 1, p. 49, pl. vii, fig. 30.
Description.-" P . foliis cordatis, integerrimis, nervo primario valido, nervis secundariis ramosis, basilaribus 5 , infimis margine approximatis." -Heer, 1873 .

This species is variable in size with a subcoriaceous texture, entire margins, cordate base and obtuse tip, with a strongly defined venation. It occurs in both the Atane and Patoot beds of west Greenland, the Dakota sandstone of Kansas, and the Magothy formation of Marthas Vineyard. It is represented in Maryland by very fragmentary material at Bodkin Point, but rather more characteristic although scanty material from Sullivan's Cove on Round Bay, which is certainly identical with the Dakota Sandstonc leaves which Lesquereux referred to this species.

Occurrence.-Magotiry Formation. Bodkin Point, Sullivan's Core, Anne Arundel County.

Collection.-U. S. National Museum.

[^47] xvii, figs. $1,2$. p. 55.

Quercus morrisoniana Hollick, 1897, Trans. N. Y. Acad. Sci., vol. xvi, p. 131, pl. xiii, figs. 11, 12.
Quercus morrisoniana Berry, 1903, Bull. N. Y. Bot. Garden, vol. 1il, p. 72
Quercus morrisoniana Hollick, 1904, Ibidem, p. 411, pl. 1xxili, fig. 5.
Quercus morrisoniana Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 56, pl. viii, fig. 4.
Quercus morrisoniana Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 21.
Description.-"Lcaves of medium size, coriaceous, petiolate, ovatelanceolate, acuminate; medial nerve strong; secondary nerves numerous, alternate, curved in passing to the borders, camptodrome, simple, or some of them forking near the borders."-I
The present species was describcd from the Dakota group of Colorado and has been subsequently recognized in the Magothy formation of Long Island, New Jersey, and Maryland. There can be no question of the identity of the eastern forms with those of the West, but their relation to the genus Quercus is entircly problematical.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survcy.

Quercus severnensis Berry

Plate LVII, Fig. 9

Quercus severnensis Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 22, pl. viii, fig. 3.

Description.-Leaves of small size, ovate-lanceolate in outline, becoming gradually narrowed apically, 78 cm . in length by 2.3 cm . in greatest width, which is in the basal half of the leaf. Apex pointed. Base rounded. Petiole short and stout. Margin entire for its basal fourth, above which it is beset with distant, prominent, serrate teeth separated by incquilateral rounded sinuses. Midrib stout. Secondaries remote, six to eight pairs, subopposite to altcrnate, branching from the midrib at angles of from 45° to 50°, but slightly curved, not prominent; basal ones sending branches into the teeth, distal ones running direct to the marginal teeth.

This species is somewhat suggestive of the much older Quercophyllum chinkapinensis Ward of the Patapsco formation, and it is closely related to

Quercus holmesii Lesquereux of the Dakota group of the West and the Magothy formation of New Jersey. Among modern oaks analogies may be found among the scrub and live oaks of the Pacific Slope, as, for example, Quercus wislizeni, Q. tomentella, and Q. chrysolepsis, especially the first; and with Q. ilex of Europe.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-U. S. National Museum.

Order URTICALES
Family MORACEAE
Genus FICUS Linné
[Sp. Pl., 1753, p. 1059]

Ficus daphnogenotdes (Heer) Berry
Plate LVIII, Fig. 3
Proteoides daphnogenoides Heer, 1866, Phyll. Cret. d. Nebr., p. 17, pl. iv, figs. 9, 10.
Proteoides daphnogenoides Lesquereux, 1874, Cret. Fl., p. 85, pl. xv, figs. $1,2$.
Proteoides daphnogenoides Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 90.
Proteoides daphnogenoides Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xi, p. 98 , pl. iii, figs. 1, 2.

Ficus proteoides Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 77, pl. xii, fig. 2.
Proteoides dapえnogenoides Hollick, 1893, Ibidem, vol. xii, p. 36, pl. ii, figs. 4, 9, 13.
Proteoides daphnogenoides Hollick, 1894, Bull. Torrey Bot. Club, vol. xxi, p. 52; pl. clxxvii, fig. 1.

Proteoides daphnogenoides Smith, 1894, Geol. Coastal Plain Ala., p. 348 (determined by Ward).
Proteoides daphnogenoides Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 72, pl. xvii, figs. 8, 9; pl. xxxii, figs. 11, 13, 14; pl. xxxiii, fig. 3; pl. xli, fig. 15.
Eucalyptus ? attenuata Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, pl. xví, fig. 5 (non figs. 2, 3).
Proteoides daphnogenoides Berry, 1903, Bull, N. Y. Bot. Garden, vol. iii, p. 74, pl. li, figs. 6.9.

Ficus daphnogenoides Berry, 1905, Bull. Torrey Bot. Club, vol. xxxii, p. 327, pl. xxi.

Ficus daphnogenoides Berry, 1906, Ibidem, vol. xxxiii, p. 173, pl. vii, fig. 5.
Ficus daphnogenoides Berry, 1907, Ibidem, vol. xxxiv, p. 194, pl. xi, figs. $10,11$.
Proteoides daphnogenoides Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 59, pl. xii, figs. 1-5.

Ficus daphnogenoides Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 122, pl. xii, fig. 4.
Ficus daphnogenoides Berry, 1912, Bull. Torrey Bot. Club, vol. xxxix, p. 394.

Description.--"Les feuilles sont coriacés, à la base atténuées, entières; la nervure médiane est forte; elle porte deux nervures secondaires faibles, acrodromes, qui sont presque parallèles au limbe; mais elles ne sont pas opposćes, comme chez les Daphnagène et Cinnamomum."-Heer, 1866.
This species was described by Heer from the Dakota group of Nebraska, and was based upon very incomplete material. His specimens have some long ascending secondaries, but Lesquereux's more complete speeimens from the same horizon and region show that these secondaries were not acrodrome but eamptodrome. The speeies in this feature, and also in other respects, differs from Protea and its allies which are more coriaceous, with the secondaries branching at acute angles and massed toward the often apetiolate base. On comparison with the genus Ficus it is found to closely resemble a number of different species from such widely scparated localitics as Central and South America and the Celebes. Especially among the Mexican and Central American forms are very similar leaves seen, e. g., Ficus fasciculata Watson, Ficus lancifolia Hooker and Arnott, Ficus ligustrina Kunth and Bouche, and Ficus sapida Miquel, especially the latter, which has much the same outline and consistency, the same prominent midrib, and the same venation. Placed in the genus Ficus, where these fossil forms properly belong, they find their affinity in the group which includes, among others, such species as Ficus elongata Hosius, Ficus berthoudi Lesquereux, Ficus suspecta Velenovsky, Ficus krausiana Heer, ete.

This specics has been found to be quite variable in size, ranging in length from 11 cm . to 22 cm . and in width from 1.9 cm . to 3.7 cm . It is usually widest in the lower half of the leaf, although sometinnes the base is quite narrow and the widest part is toward the middle. In all unequivocal
material the upper half of the leaf is narrow and is produced as a long, slender, often recurved tip, which is one of the characteristic features of the species. This tip is strictly comparable with the "dripping points" developed on various leaves in the modern tropics where precipitation is heavy.

Ficus daphnogenoides is a widespread and common form ranging from Marthas Vineyard to Texas in eastern North America, and from Northwest Tcrritory to Kansas and Nebraska in the Western Interior.
Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County, Maryland.

Collection.-Maryland Gcological Survey.

Ficus ovatifolia Berry

Plate LIX, Fig. 4
Ficus ovata Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 70, pl. xxiv, figs. 1-3 (non Don 1803).
Ficus woolsoni Berry, 1907, Bull. Torrey Bot. Club, vol. xxxiv, p. 194, pl. xii, fig. 1.
Ficus ovatifolia Berry, 1909, Bull. Torrey Bot. Club, vol. xxxvi, p. 253.
Ficus ovatifolia Berry, 1911, Ibidem, vol. xxxviii, p. 410.
Ficus ovatifolia Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 123, pl. xii, fig. 3.
Ficus ovatifolia Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 111, pl. xix, figs. 5-7.

Description.--Leaves ovate in outline, 8 cm . to 13 cm . in length by 4 cm . in width, petiolate. Apex extended, acute. Base rounded or somewhat descending. Margins entire. Principal veins threc, from the base, the midrib being the stoutest and slightly flexuous. The lateral veins diverge at angles of about 45° and curve upward, traversing somewhat more than the basal half of the leaf and connecting with branches from the lowest pair of camptodrome secondaries, of whieh there are several alternating pairs branching from the midrib at wider angles. The laterals give off on the outside eight to ten camptodrome veins. Quadrangular areoles formed by nearly straight transverse nervilles fill all the intervening space.

This speeies is very elose to Ficus woolsoni Newberry, which is a much less elongated comparatively broader leaf, often with a cordate base in eonscquence.

Occurrence.-Raritan Formation. East Washington Heights, District of Columbia.

Collection.-Maryland Geological Survey.

Fious cecilensis n. sp.
 Plate LVIII, Fig. 4

Description.-Leaves of medium size, broad-lanceolate in general outline, with a narrowed but bluntly pointed tip and a somewhat more gradually narrowed, pointed base. Length about 13 em . Maximum width, in the middle part of the leaf, about 3.75 cm . Margins entire. Texture subcoriaceous. Petiole very stout, its length unknown. Midrib very stout and prominent. Secondaries thin, about seven alternate pairs; they diverge from the midrib at irregular intervals at angles of about 40°, curving upward, camptodrome. Tertiarics thin, well marked, at approximately right angles to the midrib, forming large, quadrangular, usually transversely elongated, areoles.

The generic reference of this new form is not certainly determined, as it partakes of the features of lauraceous, ericaceous, and rhamnaceous leaves as well as those of the extensive genus Ficus. It is readily distinguishable from the species of the latter with which it is assoeiated.

Occurrence.-Magothy Formation. Grove Point Ceeil County
Collection.-U. S. National Museum.

Ficus crassipes (Heer) Heer
Plate LVIII, Fig. 5; Plate LIX, Figs. 2, 3
Proteoides crassipes Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 110, pl. xxxi, figs. 6-8a.
Ficus crassipes Heer, 1882, FI. Foss. Arct., Bd. vi, Ab. i1, p. 70, pl. xvii, fig. 9a; pl. xxiv, figs. 1, 2.
Ficus crassipes Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 79, pl. xiii, fig. 3.

Ficus crassipes Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 172.
Ficus daphnogenoides Berry, 1907, Johns Hopkins Univ. Circ., n. s. No. 7, p. 81.

Ficus crassipes Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, pp. 37, 110, pl. x, fig. 4; pl. xii, figs. 8-10.

Description.-Leaves entire, narrowly lanceolate in outline, about equally tapering to the acuminate apex and base. Length 12 cm . to 20 cm . Greatest width, which is in the middle part of the leaf, 1.8 cm . to 2.5 cm . Texture coriaceous. Midrib stout, often extraordinarily so. Secondaries thin, open, ascending, camptodrome.

This species was described originally from the Atane beds of Western Greenland, the first rather fragmentary specimens collected suggested a relationship with the genus Proteoides. Subsequently the original describer referred it to Ficus, where it undoubtedly belongs. Lesquereux has recorded it from the Dakota group and it is common in the Magothy formation of the northern Atlantic Coastal Plain and in the Black Creek formation of North Carolina. It persists into the Eutaw formation of Georgia and is especially common in the Middendorf beds of South Carolina. It is not especially common in the Tuscaloosa formation, and is a species which is especially characteristic of the post-Raritan and preMontana horizons of eastern North America.

The leaf substance is partially preserved in part of the Alabama material and shows in microscopic preparations the spiral tracheids of the leaf reins and numerous lactiferous cells. Both lower and upper epidermal layers are well preserved. They are thin and highly cuticularized, the epidermis consisting of very small, nearly equilateral, quadrangular, thickwalled cells. The stomata are few and scattered and are confined to the lower surface. They consist of two rather thin, sausage-shaped guard cells set on edge (i. e., much higher than wide), the length equal to two epidermal cells.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County; Little Round Bay, Anne Arundel County, Maryland.

Collection.-Maryland Geological Survey.

Ficus hrausiana Heer

Plate LIN, Fig. 1
Ficus krausiana Heer, 1869, Neue Denks, Schw. Ges., Bd. xxiii, p. 15, pl. v, figs. 3-6.
Ficus krausiana Fric, 1878, Archiv. Naturw. Landes, Eöhm., Bd. iv, No. 1, pp. 18, 94.
Ficus beckwithii Lesquereux, 1883, Cret. and Tert. Fl., p. 46, pl. xvi, figs. 5; pl. xvii, figs. 3, 4.
PFicus suspecta Velenovsky, 1885, Fl. Böhm, Kreldef., Theil iv, p. 10, pl. v , figs. 6, 9.
Ficus atavina Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xi, p. 103, pl. iv, figs. 4, 6 (non Heer).
Ficus krausiana Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 81, pl. i, fig. 5.
Ficus krausiana Hollick, 1895, Bull. Geo. Soc. Amer., vol. vil, p. 13.
Ficus krausiana Hollick, 1898, Ann. N. Y. Acad. Sci., vol. xi, p. 59, pl. iii, fig. 1.
Ficus krausiana Frič and Bayer, 1901, Archiv. Naturw. Landes Böhm., Bd. xi, No. 2, p. 117.
Ficus krausiana Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 58, pl. ix, fig. 9 ; pl. x , figs. 1-3.
Ficus krausiana Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 172.
Ficus krausiana Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, pp. 38,110 , pl. xi, figs. 4-7; pl. xix, fig. 4.

Description.-Leaves of large size, ovate-lanceolate in outline, broadest at or below the middle. Apex and base acutely pointed, the apex often extended and attenuated. Petiole and midrib stout. Secondaries regular, open, thin, ascending, camptodrome, branching from the midrib at angles of 45° or more. Length about 17 cm . Greatest width about 4 cm .

This well known Upper Cretaceous species was described originally from the Cenomanian of Moravia, and it has been subscquently recorded from both the Cenomanian and Turonian of Bohemia. It occurs at a large number of American localitics. In the West it occurs in the Dakota sandstone, while in the East it is common from Marthas Vincyard to Alabama, and is present between these limits in Maryland, North Carolina, Soutl Carolina, and Georgia. These occurrences are all in beds of Magothy age or younger. In both North and South Carolina Ficus fruits are associated with this species, but whether they are to be referred to it or to some of the other rather numerous species of Ficus which
occur at the same localities cannot be determined. The present species is one of the commonest post-Raritan and pre-Montana fossils in the Coastal Plain, and it is especially abundant in the Middendorf formation of South Carolina. In Alabama it is not uncommon in the Tuscaloosa formation and it persists into the basal Eutaw beds in Hale County.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Order PLATANALES
Family PLATANACEAE
Genus PLaTaNUS Linné
[Sp. Pl., 1753, p. 999]

Platanus heerii Lesquereux
Plates LXV, LXVI, LXVII
Platanus heerii Lesquereux, 1872, Ann. Rept. U. S. Geol. Survey, Terr. (Hayden) for 1871, p. 303 (non Ward).
Sassafras recurvatus Lesquereux, 1873, Ann. Rept. U. S. Geol. Survey, Terr. (Hayden) for 1872, p. 424 (non Heer 1882).
Platanus heerii Lesquereux, 1874, Cret. Fl., p. 70, pl. viii, fig. 4; pl. ix, figs. 1, 2.
Platanus recurvata Lesquereux, 1874, Cret. Fl., p. 71, pl. x, figs. 4, 5 (non fig. 3).
P Platanus heerii Lesquereux, 1878, Rept. on Clays in New Jersey, p. 29.
Platanus heerii Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 72, pl. vii, figs. 1, 2 ; pl. viii, figs. 1, 2 a ; pl. ix, figs. 1-4.
P Platanus heerii Lesquereux, 1883, Cret. and Tert. Fl., p. 44, pl. iii, fig. 1; pl. vii, fig. 5.
Sassafras (Araliopsis) recurvatum Lesquereux, 1883, Cret. and Tert. Fl., p. 57 (pars).
Sassafras cretaceum recurvatum Berry, 1902, Bot. Gazette, vol. xxxiv, p. 438.

Platanus heerii Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 23.
Platanus heerii Berry, 1911, Ibidem, vol. xxxviii, p. 411.
Description.-Leaves broadly rhomboidal in outline, more or less trilobate. Lobes, when developed, short and obtuse. Base decurrent. Petiole long and stout. Margin sublobate, undulate or irregularly dentate. Texture coriaccous. Primaries three, stout, diverging at acute angles. The lateral primaries are as stout as the midrib from which they branch
in an opposite or subopposite position, either from the extreme base or a eonsiderable distanee above the base. In the latter ease there is often a prominent seeondary given off from the midrib on either side below the primaries. The primaries may give off a few rather long, straight, craspedodrome secondaries to the rather full lateral margin, or they may send off a stout lateral branch at varying distanees above the base. Secondaries from the midrib few in number, stout, irregularly spaeed, eraspedodrome. Tertiaries transverse, platanoid.

This species was deseribed from the Dakota sandstone of Kansas by Professor Lesquereux in 18%, who subsequently in his Cretaeeous Flora eonfused it with Platanus or Sassafras recurvatum. The latter, if it really designates a species, must be restricted to the form figured by Lesquereux on pl. x, fig. 3 of the Cretaceous Flora, which is decidedly different from his other figures on that plate. The latter are leaves of Platanus heerii, while the former must be referred to Sassafras cretaceum or mirabile. Not only is it distinctly trilobate but the margin is entire and the venation camptodrome, while in the lcaves of Platanus heerii on the same plate the form and margin are different and the venation is eraspedodrome. Professor Heer correctly identified Platanus heerii from the Atane beds of Greenland, and the forms which he figured from these beds as Sassafras recurvatum are distinct from Platanus heerii and resemble Lesqucreux's fig. 3 mentioned above. The writer some years ago (1902, loc. cit.) in discussing Sassafras recurvatum pointed out the eomposite nature of this form and suggested that those forms which are here referred to Platanus heerii were refcrable to Platanus, while the other type was eomparable with Sassafras cretaceum or mirabile.

Professor Ward in 188^{17} after sending figures of some leaves which he had colleeted at Blaek Buttes, Wyoming (a probably basal Eoeene locality) to Lesquereux, who insistcd that they were not Platanus heerii, persisted in identifying them as this species, although they are obviously not closely related to it.

[^48]Platanus heerii was identified by Lesquereux from the New Jersey Raritan in collections made from Pettit's pits, South River, but as the material was poor and the species has not since been detected in the New Jersey Raritan this occurrence is usually ignored, although the abundance of this species in the Raritan of Maryland renders its presence in New Jersey probable. Fragments of this species in the Maryland Raritan are very common, but they are usually in a bad state of preservation. The species extends northward to the west coast of Greenland and it shows considerable resemblance to Credneria rhomboidea described by Velenovsky from the Cenomanian of Bohemia, ${ }^{1}$ and subsequently transferred by him to Platanus.

Occurrence.-Raritan Formation. Drum Point Railroad near head of Severn River, Anne Arundel County, Maryland; East Washington Heights, District of Columbia.

Collections.-Maryland Geological Survey, U. S. National Museum.

Genus ASPIDIOPHYLLUM Lesquereux
[Ann. Rept. U. S. Geol. Survey Terr. (Hayden) for 1874, p. 361, 1876]
Aspidiophyllum trilobatum Lesquereux
Plate LX, Figs. 1, 2; Plate LXI, Figs. 1, 2
Aspiaiophyllum trilobatum Lesquereux, 1876, Ann. Rept. U. S. Geol. Survey, Terr. (Hayden) for 1874, p. 361, pl. ii, figs. 1, 2.
Aspidiophyllum trilobatum Lesquereux, 1883, Cret. and Tert. Fl., p. 87, pl. xii, fig. 1; pl. xiii, figs. 1-5; pl. xiv, fig. 1.
Aspidiophyllum trilobatum Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 212.
Aspidiophyllum trilobatum Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 410.

Description.-Medium to large sized leaves, rhomboidal in general outline, obtusely trilobate. Length 10 cm . to 25 cm . Maximum width, which is across the lobes in the basal half of the leaf, 10 cm . to 30 cm . Base truncate or broadly cuneate, markedly peltate. Lobes broad and rounded. Sinuses open and rounded, extending less than half-way to the
${ }^{1}$ Velenovsky, Fl. Böhm. Kreidef., Theil i, 1882, p. 11, pl. iii, figs. 2, 3; pl. iv, fig. 1.
basc. Petiole and midrib very stout. Lateral primaries stout but somewhat less so than the midrib, opposite, curved, diverging from the midrib at an angle of about 45°, or more rather than less, inscrted some distance (about 1 cm .) above the peltate base. Secondaries numerous, rather strong, approximately parallel, diverging from the primaries at angles of about 45° or more, camptodrome. Tertiarics well marked, transverse, of a style common to Ficus, Platanus, Sassafras, etc. Margin entire, somewhat undulate or sublobate in some specimens. Texture coriaceous. The basal peltate shield varics from broadly rounded to suborbicular and in some spccimens it is sublobate with a craspedodrome downwardly directed secondary running to the tip of each lobule. Where it is simply rounded the secondaries are all camptodrome.

This species was described by Professor Lesquereux in $18 \% 4$ and was based upon material from the Dakota sandstone of Kansas, to which horizon the genus has been hitherto confined. This species is, however, not uncommon in the Raritan deposits of Maryland where it is associated with represcntatives of the genus Protophyllum, another pcculiar Dakota sandstone series of forms. The material is unfortunately rather poorly preserved, having been much maccrated beforc fossilization, but it is complete enough, as is shown by the specimens figured, for certainly in identification.

The genus Aspidiophyllum, in which threc species have been described has never had its botanical affinity satisfactorily determined, although it is probably related to Protophyllum. Professor Lesquereux fancied that it was related to his Dakota species of Sassafras (Araliopsis), and he also pointed out its resemblance to some of the European forms referred to Zenker's genus Credneria. Professor Ward was disposed to regard it as related to Platanus, and certainly the species Aspidiophyllum dentatum Lesquereux is very close to those species of Platanus, which, like Platanus basilobata Ward or Platanus appendiculata Lesqucreux, have a peltate basilar shield, a condition exhibited as an atavistic character in occasional leaves of the modern Platanus occidentalis Linné. Schenk was disposed to consider Aspidiophyllum as a member of the family

Urticacea. It must be eonfessed, however, that the data are still laeking from whieh to settle the question.

Occurrence.-Raritan Formation. Shannon Hill, Ceeil County; Forked Creek, Severn River, Anne Arundel County, Maryland; East Washington Heights, Distriet of Columbia.

Collections.-Maryland Geologieal Survey, U. S. National Museum.

Genus PROTOPHYLLUM Lesquereux
[Cret. Fl., 1874, p. 100]
Protophyllum sternbergit Lesquereux
Plate LXII, Figs. 1-3; Plate LXIII, Figs. 1, 2 ; Plate LXIV, Fig. 3
Pterospermites sternbergii Lesquereux, 1873, Ann. Rept. U. S. Geol. Survey, Terr. (Hayden), for 1872, p. 425.
Protophyllum sternbergii Lesquereux, 1874, Cret. Fl., p. 101, pl. xvi; pl. $x v i i i, f i g .2$.
Protophyllum sternbergii Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 189, pl. xlii, fig. 1.
Protophyllum sternbergii Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 411.

Description.-- Leaves of large size, ranging from 13 cm . to 25 em . in length by from 10 cm . to 20 cm . in maximum width, which is at a point below the middle; broadly oval in outline, with an obtuscly pointed apex and a cordate or slightly subpeltate base. Margins entire, somewhat undulate. Midrib stout. Secondaries stout, about ten or cleven subopposite to alternate pairs, the lower pairs branching from the midrib at a wide angle which becomes acute in the upper pairs. The sceondaries are all craspedodrome and send off one or two strong craspedodrome branches. Tertiaries fine, transversc. Texture coriaceous.

This speeies, which has not hitherto been found outside of the Dakota sandstone, from which horizon it was described as a species of Pterospermites by Professor Lesquereux as early as 1872, is not uncommon in the Raritan deposits of Maryland. The specimens, partly because of the large size of the leaves, are rather fragmentary, some of the more complete fragments being figured. There can be no question of their identity with the western forms of Protophyllum, although the true systematic position
of the genus remains unsettled. There is considerable resemblance to Lesquereux's genus Aspidiophyllum and also to the European forms referred to Zenker's genus Credneria, both of which are genera of undetermined botanical affinity. Lesquereux referred a number of Dakota group species to this genus, which may possibly be regarded as a synthetic type.

Occurrence.-Raritan Formatlon. Shannon Hill and Bull Mountain, Cecil County, Maryland; East Washington Heights, District of Columbia.

Collections.-Maryland Geological Surrey, U. S. National Museum, N. Y. Botanical Garden.

Protophyllum multinerve Lesquereux

Plate LXIII, Fig. 3; Plate LXIV, Figs. 1, 2
Pterospermites multinervis Lesquereux, 1872, Ann. Rept. U. S. Geol. Survey, Terr. (Hayden) for 1871, p. 302.
Protophyllum multinerve Lesquereux, 1874, Cret. Fl., p. 105, pl. xvili, fig. 1.
Protophyllum multinerve Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 191, pl. xliii, fig. 2; pl. lxv, fig. 1.
Protophyllum multinerve Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 411.

Description.-Leaf of medium size, averaging considerably smaller than the prcceding species and more nearly orbicular in outline, 9 cm . to 15 cm . in length by 9 cm . to 13 cm . in maximum width, which is about midway between the apex and the base. Apex rounded or obtusely pointed. Base rounded truncate, subpeltate. Margin entire or regularly undulate, usually constricted at the end of each secondary and branch of a sccondary, with usually two slight, rounded undulations between adjacent constrictions. Midrib stout, becoming thin above. Secondaries relatively thin, numerous, craspedodrome, sending off from one to three craspedodrome branches. 'Tertiaries very numerous, thin, mostly transverse. Texture coriaceous.

This species has hitherto been known only from the Dakota sandstone of southern Kansas, from which area it was described by Professor Lesquereux in 18%. It is rather common in the Raritan clays at Cedar Point,
but the remains are very fragmentary, some of the larger fragments being those figured. They clearly represent a species of Protophyllum distinct from the preceding species and are identical with Protophyllum multinerve in their observed characters, especially in the peculiar margin.

Occurrence.-Raritan Formation. Cedar Point, Baltimore County, Maryland; East Washington Heights, District of Columbia.

Collection.-Maryland Geological Survey.

Order POLYGONALES

Family POLYGONACEAE
Genus COCCOLOBITES n. gen.
Coocolobites cretaceus n . sp .

Plate LXVIII, Fig. 1

Description.-Leaves of large size, elliptical in general outline, with a broadly rounded, slightly emarginate tip, and a broadly cuncate base. Length about 9 cm . Maximum width, near the middle of the leaf, about 6 cm . Margins entire, more or less prominently undulate, inequilateral, occasionally approaching sublobate in the prominence of some of the undulations. Petiole short and stout, or wanting. Midrib stout. Secondaries stout, about seven camptodrome pairs. Tertiarics prominent, forming open polygonal meshes.

This species is obviously new, although it resembles somewhat the Raritan leaf described by Newberry ${ }^{1}$ as Phyllites undulatus, which differs principally in its finer venation.

The resemblance to the leaves of the Eoccne and existing species of Coccolobis has suggested the proposal of a new genus allied to and possibly ancestral to the latter. Coccolobis has about one hundred and twenty species in the existing flora, many of which are coastal forms, and all confined to the American tropics.

Occurrence-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

[^49]
Order RANALES

Family MAGNOLIACEAE

Genus MAGNOLIA Linné [Sp. Pl., 1753, p. 535]

Magnolia hollicki Berry

Plate LXIX, Fig. 3
Dicotylcdonous leaf impression Hitchcock, 1841, Geol. Mass., vol. ii, p. 430, pl. xix, fig. 1.
Magnolia auriculata Hollick, 1894, Bull. Torrey Bot. Club, vol. xxi, p. 61, pl. clxxix, figs. 6, 7 (non Lamarcl, 1783).
Magnolia auriculata Smith, 1894, Geol. Coastal Plain Ala., p. 348.
Magnolia auriculata Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 75, pl. lviii, figs. 1-9, 11 (non fig. 10).
Magnolia auriculata Berry, 1906, Bull. Torrey Bot. Club, vol. xxxili, p. 174.
Magnolia auriculata Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 67, pl. xix, fig. 5; pl. xx, figs. 5, 8.
Magnolia hollicki Berry, 1909, Bull. Torrey Bot. Club, vol. xxxvi, p. 253.
Magnolia hollicki Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 136, pl. xv, fig. 3 .

Description.-Leaves orbicular-ovate in outline, 4 cm . to 10 cm . in length by 2 cm . to 5.5 cm . in width, petiolate. Apex acute, slightly extended in one or two specimens. Base usually pronounced auriculate. Petiole and midrib stout. Secondarics few, six or seven pairs, subopposite, camptodrome. Texture smooth and subcoriaceous.

This fine species is abundant and well preserved at Woodbridge in the New Jersey Raritan and in the Magothy formation of Maryland and Marthas Vineyard. Professor Newberry was somewhat uncertain as to its relationship with Magnolia and compared it with Aristolochia, Polygonum, and Toxylon. The latter is the only genus which is at all suggestive, and it furnishes no instances of auriculate bases, while this character of the base prevails in more than one modern species of Magnolia. The outline, the consistency, and the venation are all in accord in pointing to Magnolia as the proper generic refcrence. This is one of those forms mentioned from Marthas Vineyard by Professor Hitchcock in his Geology of Massachusetts, published in 1841.

It is sparsely represented in the Tuscaloosa formation of Alabama, and has been confused with Magnolia speciosa by both Newberry and Ward.

Occurrence-Magothy Formation. Grove Point, Cecil County. Collection.-Maryland Geological Survey.

Magnolia lacoeana Lesquereux

Plate LXX, Figs. 1, 2
Magnolia lacoeana Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 201, pl. lx, fig. 1.
Magnolia lacoeana Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 73, pl. lv, figs. 1, 2.
Magnolia lacoeana Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 65, pl. xvii, fig. 2.
Magnolia lacoeana Berry, 1910, Bull. Torrey, Bot. Club, vol. xxxvii, p. 23.
Magnolia lacoeana Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 134, pl. xvi, fig. 2.

Description.-Leaves broadly oval to almost orbicular in outline, obtuse or abruptly pointed above and rounded to a somewhat cuneate base below, 10 cm . to 12 cm . in length by 8.5 cm . to 9.5 cm . in maximum width. Midrib stout, somewhat flexuous. Secondaries numerous, camptodrome medianly stout, ten to twelve pairs; they branch from the midrib at acute angles, immediately curving outward, forming festoons near the margin, which is somewhat undulate in one specimen which Professor Newberry referred to this species.

This species differs from its contemporaries, especially in its nearly round outline; Professor Lesquereux finds a resemblance to Magnolia inglefieldi Heer from Greenland, and it also suggests some of the Arctic forms which have been referred to Magnolia capellinii Hecr.

While this species is reported from such widely scparated points as Marthas Vineyard and Kansas, it is nowhere abundant and is usually poorly preserved, suggesting that the leaves were readily macerated. In Alabama it appears to be confined to the lower Tuscaloosa.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-U. S. National Museum.

Magnolia longipes Hollick

Plate LXIX, Fig. 2
Magnolia longipes Hollick, 1894, Bull. Torrey Bot. Club, vol. xxi, p. 60, pl. clxxviii, fig. 3.
Magnolia alternans Ward, 1894 in Smith, Geol. Coastal Plain Ala., p. 348 (non Heer).
Magnolia longipes Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 76, pl. liv, figs. 13.
Magnolia longipes $!$ Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 64, pl. xxi, figs. 5, 6.
Magnolia longipes Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 23.
Magnolia longipes Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 135, pl. xiv, fig. 1.

Description.-Leaves oblong-ovate in outline, apparently about 18 cm . in length by 6 cm . or 7 cm . in maximum width, which was below the middle. Apex obtusely rounded. Base usually cuneate. Midrib and petiole very stout, the latter unusually long, reaching 12 cm . or 13 cm . in some specimens. Secondaries camptodrome, relatively thin and remote, ten to twelve pairs, branching from the midrib at angles of about 45° and soon curving upward to join a branch from the secondary next above. This forms a series of large arches which approximately parallel the margin, and constitutes one of the distinctive characters of this species, others being the long petiolc and the oblong, almost straight-sided, shape.

This is a very striking Magnolia and is frequent in the middle Raritan at Woodbridge, New Jersey. Fragmentary specimens which have been correlated with these remains are reported from Long Island. It is apparently quite different in appearance from any of the other Cretaceous species of Magnolia, although it suggests somewhat a gigantic form of Magnolia woodbridgensis. It is found in the Magothy formation of Maryland and the Tuscaloosa formation of Alabama. In the absence of complete specimens, only the basal part being usually preserved, it is quitc possible that the present spccimens are not distinct from some of the associatcd Magnolias.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-U. S. National Museum.

Magnolia obtusata Heer
 Plate LXVIII, Figs. 2-4

Magnolia capeltinii Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, pl. xxxiii, fig. 4.
Magnolia obtusata Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 90, pl. xv, fig. 12, pl. xxi, fig. 3.
Magnolia obtusata Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 201, pl. lx, figs. 5, 6.
Magnolia obtusata Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 76, pl. xlvii, fig. 4.
Magnolia obtusata Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 23.
Description.-Leaves of variable size, oblong-ovate or obovate in outline, entire, with a broadly rounded apex and a narrowed cuneate base, ranging from 7 cm . to 14 cm . in length, and 2.4 cm . to 7 cm . in greatest width, which is above the middlc. Petiole and midrib stout. Secondaries few in number ascending, curved, camptodrome. Texture coriaceous.

This species was described from the Atane beds of Grcenland by Heer, and was based. upon rather fragmentary material. Subscquently Lesquereux recorded some fine specimens from the Dakota group of Kansas. It is present in the Magothy formation from New Jersey to Maryland, and in beds of homotaxial age in South Carolina. In western Alabama it appears to be confined to the lower Tuscaloosa of Fayette County.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collections.-Maryland Geological Survey, U. S. National Museum.

Magnolia boulayana Lesquereux
 Plate LXIX, Fig. 1

Magnolia boulayana Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 202, pl. 1x, fig. 2.
Magnolia glaucoides Hollick, 1894, Bull. Torrey Bot. Club, vol. xxi, p. 60. pl. clxxv, figs. 1, 7.
Magnolia glaucoides Smith, 1894, Geol. Coastal Plain in Alabama, p. 348.
Magnolia glaucoides Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 74, pl. lvii, figs. 1-4.
Magnolia boulayana Knowlton, 1901, Twenty-first Ann. Rept. U. S. Geol. Survey, pt. vii, p. 318.
Magnolia glaucoides Hollick, 1907, Mon. U. S. Geol. Survey, vol. l, fig. 6, p. 67, pl. xix, fig. 6; pl. xx, fig. 6.

Magnolia boulayana Berry, 1909, Bull. Torrey Bot. Club, vol. xxxvi, p. 254.
Magnolia boulayana Berry, 1910, Ibidem, vol. xxxvii, p. 23.
Magnolia boulayana Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 112, pl. xx, fig. 5.

Description.-Leaves narrowly elliptical in outline, unusually uniform in size and shape, 8.5 cm . to 13 cm . in length and 3.5 cm . to 4.5 cm . in maximum width. Apex usually bluntly rounded, sometimes acute. Base matching the apex. Petiole mediumly stout, 3 cm . to 4 cm . in length. Midrib mediumly stout. Secondaries slender, often obsolete, about eleven pairs, equidistant, parallel, camptodrome, branching from the midrib at an angle of about 40°. Tertiaries, when seen, transverse. Texture coriaceous.
'This species was described originally from the Dakota group of Kansas by Professor Lesquereux. Professor Newberry described the Raritan remains which are abundant at the Woodbridge locality as a new species, and it has been kept distinct by Hollick, who recognized, however, its practical identity with the Dakota group plant. There can be no question that they belong to the same species, and it seems probable that Magnolia van ingeni described by Hollick ${ }^{1}$ should also be referred to the same species.

In addition to the localities already mentioned this species is found on Marthas Vineyard and Long Island, in the Eutaw formation of western Georgia, and in the Woodbine formation of the western Gulf region (Texas). Characteristic specimens of this species are present in the lower Tuscaloosa beds of Alabama.

Occurrence.-Magothy Formation. Grove Point, Cecil County; Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Magnolia tenuifolia Lesquereux Plate LXX, Fig. 2

Magnolia tenuifolia Lesquereux, 1868, Amer. Jour. Sci., vol. xlvi, p. 100.
Magnolia tenuifolia Lesquereux, 1874, Cret. Flora, p. 92, pl. xxi, fig. 1.
Magnolia tenuifolia Lesquereux, 1892, Mon. U. S. Geol. Survey, vol, xvii, p. 198, pl. xxiv, fig. 1.

[^50]Magnolia tenuifolia Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 77, pl. xlvii, fig. 10.
Magnolia tenuifolia Berry, 1904, Torrey Bot. Club, vol. xxxi, p. 76, pl. i, fig. 7.
Magnolia tenuifolia Hollick, 1904, Bull. N. Y. Bot. Garden, vol. iii, p. 413, pl. 1xxiii, fig. 2.
Magnolia tenuifolia Berry, 1906, Bull. Torrey Bot. Club, vol. xxxili, p. 174.
Magnolia tenuifolia Hollick, 1907, Mon. U. S. Geol. Survey, vol. i, p. 64, pl. xvii, fig. 1; pl. xviii, figs. 4, 5.

Description.-" Leaves large, oblong, entire, narrowed upward to a blunt point, downward to a thick petiole; median nerve thick; secondaries open, parallel, alternate, inequidistant, forking at a distance from the borders, camptodrome; the lower gradually shorter, at right angles to the median nerve and like tertiaries, curving backward."-Lesquereux, 1892.

This species is widely distributed in the Dakota sandstone of the West. Along the Atlantic border it is represented in post-Raritan deposits by fragmentary and not positively identified material from Marthas Vineyard, through Long Island, New Jersey, and Delaware to the Maryland border.

Occurrence.-Magothy Formation. Deep Cut, Delaware.
Collection.-Maryland Geological Survey.

Magnolia capellinit Heer
 Plate LXIX, Fig. 4

Magnolia capellinii Heer, 1863, Phyll. Crét. d. Nebr., p. 21, pl. iii, figs. 5, 6. Magnolia capellinii Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 115, pl. xxxili, figs. 1-4.
Magnolia capellinii Heer, 1882, Ibidem, Bd. vi, Ab. ii, p. 90, pl. xxiv, figs. 3-5; pl. xxv, figs. 1-3; pl. xlv, fig. 1.
Magnolia capellinii Velenovsky, 1883, Fl. Böhm. Kreidef., Theil ii, p. 20, pl. vii, figs. 8, 9.
Magnolia capellinii Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 203, pl. lxvi, fig. 1.
Magnolia capellinii Dawson, 1894, Trans. Roy. Soc. Canada, 1st ser., vol. xi, sec. iv, p. 63, pl. xi, fig. 49; pl. xiii, fig. 49a.
Magnolia capellinii Hollick, 1895, Trans. N. Y. Acad. Sci., vol. xii, p. 234, pl. vi, fig. 6.
Magnotia capellinii Hollick, 1895, Bull. Geol. Soc. Amer., vol. vii, p. 13.

Magnolia capellinii Frič and Bayer, 1901, Archiv. Naturw. Landes. Böhm., Bd. xi, Nr. ii, p. 127.
Magnolia capellinii Hollick, 1904, Bull. N. Y. Bot. Garden, vol. iii, p. 413, pl. lxxviii, fig. 3.
Magnolia capellinii Berry, 1904, Bull. Torrey Club, vol. xxxi, p. 76, pl. iii, fig. 3.
Magnolia capellinii Berry, 1906, Ann. Rept. State Geol. of New Jersey for 1905, p. 138.
Magnolia capellinii Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 63, pl. xvii, figs. 3, 4.
Magnolia capellinii Berry, 1907, Bull. Torrey Bot. Club, vol. xxxiv, p. 195, pl. xii, figs. $4,5$.
Magnolia capellinii Berry, 1911, Ibidem, vol. xxxviii, p. 406.
Magnolia capellinii Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, pp. 43,112 , pl. xx, fig. 6.

Description.-"M. foliis coriaceis, late ovalibus, integerrimis, nervis secundariis angulo acuto egredientibus, curvatis, camptodromis."-Heer, 1866.

These leaves vary considerably in size, averaging about 13 cm . in length by 7 cm . in width. Outline broadly ovate, the base and apcx usually about equally pointed, although occasional specimens have a somewhat obtuse apcx. The texture is coriaceous or subcoriaceous. Midrib and petiole stout. Secondaries usually seven or eight alternate or subopposite pairs at regular intervals, approximately parallel, camptodrome.

This widespread species in some of its forms approaches quite close to the less narrow and less apically extended forms of Magnolia speciosa Heer. Ordinarily, however, the latter species may be readily distinguished by its relatively narrower form with the produced apex and decurrent base.

Described originally from the Dakota sandstone by Heer, Magnolia Capellinii has been detected at a large number of localities of homotaxial age, occurring in the Cretaceous of Greenland and of the Pacific Coast, and in the Cenomanian of Bohemia. In the Atlantic Coastal Plain it characterizes the Magothy formation and is present in the Black Creek beds of North Carolina, the basal Eutaw of Georgia, and the Tuscaloosa formation of Alabama. It was doubtfully recorded from the New Jersey Raritan by Lesquereux in 18\%8, but it has never been detected in the abundant collections of Raritan plants studicd by Professor Newberry and the writer and is not at present admitted to be a member of the Raritan flora.

Occurrence.-Magothy Formation. Grove Point, Cecil County; Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Genus ILI.ICIUM Linné
[Syst., ed. x, 1759, p. 1050]
Illifium deletoides n. sp.
Plate LXX, Fig. 6
Description.-Leaves of relatively small size, lanceolate in general outline, with an acuminate apex and a narrowly decurrent base. Length about 9 cm . Maximum width, in the middle part of the leaf, about 1.5 cm . to 2 cm . Margins entire, but usually more or less undulate. Texture coriaceous. Petiole not preserved. Midrib stout, prominent, more or less flexuous. Secondaries about ten subopposite to alternate pairs, diverging from the midrib at wide angles (about 65°), pursuing relatively straight courses two-thirds of the distance to the margins, where they turn upward to form wide ascending camptodrome arches.

This species may be compared with a variety of described species in unrelated genera, as, for example, in the genera Nyssa, Daphne, Apocynum, Andromeda, and various Lauracea; but it is believed to have more in common with Illicium, in which only two other Cretaceous species are known. These are Illicium deletum Velenovsky ${ }^{1}$ from the Cenomanian of Bohemia and Illicium watereensis Berry ${ }^{2}$ from the Middendorf beds of South Carolina. The present species differs from the latter in its less numerous and less ascending secondaries. It is very close to the Bohemian species, which fact has suggested the specific name of this form. It is a more slender leaf with fewer secondaries, and would, but for its wide geographical separation, probably be considered to be merely a variant of the Bohemian type.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-U. S. National Museum.

[^51]Genus CARPITES Schimper
[Pal. Végêt., tome iii, 1874, p. 421]
Carpites liriophylli Lesquereux
Plate LXX, Figs. 4, 5
Carpites liriophylli Lesquereux, 1883, Cret. and Tert. Fl., p. 77, pl. xi, fig. 5. Carpites liriophylli Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 174.

Description.-A ligneous winged seed or carpel, ovate in general outline, flattened, curved somewhat toward the thickened proximal end which also shows a vertical scar of attachment about 3 mm . in length. Surface somewhat striated, 2.5 cm . to 3 cm . in length, 6 mm . to 7 mm . in maximum width midway between the ends; distal end more narrowed than proximal, acuminate; proximal end obtuse.

This species was described by Lesquereux from the Dakota group and based on a single specimen found in association with the problematical genus Liriophyllum. It reappears in the Magothy in more typieal form and appears to be definitely related to the genus Liriodendron.

Occurrence.-Magothy Formation. Deep Cut, Delaware.
Collection.-Maryland Geological Survey.

Family NYMPHAEACEAE enus NELUMBITES Berty

[Maryland Geol. Survey, Lower Cret., 1911, p. 462]
The geuus Nelumbites was proposed by the writer in 1911 for aneestral forms related to the modern genus Nelumbo, with Menispermites virginiensis Fontaine ${ }^{1}$ from the Patapsco formation of Maryland and Virginia as the type. One additional Patapsco species, Nelumbites tenuinervis (Fontaine) Berry, was deseribed. Additional species include the following Magothy form and probably the large-leafed Nelumbo kempii Hollick ${ }^{2}$ from the same formation in New Jersey and on Long Island and Marthas Vineyard. Small-leafed forms also occur at higher horizons in the Montana group and in the Laramie and Shoshone group of the West.

[^52]Still other and mostly larger species are referred to the allied genus Nelumbium of Jussieu.

