Noninjectivity of the "hair" map

Bertrand Patureau-Mirand

Abstract

Kricker constructed a knot invariant $Z^{\text {rat }}$ valued in a space of Feynman diagrams with beads. When composed with the "hair" map H, it gives the Kontsevich integral of the knot. We introduce a new grading on diagrams with beads and use it to show that a nontrivial element constructed from Vogel's zero divisor in the algebra Λ is in the kernel of H. This shows that H is not injective.

Introduction

The Kontsevich integral Z is a universal rational finite type invariant for knots (see the Bar-Natan survey [1]). For a knot $K, Z(K)$ lives in the space of Chinese diagrams isomorphic to $\widehat{\mathcal{B}}(*)$ (see Section 1.1). Rozansky [5] conjectured and Kricker [3] proved that Z can be organized into a series of "lines" called $Z^{\text {rat }}$. They can be represented by finite \mathbb{Q}-linear combinations of diagrams whose edges are labelled, in an appropriate way, with rational functions. Garoufalidis and Kricker [2] directly proved that the map $Z^{\text {rat }}$ with values in a space of diagrams with beads is an isotopy invariant and that Z factors through $Z^{\text {rat }}$. For a knot K with trivial Alexander polynomial, $Z(K)=H \circ Z^{\text {rat }}(K)$ where H is the hair map (see Section 1.3). Rozansky, Garoufalidis and Kricker conjectured (see Ohtsuki [4, Conjecture 3.18]) that H could be injective. Theorem 4 gives a counterexample to this conjecture.

1 The hair map

1.1 Classical diagrams

Let X be a finite set. A X-diagram is an isomorphism class of finite unitrivalent graphs K with the following data:

- At each trivalent vertex x of K, we have a cyclic ordering on the three oriented edges starting from x.
- A bijection between the set of univalent vertices of K and the set X.

We define $\mathcal{A}(X)$ to be the quotient of the \mathbb{Q}-vector space generated by X-diagrams by the relations:
(1) The (AS) relations for "antisymmetry":

$$
Y+\zeta=0
$$

(2) The (IHX) relations for three diagrams which differ only in a neighborhood of an edge:

$$
I=H-X
$$

These spaces are graded. The degree of an X-diagram is given by half the total number of vertices.

Let $[n]=\{1,2, \ldots, n\}$ and define F_{n} to be the subspace of $\mathcal{A}([n])$ generated by connected diagrams with at least one trivalent vertex. The permutation group $\mathfrak{S}(X)$ acts on $\mathcal{A}(X)$. Let $B(*)$ be the coinvariant space for this action:

$$
B(*)=\bigoplus_{n \in \mathbb{N}} \mathcal{A}([n]) \otimes_{\mathfrak{S}_{n}} \mathbb{Q}
$$

and let $\widehat{B}(*)$ be the completion of $B(*)$ for the grading.
Finally let Λ be Vogel's algebra generated by totally antisymmetric elements of F_{3} (for the action of \mathfrak{S}_{3}).

We recall (see [6]) that Λ acts on the modules F_{n} and that for this action, F_{0} and F_{2} are free Λ-modules of rank one. Furthermore, the following elements are in Λ :

$$
t=A=\frac{1}{2}, \quad x_{n}=\underset{n-2}{\prod_{n-2}}
$$

Theorem 1 (Vogel [6, Section 8 and Proposition 8.5]) The element t is a divisor of zero in Λ.

Corollary 2 There exists an element $r \in \Lambda \backslash\{0\}$ such that $t \cdot r=0$. So one has

Proof $\quad F_{0}$ is a free Λ-module of rank one generated by the diagram Θ and the previous diagram of F_{0} is $r \cdot \Theta \neq 0$. The diagram of F_{3} of the corollary is the product

$$
r \cdot \bigodot_{1}^{3}=2 t r=0 \in \Lambda
$$

Remark Vogel shows that r can be chosen with degree fifteen in Λ (the degree in Λ is the degree in F_{3} minus two), and in the algebra generated by the x_{n}. This element is killed by all the weight systems coming from Lie algebras (but r is not killed by the Lie superalgebras $\mathfrak{D}_{2,1, \alpha}$).

1.2 Diagrams with beads

Diagrams with beads were introduced by Kricker and Garoufalidis [3; 2]. A presentation of \mathcal{B} which uses the first cohomology classes of diagrams is already present in [5]. Vogel explained me this point of view for diagrams with beads.