While the Patapsco species have the characteristic peltate leaves they are not radially symmetrical as are the later species, but have the petiole attached near to one margin giving them an appearance much like that of a number of supposed speeies of Menispermites. The venation is, however, nearer that of Nelumbo and its allies, the seeondaries being prominent on the lower surfaee, obsolete on the upper surface, and forking after the manner of the Nympheacea. If these leaves were not floating it is surprising that a petiole stout enough to hold the leaf ereet is not found fossil, unless the leaf normally abseissed from the apex instead of the base of the petiole. It is hoped that sooner or later speeimens will be found showing whether or not the stomata were confined to the upper surface and thus confirming or disproving the assumption here made that they were aquatie in habit. The existing speeies of Nelumbo are two in number, both large aquatie perennials, one North American and the other Asiatic and Australian. It has seemed better to establish a new genus for the reeeption of these Cretaceous forms, which, while expressing their proper affinities, does not unduly extend our conception of the modern genus.

It is interesting to note in this conneetion that Saporta ${ }^{1}$ has reported two speeies of Nelumbium from the supposed Albian of Portugal, but as these are not fully defined and are also unfigured their relation to the American species is unknown.

Nelumbites primeva (Berry) Berry
Plate LXXV, Fig. 4
Nelumbo primeva Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 75, pl. xliii, fig. 1.
Nelumbo primava Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 23.
Description.-Leaves of variable size, peltate, orbicular or broadly elliptical in general outline. Diameter ranging from 3 cm . or 4 cm . to about 10 em . Margins entire, texture subcoriaeeous. Primaries eight,

[^53]generally straight, prominent on the lower surface of the leaf, forking dichotomously at variable distances from their origin, giving off thin, transverse more or less curved secondaries.
The present spccies, which is probably a descendant of Nelumbites virginiensis, was described originally from Cliffwood Bluff, New Jersey. It is only known from imperfect materials, but is much smaller and more delicate than Nelumbo kempii Hollick (op.cit.). It is much like Nelumbo laramiensis Hollick, ${ }^{1}$ which has, however, twelve primaries. Other comparable species are Nelumbo intermedia Knowlton ${ }^{2}$ with twelve or thirteen weak primaries, and Nelumbo dawsoni Hollick ${ }^{8}$ with eighteen primaries.

Occurrence.-Magothy Formation. Round Bay, Anne Arunde] County.

Collection.-Maryland Geological Survey.

Order ROSALES

Family LEGUMINOSAE
Genus LUGUMINOSITES Bowerbank
[Foss. Fr. and Seeds London Clay, 1840, p. 124]
Leguninosites coronilloides Heer Plate LXXVI, Fig. 4
Leguminosites coronilloides Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 119, pl. xxxiv, fig. 14.
Colutea coronilloides Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 100.
Leguminosites coronilloides Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 149, pl. xiii, fig. 10.
Leguminosites frigidus Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xii, p. 34, pl. ii, figs. 11.
Leguminosites coronilloides Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 97, pl. xlii, fig. 48.
Leguminosites coronilloides Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 86, pl. xxxii, figs. 16, 17.

Leguminosites coronilloides Berry, 1911, Bull. Torrey Bot. Club, vol. xxxvii, p. 24 .

Leguminosites coronilloides Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 153.

[^54]Description.-" L. foliolis parvulis, ovalibus, breviter petiolatis, nervis secundariis distantibus, curvatis, subtilissimis."-Heer, 18\%4.

Leaflets small, oval and unsymmetrical in outline. Length ranging from 1.5 cm . to 2.8 cm . Width ranging from 8.5 mm . to 12 mm . Margins entire. Petiolule short. Midrib stout. Secondaries thin, remote, three to five pairs, alternate, camptodrome, often obsolete.
Leguminous leaflets from a number of widely removed localitics have been referred to this species, and while all of these are very similar in gencral characters their positive identity cannot be affirmed with any great confidence. Described originally from the Atane beds of Greenland, they have been detected by Lesquereux in the Dakota group, by Newberry in the Raritan formation, by Hollick at Marthas Vineyard and Staten Island, and by the writer from Maryland. They are very similar to other species of Leguminosites, as, for example, Leguminosites frigidus Heer ${ }^{2}$ described from the Patoot beds.

Professor Heer in his last report (loc. cit.) refers this form to the old world genus Colutea, but it does not scem wise to follow him in this reference with no more evidence than is available.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Leguminosites canavalioides n. sp.
 Plate LXXVI, Fig. 6

Description.-Leaves compound, probably trifoliate. Leaflets large, elliptical in general outline, with a rounded apex and base. Length about 7 cm . Maximum width, in the middle part of the leaflet, about 6 cm . Margins entire. Texture subcoriaceous. Petiolule wanting. Midrib stout, becoming attenuated diatad. Secondaries numerous, thin, camptodrome, about ten pairs, diverging from the midrib at angles of about 55°. Tertiary areolation papilionaceous, mostly immerscd.

This species respresents a leguminous leaflet of unknown generic affinity named from its resemblance to the leaflets of the existing species

[^55]Canavalia, which number about a dozen, of the tropics of both hemispheres. In the Lower Eocenc of southcastern North America there is an undoubted species of Canavalia very close to the existing Canavalia obtusifolia (Lamarck) D. C., a common West Indian strand plant.

Occurrence-Magothy Formation. Grove Point, Ceeil County.
Collection.-Maryland Geological Survey.

Leguninosites omphalobioides Lesquereux

Plate LXXVI, Fig. 5
Leguminosites omphalobioides Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvil, pl. xxxviii, fig. 4.
Leguminosites omphalobioides Newberry, 1896, Ibidem, vol. xxvi, p. 97, pl. xlii, fig. 39.
Leguminosites omphalobioides Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 24.
Leguminosites omphalobioides Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 155.

Description.-Leaflets elliptical in outline, 3.2 cm . to 4 cm . in length by 1.5 cm . to 1.7 cm . in greatest breadth, which is about half-way betwecn the apex and the basc. Texture subcoriaceous. Apex rather broadly rounded. Base slightly narrowed and decurrent to the point of attachment. Lesquercux speaks of a short petiole, but this is lacking in his type figure and in all the specimens examined by the writer. The midrib is not cspecially wide, but is quite prominent. The sccondaries are thin and alternate ; they number about six pairs, and braneh from the midrib at angles of 50°, or somewhat less, curving upward close to the margins, camptodromc.

This species was described originally from the Dakota group of Kansas, and subsequently found in the Magothy formation of Maryland and the Tuscaloosa formation of Alabama.

Occurrence.-Magothy Formation. Grove Point, Cecil County. Collection.-Maryland Geological Surrey.

Genus LIRIODENDROPSIS Newberry

[Mon. U. S. Geol. Survey, vol. xxvi, 1896, p. 82]

Liriodendropsis constricta Ward
Liriodendropsis simplex Hollick, 1893, Trans. N. Y. Acad. Sci., vol. xii, p. 235, pl. vii, fig. 3.
Liriodendropsis simplex constricta Ward, 1896, 16th Ann. Rept. U. S. Geol. Survey, pt. i, p. 540, pl. ci, fig. 8.
Liriodendropsis constricta Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1. p. 71, pl. xxii, fig. 7; pl. xxvi, figs. 6-15; pl. xl, fig. 15.

Description.-Leaves ovate in general outline with a rounded ultinmatcly cuneate base, constricted abruptly on each side the apical portion narrowed and straight-sided with an emarginate apex. Length ranging from 4 cm . to 9 cm . Maximum width, in the basal part, ranging from 2 cm. to 4 cm . Secondary and tertiary venation indistinguishable from that of Liriodendropsis simplex or angustifolia of one or the other of which it is probably a variant and not a distinet species.

Forms answering to the foregoing diagnosis are recorded from Marthas Vineyard, Massachusetts, and Glen Cove, Long Island, where they are associated with large numbers of leaflets of Liriodendropsis simplex and angustifolia. A single leaflet is likewise associated with these two species in Alabama which fact lends emphasis to its doubtful specific rank. The Maryland material is rare and not positively determined.

Occurrence-Magotiry Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Genus COLUTEA Linné
[Sp. Pl., 1753, p. 723]
Colutea obovata Berry
Plate LIXXVI, Figs. 1, 2
Colutea obovata Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 175, figs. $5,6$.

Description.-Leaves small, ovate in general outline, inequilateral, with rounded margins and apical auricles separated by a deep and rounded sinus. The Tuscaloosa leaf is somewhat smaller than the type and measures 1.3 cm . along the midrib, 1.6 cm . from apices to base, and 1.2 cm .
in greatest width, which is the distal half of the leaf. Base cuncate. Midrib slightly curved. Secondaries four or five subopposite pairs which arc thin, ascending and camptodrome. Tertiaries fine.

This small species was described by the writer from material collected in the Magothy formation of Maryland and it is also found in the Tuscaloosa formation of Alabama. It appcars to be entirely distinct from the other known Cretaceous species, of which there are several. It resembles more or less some of the various leaves which have been identificd as Colutca primordialis Heer from Greenland, the Atlantic Coastal Plain, and the Western Interior.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection:-Maryland Geological Survey.
Colutea primordialis Heer
Plate LXXV, Fig. 3
Colutea primordialis Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 99, pl. xxvil, figs. 7-11; pl. xliii, figs. 7, 8.
Colutea primordialis Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 148, pl. xiii, figs. 8, 9.

Colutea primordialis Hollick, 1894, Bull. Torrey Bot. Club, vol. xxi, p. 56, pl. clxxiv, fig. 2.
Colutea primordialis Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 97 , pl. xix, figs. $4,5$.
Colutea primordialis Holllck, 1907, Ibidem, vol. 1, p. 84, pl. xxxii, figs. 14, 15. Colutea primordiatis Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 24. Colutea primordialis Berry, 1911, Ibidem, vol. xxxviii, p. 407.
Colutea primordialis Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 156 , pl. xx, fig. 4.
Description.-"C. foliolis membranaceis, breviter petiolatis, pollicaribus, ovalibus, integerrimis, basi attenuatis, apice profunde emarginatis, nervis secundariis subtilissimis, camptodromis."-Heer, 1882.

This species was described from the Atane beds of west Greenland and subsequently recorded from the Dakota sandstone of Kansas, the Raritan formation of New Jersey, and the Magothy formation of Marthas Vineyard and Long Island. Typical forms are not uncommon in the upper part of the Magothy formation at Grove Point.

Occurrence,-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Genus BAUHINIA Linné
[Sp. Pl., 1753, p. 374]
Bauhinia marylandica Berry
Plate LXXV, Figs. 5-\%
Bauhinia marylandica Berry, 1908, Torreya, vol. viii, p. 218, figs. 1-3.
Description.-Leaves small, about 3 cm . in greatest length by 2.5 cm . in greatest breadth, elliptical in general outline, bilobate; the apical sinus narrow and pointed, reaching one-half to two-thirds of the distance to the base; lobes narrow, ascending, somewhat falcate in outline, obtusely pointed; midrib straight, giving off one, two or three sharply ascending pairs of opposite, camptodrome secondaries, thesc give off a series of broadly rounded inequilateral tertiary arches which are directed upward and outward; the upper pair of secondaries the most prominent; from the juncture of the midrib and sinus a pair of much reduced sccondaries is given off and these join the secondary next below in one or two broad arches.

The present species was described in 1908 from the Magothy formation at Grove Point, Maryland, where it is abundant. It is sparingly represented in the lower part of the Tuscaloosa formation of western Alabama.

The form and venation of these leaves are exactly like several of the existing species of Bauhinia, and are so well marked that there can be no doubt of the existence of a species of Bauhinia growing along the middle and south Atlantic coast during the deposition of the Upper Crctaceous, a species whose descendants along with those of its congeners migrated finally to their present tropical habitat, perhaps gradually with the oscillation of climatic conditions, and perhaps not until the Pleistocene glaciation to the northward forced them to make a comparatively sudden retreat to the southward.

Occurrence.-Magothy Formation. Grove Point, Cecil County, Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Genus DALBERGIA Linné, f.
[Suppl., 1781, p. 52]
Dalbergia severnensis Berry
Plate LXXVI, Fig. 3
Dalbergia severensis Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 407, pl. xix, fig. 2.

Description.-Leaflcts of rather small size, oblanceolate in general outline, with a markedly emarginate apex, gently curved sides and narrowly pointed basc. Length about 5 cm . Maximum width, in the middle part of the leaf, about 1.5 cm . Margins entire. Texture subcoriaceous. Petiolule wanting. Midrib stout below, thin above. Secondaries thin, five or six pairs, diverging from the midrib at angles of 45° or less, the lower ascending, the upper curved, all eventually camptodrome.

This handsome form is clearly distinct from related forms and is identical in its characters with the fossil leguminous leaflets usually referred to the genus Dalbergia. The modern species number about four score distributed throughout the Oriental and Occidental tropics, and there is a strong generic similarity in their foliage. The fossil species of Dalbergia are numerous, extending from the Upper Cretaceous through the Tertiary.

Occurrence.-Magotify Formation. Little Round Bay, Anne Arundel County.

Collcetion.-Maryland Geological Survey.

Order GERANIALES

Family EUPHORBIACEAE
Genus CROTONOPHYLLUM Velenovsky
[Květena českêho cenomanu, 1889, p. 20]
Crotonophyllun cretaceum Velenovsky
Plate LXXVI, Figs. 7, 8
Crotonophyllum cretaceum Velenovsky, 1889, Květena českého cenomanu, p. 20, pl. v, figs. 4-11.

Crotonophyllum cretaceum Frić and Bayer, 1901, Archiv. Naturw. Landes. Böhm., Bd. xi, Nr. ii, p. 137, tf. 101.

Description.-Lcaves of variable size and form, in gencral ovate to lanceolate in outline, with a sharply pointed apex and decurrent base. Length ranging from 9 cm . to 15 cm . Maximum width, usually in the middle part of the leaf, ranging from 2 cm . to 5 cm . Petiole stout. Midrib stout and slightly flexuous, prominent. Secondaries numerous, camptodrome, their angle of divergence and subsequent course dependent on the shape of the individual leaves; in general they diverge at an acute angle and are ascending. Texture coriaceous.

These leaves exhibit a wide range of variation, some forms being entire and lanceolate, with the margins but slightly undulate. Usually these undulations are pronounccd, one or morc on either one or both sides of the lamina becoming cinphasized to form a pronounced constriction. These sinuses are sometimes rounded, more often they are sharply pointed and extend about half-way to the midrib. These constrictions niay be in the apical, median or basal region. Usually they are above the middle and divide the leaf into a lower ovate portion and an upper linearlanceolate portion.

This species, which is the type of the genus, was described by Velenorsky (in Bohemian) in 1889 from the Cenomanian of Vyscrovic, Bohenia, and compared with existing species of Croton, some of which it greatly resembles. It remained the only species until recently when the writer described ${ }^{1}$ the closely related Crotonophyllum panduraformis from the Middendorf beds of South Carolina and the Tuscaloosa formation of Alabama. A previously described form which while much smaller is otherwise quite similar to the widest Maryland specimen is Cinnamomum membranaceum (Lesquercux) Hollick. ${ }^{2}$

The genus is also represented in the Lower Eocene flora of the Mississippi embayment.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

[^56]Order SAPINDALES
Family ILICACEAE
Genus ILEX Linné
[Sp. Pl., 1753, p. 125]
Ilex severnensis Berry
Plate LXXVII, Figs. 1, 2

Ilex severnensis Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 407, pl. xix, figs. 1, 1a.
Description.-Leaves of small size, oblong in general outline, with a cuspidate apcx and a narrowly rounded base. Iength about 2 em . Maximum width about 6.5 cm . Texture eoriaeeous. Margins entire below; above, with a few irregularly spaced salient serrate teeth. Midrib relatively stout. Seeondary venation thin and more or less obsolete, consisting of a vein which forms a marginal hem all around and numerous transverse veins between it and the midrib. The latter are for the most part nearly straight, diverging from the midrib at angles of about 90°, giving the leaf a scalariform appearanec, as shown in the enlarged figure of this form.

Occurrence.-Magothy Formation. Little Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Family CELASTRACEAE

Genus ELAEODENDRON Jacques, f.
[Nova Acta Helv., vol. 1, 1787, p. 36]
Eleodendron marylandicum Berry
Plate LXXVII, Figs. 3-6
Eloodendron marylandicum Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 24, pl. viii, fig. 1.

Description.-Leaf orbicular in general outline, 6.5 cm . to 8.5 cm . in length by 4.7 cm . to 6.2 cm . in greatest width, which is about midway between the apex and the base. Apex evenly rounded, somewhat emarginate in one specimen. Base cuncate, slightly decurrent. Margin entire
below, furnished above with a few irregularly-spaced and very small spinelike teeth. Petiole extremely stout, 3 em . long in one of the smaller speeimens. Midrib also stout, thinning rapidly toward the tip. Sceondaries five or six pairs, alternate, camptodrome, branching from the midrib at an angle of about 50° to 55° and eurving slightly upward to join lateral branches from the secondaries next above. From the outer side of these suecessive arehes short tertiaries run to the marginal teeth in those parts of the leaf in which the teeth are developed.

This very handsome and well-marked species is represented by a number of specimens from Grove Point. It finds its nearest relative in certain of the larger and more orbieular variants of the upper Raritan and Magothy species Celastrophyllum newberryanum Hollick; in faet, it would seem reasonable to suppose that the present species which has thus far been found at the extreme top of the Magothy formation at Grove Point may be descended from Celastrophyllum newberryanum, which charaeterizes particularly the upper Raritan at South Amboy, New Jersey. The writer was long undecided whether or not to refcr the new species to Celastrophyllum or Elcoodendron, and it may also seem preferable eventually to transfer C. newberryanum to the latter genus, with which it shows many eharacters in common. The present species may be compared with Elaodendron dioicum Grisebaeh from the West Indies.
"The genus Elcoodendron has mainly a Tertiary history, although Hollick has described a Magothy speeies reeently from Gay Head, Marthas Vineyard (Elwodendron strictum).

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-U. S. National Museum.

Genus CELASTRUS Linné
[Sp. Pl., 1753, p. 196]
Celastrus arctica Heer
Plate LXXVII, Fig. 7
Celastrus arctica Heer, 1883, Fl. Foss. Arct., Bd. vii, p. 40, pl. lxi, figs. 5d, 5 e.
Celastrus arctica Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 98. pl. xili, figs. 8-18.

Celastrus arctica Hollick, 1898, Ann. N. Y. Acad. Sci., vol. xi, p. 60, pl. iv, fig. 8.
Cclastrus arctica Hollick, 1904, Bull. N. Y. Bot. Garden, vol, iii, p. 408, pl. lxx, figs. 12, 13.
Cclastrus arctica Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 88, pl. xxxiii, figs. 9-11.
Celastrus arctica Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 407.
Cclastrus arctica Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 172, pl. xxv, figs. 1-5.

Description.-"C. foliis parvulis, lineari-lanceolatis, apice longe attenuatis, basi angustatis, denticulatis, nervis secundariis angulo acuto egredientibus."-Heer, 1883.

Leaves elongated and narrow, linear-lanceolate in outline, with an equally acuminate apex and base and a short stout petiole. ${ }^{1}$ Length ranging from 4 cm . to 13 cm ., width ranging from 0.5 cm . to 1.5 cm . Midrib stont. Secondaries numerous, parallel, nearly straight, branching from the midrib at acute angles which range from 12° to 37°, inosculating near the margin, short branches from this marginal hem entering the tecth. Margin regularly and somewhat remotely dentate with shallow rounded sinuses between the teeth, the cuneate base entire-margined.

This species, which is exceedingly abundant in the upper Raritan beds at South Amboy, but which has not been found elsewhere in the New Jersey Raritan, was described originally from the Patoot beds of Greenland which are usually correlated with the Senonian of Europe. It is abundant at the top of the Magothy formation in Maryland. The Greenland material was limited and the specimens were small in size compared with the usual Raritan forms. There is, however, no question of their identity.

Professor Heer (op. cit.) compared this species with Celastrus ettingshausen i^{2} of the Europcan Tertiary which resembles a number of modern species of Celastrus of the East Indian region.

The present species exhibits considcrable resemblance to the leaflets of the palmately compound Dcwalqueas of the Upper Cretaceous and Lower

[^57]Eocene, but no evidence of a similar habit is indicated among the large number of speeimens colleeted by the writer.

This speeies is recorded by Holliek from Bloek Island and Long Island, and is also present in the Kreischerville beds of Staten Island.

Occurrence.-Magothy Formation. Little Round Bay, Anne Arundel County.

Collection.-Maryland Geologieal Survey.

Genus CELASTROPHYllum Goeppert

[Tertiärfl. Java, 1854, p. 52]
Celastrophyllum orenatum Hect (?)
Celastrophyllum crenatum Heer, 1885, Fl. Foss. Arct., Bd. vii, p. 41, pl. lxii, fig. 2.
Celastrophyllum crenatum Smith, 1894, Geol. Coastal Plain Ala., p. 348.
Celastrophyllum crenatum Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 99, pl. lxviii, figs. 1-18.
Celastrophyllum crenatum Berry, 1907, Bull. Torrey Bot. Club, vol. xxxiv, p. 197, pl. xiii, fig. 5.

Celastrophyllum crenatum Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 178, pl. xxii, fig. 9 ; pl. xxiii, fig. 2.
Celastrophyllum crenatum Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 50.

Description.-Leaves very variable in size, 2 cm . to 8 cm . in length by 1 cm . to 5 cm . in width, ovate or elliptical in outline, broadly rounded above, narrowed and generally inequilateral below. Margins entire below, coarsely toothed above, with somewhat variable, rounded, crenate or crenate-dentate teeth. Occasional specimens are entire throughout and some have a markedly inequilateral base. Midrib mediumly stout. Secondaries numerous, nine or ten pairs, subopposite, branching from the midrib at angles somewhat in excess of 45°, slightly curved upward and parallel, branching near the margin to form festoons from which branches enter the marginal teeth.

This species was described originally by Professor Hecr from the Patoot beds of Greenland, and unfortunately only a single small leaf was figured. The Raritan leaves, which are abundant, grade into much larger forms which are also present in the Black Creek formation of North Carolinia and the Tuscaloosa formation of Alabama.

The species is rare in South Carolina, fragmentary speeimens being sparsely represented in the Middendorf beds. It is represented by fragmentary and not eertainly determined specimens in the Maryland Magothy. The genus is characteristie of the late Lower and carly Upper Cretaceous of eastern North America.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Celastrophyllum undulatum Newberry (?)

Celastrophyllum undulatum Smith, 1894, Geol. Coastal Plain. Ala., p. 348 (nomen nudum).
Celastrophyllum undulatum Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. xxxviii, figs. 1-3.
Celastrophyllum undulatum Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvi1, p. 198.

Celastrophyllum undulatum Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 175.

Description.-Leaves of large size, 10 em . to 15 em . in length by 4 em . to 8 cm . in width, ovate-oblong or ovate in outline, with an obtuse or bluntly pointed apex and somewhat narrowed base. Margin strongly undulate or broadly and coarsely crenate, somewhat variable in the character of its teeth. Midrib stout. Secondaries numerous, a dozen or more subopposite pairs, which branch from the midrib at a wide angle and fork near the margins to form festoons which coincide approximately with the inarginal teeth.

This very large species resembles the larger leaves that are referred to Celastrophyllum crenatum Heer, but is much larger and more elongate in outline. Its size has apparently rendered perfeet speeimens rare and the recovered remains are usually fragmentary. Velenovsky hints at its identity with the leaves named by him Myrica zenkeri from the Bohemian Cretaceous, although this resemblanee is obviously slight, the present species more ncarly resembling the Bohemian leaves which this author identifies as a species of Ternstromia, as well as various lower Eocenc species of Ternstroemites of the Mississippi embayment area.

It was described originally from the New Jersey Raritan and is represented by considerable fragmentary material in the lower Tuscaloosa beds of Alabama. Large leaves of this species occur in the Black Creek beds of North Carolina. Doubtfully determined material is present in Maryland.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Order RHAMNALES

Family RHAMNACEAE
Genus RHAMNITES Forbes
[Quart. Jour. Geol. Soc. Lond., vol. vii, 1851, p. 103]
Rhamnites apiculatus Lesquereux
Plate LXXVIII, Fig. 3
Rhamnites apiculatus Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 171, pl. xxxvii, figs. 8-13.

Rhamnites apiculatus Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 25.
Description.-" Leaves small, coriaceous, short petioled, entire, ovate, obovate or elliptical, rounded at apex to an apiculate point; primary nerve narrow, secondaries thin, camptodrome, curving to and along the borders.
"Base more or less narrowly attenuated either acutely or broadly cuneiform, apex rounded, tipped by a minute point or mucro. According to the width of the cuncate base the secondaries are at a more or less acute angle of divergence, the lowest pairs branching and anastomosing in areoles along the borders, the upper more open, shorter and parallel. The size of the leaves varies little, being from 3 cm . to 4 cm . in length, and from 18 mm . to 25 mm . in width, mcasured either above or below the middle; some of the leaves are obovate, others nearly regularly oval, others still more cnlarged above the base and ovate."-Lesquereux, 1892.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Family VITACEAE
Genus CISSITES Heer
[Phyll. Crét. Nebr., 1866, p. 19]

Cissites formosus magothiensis Berry

Plate LXXVIII, Fig. 4
Cissites formosus magothiensis Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 25.

Description.-Leaves trilobate, consisting of an elongated terminal lobe and two lateral lobes which diverge from it at angles of about 45°. The lobes may be entire or sublobate, with rounded tops, and separated by open rounded sinuses reaching about half-way to the base which is broadly cuneate. Length about 11 cm . to 12 cm . Maximum width, from tip to tip of the lateral lobes, about 9 cm . Margins entire. Midrib stout, becoming thin distad. Lateral primaries supra-basilar, subopposite, thinner than the midrib. Secondaries thin, numerous, camptodrome, except for a craspedodrome one running to the broadly rounded tip of each subordinate lobe.

Cissites formosus was dcscribed by Heer ${ }^{1}$ from the Atane beds of West Greenland, and it has been recorded from the Dakota sandstone of the West and the Raritan formation of New Jersey. The present variety differs from the type in lacking the long bifurcated lateral lobes, in the morc elongated terminal lobe and the less development of subordinate lobation. It is confined to the Magothy formation of Maryland, but may be compared with Cissites dentato-lobatus Lesquercux of the Dakota group, and Cissites vitifolia Velenovsky of the Cenomanian of Bohemia. All of these forms are probably descended from Cissites parvifolius Berry, which is so common in the Patapsco formation and the Albian of Portugal.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

[^58]
Cissites newberryi n. sp.

Cissites crispus Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 108, pl. xlii, figs. 20-23 (non Velenovsky, 1885).
Cissites crispus Berry, 1906, Bull. Torrey Bot. Club, vol. xxxii, p. 177.
Cissites crispus Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 186.
Description.-Leaves of variable but small size, narrowly elliptieal or obovate to nearly orbicular in general outline. Length ranging from 5.5 mm . to 2 em . Maximum width, in the middle part of the leaf, ranging from 4 mm . to $1 . \% 5 \mathrm{~cm}$. Apex broad or narrow, bluntly pointed. Base narrowly or broadly euneate. Margins with relatively very large, somewhat irregular teeth, which are either serrate or dentate. Texture subcoriaceous. Petiole relatively long and stout, about one-half the length of the lamina. Midrib curved or flexuous, thin. Secondaries thin, two or three opposite to alternate pairs, diverging from the the midrib at acute angles, indifferently camptodrome or eraspedodrome. Tertiaries obsolete.

This species, while it resembles Cissites crispus Velenovsky ${ }^{1}$ and is probably related to it, is entirely distinet. This is especially true of the Magothy leaves contained in carbonate of iron nodules which the writer has identified as this speeies from New Jersey and Delaware, both this and the Raritan determinations are therefore referred to a new speeies named in honor of the late Professor Newberry.

It differs from Cissites crispus by its relatively longer and narrower form; its serrate and dentate instead of crenate teeth; its more ascending and frequently eamptodrome secondaries; its obsolete tertiaries; and its cuneate instead of markedly cordate base.

Occurrence.-Magothy Formation. Deep Cut, Delaware.
Collection.-Maryland Geologieal Survey.

[^59]
Order MALVALES

Family STERCULIACEAE
Genus STERCULIA Linné
[Sp. Pl., 1753, p. 1007]
Sterculia minima Berry
Plate LXXX, Figs. 1-3
Sterculia mucronata Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 90, pl. xliii, fig. 3.
Sterculia minima Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 177.
Sterculia minima Berry, 1906, Ann. Rept. State Geol Survey of New Jersey for $1905, \mathrm{pp} .139,140,141,152$.

Description.-Leaves of small size, digitately bilobatc, trilobate, quadrilobate (and probably quinquelobate, although the latter type has not been discovered). Length ranging from 3.75 cm . to 6.5 cm . Maximum width from tip to tip of the lateral lobes ranging from 3 cm . to 7 cm . Leaf substance subcoriaceous. Margins entirc. Lobes narrow, acutely pointed, somewhat conical, diverging from one another at angles of about 35°, separated by usually deep sinuses, rounded at their angles and extending to or, usually, below the middle of the leaf. Leaf base broadly cuneate or rounded. Primaries two or three, of aproximately cqual caliber, diverging from one another at angles of about 35° some distance above the base of the leaf. Petiole not preserved, probably relatively long or it would not furnish sufficient leverage to break the lcaf across the base of the primaries as is the case in nearly every specimen. Secondaries mostly immersed in the leaf-substance, a few that are visible show that they diverge from the primaries at wide angles, at frequent, more or less regular, intervals and have their ends connected by flat wide arches close to the margins.

The present species is the smallest of the American Cretaceous species of Sterculia, although some of the smaller forms approach it in size and appearance. It may be distinguished from the latter by its smaller size, its less conical lobes, directed upward instead of laterally, and its suprabasilar primaries.

In common with numerous existing and fossil species of Sterculia it is an exceedingly variable form in the number of its lobes, but is otherwise well characterized. It is only known from the Magothy formation and ranges from Raritan Bay, in Ncw Jersey, to Maryland. The modern spccies of Sterculia number upwards of one hundred. They are divided into three sections, Digitatæ, Lobatæ, and Integrifoliæ. The first is almost entirely oriental (farther India to New South Wales) with only one endemic American species (in Mcxico). The second is found in Asia, Africa, Australia, and America. It contains more existing species in America than either of the other two sections and all of the rather numerous Middle Cretaceous species of America, including the present form, appear to belong in this section. The third section is represented in the modern flora of Asia, Africa, and America (five or six species).

The present species is not unlike some of the smaller forms of Sterculia mucronata Lesquereux ${ }^{1}$ It is also very similar to and probably represents an ancestral form of Sterculia labruscoides Berry, a Middle Eocene (Claiborne) species of the Mississippi embayment region. Several recent tropical American species of the section Lobatæ resemble it more or less closely. Perhaps the most similar modern form is Sterculia diversifolia Don, especially the variety occidentalis Bentham of the Australian region as pointed out by the writer in 1903.

Occurrence.-Magothy Formation. Grove Point, Cecil County, Maryland; Deep Cut, Dclaware.

Collection.-Maryland Geological Survey.

Steroulia oliffwoodensis Berry

Plate LXXX, Fig. 4
Sterculia cliffwoodensis Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 88, pl. xliii, fig. 5.
Sterculia cliffwoodensis Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiil, p. 178.
${ }^{1}$ Lesquereaux, Mon. U. S. Geol. Survey, vol. xvil, 1892, p. 182, pl. xxx, figs. 1-4.

Description.-Leaves of relatively large size, palmately trilobate, with a somewhat decurrent base, divided three-fourths of the distance to the base by openly cuneate, ultimate rounded sinuses. Lobes diverging at angles of from 45° to 50°, linear-lanceolate or slender-conical, elongated, acuminate, the middle one the same size as or slightly wider than the later lobes. Margins entire. Texture subcoriaceous. Length about 17 cm . Petiole stout, its length unknown. Midrib straight, stouter than the lateral primaries. Lateral primaries suprabasilar, never observed to be opposite, but diverging from the midrib at angles of about 45° from 2 mm . to 4 mm . apart, slightly curved at first and then straight to the tip of the lateral lobes. Sccondaries thin, often obsolete, diverging from the primaries at wide angles, often approaehing 90°, straight for two-thirds to threefourths of the distance to the margins where they turn abruptly upward to form flat arches joining the secondaries next above. Tertiaries thin, usually obsolete, forming relatively large three-sided, four-sided, or fivesided, mostly isodiametric meshes.

This handsome species is unfortunately represented by very fragmentary material, the long slender lobes being usually broken away. It was described from Cliffwood Bluff, New Jerscy, in 1903, and subsequently deteeted near the eastern border of Maryland. It is rather close to Sterculia lugubris Lesquereux ${ }^{1}$ from the Dakota group, a species that has been tentativcly identificd by the writcr ${ }^{2}$ from the Woodbine formation of northeastern Tcxas. The latter has more ascending lobes, which are also somewhat widened medianly. It has much stouter primaries, the laterals being opposite and basal.

Occurrence.-Magothy Formation. Deep Cut, Delaware.
Collection.-Maryland Geological Survey.
${ }^{1}$ Lesquereux, Cret. and Tert. Fl., p. 81, pl. vi, figs. 1-3, 1883.
${ }^{2}$ Berry, Bull. Torrey Bot. Club, vol. xxxix, p. 399, pl. xxxi, fig. 3, 1912.

Order THYMELEALES

Family LAURACEAE
Genus CINnamomum Sprengel
[Anleit., Bd. ii, 1818, p. 340]
Cinnamomum newberryi Berry
Plate LXXI, Fig. 6
Cinnamomun sezannense Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 77, pl. xix, fig. 8; pl. xxxiii, figs. 11, 12 (non Watelet).
Cinnamomum sezannense Heer, 1883, Ibidem, Bd. vii, p. 30, pl. lxi, fig. 1a (non Watelet).
Cinnamomum sezannense Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 107, pl. xii, fig. 7 (non fig. 6, which is a leaf of Cinnamomum membranaeeum (Lesquereux) Hollick).
Cinnamomum sezannense Dawson, 1894, Trans. Roy. Soc. Canada, 1st ser., vol. xi, sec. iv, p. 64, pl. xiii, fig. 58 (non Watelet).
Cinnamomum sezannense Hollick, 1894, Bull. Torrey Club, vol. xxi, p. 53, pl. clxxx, figs. 5, 7 (non Watelet).
Cinnamomum intermedium Smith, 1894, Geol. Coastal Plain in Ala., p. 348 (nomen nudum).
Cinnamomum intermedium Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 89, pl. xxix, figs. 1-8, 10 (non Ettingshausen).
Cinnamomum intermedium Hollick, 1901, Mon. U. S. Geol. Survey, vol. i, p. 74, pl. xxix, fig. 7; pl. xxx, figs. 1, 2 (non Ettingshausen).

Cinnamomum sezannense Penhallow, 1902, Trans. Roy. Soc. Canada, 2d ser., vol. viii, sec. iv, p. 46 (non Watelet).
Cinnamomum sezannense Hollick, 1903, Ann. Rept. N. Y. State Mus., 55th for 1901, p. r. 50.
Cinnamomum intermedium Berry, 1906, Rept. State Geol. of New Jersey for 1905, p. 139, pl. xx, figs. 2-6 (non Ettingshausen).
Cinnamomum intermedium Berry, 1906, Bull. Torrey Bot. Club, vol. xxxili, p. 179, pl. vii, figs. 3, 4.

Cinnamomum intermedium Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 27, (non Ettingshausen).

Cinnamomum newberryi Berry, 1911, Ibidem, vol. xxxviii, p. 423.
Cinnamomum newberryi Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 150 , pl. $x v i$, fig. 3.

Cinnamomum newberryi Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, pp. 54, 117, pl. ix, figs. 12, 13; pl. xxi, figs. 9-11.

Description.-Leaves ovate-lanceolate in outlinc, 7 cm . to 12 cm . in length by 2.3 cm . to 4 cm . in width. Apex usually obtuscly pointed, sometimes acute. Below narrowed to an acute base. Petiole stout. Venation stout. Primaries three, the laterals diverging from the midrib at acute
angles usually some distance above the base, and traversing at least more than half the distance to the tip. Secondaries in the upper half of the leaf, three or four pairs, alternate, camptodrome. The laterals give off numerous camptodrome branches on the outside.
This species is quite common in the Raritan formation of New Jersey at nearly all of the fossiliferous localities, and it has also a considerable additional range, cxtendiug eastward on Long Island and southward through Delaware and Maryland to Alabama. A very similar leaf which is widely distributed in the Cenomanian of Bohemia is identified by Velenorsky ${ }^{1}$ as

Numerous occurrences of Cinnamomum newberryi have been confused with the European Lower Eocene species Cinnamomum sezannense Watelet, although the two are perfectly distinct.

Occurrence.-Raritan Formation. East Washington Heights, District of Columbia. Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County; Round Bay and Little Round Bay, Anne Arundel County, Maryland.

Collections.-Maryland Geological Survey, U. S. National Museum.

Genus LAURUS Auct.

Laurus plutonia Heer
Plate LXXI, Fig. 5
Laurus plutonia Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 75, pl. xix, figs. 1d, $2-4$; pl. xx, figs. 3a, 4-5; pl. xxviii, figs. 10, 11; pl. xliii, figs. 4b.
Laurus plutgnia Heer, 1883, Ibidem, vol. vii, p. 30, pl. xlviii, fig. 2; pl. 1xii, fig. 1 a .
Laurus plutonia Velenovsky, 1884, Fl. Böhm. Kreidef. Theil iii, p. 1, pl. iv, figs. 2-4.
Laurus plutonia Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 91, pl. xiii, pt. i, p. 14; pl. A, fig. 6; pl. B, fig. 5.
Laurus plutonia Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 85, pl. xvi, figs. $10,11$.
Laurus plutonia Hollick, 1898, Ann. N. Y. Acad. Sci., vol. xl, p. 60, pl. iv, figs. 6, 7.
Laurus plutonia Frič and Bayer, 1901, Archiv. Naturw. Landes. Böhm., Bd. xi, Nr. ii, p. 130, tf. 94.
Laurus plutonia Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 79, pl. i, figs. 9-11.

[^60]Laurus plutonia Berry, 1906, Bull. Torrey Bot. Club, vol. xxxi, p. 77, pi. iii, fig. 1.
Laurus plutonia Berry, 1906, Ibidem, vol. xxxiii, p. 178.
Laurus plutonia Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 80, pl. xxvif, figs. 9, 11; pl. xxviii, figs. 1, 2.
Laurus plutonia Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 26.
Laurus plutonia Berry, 1912, Ibidem, vol. xxxix, p. 401.
Laurus plutonia Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 86, p. 52, pl. xi, fig. 2; pl. xiii, fig. 6.

Description.-Leaves lanceolate in outline, usually tapering almost equally in both directions, but sometimes less acute at the base. Length 7 cm . to 11 cm . Maximum width 1.5 cm . to 2.5 cm . Midrib mediumly stout. Petiole short and stout, 6 mm . to 15 mm . in length. Secondaries slender, eight or more alternate pairs, camptodrome.

This species was described by Heer from the Atane beds of Greenland, and a large number of somewhat variable and fragmentary specimens were figured.

Subsequent to its description by Professor Heer, this species was recorded from a very large number of Cretaceous plant beds so that its present range, both geographical and geological, is rather wide. A number of these records are not entirely above question, and this appears to be especially true of the forms from the Cenomanian of Bohemia which Velenovsky so identifies (op. cit.).

Laurus plutonia is evidently a rare plant in the Raritan formation, but becomes abundant in immediately succeeding floras, being common in that of the Dakota group of the West, and in the Magothy formation of the East, at a number of localities in New Jersey and Maryland. It is a common form in the insular Cretaceous floras, and also occurs in the Tuscaloosa, Woodbine and Eutaw formations of the Gulf Coastal Plain. Supposed fruits are figured by Heer (loc cit., pl. xlii, fig. 4b). In South Carolina this species is represented by typical leaves which are not at all uncommon in the Middendorf beds. It has not yet been detected in the North Carolina Cretaceous.

Occurrence.-Magothy Formation. Grove Point, Cecil County: Round Bay, Anne Arundel County.

Collection.-Marvland Geological Survey.

Laurus hollickit Berry
 Plate LXXI, Fig. 4

Laurus hollickii Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 79, pl. lii, fig. 4.
Laurus hollickii.Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, p. 77, pl. iii, fig. 2.
Laurus hollickii Berry, 1906, Ibidem, vol. xxxiii, p. 178.
Laurus hollickii Berry, 1906, Ann. Rept., State Geol. Survey of New Jersey for 1905, pp. 138-141.
Laurus hollickii Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 26.
Description.-Leaves of variable size, lanceolate in general outline, the apex and base about equally acuminate. Length ranging from 4 cm . to 8 cm . Maximum width, in the middle part of the leaf, ranging from 8 mm . to 14 mm . Margins entire, evenly rounded. Texture subcoriaceous. Midrib stout, straight or curved. Secondaries thin but prominent, distant, usually evenly spaced, about five pairs, diverging from the midrib at acnte angles, ascending, evenly curved, dying out by diminishing camptodrome inosculations along the borders. Tertiaries obsolete.

This characteristic small lauraceous form is common in the Magothy formation to which it is confined. It ranged from Raritan Bay in New Jersey to the Severn River in Maryland, and suggests numerous modern species of Nectandra as well as various early Eocene species of this genus.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County; Round Bay, Little Round Bay, Anne Arundel County, Maryland.

Collection.-Maryland Geological Survey.

Ladrus proteffolia Lesquereux
 Plate LXXV, Fig. 1

Laurus protecofolia Lesquereux, 1876, Bull. U. S. Geol, and Geog. Survey Terr., vol. i, 1875, p. 393.
Laurus proterefolia Lesquereux, 1876, Ann. Rept. U. S. Geol. and Geog. Survey Terr. for 1874, p. 342, pl. v, figs. 1, 2.
Laurus protecfolia Lesquereux, 1883, Cret. and Tert. Flora, p. 52, pl. iii, figs. 9, 10; pl. xvi, fig. 6.
Laurus protexfolia Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 92.

Laurus proterfolia Knowlton, 1901, 21st Ann. Rept. U. S. Geol. Survey, pt. vii, p. 318.

Laurus proteæfolia Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 78, pl. xlvii, fig. 9; pl. xlix, fig. 6.
Laurus protecefolia Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, p. 78, pl. i, fig. 10.
Laurus protecfolia Berry, 1905, Ibidem, vol. xxxii, p. 46, pl. ii, fig. 3.
Laurus protecfolia Berry, 1906, Ann. Rept. State Geol. Survey of New Jersey for 1905, p. 138.
Laurus protearfolia Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 26.
Description.-"Leaves subcoriaceous, broadly lanceolate, gradually narrowed from below the middle into a long acumen, more rapidly narrowed to the base; middle nerve narrowly grooved and comparatively narrow; lateral veins oblique, slender, curving to and along the borders, parallel, except the lower pair, which is more oblique and ascends higher."Lesquereux, $18 \% 6$.

This species was described originally from the Dakota group and has a considerable range in the American Upper Cretaceous, being recorded from the Woodbine formation of Texas and not at all rare in the Magothy formation from New Jersey to Maryland. It greatly resembles certain undescribed Wilcox Eocene species of Nectandra and Oreodaphne, as well as various existing tropical American species in these two genera.

Occurrence.-Magothy Formation. Grove Point, Cecil County; Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Genus LaUROPHYLLUM Goeppert
[Tertiärfl. Java, 1854, p. 45]
Laurophyllum elegans Hollick
Plate LXXI, Figs. 1-3
Laurus plutonia Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xi, p. 99, pl. fii, figs. 3,4 (non Heer).
Laurus plutonia Hollick, 1893, Ibidem, vol. xi, p. 236, pl. vi, fig. 1 (non Heer).
Proteoides daphnogenoides Hollick, 1898, Ann. N. Y. Acad. Sci., vol. xi, p. 420 , pl. xxxvi, fig. 2 (non Heer).
Laurophyllum elegans Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 81, pl. xxvii, figs. 1-5.
Laurophyllum elegans Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, pp. 26, 198.
Laurophyllum elegans Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 53, pl. xil, fig. 6.

Description.-Leaves elongate-lanceolate, somewhat flexuous, about 12 cm. to 13 cm . in length by about 2 cm . in greatest width, which is about midway between the apex and the base; from this point they narrow gradually apically into an attenuated acuminate, usually curved, tip; and basally into a long, narrowly euneate base. Midrib and petiole stout. Secondaries numerous, usually less close and somewhat coarser than in Laurophyllum nervillosum, branching from the midrib at an acute angle below, which becomes more open above the base of the leaf ; they are usually more curved than in L. nervillosum and more distinctly camptodrome. Tertiaries transverse throughout.

These leaves were recorded originally by Hollick as Laurus plutonia Heer and were later compared with Laurus angusta Heer, which latter speeies they resemble more than they do the former. In outline they are not unlike Laurophyllum angustifolium Newberry from the Raritan formation of Woodbridge, New Jersey, but differ decidedly in venation. They are also similar to, but quite distinct from, Laurophyllum nervillosum Hollick of the Magothy and Laurophyllum reticulatum Lesquereux of the Dakota group.

The types were from transported matcrials associated with the terminal moraine, from which numerous specimens have been collected. Those from Tottenville, Staten Island, are undoubtedly of Raritan age, while those from Glen Cove were probably from the Magothy formation. The species is certainly known from the upper Raritan at South Amboy, New Jersey, and is common in the Magothy formation of Maryland. It is sparsely represented in the Black Creek beds of North Carolina and is not uncommon near Middendorf, South Carolina.

Occurrence.-Magothy Formation. Grove Point, Cecil County; Round Bay, Anne Arundel County.

Collection.-U. S. National Museum.
Laurophyllum angustifolium Newberry
Laurophyllum angustifolium Newberry, 1896, Mon, U. S. Geol. Survey, vol. xxvi, p. 86, pl. xvii, figs. $10,11$.
Laurophyllum angustifolium Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 80 , pl. xlvii, figs. 1, 5, 8; pl. xlix, figs. 1-5.

Laurophyllum angustifolium Berry, 1906, Bull. Torrey Bot. Club, vol. xxxili, p. 178.

Description.-Leaves elongate-lanceolate, very symmetrical in outline, 10 cm . to 15 cm . in length by 1.5 cm . to 2 cm . in width, widest above the middle, tapering with almost straight sides to the elongate-acute base. Apex narrowed, subacute. Petiole short and stout. Midrib also stout. Secondaries fine, often obsolete, twelve to fifteen pairs, branching from the midrib at an angle of about 45° and curving upward, camptodrome. Texture subcoriaceous.

This species was originally described from the middle Raritan of New Jersey, where it is common. It has also been found in the overlying Magothy formation in both New Jersey and Maryland and in the Tuscaloosa formation of Alabama. In the absence of complete and well-marked specimens it is often difficult to differentiate it from contemporaneous species of other genera with similar lanceolate leaves.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Genus SASSAFRAS Nees

[Hand. Bot., vol. 1i, 1831, p. 418]

Sassafras acutilobum Lesquereux

Plates LXXII; LXXIII; LXXIV, Figs. 1, 2 ; LXXV, Fig. 2
Sassafras acutilobum Lesquereux, 1874, Cret. Fl., p. 79, pl. xiv, figs. 1, 2.
Sassafras acutilobum Lesquereux, 1883, Cret. and Tert. Fl., p. 56, pl. v, figs. $1,5$.
Sassafras acutilobum Velenovsky, 1884, Fl. Böhm Kreidef., Thiel iii, p. 2, pl. ii, fig. 1.
Sassafras acutilobum Lesquereux, 1892, Fl. Dakota Group, p. 100.
Sassafras acutilobun Hollick, 1893, Trans. N. Y. Acad. Sci., vol. xii, p. 236, pl. vii, fig. 1.
Sassafras acutilobum Newberry, 1896, Fl. Amboy Clays, p. 87, pl. xxv, figs. 1-10; pl. xxvi, figs. 2-6.
Sassafras acutilobum Frič and Bayer, 1901, Archiv. Naturw. Landes, Böhm. Bd. xi, Nr. ii, p. 129, tf. 93.
Sassafras acutilobum Kurtz, 1902, Revista Mus. La Plata, vol. x, p. 53.
Sassafras acutilobum Berry, 1902, Bot. Gazette, vol. xxxiv, p. 438.
Sassafras acutilobum Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, pl. 81, pl. xlv, figs. 1, 2.

Sassafras acutilobum Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, pl. i, fig. 6.
Sassafras acutilobum Berry, 1906, Ann. Rept. State Geol. Survey of New Jersey for 1905, p. 139, pl. xxii, figs. 4, 5.
Sassafras acutilobum Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 77, pl. xxx, figs. 8, 9.
Sassafras acutilobum Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 22.
Sassafras acutilobum Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 140, pl. xviii, fig. 2.

Description.-Trilobate leaves, variable in size and outline. Length 2.5 cm . (in young leaves which are preserved at Woodbridge, New Jersey) up to 14 cm ., averaging 10 cm . to 12 cm . Width from the tips of the lateral lobes likewise ranging from 1 cm . to 15 cm ., averaging about 10 cm . Lobes mostly conical and acute, the middle being usually slightly the broadest and longest. Lateral lobes directed more or less laterally. Base decurrent. The sinuses between the lobes are usually open and rounded, the margins forming an angle of approximately 90°. There is considerable variation, however, in this respect, some of the leaves having comparatively narrow sinuses with the lobes directed upward, as in Sassafras progenitor Hollick, while others at the opposite extremc of the series have extremely shallow sinuses, so shallow that the leaf has the appearance of a triangularly pointed, entire leaf. The lateral primaries may branch from the midrib at or near the base, as they do in a majority of the Raritan forms, or their point of divergence may be a considerable distance above the base, as in modern Sassafras leaves. Their angle of divergence from the midrib varies from about 30° to 40°. The secondaries are usually numerous, regular, camptodrome, and connected by transverse tertiaries, although in the Raritan leaves this uniformity is often lacking. Petiole stout and long. The margin vein along the sinus, a marked feature in modern leaves of this genus, is generally wanting in this species, although present in occasional specimens.
This species is apparently widely distributed and almost as variable as the modern Sassafras. Described originally from the Dakota group as a variety of Sassafras mudgei, it occurs also on Marthas Vineyard and Long Island and in the Raritan and Magothy formations of New Jersey and Delaware. It has been recorded from Cerro Guido, Argentina, and Vele-
novsky identifies somewhat doubtful remains from the Cenomanian of Bohemia as this species. Probable Sassafras fruit has been found in the same strata with S. acutilobum, ${ }^{2}$ tending to show that it is a true Sassafras, notwithstanding its dissimilarities; however, this is not certain, as the leaves and fruits were not found associated.

There is considerable doubt as to whether or not these Coastal Plain leaves are generically related to Sassafras. Whether the Dakota group forms are those of Sassafras it is not easy to decide. No modern Sassafras leaves have the primaries and the lateral lobes so nearly horizontal; the secondaries are not so uniformly regular, nor do they curve upward to join the next above at a point. In the modern leaf an outwardly and downwardly directed branch from the latter is emphasized. There is never such an open sinus, amounting as it does to nearly 90°, and the lobes in the modern leaf have their margins inflated and not straight. In these ancient leaves the sinus seldom has a marginal vein, the secondary in this region usually forking and striding it, or curving to join its neighbor. The secondary system seems to be uniform throughout the leaf, while in the modern leaf there is always evidence of changed conditions in that region around the sinus; the secondaries or their representatives from both the primaries and the midrib are changed in size and direction, and usually belong to the tertiary system. None of the Dakota leaves of this species show the characteristic basal venation of the modern leaf. While we should not, necessarily, expect Cretaceous species to conform to the modern type, still the character of the secondary system in the former is so different from what would obtain in a leaf descended from a simple ancestor, such as Sassafras is thought to have done, that we are inclined to associate these leaves with those trilobed forms which have been referred to Aralia or Sterculia, laying aside, for the present, any consideration as to whether or not they are true species of Aralia and Sterculia.

However, in view of the present uncertainty, and because of the havoc to the stratigraphic value of these leaves which would be wrought by any change of name, they are retained in the genus Sassafras pending more positive evidence of their affinity.

[^61]Occurrence.-Raritan Formation. Brightseat, Prince George's County, Maryland; East Washington Heights, District of Columbia. Magothy Formation. Grove Point, Cecil County, Maryland.

Collection.-Maryland Geological Survey.

Order MYRTALES

Genus EUCALYPTUS Auct.

Eucalyptus? attenuata Newberry
Eucalyptus : attenuata Smith, 1894, Geol. Coastal Plain Ala., p. 348 (nomen nudum).
Eucalyptus ? attenuata Ward, 1895, 15th Ann. Rept. U. S. Geol. Survey, p. 371 (nomen nudum).
Eucalyptus? attenuata Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. iili, pl. xvi, figs. 2, 3 (non fig. 5).

Eucalyptus? attenuata Berry, 1906, Ann. Rept. State Geol. Survey of New Jersey for 1905, p. 138.
Eucalyptus ? attenuata Berry, 1906, Bull. Torrey Bot. Club, vol. xxxili, p. 180.

Eucalyptus ? attenuata Berry, 1907, Ibidem, p. 203.
Eucalyptus : attenuata Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 195, pl. xxviii, fig. 6.

Description.-Leaves lanceolate in outline, 9 cm . to 12 cm . in length by 1.5 cm. to 2 cm . in greatest width, which is in the basal half of the leaf. Margin entire, somewhat undulate in some specimens. Apex narrow and produced, acutely pointed. Base cuncate. Petiole stout, 1 cm. to 2 cm . in length. Midrib stout, especially in its lower part. Secondaries numerous, branching from the midrib at an acute angle, reticulate-camptodrome.

This species has little in comnon with the leaves usually referred to this genus, except its outline, which is also that of a great many unallied genera. It is somewhat suggestive of some of the leaves referred to Laurophyllum, in fact many possible relationships could be suggested, all of which posscss equal clements of uncertainty.

This species is common in the upper Raritan and has a recorded range of considerable extent in somewhat later formations. It is recorded from
the Magothy formation of New Jersey and Maryland, the Black Creek formation of North Carolina, and the Tuscaloosa formation of Alabama.

Occurrence.-Magothy Formation. Grove Point, Cecil County; Round Bay, Anne Arundel County.

Collection.-U. S. National Museum.

Euoalyptus latifolia Hollick

Plate LXXXI, Figs. 6, 7
Eucalyptus latifolia Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 97, pl. xxxv, figs. 1-5.
Eucalyptus latifolia Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 26.
Description.-Leaves elongate-ovate in outline, tapering to a somewhat abruptly attenuated and more or less curved or flexuous tip. Base cuneate. Length about 15 cm . Maximum width, about half-way between the apex and the base, about 5 cm . Midrib stout, flexuous. Secondaries thin, numerous, diverging from the midrib at angles of from 45° to 50°, nearly straight or flexuous, their tops joined by a marginal vein. Margins entire. Texture subcoriaceous.

These large leaves occur in the Magothy formation of Marthas Vineyard, Long Island, and Maryland. They are not uncommon at one locality in the lower Tuscaloosa of Alabama. Their relation to Eucalyptus is extremely doubtful, but a change of generic reference is not considered advisable at the present time.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Eucalyptus geinitzi (Heer) Heer

Plate LXXXI, Figs. 1-5
Myrtophyllum geinitzi Heer, 1872, Fl. v. Moletein, p. 22, pl. xi, figs. 3, 4.
Myrtophyllum geinitzi Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 116, pl. xxxii, figs. 14-17.
Myrtophyllum geinitzi Frič, 1878, Archiv. Naturw. Landes, Böhm., Bd. iv, Nr. i, pp. 18, 94.
Eucalyptus geinitzi Heer, 1885, Fl. Foss. Arct., Bd. vi, Ab. il, p. 93, pl. iv, figs. 1, 13; pl. xix, fig. 1c.

Eucalyptus geinitzi Engelhardt, 1891, Isis. Ab. vii, p. 102.
Eucalyptus geinitzi Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 138, pl. xxxvii, fig. 20.
Myrtophyllum warderi Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvil, p. 136, pl. liii, fig. 10.

Eucalyptus? angustifolia Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi (non Desv. 1822), p. 111, pl. xxxii, figs. 1, 6, 7.
Eucalyptus geinitzi Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 110, pl. xxxii, figs. 2, 12 (non figs. 15, 16).
Eucalyptus geinitzi Krasser, 1896, Beitr. z. Kennt. Kreidef. Kunstadt in Mahren, p. 22.
Eucalyptus geinitzi Hollick, 1898, Ann. N. Y. Acad. Sci., vol. xi, p. 60, pl. iv, figs. 1-3.
Eucalyptus geinitzi Frič and Bayer, 1901, Archiv. Naturw. Landes, Böhm., Bd. xi, Nr. ii, p. 142, tf. 110.
Eucalyptus geinitzi Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 87, pl. liii, fig. 3.
Eucalyptus ? angustifolia Hollick, 1904, Bull. N. Y. Bot. Garden, vol. iii, p. 408, pl. lxx, figs. 8, 9.
Eucalyptus geinitzi Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, p. 78, pl. iv, fig. 5.
Eucalyptus geinitzi Berry, 1906, Ibidem, vol. xxxiii, p. 180.
Eucalyptus geinitzi Berry, 1907, Ibidem, vol. xxxiv, p. 201, pl. xv, fig. 4.
Eucalyptus ? angustifolia Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. $95, \mathrm{pl}, \mathrm{xxxv}$, figs. 9, 14, 15.
Eucalyptus geinitzi Hollick, 1907, Mon. U. S. Geol. Survey, vol. i, p. 96, pl. xxxv, figs. 1-8, 10-12.
Eucalyptus geinitzi Berry, 1907, Johns Hopkins Univ. Circ., n. s., No. 7, p. 81.

Myrtophyllum warderi Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 97, pl. xxxv , fig. 13.
Eucalyptus geinitzi Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 26.
Eucalyptus geinitzi Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 189, pl. xxviii, fig. 7.
Eucalyptus geinitzi Berry, 1912, Bull. Torrey Bot. Club, vol. xxxix, p. 402.
Eucalyptus geinitzi Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 56 , pl. xiii, figs. 8-12; pl. xiv, fig. 1.

Description.-Leaves lanceolate in outline, broadest near the middle and tapering almost equally in both directions to the acute apex and base. There is considerable variation in size, averaging about 15 cm . in length by 2.2 cm . in greatest width. The petiole is very stout, as is the prominent midrib, which leaves a sharp groove in impressions showing the lower surface. Secondaries numerous, thin, branching from the midrib at acute angles, about 45°, and running with but a slight curvature to the marginal
vein, which is either almost straight when the secondaries are close set, or more or less bowed when the secondaries are some little distance apart, as is often the case.

This species is especially wide-ranging. It was described originally from the Cenomanian of Moravia and has since been recorded from the Cenomanian of Saxony and the Cenomanian and Turonian of Bohemia, from the Atane beds of Greenland, the Dakota sandstone of the West, and from Marthas Vineyard to Texas along the Atlantic coast. It ranges upward into the Black Creek formation of North Carolina and is not rare in the Middendorf beds of South Carolina. In the Tuscaloosa formation of Alabama the species has not been commonly met with, but this may simply be due to accidents of preservation.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County; Round Bay and Little Round Bay, Anne Arundel County, Maryland.

Collection.-Maryland Geological Survey.

Eucalyptus wardiana Berry

Eucalyptus? dubia Berry, 1903, Bull. N. Y. Bot. Garden, vol. ii1, p. 87, pl. lii, fig. 1 (non Ettingshausen, 1887).
Eucalyptus wardiana Berry, 1905, Bull. Torrey Bot. Club, vol. xxxii, p. 47. Eucalyptus wardiana Berry, 1906, Ibidem, vol. xxxiii, p. 180.
Eucalyptus wardiana Berry, 1906, Rept. State Geol. of New Jersey for 1905, pp. 138, 139, 141.
Eucalyptus wardiana Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 57, pl. xiv, figs. 3, 4.

Description.-Leaves linear-lanceolate in outline with a pointed base and a gradually narrowed, acuminate tip. Length about 8 cm. to 10 cm . Maximum width about 1.3 cm . Margins entire. Texture subcoriaceous. Midrib of medium size. Secondaries very numerous, equally spaced, at intervals of about 1 mm .; they diverge from the midrib at angles of about 60° and pursue relatively straight courses to the immediate vicinity of the margins where their ends are united by a straight acrodrome marginal vein running close to and parallel with the margins. Tertiaries forming a double series of nearly isodiametric four-sided or five-sided meshes in each interval between adjacent secondaries.

This species greatly resembles some of the smaller forms that have been referred to Eucalyptus geinitzi, especially those with closely spaced secondarics. It is, however, quite different from the type of that species, and may be distinguished by its thinner midrib, more numerous secondaries, straighter marginal veins and more prominent tertiaries. It also greatly resembles Eucalyptus angusta Velenovsky ${ }^{1}$ of the Cenomanian of Bohemia, which species has been recorded by the writer from the upper Raritan of New Jersey and the later Upper Cretaceous in North Carolina and Georgia. It is possible that the two species may be confused since much of the material is fragmentary. Iiucalyptus wardiana is, however, more elongated, straighter, with more prominent tertiary areolation, and with the secondaries diverging at a wider angle. It characterizes the Magothy formation from Raritan Bay in New Jersey to the Severn River in Maryland, and also occurs in the Middendorf beds of South Carolina.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County; Round Bay, Annc Arundel County, Maryland.

Collection.-Maryland Geological Survey.

Order UMBELLALES

Family ARALIACEAE

Genus HEDERA Linné
[Sp. Pl., 1753, p. 202]
Hedera cretacea Lesquereux
Hedera cretacea Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 127, pl. xviii, fig. 1.
Hedera cretacea Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 180.
Description.-" Leaves subcoriaceous, broadly rhomboidal in outline, obtusely trilobate, subcordiform at base; borders undulate between the lobes, entire downward, nervation palmately five divided from the base; lower primary nerves simple, short and thin, the upper thick, passing up to the point of the lobes, branehing on the lower side and forking; secondaries four pairs, opposite, short, equidistant, and parallel with the upper primaries.

[^62]" The only leaf seen of this species is 7 cm . long, 8.5 cm . broad between the points of the lobes, which are short and obtuse. The lower secondaries are thick, forking at the apex and becoming effaced before reaching the borders, being, however, apparently camptodrome like the branches of the primaries."-Lesquereux, 1892.

The present material is fragmentary and not certainly determined as this species, although it is apparently distinct from the allied Hedera cecilensis Berry.

Occurrence.-Magothy Formation. Deep Cut, Delaware.
Collection.-Maryland Geological Survey.

Hedera oegilensis Berry
 Plate LXXVIII, Figs. 1, 2

Hedera cecilensis Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 28, pl. viii, fig. 2.
Description.-Leaves of medium size, orbicular in general outline with a tendency toward trilobation, 6 cm. to 7 cm . in length by about 6 cm . in greatest width. Margin entire, with shallow undulate lobes. Petiole and midrib stout. Lateral primaries suprabasilar, not differentiated from the secondaries in some specimens. Secondaries onc pair below the lateral primaries and one or two remote pairs above, forking dichotomously and craspedodrome in habit.

This species resembles in a general way several which Lesquereux referred to the genus Cissites, as for example, Cissites harkerianus and Cissites acuminatus. In appearance it suggests the somewhat larger Dakota group leaf which Lesquereux christened Platanus cissoides. It is closely related to Hedera cretacea Lesqureux, differing in the suprabasilar primaries and in the details of the general outline.

Hedera cecilensis is a very well marked species and is evidently allied to Hedera, clearly differentiated, however, from any of the previously described forms. The genus is rather prominent in Upper Cretaceous floras, both in Europe and America, the present species and Hedera cretacea Lesquereux resembling closely the existing species. The present
material is from the upper Magothy at Grove Point in Cecil County, from which it takes its name.

Occurrence.-Magothy Formation. Grove Point, Cecil County. Collection.-U. S. National Museum.

Genus ARALIA Linné
[Sp. Pl., 1753, p. 273]
Aralia grofnlandica Heer

Aralia groenlandica Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 84, pl. xxxviii, fig. 3; pl. xxxix, fig. 1; pl. xlvi, figs. 16, 17.
Aralia groenlandica Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 134, pl. liv, figs. 1-3.
Aralia groenlandica Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 116 , pl. xxviii, fig. 4.
Aralia groenlandica Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 94, pl. xlv, fig. 4.
Aralia groenlandica Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 98, pl. xxxvii, figs. 3-6.
Aralia groenlandica Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 199. Aralia groenlandica Berry, 1911, Bull. Torrey Bot. Club, vol, xxxviii, p. 408.

Description.-"A. foliis magnis, coriaccis, lævigatis, basi rotundatis, lobis subæqualibus, lobo medio sinu lato, rotundato, separato."--Heer, 1882.

This species is very poorly defined, both Heer and Lesquereux including in it leaves showing a quite considerable range of variability. They are all coriaceous, trilobate leaves of considerable size with long and short petioles. Length 6 cm . to 10 cm . Width 7 cm . to 12 cm . Lobes ovate, pointed or rounded, with open rounded sinuses, the lateral lobes showing a tendency to become sublobate below. Primaries slender, camptodrome. Lesquereux makes " five nerved from the top of the petiole," a character of this species as it is in all the specimens which he figures and in one or two of Heer's figures. These extra laterals are much more slender than are the regular primaries and are not constant unless the species be considered composite.

The Coastal Plain leaves referred to this species by Newberry, Hollick, and the writer are as a rule somewhat smaller in size, with narrower lnbes. This species is infrequent in the Raritan, and the leaves referred
to it are suggestive of what Newberry called Aralia patens. The species is more abundant in the somewhat later Cretaceous deposits of Marthas Vineyard, Cliffwood Bluff, and Sullivan's Cove. It was described originally from the Atane beds of Greenland and is also present in considerable abundance in the Dakota group of Kansas.

Occurrence.-Magothy Formation. Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Aralia ravniana Heer

Plate LXXXII, Fig. 4; Plate LXXXIII, Figs. 1-4
Aralia ravniana Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 84, pl. xxxviii, figs. 1, 2.
Aralia greenlandica Heer, 1882, Ibidem, pl. xlvi, fig. 17.
Aralia ravniana Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 92, pl. xliv, fig. 7; pl. liii, fig. 2; pl. lvii, fig. 1.
Aralia ravniana Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, p. 79.
Aralia ravniana Berry, 1910, Ibidem, vol. xxxvii, p. 27.
Description.-"A. foliis amplis, coriaceis, lævigatis, quinquelobis, lobis integerrimis, lobo medio maximo, basi valde contracto, ovali, lobis lateralibus oblongo-lanceolatis."-Heer, 1882.

This most striking species of Aralia, because of its large size, has always been found in a fragmentary condition. Specimens showing all parts of the leaf have now been collected, the Maryland material conclusively confirming the restoration of this leaf made by the writer in 1903 (op.cit.). It also confirms the supposition made from the venation of the New Jersey material, that instead of a broadly ovate median lobe, as Heer supposed, this middle lobe was sublobate by the greater or less development of a lateral lobe on each side, as shown in the accompanying restoration based on the Maryland material. The species may be more fully defined in the light of all of the material as follows: Leaves of large size, ranging from 16 cm . to 21 cm . in length and from 19 cm . to 23 cm . in maximum width, orbicular in general outline, deeply pinnate-lobate. Apex of the terminal and lateral lobes bluntly pointed. Base broadly cuneate. Margins entire. Texture subcoriaceous. Lobes usually seven in
number, separated by relatively narrow ultimately rounded sinuses, comprising an ovate medium terminal lobe and two main lateral lobes on either side, the lower pair being more or less divided. In the Maryland material the auxiliary lobe on the lower side of each main lateral lobe is feebly developed. In the Greenland material it is at least half as large as the main lobe and the separating sinus extends half-way to the base. Petiole stout, its full length unknown. Midrib very stout and prominent, straight. Lateral primaries two on each side, stout and prominent, the lower pair subopposite and suprabasilar, the upper pair sometimes subopposite, oftener separated by a wide interval. The lower primary may fork a short distance above its base, as it does in the Grecnland material after an interval of only about 1 cm ., or this fork may be at least 4 cm . above the base as in the Maryland material, the distance depending on the cxtent to which the auxiliary lobe is developed. The angle of divergence of the primaries from the midrib is about 40°, but varies from specimen to specimen, the basal pair in general being somewhat more divergent than the upper pair. The secondary and tertiary venation is usually obsolete. Some specimens show a few thin remote secondaries diverging from the primaries at angles of about 45° and sweeping upward in ascending camptodrome curves.

This species was described by Heer from the Greenland Upper Cretaceous (Atane beds) and has been found by the writer in the Magothy formation of both New Jersey and Maryland. The fragments from Marthas Vineyard, Massachusetts, and Tottenville, New York, identified as this species by Hollick, ${ }^{1}$ are not this spccies in the writer's judgment. There is a great clisplay of Aralia-like forms in the Middle Cretaceous both of this country and Europe, and these forms are especially abundant in the Dakota sandstone of the West. Among this diverse display of forms Aralia ravniana is approached in both size and outline by Aralia towneri Lesquereux of the Dakota sandstone, which is to be regarded as a closely related geographical mutant. Comparisons with existing plants are not so satisfactory, although many tropical Araliacecx show suggestive resem-

[^63]blances. The Moracece in the genus Artocarpus and its allies also show many features of this fossil species.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Aralia washingtoniana Berry

Plate LXXXII, Fig. 3
Aralia washingtoniana Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 27, pl. viii, fig. 4.
Description.-Leaves of medium size, broadly trilobate, about 9 cm. to 10 cm . in length by 8 cm . in greatest width. Sinuses shallow and rounded. Lobes broadly rounded. Petiole and midrib stout. Lateral primarics scarcely to be distinguished from the secondaries. Secondaries four or five subopposite pairs, rather straight, indifferently camptodrome or craspedodromc. Tertiaries well marked, transverse. Margins entire.
'The remains of this species are numerous but fragmentary. In general outline and venation they suggest a species of Aspidiophyllum, but they lack the characteristic base of that genus. There is some resemblance, not close, however, to Aralia rotundiloba Newberry and to Aralia nassauensis Hollick.

Occurrence.-Raritan Formation. East Washington Heights, District of Columbia.

Collection.--U. S. National Museum.

Genus ARALIOPSOIDES n. gen. ${ }^{1}$ Araliopsoides breviloba Berry

Plate LXXXVI, Fig. 2
Araliopsis breviloba Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 417.
Description.-Leaves of medium size, fan-shaped in general outline, between 10 cm . and 11 cm . in length by the same dimensions in maximum
${ }^{1}$ Since proposing the very appropriate name Araliopsis (Bull. Torrey Bot. Club, vol. xxxviii, 1911, p. 413) for this genus, the writer has discovered that this name is preoccupied, having been used by Engler in 1895 for a monotypic and little-known genus of Rutacere from Africa.
width, which is from tip to tip of the lateral lobes. Trilobate. Apical lobe very short and conical. Lateral lobes short and pointed, somewhat recurved outward. Sinuses open, shallow and rounded, not extending more than one-fifth of the distance from the apex to the base. Lateral margins at first full and rounded, then curving inward to the decurrent base. Primaries three in number, equally stout and curved, the laterals subopposite and suprabasilar. Secondaries numerous, curved, camptodrome, branching from the primaries at angles of less than 45°. Tertiaries transverse. Margins entire throughout. Texture coriaceous.

This characteristic leaf is probably the end term of a series of forms starting with Araliopsoides cretacea, but whether it represents an extreme of variation of that species or a distinct but related species cannot be definitely determined. The present form suggests various species from the Dakota sandstone of the West, which Professor Lesquereux referred to the genus Cissites. It is also similar to the form from the Cenomanian of Bohemia described by Velenovsky ${ }^{1}$ as Aralia anisoloba, differing slightly in outline and lacking the remotely dentate margins of the latter.

Occurrence.--Raritan Formation. Bull Mountain, Cecil County.
Collection.-Maryland Geological Survey.

Araliopsoldes cretacea (Newberry) ${ }^{2}$

Plate LXXIV, Fig. 3; Plate LXXXIV, Figs. 1, 2; Plate LXXXV, Figs. 1-5; Plate LXXXVIII, Figs. 1-3
Sassafras cretaceum Newberry, 1868, Ann. N. Y. Lyc. Nat. Hist., vol. ix, p. 14 (non Penhallow, 1904 and 1908).
Sassafras cretaceum Newberry, 1878, Ills. Cret. and Tert. Pl., pl. vi, figs. 1-4. Sassafras cretaceum Newberry, 1898, Mon. U. S. Geol. Survey, vol. xxxv, p. 98, pl. vi, figs. 1-4; pl. viii, figs. 1, 2 (non pl. vii, figs. 1-3).
Sassafras cretaccum Lesquereux, 1878, Cret. F., p. 80, pl. xi, figs. 1, 2; pl. xii, fig. 2.
Sassafras cretaceum? Kurtz, 1902, Revista Mus. La Plata, vol. x. Sassafras cretaceum Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvil, p. 22. Araliopsis cretacea Berry, 1911, Ibidem, vol. xxxviii, p. 413.

[^64]Description.-" Leaves petiolate, decurrent at base, very smooth above, strongly nerved below; three-lobed ; lobes entire and acute. The nervation is all strongly defined ; the central nerve straight or nearly so; the lateral primary nerve springing from it at an angle of 30°; secondary nerves regularly arched till they approach the margin of the lobes, when they are abruptly curved and run together. From these the tertiary nerves are given off at a right angle, and from these the quaternary nerves spring at a similar angle, together forming a network of which the areoles are subquadrate."-Newberry, 1868.

Professor Newberry includes under Sassafras cretaceum the various forms described by Professor Lesquereux as S. mudgei, S. subintegrifolium, S. integrifolium, S. obtusum, S. cretaceum dentatum, S. cretaceum obtusum, S. acutilobum, Cissites harkianus, and C. salisburicfolius. While this shows the undoubted composite nature of S. cretaceum, it also shows that the extremes of leaf form above mentioned are so closely connected with the more typical leaf by a series of intermediate forms that the question of where one species shall end and another begin is an extremely difficult one.

The writer considers the leaf figured by Prof. Newberry on pl. vi, fig. 1, Later Ext. Fl., to be the typical form of this species, thus agreeing with Newberry's original description and with his later opinion expressed in 1898. This type bears considerable resemblance to some modern Sassafras leaves. A slight widening of the terminal lobe of some of these in the basal region would give a leaf strikingly like Araliopsoides cretacea; or were the sinuses of the latter slightly deeper we would have the typical modern leaf. The basal portion of the leaf is like Sassafras, and the indications point to a similar venation in this region. The first pair of secondaries do not branch to form margins of the sinuses; the left one runs directly to the sinus, however, and may possibly have conformed to the margin and been effaced in the specimen; the right one is stronger and runs almost to the sinus where it makes a sharp turn upward, continuing until it joins the next secondary. This feature is analogous to those in the modern leaf, which may indicate the mode of origin of this peculiar character. This leaf seems to form a central figure from which a series of
forms grade in several directions, culminating in quite dissimilar leaves. Lesquereux's Sassafras cretaceum is a more planatoid leaf, with more acute tips, a tendency to become dentate, and with the primaries inserted nearcr the basc. Closely allied to the preceding is his Sassafras (Araliopsis) mirabile, which serves as a connecting link with his Platanus recurvata. From the aforementioned Sassafras cretaceum of Lesquereux it is but a step to such a leaf as the one shown on pl. viii, fig. 2, Later Ext. Fl., and to the trilobed forms referred to Cissites harkerianus, and these in turn grade into the more Cissoid forms of this species, such as those shown on pl. ii, fig. 3, Cret. Flora. The primaries are basal and of not much greater caliber than the regularly succeeding straight secondaries. It is but a step from this leaf to that of Cissites heerii on the one hand, with its palmately five-pointed blade, and to such forms as Cissites acuminatus on pl. v, fig. 4, Crct. and Tcrt. Fl., on the other; which in turn, by the elimination of the decreasing dentate points, gives us the leaf shown on pl. v, fig. 3, Cret. and Tert. Fl. In the second series of leaves diverging from the typical Sassafras cretuceum, pl. viii, fig. 1, Later Ext. Fl., is removed a slight distance by the shortening of the blade, the thickening of the primaries and secondaries, and the shortening and rounding of the lobes (Sassafras obtusum) ; while a smaller leaf would be its logical descendant; and from these leaves to those referred to the typical Cissites salisburicefolius is but a step. In the third series of leaves diverging from the typical Sassafras cretaceum, we note that the leaf has its lobes much produced, narrow and running to a sharp point, as in the beautiful leaf on pl. vii, fig. 1, Later Ext. Fl., which, however, is still referred to Sassafras cretaceum. Lesquereux's Sassafras acutilobum does not differ greatly from the preceding except in the direction of the lobes, which is a questionable specific character. From this leaf it is no great jump to those trilobed forms which are referred to Aralia wellingtoniana, the chief difference being in the margin. Thus we have an interrelated series connecting those leaves which seem to show affinity to Sassafras with those which suggest Platanus on the one hand, and with others which suggest Cissites and Aralia on the other.

While it may be considered probable that from a biologic viewpoint the forms mentioned in the foregoing paragraphs, as well as others not cited, represent the variations of a single species of Upper Cretaceous tree, or at least represent the leaves of closely filiated species, it seems best from the viewpoint of systematic, and especially stratigraphic, paleobotany, that most of the differentiations instituted by Lesquereux be perpetuated. Consequently the present series is limited to the typical material as defined and illustrated by the original describer.

Falling within these limits are a number of unrecorded occurrences from the Raritan formation of Maryland.

Occurrence.-Raritan Formation. Bull Mountain and Shannon Hill, Cecil County ; Brightseat, Prince George's County ; Glymont, Charles County, Maryland; East Washington Heights, Overlook Inn Road, District of Columbia.

Collections.-Maryland Geological Survey, U. S. National Museum.

> Araliopsoides cretacea dentata (Lesquereux) Berry Plate LXXXVII, Fig. 1

Sassafras (Araliopsis) cretaceum dentatum Lesquereux, 1846, Ann. Rept. U. S. Geol. and Grogr. Survey Terr. for 1874, p. 344.

Sassafras (Araliopsis) cretaceum Lesquereux, 1874, Cret. Fl., p. 80 (pars), pl. xi, figs. 1, 2.
Araliopsis cretacea dentata Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 416.

Description.-Leaves of small or medium size, trilobate in general outline, with euneate or deeurrent base, and aeuminate tips. Length ranging from 6 cm . to 11 cm . Maximum width, at a point about midway betwecn the apcx and the base, ranging from 5 em . to 10.5 cm . Sinuses separating the broad and rapıdly narrowed lobes, open and rounded, not reaching half-way to the base. Margins entire below, more or less dentate above. Teeth not prominent, widely and irregularly spaced, separated by very shallow sinuses. Petiole stout, enlarged at the basc, about 3 cm . in length. Midrib stout and prominent. Latcral primaries, one on each side running to the tips of the lateral lobes, stout, prominent, diverging from the midrib at acute angles (45° or less) above its base, slightly curved outward
in their course. Secondaries relatively stout, numerous, subparallel, camptodrome in those parts of the leaves where the margin is entire, a lesser or greater number craspedodrome in leaves or parts of leaves where the margin is dentate.

This species was described by Lesquereux from the Dakota sandstone as a form of Sassafras. It may be distinguished from the type by its usually smaller size and its more or less toothed margin. It is not common and may not be entitled to even varietal rank.

> Occurrence.-Raritan Formation. Bull Mountain, Cecil County. Collection.-Maryland Gcological Survey.

Araliopsoides cretacea salisburiefolia (Lesquereux) Berry

 Plate LXXXVI, Fig. 1; Plate LXXXVII, Figs. 2, 3Populites salisburicfolia Lesquereux, 1868, Amer. Jour. Sci. (ii), vol. xlvi, p. 94.

Sassafras obtusus Lesquereux, 1872, 5th Ann. Rept. U. S. Geol. Survey Terr. (Hayden), 1871, p. 303.
Sassafras obtusus Lesquereux, 1873, 6th Ann. Rept. U. S. Geol. Survey, Terr. (Hayden), 1872, p. 424.
Sassafras obtusum Lesquereux, 1874, Cret. Fl., p. 81, pl. xiii, figs. 2-4.
Sassafras (Araliopsis) cretaceum obtusum Lesquereux, 1874, Cret. Fl., p. 80, pl. xii, fig. 3; pl. xili, fig. 1.
Oissites obtusum Lesquereux, 1876, 8th Ann. Rept. U. S. Geol. Survey Terr. (Hayden), 1874, p. 354.
Sassafras (Araliopsis) obtusum Lesquereux, 1883, Cret. and Tert. Fl., p. 56. Oissites salisburiafolius Lesquereux, 1883, Cret. and Tert. Fl., p. 66.
Oissites salisburiœfolius Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 164.
I Sassafras cretaceum Newberry, 1898, Mon. U. S. Geol. Survey, vol. xxxv, pl. vili, fig. 1.
Cissites salisburicefolius Ward, 1899, 19th Ann. Rept. U. S. Geol. Survey, pt. 1i, p. 707, pl. clxxi, fig. 5.
Araliopsis cretacea salisburicefolia Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 416.

Description.-LLeaves of variable size ; trilobate in general outline; with a decurrent base ; and broad, usually but slightly developed, rounded lobes. Length ranging from 7 cm . to 13 cm . Maximum width, about midway between the apex and the base, ranging from 6 cm . to 15 cm . Margins entire. Texture subcoriaceous. Lobes usually wider than long, separated
by open, usually shallow, rounded sinuses. Petiole very stout, at least 4 cm . or 5 cm . in length. Midrib stout, prominent. Lateral primaries subopposite, suprabasilar, diverging from the midrib at acute angles, stout, prominent, craspedodrome. Secondaries numerous, stout, in general regularly spaced and subparallel, camptodrome.

This well marked variety was described originally from the Dakota sandstone where it is not uncommon. It has been referred successively to the genera Populites, Sassafras, and Cissites, but is a well marked form of Araliopsoides close to Araliopsoides cretacea.

Occurrence.-Raritan Formation. Bull Mountain, Cecil County. Collection.-Maryland Geological Survey.

Family CORNACEAE
Genus CORNUS Linné
[Sp. Pl., 1753, p. 117]
Cornus cecilensis Berry
Plate LXXXII, Fig. 2
Cornus cecilensis Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 408, pl. xix, fig. 4.

Description.-Leaves of medium size, broadly ovate or elongate-elliptical in general outline, 8.5 cm . in length by 4.75 cm . in maximum width, at a point about half-way between the apex and the base. Apex bluntly pointed. Base cuneate. Midrib stout. Secondaries about six pairs, branching from the midrib at an angle of about 45°, curving upward approximately parallel with the lateral margins, at length camptodrome. Tertiaries obsolete. Texture subcoriaceous.

Several Cretaceous forms have been referred to the genus Cornus, although this determination is not conclusively proven. Leaves of a similar facies are found among the Rhamnales, representatives of which order would be much more likely to occur under the climatic conditions of the Upper Cretaceous than would those of Cornus.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Cornus forchifamaleri Heer
 Plate LXXXII, Fig. 1

Cornus forchhammeri Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 85, pl. xliv, fig. 13.
Cornus forchhammeri Berry, 1910, Bull. Torrey Bot. Club, vol. xxxviii.
Description.-"C. foliis herbaceis, cllipticis, integerrimis, ncrvo medio valido, nervis secundariis utrinque 4 , oppositis, subtilibus, angulo acuto egredientibus, distantibus, curvatis, camptodromis."-Heer, 1882.

The Grove Point leaf is a trifle narrower than the type, otherwise the two are identical. Cornophyllum vetustum Newberry ${ }^{1}$ from the Raritan formation of New Jersey is possibly the same species. The features in which the Maryland leaf differs from that of Newberry are its more lanceolate form ; the symmetrical base ; the fewer secondaries (four to six, instead of six to seven), which form a much more acute angle with the midrib, and are more regular in their course; the presence of the transverse tertiaries, which are not visible in the Raritan leaf. The Grove Point leaf has a more regular margin, a longer petiole, a stouter midrib and a more secondary venation, all features in which the New Jersey leaf departs somewhat from the typical leaves of Cornus.

The present species was described from the Atane beds of Greenland to which it is confined except for its occurrence in the Magothy formation of Maryland. The generic reference is not positive and it may well be questioned if this and allied forms that are commonly referred to Cornus are not more properly referable to the Rhamnacece.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-U. S. National Museum.

Order ERICALES
 Family ERICACEAE
 Genus ANDROMEDA Auct.

Andromeda note-ceesareze Hollick
Plate LXXXXIX, Figs. 1, 2
Andromeda nove-cersarea Hollick, 1896, in Newberry, Mon. U. S. Geol. Sur. vey, vol. xxvi, p. 121, pl. xlii, figs. 9-12, 28-31.
Andromeda nove-casareæ Smith, 1894, Geol. Coastal Plain in Ala., p. 348.

[^65]Andromeda nove-cesarex Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 181.

Andromeda nove-cosaree Berry, 1907, Ibidem, vol. xxxiv, p. 29, vol. xxxvii, p. 29.

Andromeda nove-cosarece Berry, 1911, Bull. 3, Geol. Survey of New Jersey, pl. xx , fig. 7.
Andromeda nove-ccesarec Berry, 1912, Ibidem, vol. xxxix, p. 405.
Andromeda nove-cesarea Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, pp. 58, 120, pl. xiv, figs. 5, 6; pl. xxiv, fig. 1.

Description.-Leaves small, thick, and entire, with stout petioles and midribs and obscure secondary venation which is immersed in the thick lamina. Length 2.5 cm . to 5 cm . Width varying from 0.9 cm . to 1.3 cm . Venation, wherc visible, showing numerous parallel, camptodrome, relatively long and thin secondaries which branch from the midrib at acute angles. While the majority of these leaves are equally acuminate at both ends, there is considerable variation in this respect, and a well-marked tendency is shown in a considerable number of specimens which are relatively broader, especially in the upper half, toward an obtusely rounded apex, the ternination of the midrib showing as a small mucronate point. The base in these forms gradually narrows to the stout petiole. The variations in outline of this species are well shown in the figures reproduced in Professor Newberry's monograph, the specimens collected from the South Atlantic Coastal Plain having an obtusely rounded apex scemingly more often than those from New Jersey.
In the Raritan formation this species is only known with certainty from the uppermost beds at South Amboy, New Jersey. It becomes more abundant in the overlying Magothy formation, occurring from New Jersey to Maryland in beds of this age. Farther south it is found as one of the typical fossils of the Black Creek formation in North Carolina, being a prominent but never abundant element in the dark lignitic laminated clays of the upper beds associated with Araucaria, Cunninghamites, Pistia, etc., and a marine fauna.

It occurs in the Middendorf beds of South Carolina and is also present in Georgia and the Woodbine formation of northeastern Texas. It has not been observed to be common in the Tuscaloosa formation, being only
known from near the base. However, the abundance of this species at somewhat higher horizons in Georgia would indicate that its rarity in the Tuscaloosa deposits may be more apparent than real.

Occurrence.-Magothy Formation. Grove Point, Cecil County; Round Bay, Ann Arundel County.

Collection.-Maryland Geological Survey.

Andromeda cookil Berry

Plate LXXXIX, Fig. 3
Andromeda flexuosa Newberry, 1896, Mon. U. S. Survey, vol. xxvi, p. 121, pl. xxxiv, figs. 1-5 (non Moon 1849).
Andromeda flexuosa Hollick, 1904, Bull. N. Y. Bot. Garden, vol. iii, p. 416, pl. lxxix, fig. 2.
Andromeda flexuosa Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 101, pl. xxxix, fig. 6.
Andromeda cookii Berry, 1909, Bull. Torrey Bot. Club, vol. xxxvi, p. 261.
Andromeda cookii Berry, 1910, Ibidem, vol. xxxvii, p. 29.
Andromeda cookii Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 206, pl. xxvi, figs. 3, 4.

Description.-Leaves of variable size, narrowly lanceolate and often falcate in general outlinc, with an acuminate apex and a cuneate base. Length ranging from 6 cm . to 12 cm . in the middle part of the leaf. Margins entire. Texture coriaceous. Midrib stout and flexuous. Secondaries strong, somewhat flexuous, branching from the midrib at acute angles and arching upward in ascending camptodrome curves. Tertiaries mostly simple, transverse, forming oblong areoles.

This species is of the same general character as the other Cretaceous spccies of Andromeda, with which it is strictly congeneric. It makes its earliest appearance in the lower Raritan of New Jersey, where it is common. It is not uncommon in the overlying Magothy formation.

Occurrence.-Magothy Formation. Grove Point, Cecil County; Round Bay, Anne Arundel County.

Collection.-Maryland Geological Survey.

Andromeda parlatorit Heer

Plate LXXXIX, Fig. 4
Andromeda parlatorii Heer, 1866, Phyll. Crét. d. Nebr., p. 18, pl. i, fig. 5.
Prunus ? parlatorii Lesquereux, 1868, Amer. Jour. Sci., vol. xxxvi, p. 102. Andromeda parlatorii Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 112, pl. xxxii, figs. 1, 2.
Andromeda parlatorii Heer, 1882, Ibidem, Bd. vi, Ab. ii, p. 79, pl. xxi, figs. 1b, 11; pl. xlii, fig. 4c.
Andromeda parlatorii Lesquereux, 1874, Cret. Fl., p. 88, pl. xxiii, figs. 6, 7; pl. xxviil, fig. 15.
Andromeda parlatorii Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 115, pl. xix, fig. 1; pl. xlii, fig. 6.

Andromeda parlatorii Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 120, pl. xxxi, figs. 1-7; pl. xxxiii, figs. 1, 2, 4, 5.

Andromeda parlatorii Smith, 1894, Geol. Coastal Plain in Ala., p. 348.
Andromeda parlatorii Hollick, 1898, Ann. N. Y. Acad. Sci., vol. xi, p. 420, pl. xxxvii, figs. 1-4.
Andromeda parlatorii Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 101, pl. xxxix, figs. 2-5.
Andromeda parlatorii Berry, 1903, Bull. N. Y. Bot. Garden, vol. iii, p. 97, pl. i, figs. 1-4.
Andromeda parlatorii Berry, 1904, Bull. Torrey Bot. Club, vol. xxxi, p. 79, pl. i, figs. 1, 2.
Andromeda parlatorii Berry, 1906, Ibidem, vol. xxxiii, p. 181.
Andromeda parlatorii Berry, 1907, Ibidem, vol. xxxiv, p. 203, pl. xv, fig. 2.
Andromeda parlatorii Berry, 1907, Johns Hopkins Univ. Circ., n. s., No. 7, p. 81.

Leucothoe parlatorii Schimper, 1874, Pal. Végét., vol. iii, p. 11.
Andromeda parlatorii Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 29. Andromeda parlatorii Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 206, pl. xxvii, figs. 1-4.
Andromeda parlatorii Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 60 .

Description.-Leaves ovate-lanceolate in outline, with a long and gradually narrowed apex, and a broad, somewhat rounded, but finally cuneate or slightly decurrent base. Petiole and midrib stout. Length about 10 cm . to 12 cm . Maximum width about 3 cm . in the lower half of the leaf. Secondaries numcrous, rather thin, subparallel, branching from the midrib at acute angles, long and ascending, at length camptodrome. Tertiaries mostly straight, transverse. There is considerable variation in the size of these leaves and in the angle which the secondaries form with the midrib, and consequently in their length and degree of curvature. Some
of the specimens approach quite closely to the small leaves of Andromeda grandifolia Berry, which are more slender and apically attenuated than in the normal sized leaves of the latter.

This species was first described by Professor Heer in one of the earliest published accounts of the Dakota group flora, and it has since been found to have a wide geographical range. It is one of the commonest fossils in the Dakota sandstone, having been recorded from Minnesota, Kansas, and Nebraska. In eastern North America it is recorded from the Atane beds of Greenland, the Magothy formation on Marthas Vineyard, the Raritan formation of New Jersey, the Magothy formation of New Jersey, Delaware, and Maryland, the Black Creek formation of North Carolina, and the Middendorf beds of South Carolina. In Alabama it is common in the Tuscaloosa formation and extends into the lower Eutaw beds in Hale County.

The genus Andromeda of Linné has been much segregated by the subsequent taxonomists, and this is reflected in Schimper's proposal to refer this species to the genus Leucothoe. However, the more comprehensive name has obvious advantages for the paleobotanist in cases like this, where it is impossible to discriminate between the various Ericaccous genera with any degree of accuracy.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County ; Round Bay, Anne Arundel County, Maryland.

Collection.-Maryland Geological Survey.

Andromeda grandifolia Berry

Andromeda latifolia Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 120, pl. xxxiii, figs. 6-8, 10 (non fig. 9) ; pl. xxxiv, figs. 6-11; pl. xxxvi, fig. 10 (non Wright).
Andromeda latifolia Smith, 1894, Geol. Coastal Plain in Ala., p. 348 (nomen nudum).
Andromeda latifolia Hollick, 1904, Bull. N. Y. Bot. Garden, vol. iii, p. 416, pl. lxxix, fig. 3.
Andromeda latifolia Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 100, pl. xxxix, fig. 1.
Andromeda grandifolia Berry, 1907, Bull. Torrey Bot. Club, vol. xxxiv, p. 204, pl. xv, fig. 3.
Andromeda grandifolia Berry, 1910, Ibidem, vol. xxxvii, p. 28.

Andromeda grandifolia Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 205, pl. xxvi, figs. 1, 2.
Andromeda grandifolia Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 59, pl. xiv, fig. 10.

Description.-Leaves thick and coriaceous, varying considerably in size and shape. From 4 cm . to 20 cm . in length by 1.5 cm . to 7 cm . in width. Ovate-lanceolate in outline with an entire, usually somewhat undulate or unsyinmetrical margin. Apex obtusely pointed or sometimes rounded. Base somewhat wedge-shaped. Midrib and petiole very stout. Secondaries relatively few, six to eight pairs, stout and flexuous, branching from the midrib at acute angles and sweeping upward in long curves, eventually inosculating to complete the strictly camptodrome venation.

This species occurs from the lower Raritan of New Jersey to the top of the eastern leaf-bcaring Cretaceous. It is a not uncommon fossil in the Magothy formation from New Jersey to Maryland, the Black Creek beds of North Carolina, and the Tuscaloosa formation of Alabama. It is larger, relatively broader, and less regular than Andromeda parlatorii Heer.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Order PRIMULALES

Family MYRSINACEAE
Genus MYRSINE Linné
[Sp. Pl., 1753, p. 196]
Myrsine borealis Heer
Plate LXXXIX, Fig. 5
Myrsine borealis Heer, 1874, Fl. Foss. Arct., Bd. iii, Ab. ii, p. 113, pl. xxxii, fig. 23.
Myrsine borealis Heer, 1882, Ibidem, Bd. vi, Ab. ii, p. 81, pl. xxiv, flgs. 7b, 8; pl. xxvii, fig. 1b; pl. xliv, fig. 5a; pl. xlvi, figs. 19, 20.
Myrsine borealis White, 1890, Amer. Jour. Sci., vol. xxxix, p. 98, pl. ii, fig. 5.
Myrsine borealis Smith, 1894, Geol. Coastal Plain Ala., p. 348.
Myrsine borealis Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 122, pl. xxiv, figs. 4-6.
Myrsine borealis Hollick, 1895, Bull. Geol. Soc. Amer., vol. vii, p. 13.
Myrsine borealis Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 102, pl. xxxix, figs. $10,11$.

Diospyros rotundifolia Hollick, 1894, Bull. Torrey Bot. Club, vol. xxi, p. 53, pl. elxxix, fig. 2.
Myrsine borealis Berry, 1910, Bull. Torrey Bot. Club, vol. xxxvii, p. 29.
Myrsine borealis Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 208
Description.-"M. foliis ovatis (?), integerrimis, ncrvis secundariis numerosis, approximatis, ramosis, camptodromis."-Hcer, 1874.

Leaves ovate-elliptical in outline, obtusely rounded above and slightly cuncate bclow, 2.5 cm . to 5 cm . in length by 1.2 cm . to 3 cm . in maximum width, with a stout petiole about 1 cm . in length. Margins entire. Texture coriaceous, more or less obscuring the venation. Midrib stout. Secondaries mediumly stout, five to cight alternate pairs, parallel, branching from the midrib at acute angles, camptodrome. Tertiaries fine, forming an inosculating scries of elongated meshes, more or less parallel with the secondaries. In specimens in which the tertiary venation is visible the appearance is very different from that shown in Professor Newberry's figures where ouly the secondaries are seen. These latter may be compared with the similarly preserved leaves from Greenland figured by Heer (pl. xxiv, fig. 8; pl. xliv, fig. 5a).
This species was described originally from the Atane beds of Greculand by Professor Heer, and was subsequently collected in considcrable abundance from the Raritan formation in New Jersey. It has also been recorded from Marthas Vineyard and Long Island, and from the Black Creek formation in North Carolina. In Alabama it is, so far as known, confincd to the Lower 'Tuscaloosa of Fayette County, where it is not especially common.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collections.-Maryland Gcological Survey, U. S. National Museum.

Myrsine gaudini (Lesquereux) Berry

Plate LXXXIX, Figs. 6, 7
Myrsinites \& gaudini Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 115, pl. lii, fig. 4.

Myrsine elongata Hollick, 1894, Bull. Torrey Bot. Club, vol. xxi, p. 54, pl. clxxvii, fig. 2.
Myrsine elongata Hollick, 1898, Ann. Rept. N. Y. Acad. Sci., vol. xi, p. 420, pl. xxxviii, figs. 3, 4.

Myrsine elongata Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 102, pl. viii, fig. 1b; pl. xxxix, figs. 13, 14.
Myrsine elongata Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 122, pl. xxii, figs. 1-3.
Myrsine gaudini Berry, 1909, Bull. Torrey Bot. Club, vol. xxxvi, p. 262.
Myrsine gaudini Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 210, pl. xxiv, figs. 3, 4.
Myrsine gaudini Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 408.
Myrsine gaudini Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 61, pl. xiv, fig. 9.
Description.-Leaves oblanceolate or elongate-obovate in outline, 5.5 cm . to ${ }^{7} \mathrm{~cm}$. in length by 1.9 cm . to 2.5 em . in greatest width. Margins entire. Apex obtusely rounded. Base somewhat elongated, narrowly cuneate. Petiole present, stout. Midrib stout below, rapidly diminishing in caliber. Secondaries numerous, eight to ten pairs, alternate, branehing from the midrib at angles of from 40° to 45°, camptodrome. When tertiary venation is distinctly preserved the venation is more typical of the genus than when only the secondaries are partially visible.

This species is well distributed in the Raritan formation and has been recorded also from Long Island and Staten Island. The identification of Myrsinites? gaudini Lesquereux with the eastern forms with which it is obviously identical extends the range eastward from Kansas to Long Island. It may be readily distinguished from the other species of M yrsine by its relatively narrow elongated form. It is present in the Black Creek formation of North Carolina, the Middendorf beds of South Carolina, and the Tuscaloosa formation of Alabama.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Order EBENALES
 Family SAPOTACEAE
 Genus SaPOTACITES Ettingshausen

[Abh. k. K. geol. Reichs., Bd. ii, 1853, p. 61$]$
Sapotacites knowltoni Berry
Plate XC, Fig. 2
Sapotacites sp. Lesquereux, 1892, Mon, U. S. Geol. Survey, vol. xvii, p. 114, pl. 1xv, fig. 3.
Sapotacites Knowltoni Berry, 1906, Bull. Torrey Bot. Club, vol. xxxili, p. 181, pl. viii, fig. 1.

Description.-Leaves elliptieal in general outline, with a slightly emarginate apex and full rounded margins to the broadly pointed base. Length 5.5 cm . Maximun width, in the middle part of the leaf, about 2.5 cm . Margins entire. Texture subeoriaceous. Petiole stout, curved, about 4 mm . to 5 mm . long, slightly expanded proximad. Midrib stout. Secondaries thin, diverging from the midrib at angles of about 35°, ascending, eamptodrome, often obsolete by immersion in the leaf substance. Tertiaries obsolete.

The present well-marked species oceurs in the Magothy formation of the East and the Dakota sandstone of the West. It is very similar to Sapotacitcs obovata Velenorsky ${ }^{1}$ of the Cenomanian of Bohemia, the latter being a somewhat larger leaf and relatively narrower toward the base. The present species also resembles Sapotacites retusus Heer as it occurs in the Raritan formation, but is less emarginate and widest across the middle and not toward the base; the basal lateral margins are convex instead of coneave and the secondaries are more ascending.
Occurrence.-Magotify Formation. Deep Cut, Delaware.
Collection.-Maryland Geological Survey.

Genus BUMELIA Swartz
[Prodr. Veg. Ind. Oc., 1788, p. 49]

Bumelia prenuntia n. sp .

Plate XC, Fig. 1

Description.-Leaves of rather small size, obovate in general outline, with a broadly rounded and sometines faintly retuse tip, and a narrow pointed base. Length about 4.5 cm . Maximum width, above the middle of the leaf, about 1.8 cm . Margins entire, evenly rounded distad, rather straight or only slightly eurved proximad. Texture subeoriaceous. Midrib stout and prominent, usually slightly eurred. Secondaries numerous, thin, camptodrome, diverging from the inidrib at an angle of about 55°, largely inmersed in the leaf substance. Tertiaries obsolete.

This species resembles the form from the Raritan formation of New Jersey deseribed by Newberry as Dalbergia apiculata. It is named proc-
${ }^{1}$ Velenovsky, Fl. Böhm. Kreidef., Theil iii, p. 3, pl. iii, fig. 6, 1884.
nuntia, since it is prophetic and probably ancestral to Bumelia lanuginosafolia Berry of the Wilcox Eocene. It is suggestive of several modern species of Bumeliu of the coastal region in the southern United States and throughout tropical America to Brazil. There are a score of existing species confined to America.

Occurrence.-Magothy Formation. Grove Point, Cecil County.
Collection.-Maryland Geological Survey.

Family EBENACEAE Genus DIOSPYROS Linné

[Sp. Pl., 1753, p. 1057]
Diospyros primava Heer
Plate XC, Fig. 4
Diospyros primava Heer, 1866, Phyll. Crét. d. Nebr., p. 19, pl. i, figs. 6, 7.
Diospyros primava Heer, 1882, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 80, pl. xviii, fig. 11.
Diospyros primeva Heer, 1883, Ibidem, Bd. vii, p. 31, pl. li, figs. 5a, 5b, 5c.
Diospyros primava Engelhardt, 1891, lsis, Abh. vii, p. 98.
Diospyros primava Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii, p. 109 , pl. xx, figs. 1-3.
Piospyros primava Frič, 1893, Archiv. Naturw. Landes. Böhm., Bd. ix, Nr. i, p. 130, tf. 186.
Diospyros primava Smith, 1894, Geol. Coastal Plain Ala., p. 348.
Diospyros primava Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 124, pl. xxx, figs. 1-5.
Diospyros primava Bartsch, 1896, Bull. Lab. Nat. Hist., Univ. Iowa, vol. iii, p. 181.

Diospyros primeva Knowlton, 1901, 21st Ann. Rept. U. S. Geol. Survey, pt. vii, p. 317, pl. xxxix, fig. 3.
Diospyros primirva Berry, 1905, Bull. Torrey Bot. Club, vol. xxxii, p. 46, pl. ii.
Diospyros primava Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 103, pl. xlii, figs. 2, 11.
Diospyros primava Berry, 1911, Bull. Torrey Bot. Club, vol. xxxiv, p. 264.
Diospyros primœva Berry, 1911, Ibidem, vol. xxxviii, p. 417.
Diospyros primava Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 211, pl. xxix, fig. 1.
Diospyros primava Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 61, pl. xi, fig. 3; pl. xiv, figs. 12, 13.
Description.-Leaves oblong-ovate in outline, variable according to age, ranging from 3 cm . to 15 cm . in length by 1.3 cm . to 5 cm . in greatest
width, which is in the middle part of the leaf. Apex acute or obtuse. Base cuneate. Margins entire. Petiole rather long and very stout. Midrib also stout. Secondaries branching from the midrib usually at acute angles, subopposite or alternate, parallel, camptodrome. Tertiaries forming polygonal areoles whose relative prominence is one of the features of this species.

This speeies, which is quite suggestive of the modern Diospyros virginiana Linné, was deseribed by Heer from the Dakota group of Nebraska ucarly half a century ago. It has proved to be a most wide-ranging form, having been identified at both the Atane and Patoot horizons in Greenland; in the Cenomanian of Saxony and the Turonian of Bohemia; from various localities within the Dakota group, including its southern extension, the Woodbine formation of Texas; and, with the exception of the fragments from Marthas Vineyard and Long Island, which are of questionable identity, it is present, in either the Raritan, or the Magothy, or homotaxial formations, from New Jersey to Alabama.

Its most marked character is the prominence of its tertiary areolation. It is common at various localities in the lower Tusealoosa of western Alabama and continues upward into those beds in Hale County which have been placed in the basal portion of the Eutaw formation.

Occurrence.-Raritan Formation. Bull Mountain, Cecil County. Magothy Formation. Bodkin Point, Anne Arundel County.

Collection.-Maryland Geologieal Survey.
Diospyros rotundifolia Lesquereux
Plate XC, Fig. 3
Diospyros rotundifolia Lesquereux, 1874, Cret. F'l., p. 89, pl. xxx, fig. 1.
Diospyros rotundifolia Lesquereux, 1892 Mon. U. S. Geol. Survey, vol. xvii, p. 112, pl. xvii, figs. 8-11.

Diospyros rotundifolia Berry, 1906, Ann. Rept. State Geol. of New Jersey for 1905 , p. 139.
Diospyros rotundifolia Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiil, p. 181.

Diospyros rotundifolia Berry, 1914, Prof. Paper U. S. Geol. Survey, No. 84, p. 62, pl. xiv, fig. 14.

Description.-Leaves entire, variable in size, 4 cm . to 10 em . in length by 2 cm . to 7 cm . in maximum width, which is in the middle part. Outline
broadly oval or elliptical. Apex broadly rounded. Base similarly rounded or sonewhat narrowed and pointcd. Petiole and midrib stout. Secondaries six or seven pairs, branching from the midrib at angles of from 50° to 60°, arched, camptodrome. Texture subcoriaceous. Venation less prominent than in Diospyros primava Heer.

This species is a characteristic element in the post-Raritan flora of the Atlantic Coastal Plain, although at timcs it is liable to be confused with Myrsine borealis Heer, or with some of the smaller, more orbicular, cutire leaves referred to Populus. The venation is markedly different, however.

Diospyros rotundifolia was described originally from the Dakota group of Kansas, and it is common in the Magothy formation in New Jersey, Delaware, and Maryland. In South Carolina it has been found only at a single locality in the Middendorf beds. It is not rare in the lower Tuscaloosa of western Alabama.

Occurrence.-Magothy Formation. Deep Cut, Delaware; Grove Point, Cecil County, Maryland.

Collection.-Maryland Geological Survey.

Diospyros vera Berry
Plate XC, Fig. 5

Diospyros vera Berry, 1911, Bull. Torrey Bot. Club, vol. xxxviii, p. 418, pl. xix, fig. 5.
Diospyros vera Berry, 1912, Plant World, vol. xv, p. 17, fig. 2.
Description.-Calyx small, four-parted, 1.1 .5 mm . in diameter from tip to tip of the lobes, which are obtusely pointed and nearly orbicular in outline, about 4 mm . or 5 mm . in width, contracted proximad and somewhat reflexed, coriaceous, longitudinally veined, with inflexed margins which give them a spoon-like form. Sinuses rather narrow and pointed, extending two-thirds of the distance to the peduncle. The central disk of the calyx appears flat. There is a raised collar at the insertion of the pcduncle, the latter from its scar appears to have been relatively slender.

The present species is based upon the single specimen figured, which shows the lower, peduncular face of the calyx. It is clearly referable to this genus and was probably accrescent as in the modern forms. It is
much smaller than in our common American Diospyros virginiana L., but may be matched in some of the still existing species and is almost the exact counterpart of some of the calices of Diospyros brachysepala Al. Br., figured by Heer from the Swiss Tertiary. There can be no question regarding its identity and in this respect it is much more conclusive than the Calycites diospyriformis described by Newberry from the middle Raritan of New Jerscy, which lias a five-lobed calyx. Its occurrence at the same horizon at which the leaves of Diospyros primeeva Heer are so abundant not only suggests that it may have been borne by the same tree which furnishes the leaves found all the way from western Greenland to Alabama, but also serves in a measure to corroborate the identification of these leares.

The family Ebenaceec has only five modern genera, but these include a large number of species, a majority of which are referred to the genus Diospyros. The latter has about one hundred and eighty existing species distributed in both hemispheres. They are mostly tropical, a few species extending beyond the tropics in eastern North Amedica, in the Mediterranean region of Eurasia, and in eastcrn Asia where there is a considerable massing of forms.

Occurrence.-Raritan Formation. East Washington Heights, District of Columbia.

Collections.-U. S. National Museum.

Order POLEMONIALES
 Family BORAGINACEAE
 Genus CORDIA Linné

[Sp. Pl., 1753, p. 190]
Cordia apiculata (Hollick) Berry
Plate XC, Fig. 6
Populus apiculata Hollick, 1892, Trans. N. Y. Acad. Sci., vol. xii, p. 4, pl. iii, fig. 2.
Populus apiculata Smith, 1894, Geol. Coastal Plain in Ala., p. 548.
Populus apiculata Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, p. 65, pl. xv, figs. 3, 4.
Populus apiculata Berry, 1906, Bull. Torrey Bot. Club, vol. xxxiii, p. 172.

Populus apiculata Hollick, 1907, Mon. U. S. Geol. Survey, vol. 1, p. 49, pl. vii, figs. 28, 29.
Populus apiculata Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 111, pl. xi, fig. 4.

Description.-Leaves variable in size and shape, ovate to orbicular in general outline, 5 cm . to 10 cm . in length by 3 cm . to 7 cm . in maximum width, which is at or below the middle. Apex usually somewhat abruptly produced into an acuminate tip. Base cuneate and slightly decurrent to rounded or almost truncate. Margins entire, sometimes slightly repand. Petiole of medium length, stout. Midrib mediumly stout, often flexuous. Secondaries five or six pairs, suboppositc below, alternate above, slender, branching from the midrib at angles of from 45° to 50° and arching upward, camptodrome. Tertiaries camptodrome in the marginal region, percurrent internally.

Professor Newberry, the original describer of this species in manuscript, compared it with Populus hyperborea Hecr and Populus berggreni Heer, but seemed doubtful of its real relation to Populus. This doubt secms to be well founded, for while these leaves are not unlike those usually referred to the genus Populus, this assumed relationship has by no means been proven for a number of the Upper Cretaceous forms so identified. While it is not impossible that species of l'opulus may have flourished from New Jersey to the Gulf region during the Upper Crctaceous, the association of a number of forms whose descendants are tropical led to an extended search among cxisting tropical Amcrican forms, with the result that the present species is referred to the genus Cordia. The latter has upwards of two hundred existing species of the tropics and warmer extratropical regions of both hemispheres, the majority being American, screral of which reach the Florida Keys, the Bahamas, and the valley of the Rio Grande. The fossil specics in all its characters suggests most strongly the existing Cordia sebestena Linné which ranges from the Florida Keys to New Guinea. It also suggests Cordia tremula Griesbach of the West Indies, and there is a gencral generic likencss to various other existing specics of this genus. Cordia leaves are variable and tend to have more or less toothed margins as is sometimes the case in Cordia sebestena, but they
are in general cutire or slightly repand, and like the fossil somewhat variable. Cordia is certainly represented in the lower Eocene flora of the Gulf region by forms that may be descendants of this Upper Cretaceous species. The present form has been recorded from New Jersey, Staten Island, Long Island, and Dclaware, and is not rare in the lower beds of the Tuscaloosa formation in the Alabama region.

Occurrence.-Magothy Formation. Dcep Cut, Delawarc.
Collection.-U. S. National Museum.

DICOTYLEDONAE INCERTAE SEDIS

Genus FONTAINEA Newberry

[Mon. U. S. Geol. Survey, vol. xxvi, 1896, p. 94]
Fontainea grandifolia Newberry
Fontainea grandifolia Newberry, 1896, Mon. U. S. Geol. Survey, vol. xxvi, 1895, p. 96, pl. xlv, figs. 1-4.
Fontainea grandifolia Berry, 1911, Bull. 3, Geol. Survey of New Jersey, p. 219.

Description.-Species based on relatively large leaves which may be regarded as bilobate or as dichotomously compound with bilobate leaflcts. The latter are linear lanceolate and markedly unsymmetrical in outline, being narrowed and obtuscly pointed distad and markedly inequilateral proximad, one margin decurring for a distance of from 1 cm . to 2 cm . below the opposite margin. The extremely stout midrib (or common winged petiole of a double leaf) runs straight for a distance of 5 cm . to 6 cm . before forking dichotomously at an acute angle. Internally this fork is often naked for a distance of 2 cm . to 3 cm . Secondaries fine, numerous, subparallel ; they diverge from the midrib at wide angles and become more or less lost in the leaf substance toward the margin, their ends apparently united by flatly arched marginal veins. Areolation quadrangular. Margins entirc. Texture coriaccous.

The present species was described by Newberry from the middle Raritan of Woodbridge, New Jersey, to which locality it has hitherto been confined. It is obviously dicotyledonous, although the writer knows of no similar existing forms. Among previously described fossil specics it is
very elose to the plant from the greensand of Niedersehoena in Saxony (Cenomanian) named Fucoides dichotomus by Reieh and renamed IIaliseritcs rcichii by Sternberg ${ }^{1}$ from its fancied resemblance to a reeent seaweed IIaliscris polypodoides Agardh. Broun ${ }^{2}$ also figures this plant; Rossmassler and Cotta refer it to Chiropteris, and Schimper transfers it to the genus Delesseria beeause of its supposed resemblance to another recent seaweed, Delessaria ruscifolio Agardh. Finally Rothpletz, ${ }^{3}$ reeognizing its dicotyledonous nature and unknown botanical affinity, has proposed that it be ealled Phyllites reichii.

There is no doubt but that the Raritin and the German plants are eongeneric but different speeifieally.

Another somewhat similar form is A ralia furcata Velenovsky " from the Perucer schichten (Cenomanian) of Bohemia, which is compared with recent forms of Jatropha, Vitex, Cussonia, ete. It is hardly an Aralia, and is probably congenerie with Fontainea grandifolia Newberry and Phyllites reichii (Sternberg) Rothpletz.

A single broken specimen represents the first of these in the Maryland region.

Occurrence.-Raritan Formatiox. Forked Creek, Severn River, Anne Arundel County.

Collection.-Johns Hopkins University.

Genus CARPOLITHUS Allioni [Oryctographiæ Pedemontanæ Spec., 1757, p. 6]
 Carpolithus septloculus n. sp.
 Plate LXXXIV, Fig. 3

Description.-Speeies based on the rather well preserved remains of what appears to be a compound eapsular fruit, consisting of seven septieidal valves. Length about 2 cm . Diameter about 1.25 cm . Peduncle stout. Valves orate-lanceolate in outline, pointed distad. Texture coriaceous.

[^66]This speeies is based on a single remarkably well-preserved speeimen washed out of the sandy carbonaeeous elays of the Magothy formation. Its botanieal relationship is uneertain sinee a variety of existing genera have eomparable fruits. Among these might be mentioned various genera of the Euphorbiacece, Sterculiacece, MLalvacece, ete. Somewhat similar Eoeene fruits have been deseribed by the writer as speeies of Stcrculiocarpus, and by Viguier as speeies of Sezanella, both genera being referred to the family Sterculiacece.

Occurrcncc.-Mngothy Formation. Deep Cut, Chesapeake and Delaware Canal, Delaware.

Collcction.-Johns Hopkins University.

PLATES

PLATE VIII

Figs. 1, 2. Thoracosaurus neocasariensis (DeKay)..................... 347

1. Tooth, side view.
2. Transverse outline of same.

Matawan formation, Magothy River.
Figs. 3, 4. Hyposaubus rogersil Owen... 349
3. Tooth, side view.
4. Transverse outline of same.

Monmouth formation, Bohemia Mills.
Figs. 5-7. Lamita elegans Agassiz. 350
5. Front view of a worn tooth. $\times 1$.
6. Inside view of another specimen. $\times 2$.
7. Side view of a third specimen. $\times 2$. Monmouth formation, Seat Pleasant.

Figs. 8, 9. Lamna cuspidata Agassiz.. 351
8. Inside view. $\times 1$. Matawan formation, C. \& D. Canal.
9. Inside view of a small specimen. $\times 2$. Monmouth formation, Brooks" Estate near Seat Pleasant.

Fig. 10. Side view of proximal part of a fish spine. $\times 3$. Matawan formation, C. \& D. Canal.

Fig. 11. Thoracosaurus sp... 348
Much worn vertebra, ventral view. Monmouth formation, Prince George's County.

9

VERTHBRATA-REPTILIA AND MISCES

PLATE IX

Fig. 1. Corax pristomontus (Morton)... . . 352
Inside view. Monmouth formation, Bohemia Mills.
Fig. 2. Corax falcatus Agassiz. 354
Front view. Matawan formation, C. \& D. Canal.
Figs. 3-5. Enchodus dirus Leidy 357
3. View from outside. $\times 1$.4. Same from above.5. Same from within.Monmouth formation, Seat Pleasant.
Figs. 6-8. Ischyrinza mira Leidy. 358
6. View from side. $\times 1$.
7. Same from behind.
8. View of base, anterior margin at the bottom.

Monmouth formation, Prince George's County
Figs. 9, 10. Proximal part of Batoid (?) fish ray
9. View from below. $\times 2$.
10. View from side. $\times 2$.

Matawan formation, Magothy River.

8

VERTEBRATA-PISCES

PLATE X

PAGE
Figs. 1-4. Holoparia gabbi Pilsbry 3611. Proximal part of left manus. Deep Cut, C. \& D. Canal.
2. Carpus with part of manus. Same locality
3. Surface of manus. $\times 4.3$ Lenola, N. J.
4. Manus, lacking proximal end. Length as broken 33.7 mm . Lenola,N. J.
Fig. 5. Callianassa conbadi Pilsbry 366
Manus and carpus. Brooks' Estate near Seat Pleasant, Prince George's County.
Fig. 6. Holoparia gladiator Pilsbry 362
Manus of holotype. Lenola, N. J.
Fig. 7. Callianassa sp. undet 369
Post 105, C. \& D. Canal.
Figs. 8, 9. Holoparia gabbl Pilsbry. Type 361
8. Edge of manus showing worn tceth of the pollex.
9. Side of manus.
Lenola, N. J.

PLATE XI

Figs. 1-3. Callianassa mortoni Pilsbry
Page

1. Inner view of manus.
2. Lateral view of manus.
3. Outer view of manus.

Head of Bohemia Creek.
Figs. 4, 5. Callianassa conradi punctimanus Pilsbry 368
Figs. 6-8. Callianassa clarki Pilsbry 368
6. Outside of manus, fingers broken off.
7. Carpus of another specimen.
8. Manus of type, the carpus almost all concealed.

Post 105, C. \& D. Canal.
Figs. 9, 10. Callianassa mobtoni marylandica Pilsbry. Holotype 366 Lateral and outside views of cheliped, the merus and ischium in large part concealed, and with the carpus, a little foreshortened, in Fig. 6a.

PLATE XII

Fig. 1. Scaphites conradi (Morton)

Lateral view of fragment of whorl. Monmouth formation, Brightseat,
Prince George's County.
Figs. 2, 3. Baculites oratus Say 375
2. Lateral view.
3. Posterior view of same.
Matawan formation, near Summit Bridge, Chesapeake and Delaware Canal, Delaware.
Figs. 4-6. Belemitella americana (Morton) 394
4. Median longitudinal section of rostrum showing radial fibers and cavity of phragmacone.
5. Ventral view of rostrum.
6 . Ventral view of another specimen.
Monmouth formation, Bohemia Mills, Cecil County.
Fig. 7. Mortoniceras delawarensis (Morton) Weller 391
Peripheral view of portion of whorl. Matawan formation, near Sum- mit Bridge, Chesapeake and Delaware Canal, Delaware.
Figs. 8, 9. Baculites asper Morton 377
8. Lateral view. $\times 11 / 2$.
9. Posterior view of same. $\times 11 / 2$.Matawan formation, Post 218. Chesapeake and DelawareCanal, Delaware.

MOLLUSCA-CEPHALOPODA

Placenticeras placenta (DeKay) Meek......................... 385
Fragment of an old individual from the Matawan formation of the C. \& D. Canal.

PLATE XIII

PAGE
Figs. 1, 2. Polynices (Euspira) halli (Gabb) 4991. Dorsal view.2. Ventral view.Monmouth formation, 2 miles southwest of Oxon Hill, PrinceGeorge's County.
Figs. 3, 4. Amauropsis compacta Gardner n. sp. 504
3. Dorsal view. $\times 3$.
4. Ventral view. $\times 3$.Monmouth formation, McNeys Corners, Prince George'sCounty.
Fig. 5. Margarites elevata Gardner n. sp 506
Dorsal view of internal cast. $\times 5$. Monmouth formation, Brightseat, Prince George's County.
Fig. 6. Margarites depressa Gardner n. sp. 505
Ventral view of internal cast. $\times 5$. Monmoutl formation, Briglitseat, Prince George's County.
Fig. 7. Solarium monmouthensis Gardner n. sp 494
View of spire. $\times 2$. Monmouth formation, 2 miles southwest of Oxon Hill, Prince George's County.
Fig. 8. Gyrodes perrosus (Morton) Gabb 496
Dorsal view of internal cast with adhering portions of shell. Mon- mouth formation, Brightseat, Prince George's County.
Fig. 9. Eutrephoceras dekayi (Morton) Hyatt 372Lateral view of young individual. Monmouth formation, Brooks'Estate near Seat Pleasant, Prince George's County.
Fig. 10. Spinenodiscus lobatus (Tuomey) Meek 388Lateral view of one of the earlier whorls. X 2. Monmouth formation,Brightseat, Prince George's County.

MOLLUSCA-CEPHALOPODA AND GASTROPODA

PLATE XIV

Figs. 1, 2. Turris sedesclara Gardner n. sp 4181. Dorsal view.2. Ventral view.Monmouth formation, Brightseat, Prince George's County.
Figs. 3, 4. Turris monmouthensis Gardner n. sp 4183. Dorsal view.4. Ventral view.Monmouth formation, Brightseat, Prince George's County.
Fig. 5. Pyrifusus whitfieldi Gardner n. sp 461
Ventral view. Monmouth formation, Brightseat, Prince George's County.
Fig. 6. Turris terramaria Gardner n. sp 416
Ventral view. $\times 6$. Monmouth formation, Brightseat, Prince George's County.
Fig. 7. Turris welleri Gardner n, sp. 417
Dorsal view. Monmouth formation, Brightseat, Prince George's County.
Figs. 8, 9. Surcula amica Gardner n. sp 420
8. Dorsal view. $\times 2$.
9. Ventral view of another specimen. $\times 2$.
Monmouth formation, Friendly, 'Prince George's County.
Fig. 10. Olivella monmouthensis Gardner n. sp 421
Ventral view. $\times 2$. Monmouth formation, Brightseat, Prince George's County.
Fig. 11. Fasciolaria ? sp. 438
Ventral view. Monmouth formation, Brightseat, Prince George's County
Fig. 12. Fasciolabia ? juncea Gardner n. sp 438
Dorsal view. $\times 2$. Monmouth formation, Brightseat, Prince George's County.
Fig. 13. Exilia cretacfa Gardner n. sp 464
Dorsal view. $\times 5$. Monmouth formation, Brightseat, Prince George's County.

$$
\begin{aligned}
& 9811 \\
& 1918 \\
& 1989
\end{aligned}
$$

PLATE XV

PAGE
Fig. 1. Rostellites marylandicus Gardner n. sp 424
Ventral view. Monmouth formation, Brightseat, Prince George's County.
Figs. 2, 3. Anciuura (?) monmouthensis Gardner n. sp 476
2. Dorsal view of cast of interior.
3. Ventral view of same.
Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.
Fig. 4. Pyrifusus vittatus Gardner n. sp 458
Ventral view of a somewhat crushed specimen. Monmouth formation, Brightseat, Prince George's County.
Fig. 5. Liopeplumi chetaceun (Conrad) 431
Ventral view. Monmouth formation, Brightseat, Prince George's County.
Figs. 6, 7. Liopeplum moxmouthensis Gardner n. sp 432
6. Ventral view.7. Dorsal view.Monmouth formation, 1 mile west of Friendly, Prince George'sCounty.
Fig. 8. Voluyomorpha cónradi Gabb 427
Ventral view of cast. Monmouth formation, 2 miles southwest of Oxon Hill, Prince George's County.
Figs. 9, 10. Pyropsis retifer (Gabb) Whitfield 4529. Ventral view of cast with portions of shell adhering. $\times 2$.
10. Dorsal view of same. $\times 2$.Monmouth formation, Brightseat, Prince George's County.
Figs. 11, 12. Epitonium cecilium Gardner n. sp 479
11. Dorsal view of several whorls.
12. Basal view of same.Monmouth formation, Bohemia Mills, Cecil County.

PLATE XVI

PAGE
Figs, 1, 2. Pyroisis trociliformis (Tuomey) Gabb 4461. Ventral view.
2. View of spire.Monmouth formation, Brightseat, Prince George's County.
Fig. 3. Pyropsis lenolensis Weller 453
View of squeeze of mold of exterior. Matawan formation, locality unknown.
Fig. 4. Pymifusus sp. (immature) 463
View of squeeze of mold of exterior. Monmouth formation, 2 miles southwest of Oxon Hill, Prince George's County.
Figs. 5, 6. Pyrifusus monmouthensis Gardner n. sp 459
5. Dorsal view.6 Ventral view.Monmouth formation, Brightseat, Prince George's County.
Figs. 7-9. Pyrifusus marylandicus Gardner n. sp 457
7. Dorsal view of cast. $\times 2$
S. Ventral view of same. $\times 2$.
9. View of squeeze of mold of exterior. $\times 2$.Monmouth formation, Brightseat, Prince George's County.
Fig. 10. Pseudomelania monmouthensis Gardner n. sp 480Ventral view. $\times 3$. Monmouth formation, Brightseat, Prince George's County.

PAGE
Fig. 1. Turritella paravertebroides Gardner n. sp 488View of several whorls. Monmouth formation, Brightseat, PrinceGeorge's County.
Fig. 2. Volutomorpila perornata Gardner n. sp 428
Dorsal view. $\times 2$. Monmouth formation, Brightseat, Prince George's County.
Figs. 3, 4. Turitella nelmar Gardner n. sp 487
3. Squeeze of mold of exteriors. $\times 2$.
4. Internal cast. $\times 2$.Matawan formation, Post 105, Chesapeake and DelawareCanal, Delaware.
Figs. 5, 6. Pugnellus coldmani Gardner n. sp 469
5. Ventral view.
6. Dorsal view.Monmouth formation, Brightseat, Prince George's County.
Fig. 7. Epitonium marylandicum Gardner n. sp 478View of several whorls. $\times 3$. Monmouth formation, Brightseat,Prince George's County.
Figs. 8, 9. Sekiulorbis marylandica Gardner n. sp. 482
8. Upper surface of two constituent tubes. $\times 2$.9. Lower surface of same. $\times 2$.Monmouth formation, Brightseat, Prince George's County.
Fig. 10. Turbitella bonaspes Gardner n. sp 487View of squeeze of mold. $\times 2$. Magothy formation, Good Hope Hillnear Anacostia, D. C.

PLATE XVIII

page
page
Figs. 1, 2. Ringicula clariei Gardner n. sp 400

1. Dorsal view. $\times 3$.
2. Ventral view. $\times 3$.Monmouth formation, Brightseat, Prince George's County.
Figs. 3, 4. Actron lintels (Conrad) 397
3. Dorsal view. $\times 3$.
4. Ventral view. $\times 3$.
Monmouth formation, Brightseat, Prince George's County.
Figs. 5, 6. Avellana pinguis Gardner n. sp 406
5. Dorsal view. $\times 2$.
6. Ventral view. $\times 2$.Monmouth formation, Brightseat, Prince George's County.
Fig. 7. Ayellana lintoni Gardner n. sp. 406
Dorsal view. $\times 2$. Monmouth formation, 2 miles southwest of Oxon Hill, Prince George's County.
Figs. 8, 9. Haminea cylindrica Gardner n. sp. 409
7. Ventral view. $\times 2$.9. Dorsal view. $\times 2$.Monmouth formation, Brightseat, Prince George's County.
Figs. 10, 11. Cylichna recta Gabb 411
8. Ventral view. $\times 3$.
9. Dorsal view. $\times 3$.
Monmouth formation, Brightseat, Prince George's County.
Fig. 12. Morea naticella Gabb. 465Squeeze of mold of exterior. Matawan formation, locality unknown.
Fig. 13. Morea marylanicica Gardner n. sp. 466Ventral view. $\times 2$. Monmouth formation, 2 miles southwest of OxonHill, Prince George's County.
Figs. 14, 15. Paladmete cancellaria (Conrad) 413
10. Ventral view. $\times 2$.15. Dorsal view. $\times 2$.$21 / 2$ miles south of Dumas, Texas, U. S. National Museum.

$$
\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}
$$

PLATE XIX

Figs. 1-4. Nucula slacielana Gabb page

1. Exterior of left valve.2. Ventral view of double valves.3. Dorsal view of double valves.
2. Dorsal view of right valve. $\times 2$
Monmouth formation. 1 mile west of Friendly, Prince George'sCounty.
Figs. 5, 6. Nucula amica Gardner n. sp 514
3. Interior of right valve. $\times 3$.
4. Exterior of same. $\times 3$.Monmouth formation, 1 mile west of Friendly, Prince George'sCounty.
Fig. 7. Nucula microstriata Gardner n. sp 515
Exterior of right valve. $\times 3$. Monmouth formation, Brightseat, Prince George's County.
Figs. 8, 9. Leda rostratruncata Gardner n. sp. 517
5. Exterior of right valve. $\times 2$. Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.
6. Exterior of left valve. $\times 2$. Monmouth formation, 1 mile west of Friendly, Prince George's County.
Figs. 10-12. Leda whitrieldi Gardner n. sp. 516
7. Exterior of left valve. $\times 4$.
8. Interior of same. $\times 4$.Monmouth formation, Friendly, Prince George's County.
9. Dorsal view of double valves. $\times 5$. Monmouth formation, Bright seat, Prince George's County.
Fig. 13. Yoldia loxgifrons (Conrad) Johnson 518
Exterior of left valve. Ripley formation, Union County, Mississippi, U. S. National Museum.
Fig. 14. Yoldia noxontownensis Gardner n. sp 521
Cast of right valve. Manasquan formation, South Feeder Noxontown Pond, Delaware.
Fig. 15. Nemodon stantoxi Gardner n. sp. 527
Exterior of right valve. Monmouth formation, Brightseat, Prince George's County.

MOLEVSCA-PELECYPODA

PLATE XX

Figs. 1, 2. Perissonota littlif Gardner n. sp.............................. 523

1. Double valves from left side. $\times 2$.
2. Dorsal view of same. $\times 2$.

Monmouth formation, Brightseat, Prince George's County.

Figs. 3, 4. Nemodon eufalensis (Gabb) Conrad
3. Interior of left valve. $\times 3$.
4. Exterior of same. $\times 3$.

Monmouth formation, Friendly, Prince George's County.

Figs. 5-7. Nemodox cecilius Gardner n. sp.
5. Cast of a left valve. $\times 11 / 2$.
6. Cast of left valve. $\times 2$.
7. Squeeze taken from natural mold of sculpture. $\times 2$.

Monmouth formation, Fredericktown, Cecil County.

Figs. 8, 9. Cucullata vulgaris Morton. 529
8. Interior of left valve of adult.
9. Exterior of same.

Ripley formation, Ripley, Mississippi, U. S. National Museum.

PLATE XXI

PAGE
Figs. 1, 2. Cucullea vulgaris Morton 5291. Exterior of left valve of immature specimen.2. Interior of same.Ripley formation, Ripley, Míssissippí, U. S. National Museum.
Figs. 3, 4. Arca saffordi Gabb 537
3. Interior of left valve. $\times 6$.4. Exterior of same. $\times 6$.Monmouth formation, Brightseat, Prince George's County.
Figs. 5, 6. Arca uandi Gardner n. sp. 5395. Cast of double valves from right side.6. Anterior view of same.Matawan formation, Camp U. \& I., Chesapeake and DelawareCanal, Delaware.
Figs. 7-9. Glycymeris (Postligata) wordeni Gardner n. sub. gen. et sp. 5437. Interior of left valve. $\times 5$.8. Exterior of right valve. $\times 3$.9. Posterior view of double valves. $\times 3$.Monmouth formation, Friendly, Prince George's County.
Fig. 10. Pteria petrosa (Conrad) Meek 548
Cast of left valve. Monmouth formation, Bohemia Mills, Cecil County.
Fig. 11. Pteria rhombica Gardner n. sp. 549
Hinge of left valve. $\times 5$. Monmouth formation, 1 mile west of Friendly, Prince George's County.
Fig. 12. Pinva laqueata Conrad 545
Broken cast of double valves. Matawan formation, Post 105, Chesa- peake and Delaware Canal, Delaware.

MOLLUSCA-PELECYPODA

PLATE XX11

PAGE
Figs. 1-3. Pteria rifombica Gardner n. sp 549

1. Exterior of right valve of young individual.
2. Exterior of left valve of adult.
3. Interior of same.Monmouth formation, Brightseat, Prince George's County.
Fig. 4. Ostrea larra subsp. falcata Morton 552
Exterior of right valve. $\times 2$. Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.
Fig. 5. Ostrea larva subsp. nasuta Morton 554
Exterior of right valve. $\times 11 / 2$. Monmouth formation, Brightseat, Prince George's County.
Figs. 6-8. Ostrea larva subsp. mesenterica Morton 555
4. Exterior of left valve. $\times 4$.
5. Interior of same. $\times 4$.
Monmouth formation, McNey's Corners, Prince George's County.
6. Exterior of left valve. $\times 2$. Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.

MOLLLSCA-PELECYPODA

PLATE XXIII

PAGE
Figs. 1, 2. Ostrea larva subsp. mesenterica Morton 555

1. Interior of left valve. $\times 11 / 2$2. Exterior of same. $\times 11 / 2$.Monmouth formation, Brightseat, Prince George's County
Fig. 3. Ostrea subspatulata Forbes 561
Interior of left valve. Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.
Figs. 4, 5. Ostrea monmouthensis Weller 558
2. Interior of right valve.
3. Exterior of same.
Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County

PLATE XXIV

Fig. 1. Ostrea subspatulata Forbes.. ${ }^{\text {a }} 61$
Exterior of left valve. Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.

```Figs. 2-4. Ostrea tecticosta Gabb560
2. Interior of left valve. \(\times 2\).
3. Exterior of same. \(\times 2\).
Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.
4. Double valves from the right side. \(\times 2\). Monmouth formation, Brightseat, Prince George's County.
```

Figs. $\overline{\text { an }}$, 6. Ostrea faba Gardner n. sp... 559
5. Exterior of right valve.
6. Interior of same.

Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.

PLATE XXV

Figs. 1-4. Ostrea (Gryphostrea) vomer (Morton) Meek................... 579

1. Exterior of left valve. $\times 2$.
2. Interior of same. $\times 2$.

Matawan formation, Camp Fox, Chesapeake and Delaware Canal, Delaware.
3. Interior of right valve. $\times 2$.
4. Exterior of same. $\times 2$.

Monmouth formation, Brightseat, Prince George's County.
Fig. 5. Exogyra costata Say... 564
Exterior of left valve. Monmouth formation, Brightseat, Prince George's County.

PLATE XXVI
Figs. 1, 2. Exogyba costata Say... 564

1. Interior of left valve.
2. Interior of right valve.

Monmouth formation, Brightseat, Prince George's County.

MOLLUSCA-PELECYPODA

PAGE

Figs. 1, 2. Exogyra costata Say.. 564

1. Exterior of right valve. Monmouth formation, Brightseat, Prince George's County.
2. Exterior of left valve. Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.

Fig. 3. Exogyra costata sulsp. cancellata Stephenson.................. 566
Exterior of left valve. Monmouth formation, head of Little Bohemia Creek, Cecil County.

MOLLUSCA-PELECYPODA

PLATE XXVIII

rAge
Figs. 1, 2. Gryphea (Pycnonowte) vesicllaris (Lamarck) Race A..... 575

1. Exterior of left valve.
2. Interior of same.

Matawan formation, Camp Fox, Chesapeake and Delaware Canal, Delaware.

MOLLUSCA-PELECYPODA

PLATE XXIX

[^67]

1

MOLLUSCA-PELECYPODA

PLATE XXX

Figs 1, 2, GryPhea (Pycwodonte)

1. Exterior of left valve.
2. Exterior of right valve of same individual.

Matawan formation, Camp Fox, Chesapeake and Delaware Canal, Delaware.

Figs. 3, 4. Gryphea (Pycnodonte) vesicularis (Lamarck) Race indet.
3. Exterior of immature right valve. $\times 2$.
4. Interior of same, showing excentric posterior adductor of young.

Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.

MOLLUSCA-PELECYPODA

PLATE XXXI

PAOE
Figs. 1-3. Gryphea (Pyenodonte) vesicularis (Lamarck) Race D.. . 576

1. Exterior of adult left valve.
2. Interior of right valve.
3. Interior of left valve of same individual.

Monmouth formation, Brightseat, Prince George's County.

MOLLUSCA-PELECYPODA

PLATE XXXII

PAGE
Figs. 1-3. Gryphea (Pycnodonte) vesicularis (Lamarck) Race D..... 576

1. Interior of left valve of adult.
2. Exterior of left valve of younger individual.
3. Double valves of same viewed from right side.

Monmouth formation, Brightseat, Prince George's County.

PLATE XXXIII

[^68]
Figs. 1, 2. Trigonia eufalensis Gabb 5821. Exterior of right valve. $\times 2$.
2. Interior of same. $\times 2$.Monmouth formation, Brightseat, Prince George's County.
Figs. 3-5. Pecten argillensis Conrad 588
3. Exterior of immature left valve. $\times 2$4. Exterior of adult left valve.
5. Portion of sculpture of same. $\times 5$.Monmouth formation, Brightseat, Prince George's County.
Figs. 6, 7. Pecten venustus Morton. 591
6. Exterior of right valve. $\times 3$.7. Exterior of left valve. $\times 3$.Houston, Mississippi, U. S. National Museum.
Figs. 8, 9. Pecten simplicius Conrad 595
8. Exterior of left valve. $\times 2$.
9. Exterior of right valve. $\times 2$.Monmouth formation, Brightseat, Prince George's County.
Fig. 10. Pecten quinquecostata Sowerby 596
Cast of interior of right valve. Matawan formation, Camp Fox, Chesa- peake and Delaware Canal, Delaware.
Fig. 11. Lima obliqua Gardner n. sp. 603
Exterior of left valve. $\times 3$. Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.
Figs. 12, 13. Lima reticulata Forbes 600
12. Exterior of right valve. $\times 5$.
13. Interior of same. $\times 5$.Monmouth formation, Brightseat, Prince George's County.
Figs. 14, 15. Lima serrata Gardner n. sp. 602
14. Interior of left valve. $\times 4$
15. Exterior of same. $\times 4$Monmouth formation, 1 mile west of Friendly, Prince George'sCounty.

PLATE XXXV

PAGE
Figs. 1, 2. Anomla argentarla Morton 608

1. Exterior of left valve. 2.
2. Interior of right valve. $\times 2$.Monmouth formation, Brightseat, Prince George's County.
Figs. 3, 4. Anomia tellinoides Morton 610
3. Exterior of right valve.
4. Interior of same.
Monmouth formation, Briar Point, Chesapeake and DelawareCanai, Delaware.
Figs. 5, 6. Anomia ornata Gabb 612
5. Interior of left valve. $\times 2$.
6. Exterior of same. $\times 2$.Monmouth formation, 1 mile west of Friendly, Prince George'sCounty.
Figs. 7-10. Anomia forteplicata Gardner n. sp 613
7. Exterior of left valve. $\times 11 / 2$
8. Interior of left valve. $\times 3$.Monmouth formation, 1 mile west of Friendly, Prince George'sCounty.
9. Exterior of left valve. $\times 2$.
10. Interior of same. $\times 2$.Monmouth formation, McNeys Corners, Prince George'sCounty.
Figs. 11, 12. Paranomia lineata Conrad 606
11. Exterior of left valve.
12. Exterior of another left valve.Ripley formation, Ripley, Mississippi, U. S. National Museum.

PLATE XXXVI

Figs. 1, 2. Modiolus sedesclarus Gardner n. sp................................. 616

1. Exterior of right valve.
2. Dorsal view of double valves.

Monmouth formation, Brightseat, Prince George's County.
Fig. 3. Modiolus trigonus Gardner n. sp... . . 616
Exterior of left valve. $\times 2$. Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.
Figs. 4-6. Litiopinaga ripleyana Gabb. 618
4. Cast of double valves from right side.
5. Front view of same.

Matawan formation, Post 198-199, Chesapeake and Delaware Canal, Delaware.
6. Aggregation of casts. Matawan formation, Camp Fox, Chesapeake and Delaware Canal, Delaware.
Figs. 7-9. Lithopimaga conchafodentis Gardner n. sp......................... 619
7. Cast of double valves from right side. $\times 3$.
8. Dorsal view of same. $\times 3$.
9. Left valve in situ.

Monmouth formation, Brightseat, Prince George's County.
Figs. 10, 11. Litiobilaba juliet (Lea) . 620
10. Double valves from right side. $\times 2$.
11. Front view of same. $\times 2$.

Monmouth formation, Brightseat, Prince George's County.
Figs. 12, 13. Lithophaga twitchelli Gardner n. sp........................ 622
12. Double valves from right side. $\times 11 / 2$.
13. Front view of same. $\times 11 / 2$.

Monmouth formation, railroad cut 1 mile west of Seat Pleasant, Prince George's County.
Fig. 14. Limiopilaoa lingua Gardner n. sp................................... 621
Exterior of left valve. \times 3. Monmouth formation, Brightseat, Prince
George's County.
Fig. 15. Liopistifa protexta Conrad.. . . 636
Exterior of left valve. Monmouth formation, Brightseat, Prince George's County.
Figs. 16-18. Crenella serica Conrad... . . . 624
16. Exterior of left valve. $\times 6$.
17. Interior of same. $\times 6$.
18. Dorsal view of double valves. $\times 6$.

Monmouth formation, Brightseat, Prince George's County.
Fig. 19. Crenella elegantula Meek and Hayden. 625

Cast of left valve. Monmouth formation, Brightseat, Prince George's
County.
Figs. 20, 21. Solyma lineolata Conrad 701
20. Double valves from left side.
21. Dorsal view of same.

Chatfield, Navarro County, Texas, U. S. National Museum.

12

16

21

MOLLUSCA-PELECYPODA

PLATE XXXVII

1'AGE

Figs. 1-3. Pholadomya occidentalis Morton................................... . . 630

1. Cast of double valves from left side.
2. Same from right side.
3. Dorsal view of same.

Matawan formation, Post 218, Chesapeake and Delaware Canal, Delaware.

Figs. 4, 5. Cuspidaria cucurbita Gardner n. sp.............................. . . . 641
4. Cast of double valves from right side. $\times 3$.
5. Dorsal view of same. $\times 3$.

Matawan formation, $3 / 4$ mile southwest of Ulmstead Point, Anne Arundel County.

Figs. 6, 7. Cuspidaria ampulla Gardner n. sp................................ 640
6. Cast of double valves from left side. $\times 3$.
7. Dorsal view of same. $\times 3$.

Monmouth formation, Brightseat, Prince George's County.
Figs. 8-11. Dreissena tippana Conrad... . . . 628
8. Exterior of left valve.
9. Exterior of right valve.
10. Anterior view of double valves.
11. Interior of left valve.

Monmouth formation, Brightseat, Prince George's County.

MOLLUSCA—PELECYPODA

PLATE XXXVIII

[^69]
Figs. 1-4. Crassatellites vadosus (Morton) Johnson. 649

1. Exterior of left valve.
2. Interior of same.
3. Exterior of left valve.
4. Anterior view of double valves. Monmouth formation, Brightseat, Prince George's County.
Fig. 5. Crassatellites pteropsis (Conrad) 655
Exterior of right valve. Monmouth formation, near Oakland, Prince George's County, U. S. National Museum.
Figs. 6, 7. Crassatellites linteus (Conrad) Johnson. 653
5. Interior of right valve.
6. Exterior of same.
Monmouth formation, Brightseat, Prince George's County.
Figs. 8, 9. Phacoides noxontownensis Gardner n. sp. 660
7. Cast of left valve.9. Squeeze of mold of external sculpture.Manasquan formation, Noxontown Mill Pond, Delaware.
Figs. 10, 11. Myrtea stepilensoni Gardner n. sp. 659
8. Interior of left valve. $\times 4$.
9. Exterior of same. $\times 4$.Monmouth formation, 1 mile west of Friendly, Prince George'sCounty.

1

2

3

6

7

4

6

PAGE
Figs. 1, 2. Cardium eufalense Conrad 664

1. Exterior of left valve.
2. Interior of same.Monmouth formation, Brightseat, Prince George's County.
Figs. 3, 4. Antigona (Aphrodina) tippana (Conrad) 681
3. Exterior of left valve.
4. Interior of same.Monmouth formation, Brightseat, Prince George's County.
Figs. 5-7. Legumen planulatum (Conrad) Gabb. 6845. Exterior of right valve.6. Double valves from right side.7. Dorsal view of same.Monmouth formation, Brightseat, Prince George's County.
Figs. 8-10. Cyprimeria depressa Conrad 6878. Interior of left valve. Monmouth formation, Brightseat, PrinceGeorge's County.
5. Exterior of left valve.
6. Dorsal view of same.Monmouth formation, near Oakland, Prince George's County.
Figs. 11, 12. Cyprimeria major Gardner n. sp 689
7. Exterior of right valve of young individual.
8. Interior of same.
Monmouth formation, Brightseat, Prince George's County.

1

3

4

10

11

12
MOLLUSCA-PELECYPODA

PLATE XLI

Figs. 1-4. Cyprimeria major Gardner n. sp...................................... 689

1. Exterior of left valve of young specimen.
2. Interior of same.
3. Exterior of left valve of adult specimen.
4. Interior of same.

Monmouth formation, Brightseat, Prince George's County.
Figs. 5, 6. Cyclina parva Gardner n. sp.. . . . 678
5 . Interior of right valve. $\times 6$.
6. Exterior of same. $\times 6$.

Monmouth formation, Brightseat, Prince George's County.

3

MOLLUSCA-PELECYPODA

PLATE XLII

PAGEFig. 1. Cyprimeria major Gardner n. sp. 689Exterior of gerontic right valve. Monmouth formation, Brightseat,Prince George's County, U. S. National Museum.
Fig. 2. Tellina (Acropagia) gabbi Gardner n. sp. 694
Exterior of right valve. Monmouth formation, 1 mile west of Friendly, Prince George's County.
Figs. 3, 4. Aenona eufalensis Conrad. 697
3. Exterior of left valve. $\times 2$. Monmouth formation, Brightseat, Prince George's County.

4. Exterior of right valve. $\times 2$. Monmouth formation, near Oakland,
Prince George's County, U. S. National Museum.
Figs. 5, 6. Tellinimera eborea Conrad. 695
5. Exterior of right valve. $\times 2$.
6. Dorsal view of double valves. $\times 2$.
Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.
Figs. 7, 8. Leptosolen biplicata Conrad 703
7. Dorsal view of internal cast of double valves. Monmouth formation,
2 miles squthwest of Oxon Hill, Prince George's County.
8. Exterior of right valve. $\times 2$. Monmouth formation, Brightseat,
Prince George's County.

Fig. 1. Cyprimeria major Gardner n. sp. 689
Hinge of gerontic right valve. Monmouth formation, Brightseat,Prince George's County, U. S. National Museum.
Figs. 2, 3. Spisula (Cymbophora) berryi Gardner n. sp 708
9. Exterior of right valve. $\times 2$.
10. Dorsal view of double valves. $\times 2$.
Monmouth formation, Brightseat, Prince George's County.
Figs. 4, 5. Spisula (Cymborhora) wordeni Gardner n. sp 709
11. Interior of left valve.
12. Exterior of same.
Monmouth formation, Brightseat, Prince George's County.
Figs. 6, 7. Corbula crassiplica Gabb 713
13. Exterior of right valve. $\times 5$.
14. Double valves from left side. $\times 5$.Monmouth formation, 1 mile west of Friendly, Prince George'sCounty.
Figs. 8-10. Corbula terbamaria Gardner n. sp. 716
15. Exterior of right valve. $\times 3$.
16. Interior of same. $>$ $\times 3$.
17. Double valves from left side. $\times 3$.
Monmouth formation, Brightseat, Prince George's County.

MOLLUSCA-PELECYPODA

PLATE XLIV

PAGEFigs. 1-3. Corbula percompressa Gardner n. sp1. Exterior of right valve. $\times 3$.
2. Interior of same. $\times 3$.
3. Dorsal vlew of double valves. $\times 3$.Monmouth formation, Brightseat, Prince George's County.
Figs. 4-8. Corbula monmouthensis Gardner n. sp 715
4. Exterior of left valve. \times
5. Interior of same. $\times 3$.
6. Exterior of right valve. $\times 3$.
7. Interlor of same. $\times 3$.
8. Dorsal view of double valves. $\times 3$.
Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.
Figs. 9-15. Corbula subradiata Gardner n. sp................................... 718
9. Exterior of left valve. $\times 5$.
10. Interior of same. $\times 5$.
11. Exterior of right valve. $\times 5$.
12. Interior of same. $\times 5$.
Monmouth formation, Brooks' Estate near Seat Pleasant, Prlnce George's County.
13. Double valves from left side. $\times 5$.
14. Same from left side. $\times 5$.
15. Dorsal view of same. $\times 5$.
Monmouth formation, Brightseat, Prince George's County.

PLATE XLV

Fig. 1. Pholas pectorosa Conrad724Exterior of right valve. Monmouth formation, Brightseat, PrinceGeorge's County.
Fig. 2. Panope bonaspes Gardner n . sp 723
Internal cast of left valve. Magothy formation, Good Hope Hill near Anacostia, D. C.
Fig. 3. Teredo rliombica Gardner n. sp. 732
Exterior of imperfect right valve. Monmouth formation, Brightseat, Prince George's County.
Figs. 4, 5. Panore moxmouthensis Gardner n. sp. 7224. Exterior of right valve.5. Hinge of right valve.Monmouth formation, Brightseat, Prince George's County.

PLATE XLVI

Unless otherwise specified all the specimens illustrated on this plate are from the Vincentown limesand of New Jersey.
PAGEFigs. 1, 2. Cribrilina sagena (Morton)
7421. A characteristic zoarium. $\times 2$.
2. Surface of a zoarium, much enlarged. (After Gabb and Horn.)
Fig. 3. Membrantpora annuloidea Ulrich and Bassler 740
Surface of a zoarium. $\times 24$.
Fig. 4. Membraniporella abbotti (Gabb and Horn) 743
Surface of zoarium, much enlarged. (After Gabb and Horn.)
Figs. 5, 6. Amphiblestrum heteropora (Gabb and Horn) 740
5. Portion of a zoarium. $\times 20$.
6. A single zoœcium, more enlarged. Eocene (Aquia) Upper Marlboro, Md. (After Ulrich.)
Fig. 7. Escifarinella ? altimuralis Ulrich and Bassler 741
A number of zoœcia. $\times 20$.
Figs. 8, 9. Mucronella aspera Ulrich 743
Two views showing zoœcial characters. $\times 20$. Eocene (Aquia) Upper Marlboro, Md.
Fig. 10. Stomatopora kümmedi Ulrich and Bassler 737
View of a portion of the type specimen. $\times 12$.
Fig. 11. Stomatopora regularis Gabb and Horn. 736Portion of a zoarium. $\times 6$. Incrusting another bryozoan.
Fig. 12. Filifasclgera megera (Lonsdale) 739
Front and side views of part of a zoarium. $\times 12$.
Fig. 13. Lichenopora fayracea (D'Orbigny) 739
A complete zoarium. $\times 12$.
Fig. 14. Berenicea americana (Ulich and Bassler) 737
View of the type specimen. $\times 12$.
Fig. 15. Crisina striatopora Ulrich and Bassler 738
The type specimen. $\times 12$. Miocene of Maryland.
Fig. 16. Hiplothoa tenulchorda (Ulrich and Bassler) 745
Several zoœcia of the type example. $\times 20$.

3

4

16

9

8

10

13

7

MOLLUSCOIDEA-RRYOZOA

PLATE XLVII

page

Figs. 1-5. Terebratula hallani Morton. 734

1. Exterior of dorsai valve.
2. Interior of ventral valve.
3. Exterior of same.
4. Ventral view of complete individuai.
5. Dorsai view of same.

Rancocas formation, Noxontown Pond, Delaware.
Figs. 6-10. Cardiaster marylandica Clark n. sp............................... 750
6. Oral view.
7. Aboral view of same.
8. Aboral view of another specimen.
9. Oral view of same.
10. Lateral view of same.

Monmouth formation, Brightseat, Prince George's County.
Figs. 11-14. Hemiaster delawarensis Clark n. sp............................. 751
11. Aboral view.
12. Lateral view of same.
13. Oral view of same.
14. Posterior view of same.

Matawan formation, south side of Chesapeake and Delaware Canal, between Lorewood Grove and St. Georges, Delaware.

Fig. 15. Sebpula trigonalis Gardner n. sp....................................... 746
Type $\times 2$.
Rancocas formation, Noxontown Pond, Delaware.
Figs. 16-19. Ornataporta marylandica Gardner n. gen. et sp.............. 748
16. Lateral view of tube.
17. Operculum of same. $\times 4$.
18. Operculum of another specimen. $\times 4$.
19. Several radials. $\times 20$.

Monmouth formation, Brooks' Estate near Seat Pieasant, Prince George's County.

TA
MOLLUSCOIDEA-BRACHIOPODA, VERMES AND ECHINODERMATA

PLATE XLVIII

Figs. 1-4. Micrabacia marylandica sp. nov

1. Calicular view of a typical specimen ($\times 4$) from near Brightseat, Md. The interseptal loculi are filled with matrix which obscures the grouping of the septa, and which cannot be removed without injury to the specimen. Collection of the Maryland Geological Survey, on deposit in the U. S. National Museum.
2. Side view of the specimen shown in the preceding figure. $\times 8$. The septal denticulations which are partly obscured by the matrix have been partly restored by retouching.
3. Interior view of a typical specimen $(\times 8)$ from near Brightseat, Md., showing the spongy columella, the synapticulæ, tubercles, and striæ on the sides of the septa, and the intercostal synapticulæ and perforations of the base.
4. View of the base of the type ($\times 8$) showing the character and grouping of the costæ.

Figs. 5, 6. Trochocyatilus ? vaugilani sp. nov
5. Side view of the type ($\times 8$) from near Brightseat, Md., showing the costæ, tubercles, and broken edge of the wall, and the uncovered edges of some of the septa. Collection of the Maryland Geological Survey, on deposit in the U. S. National Museum.
6. Calicular view of the type $(\times 8)$, showing the arrangement of the septa and the spongy character of the columella.

PLATE XLIX

Figs. 1-4. Micrabacia rotatilis sp. nov.. . 753

1. Calicular view of the type $(\times 4)$ from near Brightseat, Md. The interseptal loculi are filled with matrix which cannot be removed without injury to the specimen; the grouping of the septa is therefore not clearly apparent. Collection of the Maryland Geological Survey, on deposit in the U. S. National Museum.
2. Side view of the type. $\times 8$. The septal denticulations are partly obscured by the matrix and have been partly restored by retouching.
3. Interior view of the type ($\times 8$), which is broken nearly directly through the center, showing the spongy columella, the synapticulæ, tubercles, and striæ of the sides of the septa, and the intercostal synapticulæ and perforations of the base.
4. View of the base of the type $(\times 8)$ from near Brightseat, Md., showing the character and grouping of the costæ.

3

4
CCELENTERATA-ANTHOZOA

PLATE L

page
Fig. 1. Algites americana Berry 758
Magothy formation, Round Bay.
Figs. 2-4. Osmunda delawarensis Berry 763
2,3 . Portions of a frond.
4. Enlargement to show details of venation. $\times 3$.
Magothy formation, Deep Cut, Del.
Figs. 5, 6. Gleichenia delawarensis Berry 762
5. A pinna6. Pinnules enlarged to show venation. $\times 4$.Magothy formation, Deep Cut, Del.
Figs. 7-9. Gleichenia saundersi Berry 762
7, 8. Portions of pinnæ.
9. Pinnule showing venation. $\times 5$.Magothy formation, Round Bay.
Figs. 10, 11. Lycopodium cretaceum Berry 759
10. Portion of strobilus.11. Drawing of single sporophyll from left side of preceding, showingscale and outline of the sporangium. $\times 8$.Magothy formation, Little Round Bay.

THALLOPHYTA AND PTERIDOPIIYTA

PLATE LI

Figs. 1, 2. Onoclea inquirenda (Hollick) HollickFertile portion, natural size.2. Same. $\times 6$.Magothy formation, Round Bay.
Figs. 3, 4. Asplenium cecilensis Berry. 766
3. Sterile pinnule. $\times 4$.4. Fertile pinnules. $\times 4$.Magothy formation, Grove Point.
Figs. 5, 6. Williamsonia marylandica Berry 769
5. Speeimen, natural size.
6. Same. $\times 8$.Magothy formation, Little Round Bay.
Fig. 7. Williamsonia delawarensis Berry 771
Magothy formation, Deep Cut, Del.
Fig. 8. Podozamites marginatus Heer. 775
Raritan formation, Drum Point R. R.

PLATE LII

PAgE
Fig. 1. Brachyphyllum macrocarpum Newberry............................ 782
From Raritan formation at South Amboy, New Jersey. (After Hollick and Jeffrey.)

Fig. 2. Brachyphyllum mamillare Brongniart 782
 A specimen of this species which is the type of the genus, from the Jurassic of France. (After Saporta.)

Fig. 3. Brachypifyllum obesum Heer 782
From the Aptian of Portugal. (After Saporta.)
Figs. 4, 5. Brachypifyllum parceramosum Fontaine 782
4. Telegraph Station, Virginia. (After Fontaine.)
5. From the Trinity of Texas. (After Fontaine.)

PLATE LIII

Fig. 1. Brachypifyllum macrocabpum formosum Berry................... 783 Magothy formation, Round Bay.

Fig. 2. Sequoia heteropirylla Velenovsky................................... 785
Magothy formation, Little Round Bay.

PLATE LIV

Fig. 1. Araucaria bladenensis Berry page 777
Magothy formation, Grove Polnt.
Fig. 2. Araucaria marylandica Berry 779
Magothy formation, Little Round Bay.
Fig. 3. Dammara cliffwoodensis Hollick 776
Matawan formatlon near Millersville.
Figs. 4, 5. Braciypityllum macrocarpum Newberry. 781
Magothy formation, Deep Cut, Delaware.
Fig. 6. Geinitzia formosa Heer 801
Magothy formation, Deep Cut, Delaware.
Fig. 7. Sequoia heteropitylla Velenovsky 785
(After Newberry.)

PLATE LV

Fig. 1. Widdringtonites reiciil (Ettingshausen) Heer
PAGE 793(After Newberry.)
Figs. 2, 3. Raritania gracilis (Newberry) Hollick and Jeffrey 800
2. Twigs, natural size. (After Newberry.)
3. Twig enlarged to show minute leaves. $\times 3$.

PLATE LVI

Fig. 1. Moriconia americana Berry
PAGE
(After Newberry.)
Fig. 2. Frotol'hyllocladus subintegrifoliu's (Lesquereux) Berry 796 (After Newberry.)
Fig. 3. Pistia nordenskioldi (Heer) Berry. 809
Magothy formation, Grove Point.
Figs. 4, 5. Sabalites magothiensis (Berry) Berry $\$ 11$
4. Deep Cut, Delaware.
5. Grove Point, Cecil County.
Magothy formation.
Fig. 6. Doryanthites cretacea Berry 806
Magothy formation, Round Bay.

PLATE LVII

Figs. 1-3. Myrica longa (Heer) Heer
1, 2. Bodkin Point, Anne Arundel County.
3. Grove Point, Cecil County.
Magothy formation.AGE
Fig. 4. Salix flexuosa Newberry 813
Magothy formation, Grove Point.
Figs. 5-8. Salix lesquereuxi Berry 814
5-7. Magothy formation, Grove Point, Cecil County.
8. Raritan formation, East Washington Heights, D. C.
Fig. 9. Quercus severensis Berry 817
Magothy formation, Round Bay

PLATE LVIII

Fig. 1. Populus stygia Heer
PAGE 816Magothy formation, Bodkin Point.
Fig. 2. Quercus morrisoniana Lesquereux 816
Magothy formation, Round Bay
Fig. 3. Ficus daphnogenoides (Heer) Berry 818
Magothy formation, Grove Point.
Fig. 4. Ficus cecilensis Berry 821
Magothy formation, Grove Point.
Fig. 5. Ftcus crassipes (Heer) Heer 821
Magothy formation, Deep Cut, Del.

PLATE LIX

PaGE
Fig. 1. Ficus krausiana Heer. 823Magothy formation, Grove Point.
Figs. 2, 3. Ficus crassipes (Heer) Heer 821
Magothy formation, Grove Point.
Fig. 4. Ficus ovatifolia Berry 820
Raritan formation, East Washington Heights, D. C.

PLATE LX

Figs. 1, 2. Aspidiophyllum trilobatuir Lesquereux

1. East Washington Heights, D. C.
2. Shannon Hill, Cecil County.

Raritan formation.

PLATE LXI

Figs. 1, 2. Aspidiophyllum trilobatum Lesquereux......................... 826

1. Forked Creek, Severn River.
2. Shannon Hill, Cecil County.

Raritan formation.

PLATE LXII

$\begin{array}{cc}\text { Figs. 1-3. Protophyllum sternbergil Lesquereux............................. } 828 \\ \\ & \text { Ratitan formation, East Washington Heights, D. C. }\end{array}$

ANGIOSPERMOPHYTA

PLATE LXIII

Figs. 1, 2. Protophyllum sternbergil Lesquereux pageRaritan formation, East Washington Heights, D. C.
Fig. 3. Protophyllum multinerve Lesquereux 828
Raritan formation, Cedar Point, Baltimore County.

PLATE LXIV

Figs. 1, 2. Protopifyllum multinerve Lesquereux........................... S29
Raritan formation, Cedar Point, Baltimore County.
Fig. 3. Protophillum sternbergit Lesquereux............................... 828 Raritan formation, Shannon Hill, Cecil County.

PLATE LXV

Figs. 1-6. Platanus heerir Lesquereux. 824
1-4. Drum Point R. R., Anne Arundel County.
5, 6. East Washington Heights, D. C.
Raritan formation.

PAGE
 Figs. 1-6. Platanus heerit Lesquereux... . 824
 Raritan formation, Drum Point R. R., Anne Arundel County.

3

ANGIOSPERMOPHYTA

PLATE LXVII

Figs. 1-7. Platanus heerii Lesquereux. 824
1-4. East Washington Heights, D. C.
5, 7. Drum Point R. R., Anne Arundel County. Raritan formation.

PLATE LXVIII

Fig. 1. Coccolobites cretaceus Berry 830
Magothy formation, Grove Point.
Figs. 2-4. Magnolia obtusata Heer 834
Magothy formation, Point Grove.PAGE

PLATE LXIX

page
Fig. 1. Magnolia boulayana Lesquereux
Fig. 1. Magnolia boulayana Lesquereux
 834
Magothy formation, Grove Point.
Fig. 2. Magnolia longipes Hollick 833
Magothy formation, Grove Point.
Fig. 3. Magnolia hollicki Berry 831
Magothy formation, Grove Point.
Fig. 4. Magnolia capellini Heer 836
Magothy formation, Grove Point.

Plate lxX

Figs. 1, 2. Magnolia lacerana Lesquereux.
PAGEMagothy formation, Grove Point.
Fig. 3. Magnolia tenuifolia Lesquereux 835
Magothy formation, Grove Point.
Figs. 4, 5. Carpites libiophylli Lesquereux 839
4. Ligneous carpel.
5. Proximal part of same viewed from within. $\times 3$. Magothy formation, Grove Point.
Fig. 6. Illicium deletoides Berry 838
Magothy formation, Grove Point.

PLATE LXXI

Figs. 1-3. Laurophyllum elegans Hollick
PAGE 864Magothy formation, Round Bay.
Fig. 4. Laurus hollicikil Berry 863
Magothy formation, Grove Point.
Fig. 5. Laurus plutonia Heer 861
Magothy formation, Grove Point.
Fig. 6. Cinnamomum newberryi Berry 860
Magothy formation, Grove Point.

PLATE LXXII

Figs. 1-4. Sassafras acutilobum Lesquereux................................. . . 866
1-3. Brightseat, Prince George's County.
4. Drum Point R. R., Anne Arundel County. Raritan formation

ANGIOSPERMOPHYTA

PLATE LXXIII

Figs. 1-3. Sassafras acutilobum Lesquereux. 866 Raritan formation, Brightseat, Prince George's County.

PLATE LXXIV

PAGE
Figs. 1, 2. Sassafras acutilobum Lesquereux.............................. 866
Raritan formation, Brightseat, Prince George's County.
Fig. 3. Abaliopsoides cretacea (Newberry) Berry.......................... 879
Raritan formation, Overlook Inn Road, D. C.

ANGIOSPERMOPIIYTA

PLATE LXXV

Fig. 1. Laurus proteffolia Lesquereux 863Magothy formation, Round Bay.
Fig. 2. Sassafras acutilobum Lesquereux 866Magothy formation, Grove Point.
Fig. 3. Colutea primordialis Heer 845
Magothy formation, Grove Point.
Fig. 4. Nelumbites primeeva Berry 840
Magothy formation, Round Bay
Figs. 5-7. Baubinia marylandica Berry 846
Magothy formation, Grove Point.

PLATE LXXVI

Figs. 1, 2. Colutea obovata Berry Page2. Enlargement to show venation. $\times 3$.Magothy formation, Grove Point.
Fig. 3. Dalbergia severensis Berry 847
Magothy formation, Little Round Bay.
Fig. 4. Leguminosites coronilloides Heer 841
Magothy formation, Grove Point.
Fig. 5. Leguminosites omphalobioides Lesquereux 843
Magothy formation, Grove Point.
Fig. 6. Leguminosites canavalioides Berry 842
Magothy formation, Grove Point.
Figs. 7, 8. Crotonophyllum cretaceum Velenovsky 847
7. Round Bay.
8. Grove Point.
Magothy formation.

PLATE LXXVII

Figs. 1, 2. Ilex severnensis Berrypage2. Enlargement to show venation. $\times 4$.Magothy formation, Little Round Bay.Figs. 3-6. Eleodendron marylandicum Berry 849
Magothy formation, Grove Point.
Fig. 7. Celastrus arctica Heer 850Magothy formation, Little Round Bay.

PLATE LXXVIII

PAGE
Figs. 1, 2. Hedera cecilensis Berry 874
Magothy formation, Grove Point.
Fig. 3. Rhamnites apiculatus Lesquereux 854
Magothy formation, Round Bay.
Fig. 4. Cissites formosus magothiensis Berry 855Magothy formation, Grove Point.

PLATE LXXIX

page
Fig. 1. Cissites formosus Heer 855Restoration. (After Heer.)
Fig. 2. Restoration of a Raritan specimen of the same 855
Fig. 3. Restoration of Cissites dentato-Lobatus Lesquereux 855
A Dakota sandstone species.

68

PLATE LXXX

PAGE
Figs. 1-3. Sterculia minima Berry1, 2. Three- and four-lobed forms from Grove Point, Md.3. Bilobate form from Cliffwood Bluff, N. J. Magothy formation.
Fig. 4. Sterculia cliffwoodensis Berry 858
$\times 2 / 3$. Magothy formation, Deep Cut, Del.

PLATE LXXXI

Figs. 1-5. Eucalypitus geinitzi (Heer) Heer................................ . . 870

1. Grove Point, Cecil County.

2, 4. Round Bay, Anne Arundel County.
5. Deep Cut, Delaware.

Magothy formation.
Fig. 3. Showing Spilerites raritanensis Berty 757

- Magothy formation.
Figs. 6, 7. Eucalyptus latifolia Hollick 870
Magothy formation, Round Bay.

PLATE LXXXII

Fig. 1. Cornus forchhammeri Heer. 885
Magothy formation, Grove Point.PAGE
Fig. 2. Cornus cecilensis Berry 884
Magothy formation, Grove Point.
Fig. 3. Aralia washinotoniana Berry 878
Raritan formation, East Washington Heights, D. C.
Fig. 4. Aralia ravniana Heer. 876
Magothy formation, Grove Point.

ANGIOSPERMOPIIYTA

PLATE LXXXIII

[^70]$$
\sqrt{2}
$$

PLATE LXXXIV

Figs. 1, 2. Araliopsoides cretacéa (Newberry) BerryPAGE

1. Brightseat, Prince George's County.
2. East Washington Heights, D. C.
Raritan formation.
Fig. 3. Carpolithus sel’tloculus Berry 900Magothy formation, Deep Cut, Del.

Figs. 1-5. Araliopsoldes cretacea (Newberry) Berry...................... . 879
1, 4. Glymont, Prince George's County.
2, 5. Overlook Inn Road, D. C.
3. Brightseat, Prince George's County. Raritan formation.

PLATE LXXXVI

Fig. 1. Araliopsoides cretacea salisburiaffolia Berry
PAGE 883Raritan formation, Bull Mountain, Cecil County.
Fig. 2. Araliopsoides breviloba Berry 878
Raritan formation, Bull Mountain, Cecil County.

PLATE LXXXVII

Fig. 1. Araliopsondes cretacea dextata Berry.PAGERaritan formation, Bull Mountain, Cecil County.
Figs. 2, 3. Araliopsoides cretacea salisburifefolia 883
Raritan formation, Bull Mountain, Cecil County.

PLATE LXXXVIII

Figs. 1-3. Araliolsoides cretacea (Newberry) Berry....................... . . 879

1. Bull Mountain, Cecil County.

2-3. Shannon Hill, Cecil County.
Raritan formation.

PLATE LXXXIX

PAGE

Figs. 1, 2. Andromeda nover-ceesaree Hollick 885
Magothy formation, Grove Point.
Fig. 3. Andromeda coonil Berry 887
Magothy formation, Round Bay.
Fig. 4. Andromeda parlatorit Heer. 888
Magothy formation, Round Bay.
Fig. 5. Myrsine borealis Heer 890
Magothy formation, Grove Point.
Figs. 6, 7. Myrsine gaudini (Lesquereux) Berry 891
Magothy formation, Grove Point.

PLATE XC

page
Fig. 1. Bumelia prenuntia Berry 893Magothy formation, Grove Point.
Fig. 2. Sapotacites knowltoni Berry 892
Magothy formation, Deep Cut, Del.
Fig. 3. Diospyros rotundifolia Lesquereux 895
Magothy formation, Grove Point.
Fig. 4. Diospyros primeva 894
Raritan formation, Bull Mountain, Cecil County.
Fig. 5. Diospybos rera Berty 896
Raritan formation, East Washington Heights, D. C.
Fig. 6. Cordia apiculata (Newberry) Berry 897
Magothy formation, Deep Cut, Del.

GENERAL INDEX

A

Aachen, Fiora from, 266.
Section at, 266.
Afrlen, Cretaceous piants from, 253.
Aix-la-Chapelle, Flora from, 266.
Section at, 266.
Alabama, Correlations wlth, 324.
Cretaceous plants from, 216.
Algæ, discussed, 758.
Aigæ, Upper Cretaceous, 310.
Ammonltes, discussed, 374.
Anglosperms, discussed, 806.
Angoumina, 185.
Annapolis, Well section at, 84.
Antarctica, Cretaceous piants from, 247.
Appoquinimlnk Creck, Fauna from, 91,
93, 95, 97, 99, 101.
Argentina, Cretaceous plants from, 245.
Argonne, Piants from, 258.
Arkansas, Correlations with, 330.
Arthropodn, dlscussed, 361.
Asla, Cretaceous plants from, 252.
Atane, Section at, 188.
Fossil plants from, 188.
Atane scrles, 188.
Age of, 192.
Flora of, 192.
Atlantic Coastai Piain, Fossll plants from, 196.
Aturlan, 184.
Australla, Cretaccous plants from, 247. Austria-Hungary, Cretaceous plants from, 285.

B

Barkentin, G. S., Acknowledgments to, 20.

Belemnites, dlscussed, 393.
Belly River formation, Flora of, 244.
Berry, E. W., Acknowiedgments to, 89.
Betterton, Analysis of sedfment from, 124, 126.
Beusset, Piants from, 260.
Bibblns, A. B., Acknowledgments to, 19, 20.

Bibllography, 39.
Bivalves, dlscussed, 511
Black Creck formatlon, Flora of, 213.
Bodkin Point, Flora from, 102, 103, 104.
Bodkin Point, Section near, 81, 82.

Bohemia, Cretaceous of, 285.
Cenomanlan flora of, 290.
Turonlan flora of, 295.
Emscherian flora of, 298.
Bohemla Creek, Fauna from, 90, 92, 94, 96, 98.
Bohemta Mills, Fauna from, 90, 92, 94, 96, 98, 100.
Brachiopoda, discussed, 734.
Brennen sand pit, Sectlon at, 83.
Briar Polnt, Fauna from, 90, 92, 94, 96, 98, 100.
Brightseat, Fauna from, 91, 93, 95, 97, 99, 101.

Flora from, 102, 103, 104.
Brooks estate, Fauna from, 91, 03, 95, 97, 09, 101.
Bryozoa, discussecl, 736 .
Bulgaria, Cretaceous plants from, 308.
Bull Mountaln, Flora from, 102, 103, 104.
Burklows Creek, Fauna from, 00, 92, 04. 96, 98, 100.

C

Campanlan, 184.
Camp Fox, Analysls of sediment from, 146, 149.
Canada, Cretaceous piants from, 240, 244.
Cape Sable, Flora from, 102, 103, 104. Scctlon near, 82.
Caretonlan, 185.
Cassidys Landing, Fauna from, 90, 92, 94, 96.
Cayots Corners, Fauna from, 91, 93, 95, 97, 99.
Cedar Point, Flora from, 102, 103, 104.
Cenomanian, 184, 185.
Cephalopoda, discussed, 371.
Chesapeake and Delaware Canal, Analysls of sediment from, 132, 135, 137, 146, 149.

Fauna from, 90.
Flora from, 102.
Chlomeker beds, Flora of, 299.
Classification of Upper Cretaceous of World, 184.
Climate of Upper Cretaccous, 312.
Coastal Plaln, Fossil plants from, 196.
Constai Plaln, Physiography of, 23.
Geology of, 26.
Geologicai formations of, 27.

Cœlenterata, discussed, 752.
Colorado, Cretaceous piants from, 237.
Coniacian, 184.
Conifcrs, discussed, 776.
Contents, 13.
Corals, dlscussed, 752.
Correlation of Cretaceous fioras, 313.
Correlation of Maryland Upper Cretaceous, 315.
Correlation tabie, 341.
Correlation with Alabama, 324.
With Arkansas, 330.
With Georgia, 324.
Wlth New Jerscy, 317.
With North Carollna, 324.
With Pacific Coast, 330.
With South Caroilna, 324.
With Texas, 330.
With Western Interlor, 330.
Cretaceous, Lower, 28.
Cretaceous, Upper, 24.
Cretaceous, Upper, Floras of, 183.
Crocodilia, discussed, 347.
Crustacea, discussed, 361.
Cycads, discussed, 769.

Dakota sandstone, Fiora of, 223.
Dalmatla, Cretaceous plants from, 303.
Danian, 184.
Deep Cut, Flora from, 102, 103, 104.
Delaware City, Fauna from, 98.
Dlagrams of sedlments, 169, 170.
Dicotyledons, discussed, 812.
Distribution of Fauna and Flora, 89.
Dresden, Plants from, 280.

E

Eagle sandstone, Flora of, 234.
East Washington Helghts, Flora from, 102, 103, 104.

Well section at, 85 .
Echinodermata, dlscussed, 749.
Engiand, Cretaceous piants from, 256.
Eocene, 30.
Europe, Correlatlons with, 335, 341.
Cretaceous plants from, 255.
Eutaw formation, Fiora of, 215, 220.

F

Fauna, Tables of distributlon of, 90-101. Ferns, discussed, 760. Flshes, discussed, 350.
Flora, Tables of distributlon of, 102-104. Floras of Worid durlng Upper Cretaceous, 183.

Forked Creek, Flora Irom, 102, 103, 104.
Fort Dupont, Section at, 76.

Fort Washington, Fauna from, 91, 93, 95, 97, 99.
France, Aturian flora of, 260.
Cenomanian flora of, 257.
Emscherian flora of, 260.
Turonian flora of, 258.
Upper Cretaceous of, 184, 257.
Fredericktown, Fauna from, 91, 93, 95, 97, 99, 101.
Friendiy, Fauna from, 91, 93, 95, 97, 99, 101.

Fungi, discussed, 757.
Fuvcau, Plants from, 260.

G

Gardncr, J. A., Acknowledgments to, 89.
Gastropoda, discussed, 397.
Genesis of Upper Cretaceous scdiments, 111.

Geologic Province, discussed, 105.
Geological Survey Commission, 7.
Geological Survey, scientific staff, 9.
Georgia, Correlations wlth, 324.
Cretaceous piants from, 214.
Germany, Cretaceous piants from, 265.
Gibsons Island, Fauna from, 90.
Glauconite, discussed, 176.
Glymont, Fiora from, 102, 103, 104.
Good IIope Hili, Fauna from, 94, 96, 98, 100.

Gosau beds, Age of, 305.
Flora from, 306.
Grabau, A. W., cited, 749.
Greenland, Fossii plants from, 185.
Grove Polnt, Analysis of sediment from, 152.

Fiora from, 102, 103, 104.

H

Hartz, Plants from, 274.
Historical Review, 34.
Hokkaldo, Plants from, 252.
Hungary, Cretaceous plants from, 303.

I

Ile d'Alx, Plants from, 257.
Illustrations, 17.
Indla, Correlations with, 338.
Interpretation of Upper Cretaceous deposlts, 85.
Iser beds, Flora of, 297.
Italy, Cretaceous plants from, 264.
J
Japan, Cretaceous plants Irom, 253.

K

Kümmel, H. B., Acknowledgments to, 20.

L

Larame formation, Flora of, 237.
Lesina, Cretaceous plants from, 303.
Letter of Transmittal, 11.
Liburnian stage, 307.
Ligerian, 185.
Lloyd Creck, Section at, 81.
Local sectlons, 76.

M

Mrestrlchtlan, 184.
Magothy, Analysis of sedlments of, 124, 126.

Magothy formation, Age of, 313, 341.
Areal distrihution of, 61.
Lithologlc characters of, 61.
Name and synonymy of, 61.
Organic remalns of, 63 .
Stratigraphic and structural relatlons of, 63.
Strlke, dip and thlckness of, 02.
Fossil plants of, 203.
Magotly River, Fauna from, 90.
Marsellles, Piants from, 258.
Matawan, Analysis of sedlments of, 132, $135,137,146,149,152,156$.
Matawan formation, Age of, 313, 341.
Arenl dlstrlbutlon of, 65.
Lithologic characters of, 66.
Name and synonymy of, 65.
Organle remalns of, 67.
Stratigraphle and structural relatlons of, 67.
Strike, dip and thickness of, 67.
Maulden Mountain, Section at, 77, 78.
McNeys Corners, Fauna from, 91, 93, 05, 97, 90, 101.
Middendorf beds, Flora of, 213.
Mill Creek scries, Flora of, 241.
Milersville, Fauna from, 91, 93, 95, 97, 99, 101.

Fiora from, 102.
Mlocene, 31.
Mitscherlich, E. A., cited, 114.
Mollusen, discussed, 371.
Molluscolden, dlscussed, 734.
Monmouth, Analysis of sediments of, 159, 162.

Monmouth formatlon, Age of, 313, 341.
Areal distrlbutlon of, 70.
Lithologle characters of, 70.
Name and synonymy of, 70.
Organle remalns of, 72.
Stratigraphic and structural relatlones of, 71.
Strike, dip and thickness of, 71.
Monocotyledons, discussed, 806.
Montana group, Flora of, 234.

Moravia, Cretaceous plants Irom, 300.
Cenomanian flora of, 301.
Mungo-schichten, Flora of, 255.

N

New Caledonia, Cretaccous plants from, 252.

New Jerscy, Correlatlons wlth, 317.
New Mexlco, Cretaceous plants from, 239.
New Zealand, Cretaceous plants from, 250.

Nlederschoena, Plants from, 276.
North Carolina, Correlatlons with, 324. Cretaceous plants from, 210.
North Ferry Point, Section near, 82.
Noxontown Pond, Fauna from, 91, 93, 95, 97, 99, 101.
Nuhlan sandstone, Age of, 254. Flora of, 254.

0

Overlook Inn Road, Florn from, 102, 103, 104.

Oxon H1ll, Fauna from, 91, 93, 95, 97, 09, 101.
Oysters, dlscussed, 551.
P
Paclfle Coast, Correlatlons with, 330 .
Park Polnt, Sectlon at, 82.
l'atoot serles, 193.
Age of, 196.
Flora of, 193.
Lithology of, 103.
Pcace liver, Cretaceous plants from, 244.
Pelccypoda, dlscussed, 511.
Perucer beds, Flora of, 290.
I'ctrography of Upper Cretaceous sediments, 111.
I'lisbry, H. A., Acknowledgments to, 20.
Pinc Rlver, Cretaceous plants from, 244.
Pivot Bridge, Section near, 78.
Plnnts, dlscussed, 757.
Pleistocene, 32.
Plioccne (3), 32.
Portugnl, Ccnomanian fiora of, 262.
Cretaccous plants from, 261.
Scnonlan flora of, 263.
Turonlan flora of, 263.
Ireface, 19.
Prlesener heds, Flora of, 208.
Protocene stage, 307.
I'rovenclan, 185.
Prussia, Cretaceous plants from, 266.

R

Rancocas, Analysls of sediment of, 165.
Rancocas formation, 74.

Raritan formation, Age of, 313, 335, 341. Areal distribution of, 56.
Lithologle characters of, 57.
Name and synonymy of, 56.
Organic remalns of, 59.
Stratigraphic and structural rela. tions of, 59.
Strike, dip and thickncss of, 58.
Fossii plants of, 109.
Recent, 33.
Red Hiii, Section at, 76 .
Reptilia, dlscussed, 347.
Rhotomagian, 185.
Ripley formation, Fiora of, 216, 220.
lound Bay, Fauna from, $90,92,94,96$, 98, 100.

Flora from, 102, 103, 104.
Sections at, 83, 84 .
Russin, Cretaceous piants from, 308.

S

Sabalitcs sandstone, Age of, 257.
Santonian, 184.
Sassafras River, Anaiysis of sediment from, $156,162$.
Saumurian, 185.
Saxony, Cretaceous plants from, 271.
Seat Pieasant, Analysis of sediment from, 169.

Fauna from, 91, 93, 95, 97, 90, 101.
Sediments, discussed, 111.
Diagrams of, 169, 170 .
Sequola, dlscusscd, 785.
Senonian, 184.
Shannon Hill, Flora from, 102, 103, 104. Scction at, 76.
Silesla, Cretaceous plants from, 284.
South America, Cretaceous plants from, 245.

South Carollna, Correlations with, 324. Cretaceous plants from, 212.
Stanton, T. W., Acknowledgments to, 19.
St. George's, Fauna from, 90, 92, 94, 96 , 98, 100.
Stephenson, L. W., Acknowiedgments to, 19.

Stony Point, Section at, 83.
Sullivan Cove, Sectlon at, 83.
Summit Bridge, Fauna from, $90,92,94$, 96, 98, 100.

Sectlous near, 79, 80, 81
Sweden, Cretaceous plants from, 256.

T

Table of Correlatlons, 341.
Table of Formatlons, 27, 110

Tables of Faunai distribution, 90-101.
Tables of Fioral distribution, 102, 103, 104.

Taxonomic Table, 38.
Teplitzer beds, Fiora of, 297.
Texas, Correlations with, 330.
Cretaceous plants from, 220.
Thoulet, J., clted, 113.
Turners Creek, Fauna from, 91, 93, 95, 97, 99.
Turonian, 184, 185.
Tuscaloosa formation, Flora of, 216.
Twitchell, M. W., Acknowiedgments to, 20.

Tyroi, Cretaceous plants from, 305.

U

Upper Cretaceous Algæ, 310.
Upper Cretaceous floras, Correlation of, 313.

Upper Cretaceous of Maryland, 23.
Classification of, 184.
Correlation of, 315.
Description of, 50 .
Interpretation of, 85.
Paleontologic characterlstics of, 50. Petrography of, 111.
Stratigraphic characteristics of, 50. Systematic paleontology of, 343.
Upper Cretaceous floras of world, 183.
Ulmstead Foint, Fauna from, $90,92,94$, $96,98,100$.

V
Vancouver Island, Cretaceous plants from, 242.
Vermejo formation, Flora of, 239.
Vermes, dlscussed, 745.
Vernasso, Plants from, 264.
Vertebrata, discussed, 347.

W

Washlta serles, Age of, 222. Flora of, 222.
Waterbury, Fauna from, 91, 93, 95, 97, 99, 101.
Wehlowltzer beds, Flora of, 206.
Weissenberger beds, Flora of, 296.
Western Interior, Correlatlons with, 330.
Westphalla, Cretaceous plants from, 281. Campanian flora of, 282.
Mrestrichtian flora of, 283. Turonian flora of, 282.
Woodblne formation, Fiora of, 221.
Worms, alscussed, 745.

PALEONTOLOGICAL INDEX

Figures ln bold face indicate prlnclpal discusslon.

A

Abies catcaria, 206. chuchlensls, 290. minor, 297. upernivikensis, 191.
Abietites dubius, 239, 789.
ernestinæ, 223.
foliosus, 216.
glïckil, 274.
tyreiii, 244.
valentini, 245.
Abiocaulis yezoënsis, 253.
Acaciaphyllltes grevilleoides, 213.
Acantioceras manteili, 338.
rhotomagense, 338 .
Acer amboyense, 109.
antiquum, 277.
caudatum, 103.
elentatum, 188, 193.
minuta, 199.
patucidentatum, 203.
saskatchewanense, 244.
Acerates amboyense, 109, 211, 216 . arctica, 188, 193.
Acerites cretaceus, 256. muitiformis, 223. pristinus, 223.
Acrostichum cretaceum, 290.
haddeni, 239.
primoriiaie, 248.
trlstaniæphyifum, 290.
Actron biplicata, 398.
cretacea, 410.
forbesiana, 410.
Actronia naticoldes, 402.
Actoonina biplicata, 398.
Acteocina, 40!).
forbesiana, 90, 410.
Acteocinidæ, 409.
Acteon, 897.
gabbana, $00,397,398,410$
inteus, $90,897,914$.
ovoidea, 410.
wetherilli, 400.
Actconidre, :397.
Actinocamax pienus, 289.
quadratus, 264.
Actinopterygii, 35s.
Alesmacea, $7 \boldsymbol{2} 4$.

Adiantites decaisneanum, 268.
prælongus, 242.
cassebeeroidcs, 268.
Adiantum densinerve, 193.
Ascidites steilatus, 268.
JEnona, 697.
eufariensis, 98, 327, 607, 938.
Aora cretacea, 670.
Akeratidæ, 407.
Alaria rostrata, 471.
Alecto reqularls, 736 .
Alectryonia iarva, 552, 554, 555.
Algæ, 558.
Aigites americana, 102, 203, 211, 213,
75s, 946 .
valdensis, 758.
Alisma? reticulata, 188.
Alnltes crassus, 223.
friesil, 256.
grandlfolia, 223.
insignis, 241, 242.
Ainus kefersteinil, 290. protogæa, 193.
A mauropsls, 玉̄02. compacta, 94, 504, 900 A . meckana, 94, 50 . paludinæformis, 503.
Ammonoider, $\mathbf{B 7 4}$.
Ammonites compiexus, 378. conradi, 383. danæ, 383.
delawarensis, 391 .
inippocrepis, 382.
lenticularls, 388.
lobata, 388.
nebrascensls, 383.
placenta, 385.
texanus, 390.
vanuxemi, 391.
vespertinus, 390.
Amelanchier wintei, 203.
Ampelophyllum attenuatum, 223 . firmum, 223. ovatum, 223.
Amphiblestrum, $\mathbf{7} \mathbf{1 0}$. heteropora, 100, 740.
Amusium burlingtoncusis, $\overline{5} 88$. conradi, 594.
simplicum, 595.

Amygdaius antecedens, 231
Anacardites alnifoiius, 260. amissus, 188
Anatina elliptica, 633.
Anatinacea, 629.
Anatinidæ, 633.
Anchura, 470.
abrupta, 470.
compressa, 472.
hebe, $92,471,475$.
monmouthensis, 92, 476, 911.
pennata, $02,320,323,471,472$.
pergracilis, $92,471,476$.
rostrata, $68,92,321,322,471$.
Andromeda, 885.
acuminata, 223.
australlensis, 248.
cookii, 104, 199, 203, 887, 989.
cretacea, 215, 223.
euphorblophylloldes, 213.
flexuosn, 887.
grandifolia, 104, 199, 203, 211, 213, 216, 889 .
latifolia, 889.
novæ-cæsareæ, 104, 199, 203, 211, 213, 216, 221, 225, 326, 885, 989.
pariatoril, $104,188,199,204,211$,
$213,216,220,223,888,989$.
parlatoril Iongifolia, 224.
pfaffiana, 188, 221, 224.
snowil, 221, 224.
tenuinervis, $199,224$.
wardiana, 215, 216, 224.
Androvettia carolinensis, 211, 216.
elegans, 215.
statenensis, 199.
Anemia elongata, 235.
haydenii, 768.
robusta, 239.
supercretaces, 237, 239.
Anglospermophyta, S06.
Anisophyllum semialatum, 224.
Annelida, $\mathbf{7 4 5}$.
Anomalodesmacea, 629 .
Anomaspis hispida, 199.
tubercuiata, 199.
Anomin, 60\%.
argentaria, $96,331,556,60 \$, 610$, 031.
ephippium, 607.
forteplicata, $96,608,613,931$. ornata, $96,327,608,612,931$.
subtruncata, 608.
tellinoides, 96, 608, 610, 931.
Anomiacen, 604.
Anomildæ, 604.
Anona cretacea, 224. robusta, 237.
Anthocephale bohemica, 298. Antholithus horridus, 244.

Anthozon, 752
Antigona, 681.
Antigona (Aphrodina) tippana, 98, 327. 681, 936.
lamellaria, 681.
Apeibopsis cyciophyiia, 224.
thomsenlana, 188.
Aphrodina, 681.
tippana, 98, 327, 681, 936.
Apocynophyilum crenatum, 283.
cretaceum, 277.
sordiduin, 224.
subrepandum, 283.
warraghianum, 248.
Aporrhaidæ, 4\%0,
Aporosa, 752.
A raceæ, S09.
Arales, 809.
Aralia, 875.
anisoloba, 290, 308.
berberidifoila, 224.
brittoniana, 204.
chlomekiana, 299.
concreta, 224.
coriacen, 204, 277, 308.
cottondalensis, 216.
daphnophyllum, 290.
decurrens, 290, 301.
denticulata, 283.
eutawensis, 215.
formosa, 199, 224, 290, 301.
furcata, 290, 000.
grœnlandica, 104, 188, 199, 203, 224, $875,876$.
kowaiewskiana, 290
masoni, 224
minor, 290.
mattewanensis, 204.
nassauensis, 204, 878
newberryi, 190, 204.
dentlifera, 290.
patens, 199, 876
propinqua, 290.
quinquepartita, 224.
radiata, 224.
ravniana, $64,104,188,204,318$,
\$76, 978, 979
rotundata, 241.
rotundlloba, 199, 878.
saportana, 224.
saportana deformata, 224.
subeinarginata, 224.
subforinosa, 248.
tenuinervis, 224.
towneri, 204, 224, 877.
transitiva, 290.
triioba, 290, 301.
westoni, 241.
waigattensis, 193.
washingtoniana, $60,104,199, \mathbf{8 5}$, 978.
wellingtoniana, 199, 221, 224.
wellingtoniana vaughanii, 221.
wiesneri, 301.
quinquepartita, 190.
Araliaceæ, 873.
Araliopsis brevilobn, 878.
cretacea, 879.
cretaceum dentatum, 882.
cretaceum obtusum, 883 .
cretacea salisburiæfolia, 883.
recurvatum, 824.
Araliopsoides, $\mathbf{8 7 8}$.
breviloba, 60, 104, 199, 878, 982, 986.
cretacea, $60,104,199,224,570,880$,
$884,970,980,981,984,985,988$.
cretacea dentata, 104, 109, 224, S82, 983, 987.
cretacea salisburifolia, $104,199,224$,
S83, 982, 983, 986, 987.
recurvatum, 192.
Araucaria, $\mathbf{4 7}$.
bidwilli, 278, 780.
biadenensis, $102,204,211,213,215$, 216, 220, 304, 325, 777, ก50.
bohemica, 290.
brachyphylla, 298.
clarki, 211.
cretacea, 258.
dariingtonensis, 213.
fricl, 298.
jeffreyi, 211, 213, 215, 216, 780.
imbricata, 780.
latifolia, 264.
macrophylla, 264, 778.
maryiandica, 64, 102, 204, $770,950$.
spathulata, 224.
toucasi, 259, 260, 304, 778.
Araucariaceæ, 776.
Araucariales, 776.
Araucarioxyion ægypticum, 254.
gardoniense, 257.
keuperianum, 274.
novæ-zeclandii, 251.
noveboracense, 190.
tankoense, 253.
Araucariopitys americana, 199.
Araucarites appressus, 789.
miqueli, 268.
ovatus, 204, 778.
patagonica, 245.
reichenbachi, 274, 788.
zeilleri, 204.
Arca, 535.
barbatia, 537.
saffordi, 04, 535, 537, 917.
unadi, $96,535,539,917$.
concamerata, 529.
eufalensis, 524, 525. gly cymeris, 540. ноæ, 535.
nucleus, 511.
obeṣa, 94, 535, 586.
Arcacea, 524.
A rcidæ, 535.
Arcopagia, 692.
gabbi, 98, 694, 938.
georgiana, 98, 692.
Ardisia glossa, 298.
Arecaceæ, 811.
Arccales, 811.
Arisfema cretacea, 204, 224.
mattewanensc, 204.
Aristolochia tecomæcarpa, 290.
Aristolochites dentata, 224.
Arthropoda, $\mathbf{3 6 1 .}$
Artocarpophylium occidentale, 242.
Artocarpidium eretaceum, 224, 27 .
pseudocretaceum, 248.
guillemainii, 255.
Artocarpus dicksoni, 188.
lesslglana, 237.
undulata, 282.
Arundles wohlfarthi, 280.
Arundo grönlandien, 188, 193, 213, 264.
Asiminn eocenica, 235.
Aspidiophyilum, 826.
dentatum, 224.
dentatum, 827.
platanifolium, 224.
trilobatum, 60, 103, 199, 224, 826, 956, 957.
Aspitlun cretaceo-zeelandicum, 251.
fecundum, 188.
jensení, 188.
relchianum, 277, 307.
schouwil, 188.
Aspienites dublus, 290.
Asplenium, $\mathbf{7 6 6}$.
albertum, 241.
calopteris, 193.
brongniarti, 268.
cænopteroides, 268.
cecilensis, 64, 102, 204, 760, 947.
dicksonianum, 60, 102, 188, 109,
$217,224,245,300,318,325,767$.
försteri, 188, 199, 268, 277, 291, 308.
jerseyensis, 199.
lapideum, 301.
niobrara, 244.
nordstromi, 188.
pingellanum, 193.
raritanensis, 199.
scrobiculatum, 193, 274.
tenellum, 235.
velenovsky, 291.
wromingense, 235.

Astacide, 361.

Astartacea, 645.

Asterosoma radiciforme, 280 .
Astrocaryopsis saintæ-manehiidæ, 258.
Athieta Ieloderma, 430.
Aulacolepis rhomboidais, 24 s .
Auricuia globuiosa, 401.
ringens, 400.
Avellana, 408.
builata, 90, 40R, 410.
costata, $00,403,405$.
incrassata, 403.
ilntoni, 90, 403, 406, 914.
linguis, $90,403,406,914$.
Avicuia lingurformis, 548.
petrosa, 548.
Axinæa alta, 541.
mortonl, 540.
subaustraiis, 540 .

B

Bacuites, $\mathbf{3 7 4}$.
anceps, 328, 337.
asper, $90,322,326,328,332,332$, 336, 3ат, 208.
ovatus, 90 , 333, 375, 908.
vertebraiis, 374.
Baiera grandis, 204.
incurvata, 188, 199.
leptopoda, 188.
saglttata, 188.
Bambusium latifolium, 807 .
Bambusites australis, 251.
Banksla crenata, 248.
cretacea, 248.
iongifolia, 277.
plagioneura, 248.
prototypus, 277.
pusilia, 204, 291.
subiongifoila, 248.
Banisites saportanus, 204, 291.
Banisteriophyiiun cretaceum, 248.
Barbatia, 53%.
saffordi, 94, 535, 537, 017.
uandi, 96,535 , ะ!t!, 917.
Baroda caroinensis, 685.
Bauhinla, 846.
alabamensis, 220 .
cretacea, 199, 217.
gigantea, 199.
marylandica, 64, 103, 204, 217, 325, 846, 971.
ripleyensis, 220.
Belemuitella, $\mathbf{3 9} \mathbf{9}$.
amerlcanat, $73,90,320,322,323$, $334,337,394,908$.
bulbosa, 334 .
mueronata, $73,266,337,393,394$, 396.
paxiliosus, $393,394$. subfusiformis, 305 .
Belemnitellidæ, $\mathbf{3 0 3}$.
Beiemnites americanus, 39 A . subconicus, 394 .
Belemnoidea, $\mathbf{3 0 5}$.
Beiodeudron gracilis, 268. iepldodendroides, 268. neesii, 268.
Benizia caiopteris, 193, 268.
Benthamia dubia, 291.
Benzoin masoni, 224.
venustum, 221, 224.
Berenicea, 73%. antericana, $100,737$.
Betuia atavina, 193.
beatriciana, 224.
perantiqua, 242.
treinula, 103. vetusta, 103.
Betuites cuneatus, 224. crassus, 224. denticulata, 224. grewiopsideus, 224. hatcheri, 235. inæquilateralis, 224 . ianceolatus, 224 . iatifolius, 224. multinervis, 224. oblongus, 224. obtusus, 224. populifolius, 225. popuilformis, 204. populoides, 225. quadratifolius, 225. reniformis, 225. rhomboidaiis, 295. rotuudatus, 225. rugosus, 225. suowii, 225. subintegrifolius, 225. westii, 225.
rignonia cordata, 291. pulcherrima, 291. sllesiaca, 299.
1Bombax argillaceum, 201, 301.
Bonaventurea cardinalls, 268.
Borraginaceæ, S97.
Bowerbankia attenuata, 268 . enarginata, 268.
maxima, 268.
repanda, 268.
rotundifolia, 26s.
Brachiopoda, $7: 34$.
Brachyoxylou notabile, 199.
Brachyphyllacer, $\mathbf{7 S 1}$.
Brachyphyllum, 781.
corallinum, 262.
crassicaule, 785.
gracile, 784
microcladum, 784.
minor, 292.
macrocarpum, 102, 199, 204, 211, $213,225,235,239,781,948,950$. macrocarpum formosum, 102, 204, 215, 217. 220, 221, 78:3, 949.
obesum, 262, 948 .
obeslforme elongatum, $7 \mathrm{S5}$. squamosus, 292.
Bresciphyllum cretaceum, 291.
Breviarea saffordl, 537.
Bromelia rhomboidea, 225.
tennifolia, 225.
Bryozoa, 736.
Buccinidx, 46:3.
Bulla conica, 407. cylindracea, 411.
hydatis, 407. mortoni, 407. recta, 411.
Bumelia, Ss:t.
pramuntla, 64, 104, 209, s.83, 900.
lanuginosafolia, 894.
Butomites cretaceons, 291.

c

Cæsalplnla cookll, 199. middendorfensis, 213. mritanensis, 199.
Cresalpinites marticensls, 259.
Calamitopsls königli, 283.
Callianassa, 368.
antlqua, 363.
clarki, 90 , 365, 907.
conradi, 90, 366, 906.
conradi, var. punctimanus, 90,348 , 907.
mortoni, $90,363,907$.
mortoni, var. marylandica, 90, 366, 907.
sp. indet., $90,906$.
Calllanassidæ, 36.3.
Calllsta, 681.
Callistemon cretaceum, 291.
Calllstentophyllum bruderi, 291. heerii, 225, 277.
Calycites alatus, 204.
diosprriformis, 199, 897.
middendorfensls, 213.
obovatus, 204.
jarvus, 109.
sexpartitus, 217.
Camptonectes bellisculptus, 588. burlingtonensls, 588.
Canavalia obtusifolia, S43.
Cancellaria alabamensls, 435. septemilrata, $4+9$.
Cancellarida, 412, 465 .

Capparites orbiculatus, 217. synophylloides, 217.
Cardiacen, 663.
Cardiaster, 750.
marylandica, 100, 750, 943.
Cardildæ, 663.
Cardita intermedia, 657.
Cardltacea, 65\%.
Cardium, 663.
burlingtonense, 666 .
costatum, 663.
dumosum, 98, 664, 668, 669, 675.
elegantulum, 635.
eufalense, $98,663,664,669,671$, 036.
knappi, 75, 323.
kümmeli, 98, 323, 664, 673.
multiradiatum, 669, 671.
protextum, 636.
spiilmani, 98, 663, 666.
tenulstrlatum, 98, 664, 669, 675.
tippana, 675.
Caiditldæ, 65̄.
Carex, sos.
clarkll, 64, 102, 204, 213, 318, SOS.
Carolopterls aquensls, 268, 274.
asplenioides, 268.
Carplnites arenaceus, 284. microphyllus, 193.
Carpinoxylon compactus, 274.
Carpites, 8:89.
alatus, 235.
coniger, 225.
cordiformis, 225.
granulatus, 262.
judithæ, 235.
liriophylli, 143, 204, 225, S:34, 966.
minntulus, 204.
prunl, 235.
rhomboldalis, 237.
tilia ceus, 225.
triangulosis, 235.
Carpolltes oblongus, 306 .
Carpollthes meridlonalis, 242.
vyserovicensis, 291.
C'arpolithus, $\mathbf{D O O}$.
bla denensls, 211.
cliff woodensls, 204.
complanatus, 248.
cretacens, 277.
curtus, 260.
arupformis, 204.
euonymoldes, 199.
fagiformis, 248.
floribundus, 199, 204, 217.
hemloclnus, 268.
hirsutus, 199, 204.
juglandiformis, 204.
longlpes, 193.
mattewanensis, 204.
ostryæformis, 204. ovæformis, 199. patootensls, 193. provinciais, 261. pruniformis, 199. scrobicuiatus, 188. scmisulcatus, 248. septiocuine, 104, 204, 500, 980, 984. silicuixformis, 248 .
tuscaloosensls, 217. vaccinfoldes, 199 woodbridgensis, 200
Caryatis veta, 75, 323.
Cassla angusta, 189, 277. antiquorum, 189. atavin, 299.
etheridgel, 248. ettingshauseni, 189, 193, 277. insularis, 204. melanophylia, 290 prenemnonia, 248. prephascolitoldes, 248. problematica, 225. vaughanl, 217.

Casslduildæ, 750.

Cassidulus, 750. sp., 100, $\mathbf{7 5 0}$.
Castaila duttouiana, 235. stantoni, 235.
Casuarinites cretaccus, 251.
Casuarina primæva, 248.
Caudex spinosus, 225.
Caulerpites bryoides, 268.
fastigintus, 286.
incrassatus, 239
montalbanus, 296.
Cauitnia nulleri, 268.
Cauilintes stigmarioides, 277.
Caulomorpha heeri, 262.
Cennothus constrletus, 204.
cretaceous, 242.
prodromus, 193.
Cedrela hazsllnszkyi, 305.
Cedroxylon aquisgranense, 274.
gardoniense, 257
matsumure, 253.
yendoi, 253.
Celastracce, $\mathbf{8 4 9}$.
Celastrophyllum alabamensis, 217.
australe, 251
brittonianum, 200, 217.
carolinensis, 213, 217.
crassipes, $204,225$.
crenatum, 103, 193, 200, 204, 211,
213, 217, 852, 853.
crenatum ellipticum, 217.
cretaceum, 200, 225.
decurrens, 200, 217, 275.
elegans, 204, 213.
ensifolium, 225.
grandifolium, 200, 204, $21 \overline{\text {. }}$
gymindafollum, 217 .
integrifolium, 27 T.
lanceoiatum, 193, 277.
minus, 200.
myrsiloldes, 225.
newberryanum, 200, 204, 217, 850 .
obiiquum, 225.
obtusum 189.
precrassipes, 217.
serratum, 193.
shirleyensis, 217.
spatulatum, 200.
undulatum, 104, 200, 204, 211, 217 ,
853.

Celastrus, s50.
arctica, 103, 193, 200, 204, sino, 973.
ettingshauseni, 850.
Celtidophylium præaustraie, 301.
Cephaiopoda, $\mathbf{3 7 1}$.
Cephaiotaxites insignis, 193.
Cephalotaxospermum carolinianum, 211, 213, 220.
Ceratopetalum primigenium, 248.
rivuiare, 251.
australls, 249.
Ceratostrobus cchinatus, 291, 298.
formosus, 275.
sequoiæphyllum, 259, 291.
strictus, 275.
Cercospora corlococcum, 291.
Cerithilidæ, 4S1.
Cerithium, 481.
pilisbryi, 94, 481.
Chamæcyparicites charonis, 291.
Chemnitzia normaniana, 480
Chilostomata, 740.
Chondrites bosqueti, 269.
bulbosus, 239.
divaricatus, 269.
elegans, 269.
flexuosus, 200, 204.
furciliatus, 281, 282, 297, 298, 299.
furellatus latior, 283.
intricatus, 280, 283.
Jugiformis, 269, 283
mantelli, 29 T.
polymorphus, 283.
riemslyki, 269.
rigidus, 269.
subcurvatus, 283.
subintricatus, 260.
subsimplex, 239.
targionli, 296.
vagus, 269
Chondrophyllum grandidentatum, 274.
hederæforme, 274.
nordenskioldi, 809.
obovatum, 200.
orblcuiatum, 189, 200.
reticuiatum, 200.
tricuspe, 274.
Chondrophyton dissectum, 259.
laceratum, 262.
obscuratum, 262.
Chrysodoninæ, 463.
Chrysophyllum veicnovskyi, 277.
Cibota obesa, 536.
Cldaridx, 749.
Cidaris, 849.
sp., 100, 749.
Cidaroldea, $\mathbf{7 4 9}$.
Cimolichthys dirus, 357.
Cínamomum, s60.
affine, 235, 237.
canadense, 242.
crassipetiolatuin, 205.
ellipsoldcum, 193, 225.
hanstil, $249,251$.
heerli, 205, 211, 215, 221, 225, 242, 245.
intermenhum, 860
marioni, 225.
membranaccum, 205, 221, 225, 848.
middendorfensis, 213.
newberryl, 103, 189, 193, 200, 205,
213, 215, 217, 225, 242, 318, 325,
860, 967.
personatum, 209.
primigenlum, 249, 278, 296.
scheuchzeri, 225.
sczannense, 263, 860, 861.
Cinulin, 401.
costatn, 405
naticoldes, 90, 402.
Cissites, $\mathbf{8 5 5}$.
accrifolius, 225
acuminatus, 225, 881.
acutiloba, 225.
affinis, 189, 103, 225, 241, 242, 245.
affinis ampin, 242.
alatus, 225.
brownil, 225.
crispus, 299, 856.
dento-lobatus, 225, 855, 975.
formosus, 189, 200, 217, 225., 975.
formosus, var. magothiensis, 100, 205, S55, 974.
harkerlanus, $225,874,880$.
heerii, 225, 881.
ingens, 225.
ingens parvifolif, 225.
insignis, 226.
newberryi, 104, 200, 205, S56.
obtusiiobus, 226.
parvifoilus, 855.
platanoldea, 226.
popuioides, 226.
salisburæfolius, $880,883$.
vitifolia, 855.
uralensis, 309.
Cissophyllum exulum, 291.
Cissus browniana, 226.
vitifolia, 291.
Cladophiebis, $\mathbf{6 6 5}$.
alabamensis, 217.
aibertsil, 294.
columbiana, 242.
socialis, 102, 189, 200, $\mathbf{7 6 5}$.
Clavellithes, 439.
Clavipholas cithura, 725.
Coccolobites, S:30.
cretaccus, 64, 103, 205, 830, 964.
Cocoopsis orata, 258.
zelliteri, 258.
Cocculus assimile, 259.
cinnamomeus, 205, 217, 291.
extinctus, 290.
imperfectus, 205.
inquirendus, 205.
mlnutus, 205.
polycarpafolius, 217.
problematicus, 217.
Celenterata, $\mathbf{7 5}$.
Coluten, 844.
coronifioides, 189, 841.
obovata, 64, 103, 205, 217, 844, 972.
Inngeana, 189.
primordialis, 103, 189, 200, 221, 226,
S45, 971.
protogen, 193.
valde-inæqualis, 189.
Combretiphylium acuminatum, 255.
Comptonin microphylia, 193, 200.
tenera, 283.
Comptonionteris intermedin, 259.
provinclatis, 250.
saportæ, 259.
vasseuri, 259.
Comptonites antlquus, 256, 305.
Confervites aquensis, 260, 282.
cæspitosus, 269.
dubius, 205.
Conifere, 776.
Coniferophyta, 776.
Conocarpites formosus, 217.
Conospermites hakewfolius, 278, 291.
linearifolius, 240.
Corax, 3 32.
falcatus, $90,354,905$.
heterodon, 354.
pristodontus, 90 , :352, 905.
Corbuia, $\mathbf{7 1 0}$.
bisulcata, 64, 100, 711.
crassiplica, 100, 323, 711, 713, 939.
crassipicenta, 713.
fouikel, 711.
galifea, 710.
moumouthensis, 100, 711, 715, 940. perbrcvis, 713.
percompressa, $100,711,717,940$.
subradiata, 100, 711, 71S, 940 .
terramarla, $100,711,716,939$.
Corbulidæ, 710.
Cordia, sis.
sebestena, 898.
apicuiata, 104, 200, 205, 21\%, 807, 890.
tremuia, 898
Cornacex, $\mathbf{8 8 4}$.
Cornophylium myriexforme, 274.
obtusatum, 217.
vetustum, 200, 217, 221, 885.
Cornoxyion erraticum, 274.
Cornus, $\mathbf{~ S E} 4$.
cecilensis, 104, 205, SS4, 278.
forchhammeri, 64, 104, 189, 205, sא.. 978.
hoimiana, 19 f.
obesus, 242.
platyphyiloides, 226.
precox, 226.
studeri, 235.
suborbifern, 238.
thulensis, 194.
Corticites stlgmarioides, 291.
Corynotrypa tenuieorda, 745.
Cosmoceratidæ, 381.
Crassatelia gibbosa, 648.
lintea, 653.
ptcropsis, $65 \overline{5}$.
ripleynna, 649.
subplana, 6 อิ1.
valosa, 649.
Crassateliina, 645.
carolinensis, $98,322,326,646$.
oblonga, 645.
Crassateliitcs, 648.
linteus, $98,649,6.53,93 \overline{0}$.
i)teropsis, 98, 649, 6:55, 935.
subplanus, $98,649,651,653$.
vadosa, 73, 98, 323, 32才, 64i, 935.
Crassatellltidæ, 645.
Cratægus aceroides, 226.
atavlna, 194, 226.
lacrei, 226.
lawrenclana, 226.
fragaroldes, 194.
tenuinervls, 226.
Credneria aecrifolia, 274.
acuminata, 274.
arcuata 274, 291.
atava, 274.
bohemica, 291.
cuncifolis, 278.309.
denticulata, 274, 282.
elongata, 274.
cngelhardti, 274.
geinitziann, 278, 309.
giandulosn, 274.
grandidentata, 2is.
integerrima, 180, 274, 282.
macrophylla, 205, 301.
microphyila, 226.
obionga, 274.
peitata, 274.
posthuma, 274.
rhomboidea, 826.
subscrrata, 274.
subtriloba, 282.
superstes, 299.
tenuinervis, 282.
triacuminata, 274, 282.
velchovskyana, 309.
westfalica, 282.
triiobil, 274.
zenkeri, var. asymmetrica, 274.
var. intermedia, 274.
var. orbicuinris, 274.
var. triloba, 274.
Creneila, 62s.
eleguntuin, $98,327,331,624,625$, 932.
serica, $73,98,327, \mathbf{6 2 4}, 932$.
Crctovarium japonicuin, 253.
Cribilina, $\mathbf{- 4 2}$.
sagena, $100,742$.
Cribllinidæ, 742,
Criocardium dumosum, 668, 669.
mnltiradiatum, 669.
Crisina, 7iss.
striatopora, 100, 73S.
Crocodilin, :54.
Croeodilus bassifus, 34°. clavirostris, 347.
Crotonophyllum, S47.
eretaceum, 103, 205, 291, S47, 972.
pandureformls, $213,217,848$.
Crustacea, 361.
Cryptomeria primeva, 788.
Cryptomeriopsls antiqua, 253.
mesozoica, 253.
Cryptomerites hungaricus, 305.
Cteniflum Integerrimum, 262.
Ctenobranchiata, 412.
Cueullæッ: 5x9.
antrosn, 94, 529, 534.
anrieuilfera, 520.
eapax, 530, 531.
carolinensis, $69,94,325,529,532$.
medians, 530.
tlppana, 530.
vuigaris, $73,94,529,916,917$.
Cuimites cretaceus, 269, 278.
Cunninghamia elegans, 304.
stenophyila, 291, 296.

Cunninghamites boreails, 189.
dubius, 306 .
clcgans, 194, 205, 211, 213, 216, $235,264,274,278,279,283,291$, 301, $508,331$.
mantelii, 280.
oxycedrus, 274, 278, 280.
pulcheilus, 235.
recurvatus, 235,282
squamosus, 205, 269, 274, 282.
squamosus densifolius, 282.
sternhergii, 278.
Cunninghamiostrobus yubariensis, 253.
Cupanites nova-zcciandix, 251.
Cuppressinca insiguis, 280.
Cupresse, 7 :01.
Cupressinoxylon, 691.
bibbinsi, 102, 205, 791.
sequolanim, 274.
turoniense, 282.
neranicum, 269.
Cupressltes acrophylius, 300.
Cupressoxylon hos11, 259.
Cuspidaria, 6289.
ampulla, 08, 640, 033 .
cucuribita, 98, 640, (541, 933.
Cuspidaridix, 6:36.
Cussonia partita, 291.
Cyathea angusta, 194.
fertilis, 189.
hammerl, 189.
Cyatheites nebraskana, 226.
Cyeadeoidea mirabilis, 238.
Cycadeospermum columnare, 226. lineatum, 226.
Cycadinocarpus circularis, 200, 211, 217.
Cycadites pungens, 226 .
nilssonifnus, 256.
unjiga, 244.
Cycadophyta, $\mathbf{7 6 9}$.
Cycadophyta, $\mathbf{7 6 9 .}$
Cycadopsis aquisgranensis, 269. araucurina, 269. cryptomerioides, 269, 789 . farsteri, 269. monheimi, 269. ritzi, 209. thnyoides, 269.
Creadoxyion westfalicum, 282.
Cyclina, 677. parya, 98, 678, 037.
Cyclostomata, $7: 36$.
Cylichna, 411. recta, 90, 411, 914.
Cyindrites conicus, 282. erctaceus, 260. spongiolies, 274, 280, 284.
Cymbophora, 707. herryi, 100, 708, 939. wordicui, 100, $709,939$.

Cyperacer, sos.
Cyparissidium cretaceur, 306.
graclie, $189,194,200,259,260,264$. 274, 296.
minimum, 291.
pulchellum, 291, 295.
suessi, 306 .
mueronatum, 194.
Cyperacltes ambiguus, 249.
Cypricarliacea, 642.
Cyprimeria, 6st.
depressn, 98, 657, 936.
major, $73,98, \mathbf{6 8 9}, 936,937,038$, 039.

Cytherea, 681.
excuvata, 686.
plana, 339.
Cystisus cretaceus, 275.
Czckanowskin, 804.
caplilaris, 60, $102,200,318$, SOH.
dichotomn, 205.
nervosa, 262.
setacea, 804.

D

Dacrydinium enpressinum, 251.
Dacrydites incertus, 291.
Dacrydium densifolium, 297.
Dactyoiepis cryptomerioides, 200.
Dadoxylon pseudoparenchymatosum, 247. zuffinrdil, 255.
Danæites schiotheimi, 269.
Davallites richardsoni, 242.
Dalbergin, 8:\%.
apiculata, 200, 893.
hyperborea, 189, 200.
irreguinris, 205.
minor, 205.
rinkinna, 189.
severnensis, 64, 103, 205, 547, 972.
Dithergiophyllum nelsonicum, 2 ล̄.
rivuiare, 251.
Dammara, $7 \mathbf{7 6}$.
acicuiaris, 235.
borealis, 189, 200, 205, 211, 217, 291.
cliffwoodensis, 64, 102, 205, 209,
318, 7 ד $6,850$.
macrosperma, 194.
manteiii, 251.
microlepis, 189, 194.
minor, 200, 205.
northportensis, 205.
Dammarites albens, 286 .
bayerí, 308.
cuudatus, 226.
crassipes, 284.
duhins, 242.
cmarginatus, 226.
Dammarophyiium striatum, 291.
Daphnites gœpperti, 278, 304.

Daphnophyllum angustifoifum, 226.
crassinervum, 301.
dakotense, 226.
ellipticum, 301.
fransli, 275, 301.
Debeyn affinis, 240.
australiensis, 249
serrata, 269.
Decrpodr, 361.
Deiesseria fuiva, 238.
ruscifolia, 900.
Dciesserites thierensis, 269, 275, 282.
Delphinuia lapidosn, 502.
Dentallidæ, 507.
Dentalium, 507.
danai, 508.
elephanticum, 507.
leai, 508.
pauperculum, 94, 510 .
Dermatophyllites acutus, 189, 217.
boreails, 189.
Desmoceratidæ, 37S.
Dewaiquea aquisgranensls, 269.
corlacea, 201, 299.
dakotensis, 226.
gelindensis, 283.
grœniandica, 189, 194, 200, 205, 211, 814.
haldemiana, 194, 263, $275,283$.
haldemiana angustlfolla, 283.
haldemiana latifolin, 283.
insignis, 189, 194, 200, 263, 269, 275, 283.
nilssoniana, 275.
pentaphylla, 291.
primordiails, 226.
smithii, 213, 217.
trifoliata, 200.
Dinstoporidæ, 736.
Dibranchiata, 393.
Diceras cenomanicus, 291.
Dlcksonia conferta, 189.
grœenlandica, 189, 194, 200, 217, 768.
mundn, 242.
punctata, 189, 194, 286, 291, 305.
pterioides, 251.
Dicotyledonæ, s12.
Didymosorus comptonifolius, 269.
gleichenioides, 269.
varlans, 269.
Diemenia lancifolia, 249.
Dione tippans, 681.
Dioonites buchlanus, 772.
cretosus, 291.
saxonicus, 304.
Dioscorea cretacea, 226.
Dlospyros ambigua, 226.
a mboyensis, 200, 217.
Rpiculata, 200, 205, 226.
brachysepala, 897.
cf. brachysepain, 235.
calyx, 242.
ceinstroldes, 226.
cretacea, 249.
eminens, 242.
Judithæ, 235.
nitida, 244.
primæva, 104, 189, 194, 200, 205, $211,213,217,221,226,278,298$, 318, 325, 804, 990.
prodromus, 189, 205.
provecta, 205, 278, 291.
pseudoanceps, 205, 226.
rotundifolia, 104, 205, 213, 217, 226,
$318,325,891,895,990$.
schweinfurthi, 254.
steenstrupl, 194, 221, 226.
vancouverensis, 242.
vега, 60, 104, 200, $896,990$.
Virginiana, $895,897$.
Diphyllites membranaceus, 194.
Diploconcha cretacen, 746.
Dipiodonte parilis, 661.
Dipteriphyifum cretaceum, 291, 301.
Discohelix, 501.
caiculiformis, 501.
iapldosus, 24, 502.
Doilopsis multiliratum, 452.
Dolium multillratum, 452.
Dombeyopsis obtusa, 238.
trivialis, 238.
Doryanthites, 806.
cretacea, 102, 205, 211, 216, 220, 326, N06, 952.
Dosinin, 676.
africana, 676.
depressa, 687.
gabbi, 661.
obliquata, 98, 678.
Dracænites jourdel, 259.
Drelssena, 627. tippana, 98, 628, 033.
Dreissenildæ, 627.
Dreissensia lanceolatt, 627.
Drepanochilus compressa, 472. rostrata, 471.
Drilila tippana, 420.
Dryandra cretacea, 291, 301.
Dryandroldes gelnogiypha, 299.
haidemlana, 275, 283.
macrophylla, 283.
pakawanica, 251.
quercinea, 205, 275, 299.
Dryophyilum alberti-magni, 269.
æedrys, 269.
aquisgranense, 260,
bentbianum, 269.
campteroneurum, 269.
crepini, 269.
cretaceum, 25.
crenatuin, 235.
cuspldigerum, 275.
dethimusianum, 269.
cxiguum, 269.
falcatum, 235.
graclie, 269.
hieracifolia, 191, 232.
heerl, 269.
lerschlanuin, 269.
lesquereuxianum, 260.
lesquereuxil, 249.
nelsonicum, 251.
regalinquense, 269.
saportæ, 275.
subfacatum, 235.
tenulfoliuin, 269, 275.
vittatum, 275.
Dryopteris intermedia, 238.
kennerlcyi, 242.
lioydil, 235.
örstedi, 189, 194.
poiypodioides, 238.
Dryopterites stephensoni, 216.
Drynarin astrostigmosa, 291.
dura, 292.
faschi, 292.
Dysodonta, $1 \mathbf{1 4 .}$

E

Ebenacex, 894.
Ebenales, S02.
Echinocorythidx, 750 .
Echinodermata, 749 .
Echinoiden, 749.
Echinostrobus minor, 292. squamosus, 292.
Flæodendron, S49.
maryiandica, 64, 103, 205, 8-19, 973.
priscuin, 249.
speciosum, 226.
strictum, 205.
Elasinobranchii, $\mathbf{3 5 0}$.
Elopidx, 35s.
Embothriopsis presagita, 20 5.
Encephalartos cretaceus, 226.
Enchodontidx, 355.
Fnchodus, 356.
dirus, $90,357,905$.
Engonoceratidæ, 388.
Eorhamnidium cretaceum, 217.
platyphylioides, 217.
Ensiphonncer, 635.
Eolírion nervosum, 283. primigenium, 282, 283. subfalcatum, 283.
Nphedrites baccatus, 292.

Epitonium, 475.
annuiatum, 479.
cecilium, $94,475,911$.
marylandicum, 94, 478, 913.
Equisetum amissum, 189, 194, 296.
ficeril, 306.
prelavigatum, 238.
zelifleri, 275.
Eremophyllum fimbriatum, 226.
Fricacce, Ss5.
Ericales, 885.
Eriocauion porosum, 238.
Eriphyia ienticularis, 339.
Escharldæ, 743.
Escharina sagena, 742.
Escharinella, 741. aitimuralis, 100,741 .
Escharipora abbottil, 743.
Etea carolinensis, 646.
Etheridgia subgiobosa, 249.
Eucaiyptus, 869.
angusta, 200, 213, 215, 216, 262,
$278,292,299,301,873$.
angustifolia, 871.
attenuata, 104, 200, 205, 211, 818. s69.
borealis, 189, 301.
choffati, 262.
cretacea, 249.
dakotensis, 226.
davidsonil, 249.
dubin, Si2.
gelnitzi, 104, 189, 200, 205, 211, 213, 218, 221, 226, 278, 279, 292, 296, 302, 758, S70, 873, 977.
geinitzi propinqua, 205.
gouldii, 226.
haidemiana, 283.
havenensis, 220.
inequilatera, 283.
latifoila, 104, 205, 218, S70, 977.
inearifolia, 200, 206, 211.
oxleyana, 240.
parvifoila, 200.
proto-geinitzi, 262.
schubleri, 206, 296, 302.
scollophylia, 249.
wardlana, 64, 104, 206, 213, 872.
warraghiana, 249.
Eugeinitzia proxima, 200.
Eugenia primæva, 221, 226.
tuscaloosensis, 218.
Eulima, 4 S0.
Euphorbiacex, 847.
Euphorbiophyifum antiquum, 250.
primordiale, 262.
Euouphaidde, 501.
Enouphitus, 493.

Euspira altispira, 94, 500.
halli, 94, 409.
Eusuchia, 347.
Eutrephoceras, 3:1.
dekny1, $90,320,323,327,331,334$, $337,371,372,909 \mathrm{~A}$.
Exilia, $46 i 3$.
cretacea, 464, 910.
pergracilis, 463.
Exogyra, 563.
canceliata, 69, $96,326,563,566$, 023.
columbeila, 332.
costata, $73,96,320,323,329,563$, 564, 021, 922, 923.
intermpta, 564.
laciniata, 266.
ix viuscuia, 333.
iateralis, 579.
ponderosa, $96,321,322,326,32 \mathrm{~S}$, 331, 563, 569.
Extrasiphonata, 874.
F
F'agacex, S16.
Fagales, 816.
Fagophyllum nervosum, 242.
retosum, 242.
Fagoxylon hokkaidense, 253.
Fagus eretacea, 226.
leptoneura, 249.
nelsoniea, 251.
orbiculata, 226.
polycladus, 226.
preninnisiana, 249.
præulmifolia, 249.
proto-nuclfera, 244.
producta, 251.
Fascigeridæ, 739.
Fasciolaria, 437.
juncea, 92, 437, 43S, 910.
sp., 92,43 ㄱ, 43S, 910 .
Fasciolarildæ, 437.
Fasciostelopteris tanslell, $2 \overline{2} 3$.
Fegonlum dryandræforme, 275.
schenki, 275.
Fleus, sis.
angustata, 226.
arenacea, 238.
arctica, 194.
asarifolin, 235.
atavina, 189, 194, 206, 213, 296, 823.
nustiniana, 226.
beek withii, 226, 823.
berthoudi, 819.
bumelioides, 278.
cecilensis, 103, 206, S21, 054.
ceeropiae-lobus, 298.
celtifolins, 213.
contorta, 243.
crassincrvis, 282.
crassipes, $64,103,189,206,211,213$, $215,218,226,318,326,821,954$, 955.
cretacen, 282.
erossil, 238.
dalmatica, 235, 238, 239.
daphnogenoides, 103, 200, 206, 211,
218, 221, 227, 242, 325, 818, 822, T24.
deflexa, 227.
dentata, 282.
denveriana, 235.
densinervis, 283.
distorta, 227.
elongata, 282, 292, 819.
Inscicuiata, 819 .
fontanel, 218.
fracta, 299.
fructus, 211.
gcinitzi, 278.
georgeana, 216.
glascœana, 221, 227.
gracilis, 270, 282.
halibana, 227.
heerit, 103.
heliandiana, 189.
hesperia, 235.
inrequalis, 211, 218, 227.
ineompleta, 235.
ipswichiana, 249.
irregularis, 235, 238.
krauslana, 103, 201, 206, 213, 215, $218,227,292,296,302,318,325$, 326, 819, S23, 955.
krausiana subsimilis, 206.
lanceolato-acuminata, 227.
lancifoila, 819.
latifoiln, 238.
laurifolia, 283.
laurophyilidæ, 243.
Iesquereuxii, 227.
ligustrina, 819.
longlfolla, 282.
utacrophylla, 227.
magnolixfolia, 227, 243.
matawanensis, 210.
melanophylla, 227.
missouriensis, 234.
mohilana, 302.
miontana, 235.
mudgel, 227.
multinervis, 235, 23 S .
myricoides, 201, 206.
navicularis, 238.
ovata, 820.
ovatifolia, 103, 201, 211, 215, 318.
$325,520,855$.
planicostata, 235, 23 s.
populoides, 235.

Paleontological Injex
precursor, 227.
primordialls, 227.
prisea, 278.
problematlea, 235.
proteoides, 227, 818 .
protogæt, 159, 278, 306
perıni, 292, 296.
reticulata, 206, 227, 278.
reuschii, 282.
rhamnoides, 235, 239.
rotundats, 243.
saplndifolla, 206.
shirleyensis, 218.
simllis, 251.
sunithsonlana, 238.
stylosn, 292.
suspecta, 292, 819,823 .
sapida, 819.
spinosissina, 235, 239.
squarrosa, 235.
stephensoni, 211, 213.
sternbergil, 227.
tenuifolia, 282.
trinervis, 235.
unduinta, 227 .
wardll, 235, 240.
welllngtonlæ, 243 .
willisiana, 206.
woolsonl, 201, 206, 218, 820.
Fllleales, 760.
Fllicites lacerus, 261.
redensis, 261.
Filifasclgera, 733.
magæra, 100, 739.
l'labellaria chamæroplfolía, 284.
magothiensls, 811.
longirhachls, 261.
minima, 227.
sublongirhachis, 251 .
Flustra sagena, 742.
Folin fillcum involuta, 292.
Fontainca, s.9s.
grandifolla, $60,104,200,318$, s!st).
Fraglla protexta, 636.
Fragum tenulstriatum, 669.
Fraxinus pracox, 194.
Frenclltes relchli, 793.
Frenelopsis bohemica, 292, 298
graellis, 800.
holveneggeri, 201, 206, 250, 261
königll, 264, 283.
occldentalis, 262, 263.
Fricla nobills, 296.
Fucoides dichotounous, 297, 900.
caullformis, 297.
columnaris, 207.
funiformis, 297.
strangulatus, 207.
strictus, 257.
tuberculosus, 257.

Fueus lignatum, 235.
Fulguraría bella, 441.
conradi, 427.
nasutus, 422
Fulgurlde, 444.
Fungl, 757.
Fungilæ, 75.
Fusus dakotensls, 454.
retifer, 452.
scarboroughi, 439.

G

Galeocerdo faleatus, 354.
pristodontus, 352, 353 .
Galcoldea, $\mathbf{3 5 0}$.
Galeus pristodontus, 352.
Galla quercina, 227.
Gastropoda, :3v7.
Gavialis neoceasariensis, 347.
Geinitaia biformis, 235.
cretacea, 261, 275, 230, 296, 305, 308, 789.
formosa, $102,201,206,218,23$. $240,275,325,501,950$.
graclillma, 801.
hyperborea, 194.
fongifolia, 238.
microcarpa, 275.
reichenbachll, 201.
Gelidinium trijecto-mosanum, 270.
Geranlales, S47.
Ginkgo baynesiaua, 243.
laramlensls, 235.
multinervis, 189.
pusilla, 243.
primordialis, 189.
Ginkgocladum novæzeclandiæ, 251.
Gleditsiaphyllum tricantholdes, 211.
Gleichenin, 760.
acutiloba, 189, 275, 292.
comptonifolia, 189, 278, 299.
ereuata, 278, 292.
delawarensls, 102, 206, $\mathbf{7} 62,946$.
delicatula, 218, 240, 250, 292.
glesekiana, 189, 194, 201.
gracills, 180, 194, 206, 242, 278, 308.
kurriana, 227, 242, 278, 302.
micromera, 201.
multinervosa, 202.
naucklıofh, 189.
nordenskloldi, 227, 762.
obscura, 251.
obtusata, 190.
protogaa, 206, 270.
rhomblfolia, 240.
rotula, 292.
stundersil, 64, 102, 206, 762. 946 .
vabliana, 194.
vidovlensis, 292.
zippei, 102, 190, 201, 206, 259, 275 , $278,202,200,307,308,760$.
Gleicheniaccæ, 760.
Gleichenites coriaceus, 292.
Glycymeris, 540, 543.
decisa, 721.
mortoni, 96, 540.
wordeni, 96, 543, 917.
Glyptostrobus australis, 249.
debilis, 263.
europæus cretaceus, 292.
gracillimus, 793.
intermedius, 194.
Goniopholidæ, 349.
Goniosoma inflata, 643.
Grevillea constans, 292.
dvoraki, 292.
oxleyana, 249.
palmata, 269.
tenera, 292.
Grewiopsis æquidentata, 227.
cleburni, 236.
flabellata, 227.
formosus, 218.
mudgei, 227.
palæauica, 251.
tuscaloosensis, 218.
Gryphæa, 571.
angulata, 571.
aucella, 328.
convexa, 572, 573, 574, 576.
dilatata, 573.
dissimilaris, 574,576.
expansa, 573.
mutabilis, 572, 574, 576.
pusilla, 96, 57S, 929.
vesicularis, $69,96,336,337,339$,
572, $924,925,926,927,928,929$.
vomer, $36,53,96,579,921$.
Gryphæostrea lateralis, 580.
subeversa, 579.
vomer, $36,53,96,579,921$.
Guatteria cretacea, 206.
Gymnogramme bohemica, 292.
gardneri, 238.
Gyrodes, 496.
abyssina, 94, 496, 498.
altispira, 500.
obtusivolva, 500.
petrosus, $94,323,496,909$ A.

H

Haliserites graciis, 270.
Halocharis longifolia, 270.
Halymenites major, 236, 240. striatus, 240.
Halyserites contortuplicatus, 283. reichil, $278,280,900$.

Ilamamelites cordatus, 213, 227 quadrangularis, 227.
quercifolius, 227. tenuinervis, 227.
Haminea, 407. cylindrica, 90, 407, 409, 914. mortoni, 90, 407, 408.
Hamulus, $\mathbf{7 4 \%}$.
onyx, 100, 747.
squamosus, 747.
Haplomi, 358.
Hastia speciosa, 251.
Hedera, 873.
cecilcnsis. 64, 104, 206, 874, 974.
credneriæfolia, 292.
cretacea, 104, 206, 227, 87:3, 874.
cuneata, 190, 194.
decurrens, 227.
macclurei, 194.
microphylla, 227.
orbiculata, 227.
ovalis, 227, 242.
platanoidea, 227.
primordiails, 190, 201, 211, 214, 292.
schimperi, 227.
simplex, 206.
Hederæphyllum peltatum, 292.
Hemiaster, 751.
bexeri, 751.
delawarensis, $100,751,945$.
sp., $100,752$.
stelia, 751.
welleri, 752.
Heterofilicites anceps, 206.
Heterolepis cretaceus, 214.
Hexacoralla, 752.
Himantites alopecurus, 270.
Hippothoa, 745.
tenuichorda, 100, $\mathbf{7 4 5}$.
Hippothoidæ, $\mathbf{7 4 5}$.
Holcodus acutidens, 349.
Holoparia, 361.
gabbi, 90, 361, 906.
gladiator, $90, \mathbf{3 6 2}, 906$.
Hopopleuridæ, $\mathbf{3 5 5}$.
Hymenæa dakotana, 201, 206, 227.
elongata, 292, 290.
fayettensis, 218.
inequalis, 292.
primigenia, 206, 292.
Hymenophyliites heterophyilus, 306. macrophylius, 306 .
Hymcnophyllum cretaceum, 227, 278.
Hyposaurus, 849.
rogersii, 90, 349, 904.
Hysterites dubius, 270
Hysterium protoggeum, 120.
ldmoneidæ, 738.
ldonearca antrosa, 534.
carolinensis, 532.
medians, 530 .
neglecta, 532.
tippana, 530.
vulgaris, 530 .
Ilex, 84\%.
amboyensis, 201.
antiqua, 190.
armata, 227.
borealis, 194, 227.
dakotensis, 227.
elongata, 201.
masoni, 218, 227.
papiliosa, 206, 227.
patootensis, 194.
perneri, 298.
scudderi, 227.
sevcrnensis, 103,206, S4!, 073.
strangulata, 206, 227.
Ihfacea, 845.
Iilicium, 838.
deletofles, 103,206, siss. 966.
deletum, 292, 838.
watereensis, 214, 838.
Inga cottai, 278
cretacea, 218, 221, 228.
latifolia, 292.
Inoceramus, 546. barabini, 337, 547.
confertim-annuiatus, 96, 547.
cripsii, 274, 337.
cuvieri, 546.
exogyroides, 333, 336.
involutus, 333.
labiatus, 266, 296, 331, 338.
umbonatus, 333,336 .
Inolepsis affinis, 194.
bohemica, 292.
Isohyriza, 358.
antiqua, 358.
mirg, $90,358,905$.
Isodonta, 587.

J

Janira mortoni, 596.
quinquecostata, 596.
Jeanpaulia carinata, 292, 302.
Juglandinium longiradiatum, 275.
Juglandites cretacea, 242
elisworthianus, 228.
fallax, 243.
lacœi, 228.
primordialis, 22ช.
sinuatus, 228.
Juglans arctica, 190, 201, 206, 211, 214, $215,218,228$.
crassipes, 194, 201, 206, 228, 302
debeyana, 228.
elongata, 206.
harwoodensis, 243.
leconteana, 238
missouriensis, 234.
Jugloxyion hamaoanum, 253.
Jungermannites cretaceus, 218.
Juniperus, 792.
hypnoldes, 102, 190, 201, 206, 792.
macilenta, 190, 292.
Juranyia hemiflabeliata, 305.

K

Kalmia brittoniana, 201, 211, 218.
Kaidacarpum cretaceum, 194.
Keckia annulata, 280.
cylindrica, 280.
nodulosa, 280.
vesiculosa, 280.
Rirchnera arctica, 292.
dentata, 292.
Knightiophyllum primævum, 251.
Krannera mirabilis, 292.
\llcorner
Lævicardium perelongatum, 666. spilimani, 666.
Lamenarites polystigma, 270.
Lamna, 350.
cuspidata, $90,351,904$.
denticulata, 351.
dubia, 351.
elegans, 90, 350, 904.
hopei, 351.
Lamnidæ, $\mathbf{3 5 0}$.
Lamprocarpites nitidus, 190.
Lauraceæ, 860.
Laurelia primæva, 228.
Laurus, S61.
affinis, 284, 292, 290.
angusta, 865 .
antecedens, 228.
atanensis, 190, 194, 206, 228.
attenuata, 262.
colieti, 258.
colombi, 243.
crassinervis, 242.
cretaceus, 278.
holiæ, 194, 201, 206, 228.
hollickii, 103, 206, S6:3, 967 .
knowltoni, 228.
lesquereuxii, 228.
macrocarpa, 228.
microcarpa, 228.
modesta, 228.
nebrascensis, 201, 206, 228.
newberryana, 206.
notandia, 262.
odini, 190.
palæocretacea, 262.
plutonia, 103, 190, 194, 201, 207, 214, 218, 220, 221, 228, 249, 293,
S61, 864, 967.
proterfolla, 103, 207, 221, s6:5, 971.
præstans, 236.
cf. primigenia, 236.
prœatavia, 259.
tellformis, 207, 228.
wardlana, 238 .
Lauriniun brunswicense, 275.
Laturinoxylon uniseriatuin, 247.
Laurophyllum, s64.
angustlfollum, $103,201,206,218$, s65.
aquisgranense, 270.
debllc, 242.
elegans, 103, 201, 206, 211, 214, 864. 967.
insigne, 243.
lanceolatum, 201, 206.
mlnus, 201, 221.
nervillosum, 201, 214, 218, 325, S65.
ocotereoides, 206.
retlculatum, \$65.
Laxispira, 484.
lumbricalis, $68,94,321,322,484$, 455.

Tıeda, 515.
gabbana, 520.
longifrons, 518.
plnnaformis, 515.
protexta, 520, 52\%.
rostrata, 515.
rostratruncata, 94, 515, 517, 915.
slackiana, 511.
whitfieldi, 94, 5it, 915.
Icdidæ, 515.
Legumen, 68:3.
appressum, 684.
carolinensis, 98, 683, 684, 685.
elliptlcus, 683, 684.
planata, 684.
piauulatum, 98, 683, 684.
Leguminosx, 841.
Leguminosites, \$41.
alblzzioides, $25 \overline{5}$.
amissus, 190.
atanensis, 190, 201.
canavalioldes, 103, 207, S42, 972.
convolutus, 207, 228.
coronilioides, $103,201,207,228,304$. 811.
cretaceus, 278.
cultrifornils, 228.
dakotensls, 228.
delagerl, 100.
dentatus, 194.
frlgldus, 194, 841.
hymenophyllus, 228.
infracretacicus, 262.
ingafolin, 218.
insularis, 190, 228.
lanceolatus, 307.
macilentus, 190.
middendorfensis, 214.
omphaloboides, 103, 201, 207, 218, $228, \mathbf{8 4 3}, 972$.
orbiculatus, 190, 194.
ovatifolius, 100 .
ovatus, 307.
patootensis, 194
pachypliyllum, 249.
phascolites, 228.
podogonlalis, 228.
prodromus, 190.
rarltunensis, 201.
robinilfolia, 211, 214.
shlrleycnsls, 218.
truncatus, 228.
tusealoosensls, 218.
Lepldocaryopsls westphalent, 293.
Leptomya, 633.
Ireptosolen, 703.
blplicata, 98, 703, 938.
elongata, 100, 703, 705.
Leptospermum cretaceum, 293.
Leucothœ parlatorii, 888.
Libocedrus cretacea, 791.
salicornioides cretacea, 293.
rencris, 296.
Lichenoporldx, 7:39.
Lichenopora, $\mathbf{7 3 9 .}$
papyracea, 100, $\boldsymbol{7 3}$.
Ligustrum subtlle, 207.
Lima obliqua, $96,600,603,930$.
retlculats, $06, \mathbf{6 0 0}, 930$.
serrata, $96,600,602,930$.
Limidæ, $\mathbf{6 0 0}$.
Linnoplyyllum lanceolatum, 282.
prinævum, 282.
Limopsls, 543
Linearia, 648.
metastrlata, 08, 699.
Liocardlum spillmani, 666 .
Liopeplum, 129.
cretaceum, 92, 430, 431, 911.
leioderıum, 92, 429, 430.
monmouthensis, 92, 430, 432, 211.
Liopistha, 635.
alternata, 68, 98, 321, 322, 326, 635, 63\%.
protexta, $73,98,320,323,327,635$. 636, 232.
Liquidambar Integrlfolius, 228, 242, 245.
Tirlodendron acuminatum, 228.
acuminatum bilobatum, 228.
alatum, 234, 240.
attenuatum, 207.
dublum, 211.
giganteum, 228.
giganteum cruciforme, 228 .
intermedium, 228.
laramiense, 236.
meek1i, 190, 218, 228, 245, 278.
morganensis, 207.
oblongifolium, 201, 207.
pinnatifidum, 221, 228.
pretuilpiferum, 243.
primævum, 201, 211, 228.
quercifolium, 201, 221.
schwarzil, 275.
snowil, 228.
succedens, 243.
weilingtonil, 228.
Liriodendropsis, S44.
angustifolia, 201, 207, 218.
constricta, 207, 218, 318, 84.
retusus, 195, 201, 207.
simplex, 201, 207, 218, 844.
simplex constricta, 844. spectabilis, 207.
Liriophyllum beckwithit, 228. obcordatum, 228. populoides, 229.
Lirofusus nodocarinatus, 455.
Lithothamnium cenomanicum, 258. gosaviense, 260, 307. palmatum, 260, 307. recemosum, 260. turonicum, 260.
Litbopbaga, 61%.
conchafodentis, $98,618,619,932$. julle, 98, 618, 620, 932. iingua, $98,618,621,932$. ripleyana, 98, 618, 932. twitcheili, 98, 618, 622, 932.
Litsea bohemica, 293.
cxpansa, 245. laurinoldes, 282.
Lochmophycus caulerpoides, 270.
Lomatia saportanca, 229. saportanea longifolia, 229.
Lomatites paleo-ilex, 278.
Lomatopteris schimperi, 260. superstes, 259.
Lucildæ, 358.
Lucina, 658. jamaicensis, 659.
Lucinacea, 6 Ess.
Lucinidæ, 65S.
Lunatia altispira, 500. halli, 499.
Lytoceratidæ, $\mathbf{3 7 4}$.
Lycopodiaceæ, 759.
Lycopodiales, $\mathbf{7 5 9}$.

Lycopodium, 750.
cretaceum, 64, 102, 207, 214, 218, 750, 946.
iesquereuxiana, 236.
Lygodites anemiifolius, 275. spatulatus, 275.
Lygodium compactum, 238. cretaceum, 270, 278.
trichomanoldes, 229.

M

Macciintockia appendicuiata, 190. cretacea, 194, 229, 242. trinervis, 243.
Macrodon eufalensis, 524, 525.
Macrotæniopteris rancouverensis, 243.
Mactra ashburneri, 707.
solida, 706.
Mactracea, $\mathbf{7 0 6}$.
Mactridx, $\boldsymbol{7 0 6}$.
Madreporaria, 752.
Magnolia, 831.
alternans, 190, 201, 293, 833.
ampiifoila, 207, 229, 293, 302.
auriculata, 831.
boulayana, 103, 201, 207, 215, 218, 221, 229, 83.1, 965.
capellinil, $64,103,190,207,212$, 214, 215, 218, 229, 243, 293, 318, 325, 326, 832, \$36, 965.
elegans, 229.
giaucoldes, 834.
hollicki, 103, 201, 207, 218, 325, 831, 965.
isberglana, 190, 201, 207.
laсœапа, 103, 201, 207, 218, 229, 8:32, 966.
longipes, 103, 201, 207, 218, S33, 965.
magnifica, 242.
marbodi, 302.
newberryi, 60, 201, 212, 214, 218.
obovata, 229.
obtusata, 103, 100, 207, 214, 218, $229,318,834,964$.
occidentalis, 243.
palæocretacica, 263.
pseudoacuminata, 207, 229.
pulchra, 236.
speciosa, 201, 207, 218, 221, 229, 302, 837.
tcionensis, 259, 260.
tenuifolia, 103, 207, 214, 229, 244, 885, 966.
vaningeni, 207, 835.
woodbridgensis, 202, 207, 833.
Magnoilaceæ, 831.
Majanthemopbylium cretaceum, 190, 194, 302.
lanceolatum, 194.
puslilum, 194, 201.
Maiapoenna cottondaiensis, 218. cretacea, $218,229$.
falcifoila, 207, 218, 221, 229.
horreliensis, 212, 215, 220.
macrophyiloldes, 236.
Maipighiastrum cretaceum, 249.

Maivaies, S57.

Mammæites francheti, 258.
Manihotites georgiana, 212, 215, 216.
Marattia cretacea, 218, 293.
Margarites, 504.
abyssina, 94, 505.
depressa, 94, 505, 909A.
elevata, 94, 505, 506, 909A.
Marsilia andersoni, 207.
attenuata, 236.
cretacer, 190, 293.
Marsupites milieri, 339.
ornatus, 273.
Martesia, 726.
cithara, 725.
cretacea, 100, 727.
Masticura, 360.
Matonidium wiesneri, 302.
Meiastomites cuneiformis, 282.
parvuia, 305.
Meiophytum cyclostigma, 270.
Membranipora, 740.
annuioldea, 100, 740.
Membraniporella, 748.
abbotti, 100, $\mathbf{7 4} 3$.
Membraniporidæ, 740.
Menispermites acutilobus, 207, 229.
borealis, 190, 201.
brysoniana, 207.
cyciophyilus, 229.
dentatus, 190.
grandis, 229.
integrifolia, 218.
knightli, 236.
menispermifolius, 229.
obtusilioba, 229, 245.
ovalis, 229.
popuilformis, 229.
rugosus, 229.
salinæ, 229.
triiobatus, 219.
variabilis, 215.
virginiensis, 839.
wardiana, 202.
Menispermophyifum celakovskianum, 293.
Menispermum (Coccuius) assimile, 259.
Meretrix, 679.
cretacea, 98, $\mathbf{6 7 9}$.
tippana, 681.
Metrosideros peregrinus, 190.

Micrabacia, 753.
americana, 755.
americana, var. muiticostata, 755.
cribraria, 757.
hilgardi, 756.
maryiandica, 100, 755, 944.
mississippiensis, 757.
rotatilis, $100, \mathbf{5 5 3}, 945$.
rotatilis, var. georgiana, 75.
Micrabacildæ, 753.
Microdictyon dunkeri, 293.
Microiepidium striatuium, 293.
Microzamia dubia, 207.
gibba, 202, 278, 293, 296, 307.
Mimusops baliotæoldes, 278.
Mitridæ, 433.
Mitropicea decheni, 270.
nœggerattii, 270.
Modioia Juiiæ, 620.
Modiolus, 614.
buriingtonensis, $96,322,614,615$.
sedesciarus, 614, 616.
trigonus, $96,614,616$.
Moilusca, 371.
Moiluscoidea, 734.
Momisia caroiinensis, 214.
Monheimia aquisgranensis, 270. poiypodioides, 270.
Monimia prevestita, 249.
Monocotyledonæ, S0G.
Moracer, 818.
Morea, 464.
canceliaria, 464.
maryiandica, $92,465,466,914$. naticeila, $92,465,914$.
Moriconia americana, 64, 102, 207, 212,
214, 318, S02, 952.
cyciotoxon, $190,194,202,270,781$, 807.

Mortoniceras, 390.
deiawarensis, $68,90,321,322,328$, 336, 391, 908. inflatum, 338.
shoshonense, 333. texanum, 328, 333, 390. vermiliionense, 333 . vespertinum, $333,390$.
Mucronelia, $\mathbf{7 4 3}$. aspera, 100, 743.
Muensteria schneideriana, 284.
Murex babylonius, 415. tulipa, 437.
Muscites cretaceus, 270.
Myacea, 710.
Myilobatidæ, $\mathbf{3 6 0}$.
Myilobatis, $\mathbf{3 6 0}$.
Myliobatis obesus, 90,360. rugosus, 360.

Myrica, 812.
acuta, 202.
acutiloba, 299.
aspera, 229.
brittoniana, 207, 214.
campei, 259.
cinnamomifolia, 202.
cliffwoodensis, 207, 212.
cretacea, 275.
davisii, 202.
dakotensis minima, 219, 229.
elegans, 212, 214.
emarginata, 190, 202, 219, 221, 229.
fenestrata, 202.
fragiliformis, 190, 279, 293.
gaudryi, 259.
gracilior, 262.
hollicki, 202.
indigena, 302.
lacera, 262.
liophylia, 275, 284.
longa, 108, 190, 194, 207, 219, 221, 229, 244, 206, 326, \$12, 953.
newberryana, 202.
obliqua, 229.
obtusa, 229.
præcox, 195.
prinæva, 284.
pseudo-lignitum, 249.
raritanensis, 202 .
revisenda, 262.
ripleyensis, 220.
rougoni, 259.
schenkiana, 275.
schimperi, 229.
serratum, 275, 293.
sternbergii, 229.
thulensis, 190.
torreyi, 236, 238, 240.
torreyi minor, 238.
trifoliata, 229.
vernassiensis, 264.
zenkeri, 207, 853.
Myricaces, S12.
Myricales, 812.
Myricanthium amentaceum, 293.
Myricophylium asplenioides, 270.
giandulosum, 293.
haldemianum, 270.
iongepetiolatum, 249.
Myrsinaceæ, 800.
Myrsine, Soo.
borealis, 104, 190, 202, 207, 212, 219,
S90, 896, 989.
caloneura, 298.
crassa, 207, 229.
elongata, 891.
gaudinil, 104, 202, 207, 212, 214, $219,229,326,891,989$.
manlfesta, 298.
oblongata, 202.
Myrsinites gaudinil, 891.
Myrsinophylium varians, 293.
venulosum, 262.
Myrtæa, 658.
stcphensoni, 98, 659, 935.
Myrtales, 869.
Myrtophyllum cryptoneuron, 284.
geinitzi, 870.
latifollum, 249.
parvulum, 190.
sapindoldes, 207.
warderi, $229,871$.
Mysiaparilis, 661.
Mytilacea, 614.
Mytilidæ, 614.
Mytilus decussatus, 623.
hirundo, 548.
lithophagus, 617.
modiolus, 614.
polymorphus, 627.

N

Nageiopsis recurvata, 774.
Natica alveata, 496.
concinna, 500.
crenata, 496.
obliquata, 500.
petrosa, 496.
Naticidæ, 496.
Nautilidæ, 351.
Nautiloidea, 371.
Nautilus bouchardianus, 373.
danicus, 339.
dekayl, 371, 372.
lævigatus, 373.
orbignyanus, 373.
perlatus, 372.
sphæricus, 373.
Nechalea lobata, 270.
petiolata, 270.
serrata, 270.
Nectandra imperfecta, 207.
Negundoides acutifolia, 229.
Neithea quinquecostata, 597.
Neiumbites, 839.
primæva, 103, 840, 971.
virginienses, 839, 841.
arcticum, 190.
provinciale, 261.
saskatchewanense, 244.
schweinfurthi, 255.
Nelumbo dawsonil, 245, 841.
intermedia, 236, 841.
kempil, 64, 207, 839.
laramiensis, 841.
primæva, 207, 840.
tenuifolia, 238.

Nemodon, 524.
cecillus, 94, 525, 528, 916
conradi, 524, 526.
eufaiensis, $94,323,327, \mathbf{3 2 5}, 540$, 916.
stantoni, 94, 525, 527, 915.
Neptuneiia, 456.
Nerita islandica, 502.
Nerium röhili, 284.
Neuropteris castor, 243.
Neurosporangium foliaceum, 270.
undulatum, 270.
Newberryana riglda, 202.
Nicolla ægyptlaca, 254, 270.
Nllsonia bohemica, 293.
johnstrupl, 190.
iata, 243.
orientails, 253.
Niponophyilum cordaitiforme, 253.
Neggerathiopsls robinsi, 243.
Nordenskioldla boreails, 229.
Nothofagoxylon scalariforme, 247.
Nucula, 511.
amica, $94,511,514,915$.
mlcrostriuta, 94, 511, 515, 915.
percrassa, 511.
slackiana, 73, 94, 511, 915.
Nucuiacea, 511.
Nuculana gabbana, 520.
longlfrons, 518.
plnnaformis, 515.
Nuculidæ, 511.
Nuphar cordifollus, 191.
Nymphæасеæ, 839.
Nyssa snowlana, 219, 229.
vetusta, 229.

0

Ocotea nassauensls, 207.
Odontaspis cuspidata, 253.
elegans, 350
hopei, 351.
Odontofusus, 442.
siacki, 442.
medians, 92, 443.
rosteilaroides, 443 .
typicus, 443.
Olea myrlcoldes, 262.
Oligoptycha natlcoides, 402.
Ollvella, 421.
danea, 421.
monmouthensis, $92,323,421,910$.
Olivldæ, 421.
Oncopterls kaunlclana, 293.
Onociea fecunda, 238.
inqulrenda, 102, 190, 208, 214, $\mathbf{7 6 4}$, 947.

Onustus leprosus, 495.
Onychiopsis capsulifera, 293, 302. elongata, 302.
gœpperti, 768.
psilotoides, 279.
Opegraphltes striato-punctatus, 270 .
Ophiogiossum granuiatum, 195.
Opisthobranchiata, 397 .
Oreodaphne alabamensls, 219, 221.
apicifolia, 284.
cretacea, 229.
heer11, 245.
shirleyensis, 219.
Ornataporta, 748. marylandica, 100, 748, 943.
Orthochoanltes, 371.
Osmunda, 763.
arctica, 195.
delawarensls, 102, 208, 763, 946.
gerlni, 261.
haldemlana, 284.
montanensis, 236.
novæ-cæsareæ, 208.
oberglana, 190, 764.
Osmundaceæ, $\mathbf{7 6 3}$.
Osmundophyilum cretaceum, 293.
Ostracea, 551.
Ostrea diluviana, 328.
carlnata, 280.
congesta, 332.
convexa, 572.
denticuilfera, 556.
edulis, 551.
faba, 96, 551, 559, 920.
falcata, 552.
larva, 337, 551, 552, 554, 555.
subsp. falcata, 69, 96, 551, 552, 918. subsp. mesenterlca, $96,551, \mathbf{5 5 5}$, 918, 919.
subsp. nasuta, 96, 551, 554, 918.
monmouthensis, $96,551,558,919$.
piumosa, 96, 551, 556.
pusllla, 560.
subeversa, 579.
subspatulata, $96,329,552,561,919$, 920.
tecticosta, 96, 552, 560, 920.
torosa, 563.
unguiata, 339, 552, 554, 555.
vesicularis, 572, 573.
Otozamites? grœnlandica, 190.
Ottella americana, 236.

P

Pachycardlum burllngtonense, 666.
Pachydiscus, 378.
complexus, 90 , 333, 378.
goivlllensls, 339.
witteklndl, 378.
Pachypterls dalmatica, 304.
daimatica dentata, 304.
dimorpha, 304.

I'achystima cretacea, 214.
Pachythærus pteropsis, 655.
Pagiophylium araucarium, 304, 779. rigidum, 304, 779.
I'aiadmete, 412. canceliaria, $92,413,914$.
Palæocassin laurinea, 219, 221, 229. phaseolitoldes, 251.
I'alæolepis cheiromorpha, 262. multipartita, 262.
I'allurus affinis, $190,194,202$. anceps, 229. cretaceus, 230. Integrifolins, 208. montanus, 24%. neilii, 243.
obovatus, 230. ovails, 230, 242. populiferus, 208. upatolensis, 215. zizypholdes, 238.
Paimacites horridus, 302. rimosus, 254. varians, 280.
I'almocarpum cretaceum, 270.
Palmophyllum moletelnianum, 302.
Ialmoxyion andegavense, 259. cliffwoodensis, 208. guillieri, 259. ilgerianum, 259. parvifascleulosum, 275. radiatun, 275. scieroticum, 275. variabile, 275.
l'andanus pscudo-Inermis, 307. trinervis, 307.
I'anax cretacea, 191, 208, 219.
dentifera, 290.
giobuilfera, 195.
macrocarpa, 195.
l'anope, $\mathbf{T} 19$.
aldrovandi, 719.
bonaspes, 100, 721, 723, 942.
decisa, $100,721$.
monmouthensis, 100, 721, 722, 942.
I'anopma declsa, 721.
I'apyridea protexta, 636.
l'aracallipteris potonici, 275.
Paracredneria fritscliil, 275.
I'aralieiodontidæ, 524.
I'aranomia, 604.
Ifneata, 96, 606, 931.
scabra, 96, 605, 606.
l'arathinnfeidia dubia, 275.
lussiflora antiqua, 202.
l'arrotia canfleldi, 230. winchelii, 230.
l'ecopteris bohemica, 191, 195, 278. borealis, 191. caiopteris, 275.
cuspidata, 275.
geinitzi, 278.
haidingeri, 308.
finearis, 305.
lobifolin, 278, 293.
minor, 293.
murchisoni, 278.
osmundacea, 275.
pfaffiana, 191.
socialis, 765.
striata, 191, 278, 307.
zippel, 307, 760.
Pecten, 5 st.
argiliensis, 73, 96, 587, 58s, 930.
bellisculptus, 588 .
cliffwoodensis, 96, 587, п!?2.
conradi, 96 , 587, 593.
muricatus, 273, 274.
quadricostatus, 597.
quinquecostata, 52, 96, 339, 587, :596, 930.
simpiliclus, 73, 06, 323, 587, 59.7, 930.
simplicus, 593.
tenultestus, 589 .
venustus, 96, 587, 591, 930.
verslcostatus, 596.
whitfleldi, 96, 587, 589.
Pectinacea, 58.
Pectinidæ, 587.
Pectunculus nustrails, 540 .
Pelecypoda, 511.
Peripioma applicata, 633.
cretacea, 208.
nccomiensis, 633.
robinaldina, 633.
simplex, 633.
Periplomya, 638.
elliptica, 98, 6:33.
Perissoiax retifer, 452.
Perissonota, 522.
littili, $94,522,52: 3,916$.
protexta, 94, 522, 523.
Perua juliæ, 620.
Pernilde, $\mathbf{- 4 6}$.
Peronæoterma georgiana, 694.
Peronlceras westphallcum, 339.
Perilsonota protexta, 522.
Persea hayana, 230, 246.
ieconteana, 208, 230, 243.
suessi, 302.
schimperl, 230, 246.
sternbergii, 230, 246.
validn, $208,219$.
Persoonia lesquercuxi, 202, 219, 230. spatuiata, 202.
Perseophylium hauthailanum, 246.
Perseoxylon autiquum, 305.
Petrosphærla faponica, 253.

Phacillium circumseriptum, 293
myrtophylli, 278.
palæocassiæ, 278.
Phacoldes, 659.
noxontownensis, 54, 98, 660, 935.
Phaseolites elegans, 202.
foruius, 212, 219, 230, 304.
manhassettensis, 202, 208.
Phasganodus dirus, 357.
Phegopteris grothiana, 195, 202.
jorgenseni, 191.
kornerupi, 195.
Philyrea engeihardti, 290.
Phlebomerls spectandra, 263. wlilkoni, 263.
Pholudidæ, 524.
I'holadomya, 629. candida, 629. conradi, 98, 630, 6:32, 934. occidentalis, 98, 322, 630, 933.
Phoiadomyliæ, 629.
I'holas, $\mathbf{7 2 4}$.
cithara, 724.
clavata, 726.
erctacea. 727.
dactylus, 724.
pectorosa, 100, 524, 942.
striata, 726.
Phorus leprosus, 495.
Phraginltes cllffwoodensls, 208.
cordaiformis, 243.
pratti, 212, 214, 215.
Phycodes sericeus, 270.
Phyllites acuminatus, 284.
actinoneuron, 249.
amissus, 230.
amorphus, 230. aristolochiæformis, 230.
betulæformis, 230.
bipartitus, 293.
celatus, 230.
cliffwoodensis, 208.
denticulatus, 236
durescens, 230.
ehrlichi, 307.
eunarginatus, 285.
enervis, 285.
erosus, 230.
geinitzianus, 285.
granulatus, 191.
illclfollus, 230.
incurvatus, 191.
inflexincrvis, 262.
innceteus, 230.
intricata, 236.
laeœi, 230.
levigatus, 191, 270.
lawrenclanus, 230.
linguæformis, 191.
longepetiolatus, 191, 219.
moncotyledonca, 270. monocotylei, 807.
obscurus, 261.
obtusi-lobatus, 230.
pelagicus, 307.
perplexus, 230.
pistiaformis, 219.
platanoides, 264.
poinsettioides, 202.
proterceus, 264.
protemides, 307 .
relehil, $278,900$.
reussi, 307.
rhoifoilus, 230.
rhomboideus, 221, 230.
sinuatus, 270.
snowii, 230.
stipulæformis, 230.
sturi, 305.
tenuis, 261.
testaceus, 285.
trapaformis, 202.
triloba, 236.
triplinervis, 262.
umbountus, 230.
undulatus, 830 .
vanonæ, 230.
zamieformis, 230.
Phyllocladites crenatus, 275.
Phyllocladoxylon antarcticum, 246.
Phyliocladus iaciniosa, 275.
subintegrifolius, 796.
Phyilotmnin costuinta, 263.
demersa, 262.
elongata, 262.
nervosa, 262.
stipulacea, 262.
Physostomi, 35..
Pleea cretacea, 293.
Pleeites exogyrus, 789.
Plestochilus, 439.
bella, 92, 441.
Minacem, 785.
Pinales, 785.
Pinites cxogyrus, 789. patens, 270 .
Pinna, 54.
laqueata, 96, -4., 917.
nolilis, 545.
rudis, 544.
Pinnidx, $\mathbf{5} 44$.
Plnus (Ables) upernlvikensis, 191.
I'inus andræi, 20 S.
eretacea, 293.
delieatulus, 208.
exogyra, 280, 789.
granuiatum, 195, 202.
longissima, 293.
unattewanensis, 208.
monasteriensis, 284.
nathorsti, 256.
olafiana, 191.
oxyptera, 261.
protopicea, 293, 302.
protoscieropitys, 208.
quensterlti, 195, 230, 236, 279, 293, 290, 302.
quinquefoila, 202.
ruritanensis, 202. 212, 214, 219.
staratschini, 191.
sulcata, 296.
tetraphyifa, 202.
triphyila, 202.
vaginails, 191.
yezoënsis, 253.
I'iperites tuscaloosensis, 219.
Pisces, 3: 30.
Pisonia atavia, 279, 299.
cretacea, 212.
I'istacla aquehongensis, 202.
Pistin, SOD.
corrugata, 236, 245, 810.
mazel1, 261, 810.
nordenskioldi, 102, 191, 208, 212, sors, 952.
stratiotes, 810.
Pistites loriformis, 282.
Pitoxylon anomalum, 208.
cretaceum, 276.
foliosum, 208.
hollicki, 208.
statenense, 202.
lityoitlolepis statenensis, 202.
Piacenticeras, 355.
guadalopæ, 328.
placenta, 68, $90,321,322,326,327$, $333,336,339,385,909$.
phumm, 328.
Placuna scabra, 604, 605.
Placunanomia ineata, 606.
saffordi, 604.
Plagiostomi, 350.
Planera antiqua, 195.
betuioldes, 208.
cretacea, 212.
knowitoniana, 202.
Platanacer, S24.
Platanales, se4.
Plataninium subafine, 276.
Platanus, so4.
acute-triloba, 302.
aftinis, 195.
appendicuiata, 827.
aquehongensis, 202.
aralirformis, 302.
asperaformis, 195, 219.
basiliobata, 827.
betuirefoiln, 302 .
cissoldes, $230,874$.
cunetfolia, 309.
cuneiformis, 302.
diminutiva, 230.
gelnitzlana, 309.
grandidentata, 302.
heeri, 60, 191, 202, 230, 241, S24,
$961,962,963$.
irreguiaris, 302.
kủmmeli, 208.
levis, 203.
intilioba, 230.
latior, 219, 230.
intior grandidentata, 230.
latior subintegrifolia, 230.
moravica, 302.
newberryana, 195.
obtusiloba, 246.
occidentalis, 827.
onomastus, 299.
platanoldes, 239.
primæva, 221.
primæva grandidentata, 246.
pseudo-gulifeimæ, 302.
shirleyensis, 219.
velcnovskyana, 293, 302, 309.
vyserovicensis, 203.
wardil, 234.
l'ieosporites shirainus, 253.
Pleurophoridæ, 642.
Pleurotomn, 414.
javana, 419.
Plicomya, 633.
Pliophlæa sagena, 742.
Piutonia cretacca, 293.
Foacites cretaceus, 293.
neisonicus, 251.
Poales, sos.
Podalyriophyilum brochiodromum, 249.
Podocarpites tyreili, $24 \overline{3}$.
I'odocarpium cupressinum, 251.
tenulfolium, 251, 252.
ungeri, 251.
Podocarpus cretacea, 293.
Podogonium americanum, 236.
Podozamites acuminatus, 202.
alcantarina, 262.
angustifoilus, 230, 773, 774.
distantinervis, 773.
elchwaldi, 293.
haydenil, 230.
knowltoni, 102, 202, 208, 212, 214, 754.
lanceolatus, $102,202,208,212,221$, $230,259,293,302,317,318,325$, 572.
latipennis, 191, 252, 276, 293.
marginatus, $102,191,202,208,219$, 318, 325, 326, $775,947$.
minor, 191.
oblongus, 231.
obtusus, 294.
pedicellatus, 773.
pusiilus, 294.
stenopus, 231. tenuinervis, 191.
Poicmoniales, $\mathbf{8 9 7}$.
Poiorthis tibialis, 75, 323.
Poiychæta, 74.
Polygonaceæ, S30.
Polygonales, 830.
Polynices (Euspira) aitispira, 94, 500. halii, $94,409,909 \mathrm{~A}$.
Polypodiaceæ, 764.
Polypodites gracilis, 294.
zonatus, 294.
Polspodium graahianum, 195.
Polystichum hiilsiannm, 240.
Polytænia quinquesceta, 259.
Populites amplus, 236.
cyclophylla, 244.
elcgans, 231.
rancastriensis, 231, 246.
iftigiosus, 231.
nicrophylius, 231.
probalsamifera, 243.
salisburiæfolin, 883.
sternbergii, 231.
tenuifolius, 208.
tuscaloosensis, 210.
winchelii, 231.
Populocaulus yezoënsis, 253.
Populus, S16.
acerifolia, 246.
amissa, 191.
apiculata, 897.
a ristoiochioldes, 231.
berggreni, 191, 231, 898.
cf. cyclophyiia, 246.
cordifolia, 231.
cretacea, 236.
denticuiata, 195.
ciliptica, 231.
harkeriana, 202, 231.
hyperborea, 191, 219, 231, 898.
kansaseana, 231.
leuce, 231.
longlor, 243.
Intidentata, 245.
melanarioides, 236.
microphylia, 231.
mutabilis ovails, 236 ,
cf. nebrascensis, 246.
obovata, 236.
orbicuiaris, 202, 221.
protozadachii, 243.
rectinervata, 243 .
rhomboidea, 243.
stygin, 102, 191, 195, 208, 231, 318, 816, 954.
tremulæformis, 284.
trinervis, 248.
wardii, 236.
Poromyacldæ, $\mathbf{6 3 5}$.
Posidonia cretacea, 284.
Postilignta, 5.43.
wordeni, 96, 543. 917.
Potamogeton cretaceus, 19 ป. middendorfensis, 214.
Premnophylíun trigonum, 208.
Prepinns japonicus, 253. statencnsis, 202.
Primuiales, soo.
Prionodesmacea, 511.
Prionot ropide, 890 .
Protea haidingeri, 279
Irotcoliles acuta, 231, 294.
affinis, 307.
anstrailensis, 249.
conospermafoila, 219.
crassipes, 821.
daphnogenolles, 304, 814, 818. 864. ettlngshauseni, 307.
grevileaformis, 231.
inncifoiius, 214, 231.
longus, 812.
major, 243.
neiliii, 243.
parvula, 214.
rcussi, 294.
Protcophyllum coriaccum, 294.
cornutum, 294.
daphnoldes, 262.
decorum, 294.
demersum, 262.
laminarium, 294.
launayi, 308.
obiongatum, 262.
paucidentatum, 294.
productum, 294.
saportanum, 294.
trifidum, 294.
truncatum, 262.
I'roteopsis proserpinæ, 294.
rrotocardium perelongatum, 666.
I'rotocedroxylon paronai, 255.
Protodammara speciosa, 202, 208. 219.
Protopteris punctata, 189, 194, 286, 201, 305.
singeri, 285.
I'rotophyilocladus, $\mathbf{7}$)(f .
lobatus $64,102,208,214,325,7!$.
polymorphus, 234, 790.
subintegrifolius, 102, 191, 202. 20s, $219,231,796,952$.
l'rotophyilum, Sas.
boreale, 244.
credneroldes, 231.
crenatum, 231.
denticulatum, 2:31.
dhnorphnm, 231.
haydenii, 231.
integerrimum, 231.
leconteanum, 231, 244.
minus, 231.
mulgei, 231
muitinerve, 60, 103, 202, 231, S29, 959, 960.
manalmo, 243
nebrascense, 231.
prestans, 231.
usendospermoides, 231.
nterospermifolinm, 231.
quadratum, 231.
querciforme, 231.
ingosum, 231, 242. 246.
sternbergii, 60, 103, 203, 231, S2S, 9̄̄8, 959, 960.
trifobatum, 231.
undulatum, 231.
Prumas? acutifoila, 203.
antecedens, 231.
cernslformis, 299.
cretacea, 231.
martatoril, 888.
P'sammobilde, $\mathbf{7}$ (1.
Pseudeocycas dicksoní, 191.
insignis, 191.
pumillo, 191.
steenstrupl, 191.
Pseudoasterophyliites cretaccus, 294.
Pseudomelania, 480.
monmouthensis, $94,480,912$.
rseudogelnitzla sequoilformis, 203.
Ptenostrobus nebrascensls, 231
Ptenoglossa, 47\%.
P'teria, 548 .
lingulformis, 549.
petrosa, $96,548,917$.
rhombica, 06, 548, 549, 917, 91 S .
Pterincea, $\mathbf{5} 44$.
l'teridoleimma anelmlifolinm, 270.
antiqumen, 270.
arborcscens, 270 .
benincase, 270 .
deperditum, 270.
dietyoldes, 270.
dublum, 270 .
elisabethx, 270 .
durum, 200.
g.minorhachis, 270.
haldlngeri, 270.
hessianum, 270
kaltenbachi, 271.
koulnckiana, 271.
leptophyllum, 271.
michelisl, 271.
odontonteroldes, 271.
orthophyilum, 271.
pecopteroides, 271.
pseudadiauthum, 271.
ritzianum, 271.
scrresi, 271.
waterkeyni, 271.
I'teridophyta, 759.
Pterilide, 545.
Pteris albertini, 294.
aibertsli, 191, 294.
dakotensis, 232.
erosa, 240.
rrigida, 191, 279, 294, 309.
giossopteroides, 243.
gröniandica, 191.
longipennis, 191, 195.
reichiana, 279.
russeliii, 240.
slivenecensis, 294.
Itcrophyilum cretosum, 279, 280. germari, 280.
reichianum, 270.
saxonicum, 279.
I'terospermites aurlculatus, 191.
caroifnensls, 212, 210.
cordifoilus, 191.
crednerafolia, 212.
iongencuminatus, 232.
modestus, 203, 232.
muitinervis, 829.
obovatus, 203.
sternbergii, 828.
undulatus, 236.
wardii, 236, 240.
Pterospermum cretaceum, 305.
rinceinites cretaceus, 294.
Pugnellus, 46 .
densatus, $92,468$.
goldmani, $92,468,469,913$.
Purmira naticelia, 465.
Purpuridæ, 464.
Pycnodonte, 572.
pusilia, $96,578,929$.
radiata, 572, 573.
vesicularis, 69, 96, 336, 337, 339,
퓰, 924, 925, 926, 927, 928, 920.
Pyrenomycetes, 7 то.
Pyrifusus, 456.
cuneus, $92,457,460$.
elevata, $92,457,462$.
marylandica, $92,457,912$.
monmouthensis, $92,457,459,012$.
muilicaënsis, 460.
sp., 463, 912.
subdensatus, 456.
viltatus, $92,457,45 \mathrm{~s}, 911$.
whitfieidl, $92,457,461,910$.
Pyropsis, 444.
alabamensls, 435.
clevata, 445.
ienolensis, 92, 445, 45:3, 912.
naticoldes, 405.
octolirata, 451
perlata, 92, 444, 445.
relieyl, $32,445,448$.
retifer, $92,445,452,911$
richardsonl, 445, 447.
septemllrata, $92,445,449$.
trochiformis, $92,445,446,448,912$.
whitfieldl, $92,445,451,454$.
Pyrula trochiformis, 446.
Pyrus cretacea, 232.

Q

Quercus, 816.
alnoides, 232.
antlqua, 232
asymetra, 284
beyrichii, 279 .
ealliprinoldes, 251.
castanoldes, 284.
eharpenteri, 298.
coipophylla, 249.
cuncata, 232, 282,
cuspidigera, 105.
dakotensis, 232.
denticulata, 105.
dentonoldes, 236.
dryandrafolia, 284.
ellsworthlanus, 232.
eoprinoides, 208.
eucalyptoides, 249.
euryphlla, 284.
ferox, 191.
formosa, 284.
glascœna, 232.
hexagona, 232.
hieracifolla, 191, 231, 284.
hollickl, 208.
holmesli, 208, 232, 243, 818.
hoslana, 232.
iliciformls, 284.
johnstrupl, 195.
judithæ, 236.
kanseana, 232.
langeañ, 195.
latlfolia, 232.
latissima, 282.
lerlgensis, 282.
lesquereuxiana, 236.
longifolia, 28 2.
marloni, 195.
nontanensis, 234, 236
morrisoniana, 103, 208, 232, 318, S16, 954.
multhervis, 243.
myrtillus, 195.
nelsonica, 240, 251
hove-cæsareæ, 203, 208
occldentalls, 243.
pachyphylla, 251.
putootensls, 195. paucinervis, 282. platinervis, 244 . poranoldes, 232 pratti, 212.
prlmorilialis, 246. pseudochlorophylla, 249.
pseudodrymejn, 299. pseudowestfalica, 212, 214
raritanensis, 203.
rhimnoldes, 232.
rhomboldalis, 284.
rinklana, 101.
robusta, 276.
rosmarinifolla, 249.
sallcifolla, 232.
sevcrnensis, 103,208, S17, 953.
simuata, 232.
sphenobasls, 284.
spurlo-llex, 232.
stokesil, 249.
sumterensis, 214.
suspecta, 232.
thulensis, 191.
troglodytis, 191.
vclenovskyi, 299.
victoriæ, 244.
wardiana, 232.
warmingiana, 191.
westfollea, 191, 276, 299
westfalica latior, 284.
westfallca oblongata, 284.
westfalica obtusata, 284.
wilmsll, 282.

R

Rachiglossa, 421.
Radiolltes austlnensls, 328.
Radula dentleulieosta, 601. reticulata, 600.
Ranales, s31.
Rapa septemlirata, 450.
Raphnelia neuropteroldes, $195,2 \pi 1$. woldrlchl, 294.
Rarltania, soo.
gracllls, 102, 203, 208, S01, 951.
Ravenalospermum lncertissimun, 262.
Reptescharlpora marginata, 743.
Reptilia, 347.
Reptoflustrella heteropora, 740
Rhaeoglossum dentatuin, 271 . heterophyllum, 271
Rhamnaceæ, S54.
Rhamnales, S54.
Rhamnltes, S5.
apleulatus, $104,208,232,554,974$
minor, 203.
Rhamnus acuta, 191.
alatlformls, 263.
discoior, 239.
elegatis, 239.
goldianus, 239.
inequliaterais, 208, 232.
mulgel, 232.
novæ-çsaræa, 208.
örstell, 192.
pfaftiana, 105.
prunifollus, 232 .
revoiuta, 232.
salicifolius, $236,239,240$.
tenax, 219, 221, 232, 279.
Rhizocauion macrophyllum, 261.
najadinum, 276.
subtilinervium, 261.

Rhombopsis, 4.6.

Rhopala primæva, 279.
Rhopaiophyilum austraie, 249.
Rhus antlpun, 264.
cretacea, 208, 276, 299.
darlingtonensis, 214.
dens mortes, 208.
membranacea, 236.
powelllana, 232.
redditiformis, 221.
uddeni, 232.
westll, 232.
Rhytisma hederæ, 192.
Ringicuia, 400.
clarki, 00, 400, 914.
Ringiculidx, 40\%.
Rosaies, 841.
Rosellenites lapidum, 240.
Rosteliaria compacta, 472.
hebe, 475.
pennata, 472.
rostrata, 471.
spirata, 472.
fosteilites, 422.
beila, 441.
conradi, 427.
jamesburgensis, 52, 422, 425.
marylandicus, $92,422,424,911$.
nasutus, 22, 422.
texanus, 422.
Royena desertorium, 254.
Rubæphyllım gaylussaceæ, 298.

S

Sabai imperialis, 244.
Sabailtes, S11.
carollnensis, 214.
magothlensls, 64, 103, 208, 811, 952.
Sabiocaulis, sakurali, 253.
Sagenopteris variabllis, 209, 294.
Sallcacer, 818.
Sallcales, s13.
Snlicites hartigi, 276.
petzeldianus, 285.
wahlbergii, 256.

Sailx, S18.
angusta, 236.
assimitis, 262.
cuneata, 232.
deieta, 222, 237.
cutawensis, $215,220$.
flexiosa, 103, 203, 209, 212, 214, 215,
$219,232,326, \mathbf{S 1 3}, 9$ 53.
fraglllformls, 276 .
getziana, 276.
hayei, 232.
inæqualis, 203.
Integra, 239.
fesquerenxil, 103, 203, 209, 212, 214, $215,219,232,246,318,325, \mathbf{8 1 4}$, 953.
mattewanensis, 209.
meekil, 209, 219, 232.
nerviliosa, 232.
newberryana, 203, 212.
perucensis, 294.
proteæfolla, 813, 814.
protexfolia linearifoliá, 813.
proterfolia longlfolla, 814.
pseudo-hayel, 203, 214.
purpuroldes, 20 .).
raritanensis, 203.
schœnæ, 279.
sioani, 214.
stantoni, 236.
vasscuri, 259.
Salvertia transyivanica, 305.
Sapindales, S49.
Sapindophyllum brevior, 262.
coriaceum, 251.
peiagicum, 294.
Snpindus apicuiatus, $209,294,302$.
diverslfolifus, 232.
imperfectus, 209.
inexpectans, 236.
morrisonl, 192, 195, 203, 209, 214, 219, 222, 232.
prodromus, 192.
saxonicus, $279,302$.
variabllls, 219.
Sapotaceæ, S92.
Sapotacites, S:12.
ettlngshanseni, 219.
formosus, 219
haydenll, 232.
hyperboreus, 195.
knowltoni, 64, 104, 209, S59, 990.
nervillosus, 195.
obovata, 294, 893.
retusus, 195, 803.
shlrleyensls, 219.
stelzneri, 270.
Sassufras, S66.
acutilobuni, 103, 203 209, 212, 219, $232,246,294,318,325, \mathbf{S 6 6}, 880$, 968, $968,970,971$.
acutilobum grosscdentatum, 233.
angustilobum, 200
arctica, 192.
cretaceum, 246, 263, 879, S80, 881, 883.
cretaccum dentatum, $880,882$.
cretaceum obtusum, 880, 883.
cretaceum recurvatum, 824 .
disscctum, 233.
disscetum syumetricum, 233.
hastatum, 203.
integrifolium, 880 .
mirabile, 233, 302, 867, 881.
mudgeí, 233, 246, 880.
obtusum, 880,883 .
рарillosum, 233.
pfationa, 195.
piatanoides, 233.
primordiale, 233.
progenitor, 203, 20 ?
recurvatum, 192, 824.
subintegrifoilum, 233, 246,850 .
Saururopsis niponensis, 253.
Saxicavidx, 719.
Scala, 478.
Scalldx, 4:7.
Scaphandridæ, 411.
Scaphites, 381.
æ保ils, 381.
hinodosus, 273.
conruli, 72, 327, 334, 337, :3s:b, 908
cuvieri, 382.
hipiocrepis, $68,69,90,321,327,337$, 38 ㅗ.
puicherrinus, $337,383,385$.
similis, 382.
Scaphopoda, 506.
Schizæopteris mesozoica, 253.
Schizodonta, $\mathbf{5 4 4}$.
Sciadopitytes nathorstl, 192.
Scleropteris calioss, 276.
Sela chil, $\mathbf{3 5 0}$.
Selaginella arctica, 1,2.
falcata, 236.
laciniata, 236.
Sequoia, 785.
acuminata, 239.
ambiqua, 192, 209, 219, 220, 264, 786.
breviloba, 246.
concinna, 195, 203, 209, 264, 276.
contita, 233.
fastigista, 187, 192, 195, 209, 219,
$233,247,263,294,297,302,788$.
formosa, 233.
gopperti, 276.
gracilis, 209, 787.
graclilima, 233, 794, 801.
heterophyiln, $102,195,203,209,212$,
$219,236,260,279,294,300,326$,
-55. 949,950 .
legdensis, 282.
lepidota, 298.
longifolia, 236. lusitanica, 262.
macrolepis, 195. major, 294.
microcarpa, 297.
minor, 212, 279, 294.
moravica, 302.
obionga, 294.
pectinatn, 276 .
reichenbachi, 102, 192, 203, 209, 212,
$214,215,219,220,233,236,239$,
240, 260, 261, 263, 269, 271, 276,
$279,283,284,291,294,297,298$,
299, 302, 307, 331, 78S, 801.
rigida, 192, 195, 294, 307.
subulata, 192, 788.
winchelii, 233.
Sequoites poiyanthes, 294.
Serpulin, 745.
arenaria, 482.
circularis, 483.
rotuin, 483.
trigonalis, $100,746,943$.
whitfieidi, $100,746$.
scminuium, 745 .
Scrpuidæe, 745, 748.
Serpulorbis, 4S2.
marylandica, $94,482,913$. poiyphragma, 482.
Serrifusus, 454. nodocarinatus, $02,455$.
Siliquarla, 484.
inplicata, 703.
Simaba saxonica, 279.
Sinsyciouema simpilicia, 593. simpilcus, 505.
Smilax grandifoiln cretacea, 233. banartia, 299. raritanensis, 203, 209. unduiata, 233.
Solaridia, 493.
Soln rium, 49:3.
abyssinus, 505.
monmouthensc, $94,4: 4,909 \mathrm{~A}$.
Solentices, zos.
Solenille, 70:3.
Solidula builata, 403. mortoni, 407.
Solldulus linteus, 397.
Solymya, 701. ineolata, 98, 701, 93ะ. planulata, 684.
Sparganium cretaceum, 192.
spatungidæ, 7 ri.
Spheria cretacea, 195.
sphrrites, 75%.
a labamensis, 219.
probiematicus, 233.
raritanensis, $102,203,200,757$, 077.
soiftarius, 271.
Suharococcites laubei, 294.
strioiatus, 280.
Sphenaspis statenensis, 203.
Sphenodiscus, 3SS.
lenticularis, 331, 334, 337, 390.
lobatus, 72, 322, 323, 327, 329, 331, $334,337,358,909 \mathrm{~A}$.
Sphenolepidium dentifolium, 787. recurvifolíum, 786 .
Spherolepis kurriana, 260, 262, 304. sternbergiana, 260.
Sphenopteridium tenerium, 294.
Sphenopteris angustiioba, 263.
corrugata, 233.
elongata, 244.
fesiuensis, 304.
mantelii, 263, 279.
pieurinervia, 263.
Suhenosnurus basifissus, 347.
clavirostris, 347.
Spisula, 706.
berryi, 100, 70S, 939.
wordeni. 100. 70!, 939.
Spongia ottol, 280.
saxonica, 280.
Steinhauera minuta, $2 \$ 6$.
Sterculia, 85\%.
nperta, 233.
cliffwooiensis, $64,104,200,558$, 976.
geinitzi, 278.
krejeil, 297.
labruscoides, 858.
limbata, 294.
linearilobin, 233.
lugubris, 222, 233, 858.
minima, $64,104,209,557,976$.
mucronata, 233, 857.
prelabrusca, 209.
reticuiata, 233.
snowii, 209, 233.
snowll bilobatum, 209.
snowil disjuncta, 233.
tripartita, 233.
variabilis, 105.
vetustula, 242.
vinokurovii, 309.
Sterculiacere, s.5\%.
Stalagmium serica, 624.
Stoma topora, $\mathbf{7 i s}$.
kümueli, 100, 7:s7.
regularis, 100 , $\mathbf{~ T : ~} 6$.
tenulcorda, $\mathbf{7 4 5}$.
Straparolus lapidosus, 50\%.
Streptodonta, 4.7.
Strobites anceps, 214.

Strobliftes davisil, 203.
inquirendus, 209. microsporophorus, 203. perpiexus, 209.
Stromblile, 46\%.
Strombus densatus, 467, 468.
Surcuia, 419.
amica, $92,420,910$.
Sycophyllum dentaturu, 276.

T

Trenidium afysioldes, 2S4.
Tæniopteris deperdita, 195. plumosa, 244.
Trenioxylon varians, 276.
Traxites pecten, 105.
Taxodium cuneatum, 244.
Taxodonta, 511.
Taxotorreya trinerva, 251.
Taxoxvium haternianum, 283.
Tectibranchiata, $\mathbf{3 9 7}$.
'Iectospondyli, $\mathbf{3 6 0}$.
Meleodesmacen, 642.
Teleostel, :зп...
'releotremata, 7:34.
Teliimera eborea, 696.
Tellina, 691. gabbi, 98, 692, 694, 93S. georgiana, $98,692$.
cuspldata, 639.
eufalcasis, 697. virgata, 691.
Teliinacea, 691.
T'eilinida, 6:1.
Telinimera eborea, 08, 695, 038.
T'empskya cretacea, 283. variano, 294.
Tenea, 661. parilis, 98, 661. pinguis, 661.
Tetrabranchiatn, :371.
Tetraphylium dublum, 284. oblongun, 192.
Terebratuia, 734. cantilla, 734. gorbyi, 734. hariani, 36, $75,100,734,943$. perovalis, 734.
Terebratulacea, 584.
Terebratulidg, 7:34.
Teredinite, 7:29.
'l'eredo, $\boldsymbol{5} \boldsymbol{2} 9$.
contorta, 730.
irreguineis, 100, 729, 730 .
navalis, 729.
rhoublea, 100, $729,7: 82,942$. tibialis, 730.
Ternstremia crassipes, 294, 308.
'ierminalia rectinervis, 294.

Thaliasocharis bosqueti, 271.
mulleri, 271.
westfaliea, 283, 284.
Thaflophyta, 75\%.
Thinnfeldia lesquereuxiana, 796. subintegrifolia, 796.
Thoracosaurus, 347.
grandis, 347.
нсocæsaricnsis, 90 , 347, 904.
sp., 90, 347, 904.
Thuites alienus, 286.
crassus, 781.
gramineus, 286.
meriana, 192, 203.
pfaffana, 192, 276.
wilkinsoni, 249.
'Thuja, 791.
eretacea, 102, 192, 203, 209, 236, 791.

Thymeleales, $\mathbf{S 6 0}$.
Thyrsopteris grevilleoldes, 209, 292.
Tomistomidæ, $\mathbf{3 4 \%}$.
Tornatella, 410.
bullata, 40 .
Tornatina, 409.
Torreya dicksoniana, 270.
oblaneeolata, 233.
Toxoglossa, 412.
Trapa borealis, 245.
euneata, 236.
microphylla, 236.
Trachyeardium cufalense, 664.
Triealycites major, 203, 209.
papyraceus, 203, 209, 219, 222.
Triearpellites strlatus, 203, 209.
Trichotropis eancellaria, 412, 413.
konincki, 339.
Trigonarea saffordi, 532, 537 .
Trigonlia, $5 \mathbf{5} \because$.
cerulea, $96,582,584$.
cufaiensis, 96, 5S2, 930.
margaritacea, 582.
marlonensis, 96, 582, 585.
Trigonlacea, $\mathbf{\Xi x}$.
Trlgonlidæ, たSシ.
Trigonostoma, 465.
Triphyllum bignonia silesiacn, 276. geinitzianum, 276.
Triplaris cenomaniea, 279.
Trocheldæ, 504.
Trochus leprosus, 495. perspectivum, 493.
Trochoeyathus, $75 .$. vaughani, 100, 752, 944.
T'ubicola, 745.
Tubullpora megæra, 739.
Tudicla perlata, 445. trochiformis, 446.

Tumion carolinianum, 212, 215
densifolium, 244.
dicksonioides, 244.
Turbinella alabamensis, 435. intermedia, 436.
verticalis, 435 .
Turbinolits, $5 \mathbf{5}$.
Turbinopsis alabamensis, 435. elevata, 462.
Turbo scalaris, 477. terebra, 486.
Turricuia, 433. relleyi, 433. scalariformis, 479.
Turris, 414.
monmouthensis, $92,415,41 \mathrm{~S}, 910$. sedesclara, $92,415,41 \mathrm{~S}, 910$.
terramaria, $92,415,416,910$. welleri, 92, 415, $417,910$.
Turritella, 456.
bonaspes, $94,486,457,913$.
bleantiana, 339.
corsieana, 489.
delmar, 68, 94, 321, 486, 457, 913. enerinoides, $94,486,492$.
jerseyensis, 487.
paravertebroldes, $94,320,323,327$, 486, 4SS, 913.
pumila, 492.
tippana, 94, 486, 491.
trlliueata, 489.
trilira, $94,339,486,489$.
vertebroides, $320,327,329,459$.
Turritelifde, 4St.
Turritidx, 414.
Typhacites, kitsoni, 255.
levis, 261.
rugosa, 261.
Typhæloipum cretaceum, 302.

U

Ulmus dubia, 244.
Ulmophyllum latifolium, 251. plancrefolium, 251. priscum, 244.
Uubellales, sti.
Unitubigera papyracea, 739.
Urticaies, Sis.

V
Vasidx, 434.
Veniella, 642.
conradi, 98, 643, 934.
inflata, 643.
trigona, 643.
Venilia, 642.
conradi, 642, 643.
elcvata, 643.
trigona, 643 .

Vencracea, 676.

Veneride, 6 66.
Vencricardia, 65\%.
imbricata, 657.
intermedia, 08, 65\%.
Venus chinensis, 677.
meretrix, 670.
puerpera, 681.
sinensls, 677.
splnifera, 658.
verrucosn, 681.
Vermes, $\mathbf{7 5}$.
Vermetidx, 4N2.
Vermetus, 4S:3.
adansoni, 483.
circuiaris, $94,483$.
glgas, 482.
Vertebrata, 34\%.
Viburnites crassus, 233.
evansanus, 233.
masonil, 233.
Viburnum anomalum, 236 .
attenuatum, 195.
elisworthianum, 233.
grewionsoldes, 233.
hollickil, 200, 237.
integrifolium, 203, 209.
lesquereuxi, 233.
lesquerenxi commune, 233.
iesquereuxi cordifollum, 233.
lesquereuxi lanceolatum, 233.
iesquerenxi latins, 233.
lesquercuxi ionglfolium, 233.
lesquereuxi rotundifolium, 233.
lesquercuxi tenuifoilum, 233.
mattewanensis, 200.
montanum, 237, 240.
uuitincrve, 195.
problematicum, 237, 240.
robustum, 222, 233.
sphenopyllum, 233.
subrepandum, 283.
vetus, 262.
zyziphoides, 195.
Vitaceæ, S55.
Vola quinquecostata, 597.
Voluta pyrum, 434.
tornæalis, 397.
vuipecula, 433.
Voiutidre, 422.
Volutilithes beila, 441.
conradi, 426, 427.
cretacen, 431.
lioderma, 430.
nasuta, 422.
Volutoderma jamesburgensis, 425.

Volutomorpha, 426.
beila, 441 .
conradi, $92,42 \overline{4}, 911$.
gabbi, 427.
peroruata, $92,427,425,913$.
V̛ulpecuin, 433.
relicyi, 02, 43:3.

W

Weichselia erratica, 256.
Widdringtonia compianata, 237,240 . parvivalvis, 298.
Widdringtonites, 7is.
complanata, 237, 240.
fasciculatus, 200.
fastigiatus, 305.
ramosus, 796.
reichil, 64, 102, 192, 195, 203, 219.
$260,279,204,302,326,753,794$.
subtlils, $192,203,209,214,219,706$, 951.

Wilitamsonits, 60.
blbbinsif, 772.
cretacea, 192, 772.
delawarensis, $102,209,770,75$. 947.
efocata, 233, 771.
galiinacea, 772.
marylandica, 102, 209, 5(39, 947.
minima, 772.
oregonensis, 770.
problematica, 203, 209.
recentior, 242.
riesil, 203, 771.
smockil, 203.
Virginiensis, 770, 772.
whitbiensis, 769.
Wiliamsonfaccar, $\mathbf{- 6 0}$.
Williamsoniaies, 769 .
Woodwardia creuata, 237, 240.

X

Xancus, 434.
alabainensis, $92,435$.
intermedin, 92, 435, 436.
Neuophora, 494.
couchliophora, 494.
leprosa, $94,495$.
Neuophoridæ, 494.
Nylomites aggregatus, 192.
eilipticus, 279.

Yoldia, 51 S .
arctica, 518.
gabbana, $94,518,5 \mathbf{5 0}$.
onglfrons, 68, 94, 321, 322, 326
518, 915
noxontownensis, 94, 518, 521, 915.
Sezonia vulgaris, 253.
Yezostrobus olliveri, 253.

z

Zamia lanceolata, 752. washingtoniana, 773.
Zamiopsis brevipennis, 276
Zamites angustifolius, 774.
bohemicus, 294.
familiaris, 297.
lanceolatus, 772.
tenuinervis, 774 .
Zingiberites pulchellus, 192.
Zizyphus eliffwoodensis, 209
dakotensis, 233, 309.
elegans, 209.
grœenlandieus, 195, 209.
lamarensis, 219, 222.
laurifolins, 215.
lewisiana, 209.
oblongus, 209.
Zonarites digitatus, 233.
Zonopteris gœpperti, 271
Zosterites æquinervis, 271.
angustifolius, 249
bellovisana, 257.
eauliniæfolia, 257
elongata, 257.
lineata, 257.
loryi, 260.
miqueli, 271.
orbigniana, 257
vittata, 271.

ERRATA

Pages $91,93,95,97,99,101,103$. The Manasquan formation is not recognized in the Maryland area and occurrences so credited should be referred to the Rancocas formation.

Page 159, line 8, for Matawan read Monmouth.
Page 204, line 9, for raoniana read ravniana.
Page 238, line 22, for bavicularis read navieularis.
Page 239, line 31, for macricarpum read macrocarpum.
Page 241, line 7, for Lesquerex read Lesquereux.
Page 249, line 24, for plutonina read plutonia.
Page 262, line 5, for Branchyphyllum read Brachyphyllum.
Page 282, line 10 , for Conferites read Confervites.
Page 301, line 17, for riloba read triloba.
Page 325, line 20, for bladensis read bladenensis.
Page 409, line 19, for wetherilla read wetherilli.
Page 429 , line 19, last word should be in italics.
Page 745, line 25, for Polochaeta read Polychæta.
Page 780, line 10, for blandenensis read bladenensis.
Page 880, line 13, for harkianus read harkerianus.
Page 892, next to last line, Knowltoni should be in italies.
Page 921, line 1, for Ostrea read Gryphaea.

[^0]: Etymology: mapd near, anomia.

[^1]: ${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. iv, p. 773.

[^2]: Etymology: ảvóцoเos unequal, unlike.

[^3]: Etymology: Named in honor of Dreissens, a Belgian physician.
 ${ }^{1}$ 1900, Mon. Cret. Lamellibranchia, England, Paleontographical Soc., London, pt. ii, p. 110, pl. xviii, figs. 13-15; pl. xix, figs. 1-11.

[^4]: Etymology: A name suggested by "its resemblance to shells of two Linnean genera, the Pholades and Mya."

[^5]: Etymology: (?) A name suggested by the resemblance of the form to Periploma and Mya.
 ${ }^{1}$ Conrad, 1867, Am. Jour. Conch., vol. iii, p. 15.

[^6]: ${ }^{1}$ Prof. Paper, U. S. Geol. Survey, No. 81.

[^7]: Etymology: Cuspis, cuspidis; a lance, a point.

[^8]: A. Latitude of adult shell not exceeding 8 mm .; anterior portion of shell not evenly inflated, tending to flatten toward the anterior lateral and ventral margins.. Cuspidaria ampulla B. Latitude of adult shell exceeding 8 mm .; anterior portion of shell evenly inflated, not flattened toward the anterior lateral and ventral margins Cuspidaria cucurbita

[^9]: ${ }^{1}$ Bull. Mus. Comp. Zool., Harvard Coll., 1886, p. 292.

[^10]: Etymology: A modification of Morton's pre-occupied Venilia, the name of one of the nymphs of Roman mythology.

[^11]: ${ }^{1}$ The furrow of this tooth is too strongly defined in fig. $3 d$, of plate 2.
 ${ }^{2}$ Rept. U. S. Geol. Survey, Territories, vol. ix, pp. 119, 120.

[^12]: Etymology: Crassus, thick, heavy.
 ${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. vi, pp. 1466, 1467.

[^13]: Etymology: So-called because of a supposed combination of the characters of Yenus and Cardium.

[^14]: ${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. v, p. 1357.

[^15]: Etymology: ки́клоs, circle.

[^16]: Etymology: The specific name of the type.
 ${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol. iiii, pt. vi, p. 1259.

[^17]: Etymology: Legumen, a bean.

[^18]: ${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. vi, p. 1282.

[^19]: ${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. v, pp. 1006-9.
 ${ }^{2}$ Dall, Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. v, p. 1011.

[^20]: ${ }^{1}$ Am. Jour. Conch., vol. vi, 1870, p. 73.

[^21]: Etymology: Spissus, thick.
 ${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. iv, p. 878.

[^22]: ${ }^{1}$ Geol. Survey of California, 1869, Pal., vol. ii, p. 180.
 ${ }^{2}$ Trans. Wagner Free Inst. Sei., Phila., vol. iii, pt. iv, p. 879.

[^23]: Etymology: Panopea, a sea-nymph.

[^24]: ${ }^{1}$ Trans. Wagner Free Inst. Sci., Phila., vol. iii, pt. iii, p. 827.

[^25]: Etymology: Teredo, a name given by Pliny to a worm that gnaws wood.

[^26]: ${ }^{1}$ Described by the writer in Prof. Paper U. S. Geol. Survey, No. 98J, now in

[^27]: ${ }^{1}$ Nathorst, Kgl. Svenska Vetens.-Akad. Handl., Bd. xlvi, No. 4, 1911, pp. 9-14 (see text fig. 3).

[^28]: ${ }^{1}$ Halle, Wiss. Ergeb. Schwed. Sudpolar-Exped. 1901-03, Bd. iii, Lief. xiv, 1913, p. 70, pl. vi, fig. 12.
 ${ }^{2}$ Nathorst, Kgl. Svenska Vetens.-Akad. Handl., Bd. xliii, No. 8, 1908.

[^29]: ${ }^{1}$ Mon. U. S. Geol. Survey, vol. xxvi, 1896, p. 125, pl. xxxv, figs. 1-9.
 ${ }^{2}$ Trans. N. Y. Acad. Sci., vol. xii, 1892, p. 10, pl. i, figs. 2, 3.
 ${ }^{8}$ Fl. Dakota Group, 1892, p. 87, pl. i1, figs. 9, 9a.

[^30]: ${ }^{1}$ Fl. Foss. Arct., Ab. 2, vol. vi, 1882, p. 59, pl. xii, fig. 1; pl. xiil, fig. 9.
 ${ }^{2}$ 19th Ann. Rept. U. S. Geol. Survey, pt. ii, 1899, p. 668, pl. clxil, fig. 20.
 ${ }^{2}$ Fl. Foss. Port., 1894, p. 105, pl. xix, fig. 9.
 ${ }^{4}$ Mon. U. S. Geol. Survey, vol. xv, 1889, p. 273, pl. cxxxiil, figs. 5-7; pl. clxv, flg. 5 .
 ${ }^{5}$ Ibidem, vol. xlviii, 1906, p. 485, pl. cvii, fig. 4.
 ${ }^{6}$ Ibidem, p. 554, pl. cxv, fig. 11.

[^31]: ${ }^{1}$ Berry, Bull. N. Y. Bot. Garden, vol. iii, 1903, p. 99, pl, xlvi, figs. 1, 3.

[^32]: ${ }^{1}$ Saporta, Fl. Foss. Portugal, 1894, pp. 216, 221, pl. xxxviii, figs. 6-8, 12, 13, 21; pl, xxxix, fig. 20.

[^33]: ${ }^{1}$ Hollick, Trans. N. Y. Acad. Sci., vol. xvi, p. 128, pl. xil, figs. 3a, 4, 1897.
 ${ }^{2}$ Saporta, Le Monde des Plantes, p. 198, fig. 27, 1879.
 ${ }^{3}$ Bozzi, L., Boll. Soc. Geol. Ital., vol. x, 1891, p. 375, pl. xvi, figs. 1, 2.

[^34]: ${ }^{1}$ Kerner, Jahrb. k.k. Geol. Reichs., Bd. xlv, 1895, p. 49, pl. iv, figs. 1, 3.

[^35]: ${ }^{1}$ Knowlton, Bull. U. S. Geol. Survey, No. 163, 1900, p. 29, pl. iv, figs. 5, 6.

[^36]: ${ }^{1}$ Saporta, F1. Foss. Portugal, 1894, p. 176, pl. xxxi, fig. 14.

[^37]: ${ }^{1}$ Three citations, involving a change in the specific name of this well-known form, are here omitted as being too uncertain: Conites familiaris Sternberg, Bergeria minuta Presl, and Sedites ? rabenhorstii Geinitz. A complete synonymy of this species has been given in the writer's account of the Lower Cretaceous flora of Maryland. After giving the earlier names, only Upper Cretaceous citations are given in the present connection.

[^38]: ${ }^{1}$ Berry, E. W., Md. Geol. Survey, Lower Cretaceous, 1911, pp. 413-415.

[^39]: ${ }^{2}$ The following earlier citations are included under this species by Ettingshausen: Lycopodites insignis Reich, in Geinitz, Charak. der Schichten u. Petrefacten sachsböhm. Kreidegebirges, p. 98, 1842; Bronn. Lethæa geogn., p. 577, pl. xxviii, fig. 13, 1846. They are omitted in the present connection since if they are positively identified as this species it would involve changing the name of this widespread and well-known form.

[^40]: ${ }^{1}$ Berry, Bull. Torrey Bot. Club, vol. xxxix, pp. 341-348, pl. xxiv, 1912.
 ${ }^{*}$ Berry, Md. Geol. Survey, Lower Cretaceous, p. 428, pl. lxxiii, figs. 1-6, 1911.

[^41]: ${ }^{1}$ Gothan, Kgl. Svenska Vetens. Akad. Handl., Bd. xlii, No. 10, 1907.

[^42]: ${ }^{1}$ Ettings., Abhl. Geol. Reichsanstalt, Bd. iii, p. 2, pl. i, figs. 4-7, 1852.
 ${ }^{2}$ Kerner, Jahrb. Geol. Reichsanstalt, Bd. xlv, p. 39, 1896.

[^43]: ${ }^{1}$ Newberry, Mon. U. S. Geol. Survey, vol. xxvi, p. 45, pl. xii, figs. 6, 7, 1896.

[^44]: ${ }^{1}$ Unger, Gen. et Sp., p. 224, 1850.
 ${ }^{2}$ Heer, Urwelt der Schweiz, p. 55, 1865.
 ${ }^{2}$ Lindley and Hutton, Foss. Fl. Gt. Britain, vol. ii, pl. cxxi, 1834.
 ${ }^{4}$ This is the correct name for the form commonly called C. Murrayana (L. and H.), since Phillips' name antedates that of Lindley and Hutton by five years.

[^45]: ${ }^{1}$ Miquel, Verh. geoi. kaart. Nederl. I, 1853, pp. 33-56, plates i-vil.
 ${ }^{2}$ Heer, Cont. Fl. Foss. Portugal, 1881, p. 22, pl. 19, figs. 1-3.
 ${ }^{3}$ Krasser, Beitr. z. Kennt. Foss. Kreidefl. v. Kunstadt, 1896, p. 15, pl. il, f.g. 4.
 ${ }^{4}$ Saporta, Fl. Foss. Port., 1894, pp. 216, 221, pl. xxxviii, figs. 6-8, 12, 13, 21; pl. xxxix , fig. 20.
 ${ }^{5}$ Schenk, Pal., Bd. xix, 1869, p. 20.
 ${ }^{6}$ Schimper and Mougeot, Mon. Pl. Foss. Vosges, 1844, p. 42.
 ${ }^{7}$ Velenovsky, Gym. Böhm. Kreidefl., 1885, p. 1.

[^46]: ${ }^{1}$ Frič, Archiv. Naturw. Landes Böhm., Bd. iv, No. 1, 1878, pp. 18, 94.

[^47]: Order FAGALES
 Family FAGACEAE
 Genus QUERCUS Linné
 [Sp. Pl., 1753, p. 994]
 Quercus morrisoniana Lesquercux
 Plate LVIII, Fig. 2
 Quercus morrisoniana Lesquereux, 1883, Cret. and Tert. Flora, p. 40, pl.
 Quercus morrisoniana Lesquereux, 1892, Mon. U. S. Geol. Survey, vol. xvii,

[^48]: ${ }^{1}$ Ward, Bull. U. S. Geol. Survey, No. 37, 1887, p. 34, pl. xv, figs. 3, 4.

[^49]: ${ }^{1}$ Newberry, Mon. U. S. Geol. Survey, vol. xxvi, p. 131, pl. xxiv, fig. 10, 1896.

[^50]: ${ }^{1}$ Hollick, Bull. Torrey Bot. Club, vol. xxi, 1894, p. 61, pl. clxxv, fig. 6.

[^51]: ${ }^{1}$ Velenovsky, Fl. Böhm. Kreideform., Theil ili, 1884, p. 4, pl. iii, fig. 5.
 ${ }^{2}$ Berry, E. W., Prof. Paper U. S. Geol. Survey, No. 84, p. 44, pl. xiv, fig. 8, 1914.

[^52]: ${ }^{1}$ Fontaine, Mon. U. S. Geol. Survey, vol. xv, 1890, p. 321, pl. clxi, flgs. 1, 2.
 ${ }^{2}$ Hollick, Mon. U. S. Geol. Survey, vol. i, 1907, p. 61, pl. xiii, figs. 1-4; pl. xiv, flgs. 1, 2; pl. xv; pl. xvi, figs. 1-6.

[^53]: ${ }^{1}$ Saporta, Comptes Rendus, tome cxix, 1894, pp. 835-837.

[^54]: ${ }^{1}$ Hollick, Bull. Torrey Bot. Club, vol. xxi, 1894, p. 307.
 ${ }^{2}$ Knowlton, Bull. U. S. Geol. Survey, No. 163, p. 53, pl. xiii, figs. 3-5, 1900.
 ${ }^{2}$ Based on Brasenia antiqua Dawson, Trans. Roy. Soc. Canada, vol. iii, sec. iv, p. 15, tf., 1886.

[^55]: ${ }^{1}$ Heer, Fl. Foss. Arct., Bd. vii, p. 44, pl. lv, figs. 21, 22; pl. lxv, fig. 13, 1883.

[^56]: ${ }^{1}$ Berry, Prof. Paper U. S. Geol. Survey, No. 84, p. 48, pl. vii, figs. 5-10, 1914.
 ${ }^{3}$ Hollick, Mon. U. S. Geol. Survey, vol. 1, 1907, p. 75, pl. xxix, ngs. 5, 6.

[^57]: ${ }^{1}$ A single specimen from Little Round Bay has a petiole 2 cm . in length.
 ${ }^{2}$ Heer, Fl. Tert. Helv., Bd. iii, 1859, p. 68, pl. cxxi, figs. 46, 46b (non Velenovsky, 1882).

[^58]: ${ }^{1}$ Heer, Fl. Foss. Arct., Bd. vi, Ab. ii, p. 85, pl. xxi, figs. 5-8, 1882.

[^59]: ${ }^{1}$ Velenovsky, Fl. Böhm. Kreidef. Theil iv, 1885, p. 12, pl. iv, fig. 6.

[^60]: ${ }^{1}$ Velenovsky, Fl. Böhm. Kreidef. Theil i, p. 30, pl. vii, figs. 5-8, 10; pl. viii, figs. 1-5, 1882.

[^61]: ${ }^{1}$ Lesquereux, Mon. U. S. Geol. Survey, vol. xviii, p. 230, 1892.

[^62]: ${ }^{1}$ Velenovsky, Fl. Böhm. Kreidef., Theil iv, p. 3, pl. iii, figs. 2-12, 1885.

[^63]: ${ }^{1}$ Hollick, Mon. U. S. Geol. Survey, vol. 1, p. 99, pl. xxxvii, figs. 1, 2, 1907.

[^64]: ${ }^{1}$ Velenovsky, Fl. Böhm. Kreidef., Theil i, 1882, p. 22, pl. v, figs. 4-6.
 ${ }^{2}$ This form was cited in 1878 by Saporta and Marion (Mém. Cour. Sav. Etrang. Acad., tome xli, 1878, p. 78), as Araliopsis (Sassafras) cretacea, but there is no evidence to show that they had any generic proposal in mind.

[^65]: ${ }^{1}$ Newberry, Mon. U. S. Geol. Survey, vol. xxvi, p. 119, pl. xix, fig. 10, 1896.

[^66]: ${ }^{1}$ Sternberg, Fl. d. Vorwelt, Heft, ii, 1821, p. 34, pl. xxiv, fig. 7.
 ${ }^{2}$ Bronn, Lethæa Geognostica, pl. xxviii, fig. 1.
 ${ }^{3}$ Rothpletz, Zeits. deutsch. geol. Gesell., Bd. xlviii, 1896, p. 904.
 ${ }^{4}$ Velenovsky, Fl. böhm. Kreidef., Theil iii, 1883, p. 13, pl. iv, fig. 1.

[^67]: Fig. 1. Gryphea (Pycnodonte) vesiculabis (Lamarck) Race A........ 575 Interior of right valve. Matawan formation, Post 198-199, Chesapeake and Delaware Canal, Delaware.

 Figs. 2, 3. Gryphea (Pycnodonte) vesicularis (Lamarck) Race B..... 576
 2. Interior of right valve.
 3. Interior of left valve of same individual.

 Matawan formation, Camp Fox, Chesapeake and Delaware Canal, Delaware.

[^68]: Figs. 1-3. Gryphea (Pycnodonte) vesicularis (Lamarck) Race E..... 576

 1. Exterior of left valve.
 2. Interior of same.
 3. Interior of right valve.

 Manasquan formation, Noxontown Mill Pond, Delaware.
 Figs. 4.6. Grypilea (Pycnodonte) pusilla Gardner n. sp............... 578
 4. Exterior of left valve.
 5. Interior of same.
 6. Interior of right valve.

 Monmouth formation, Great Bohemia Creek, Cecil County.

[^69]: Fig. 1. Pholadomya conradi Gardner n. sp.
 paoe
 Cast of left valve. $11 / 2$ miles north of Fort Deposit, Alabama, U. S. National Museum.

 Figs. 2-7. Veniella conradi (Morton) Stoliczka.............................. . . . 643
 2. Exterior of very young right valve. $\times 3$.
 3. Interior of same. $\times 3$.
 4. Interior of right valve.

 Monmouth formation, Brightseat, Prince George's County.
 5. Exterior of adult left valve.
 6. Cast of right valve in apposition with left valve.
 7. Dorsal view of same.

 Monmouth formation, Brooks' Estate near Seat Pleasant, Prince George's County.

[^70]: Figs. 1-4. Restorations of Aralia rayniana Heer
 page

 1. Restoration of specimen from Grove Point, Cecil County.
 2. Restoration of Heer's pl., xxxviii, fig. 2.
 3. Restoration of specimen from Cliffwood Bluff, N. J.
 4. Restoration of Heer's pl., xxxviii, fig. 1.

 All one-third natural size. The portion of the specimen preserved is shaded.

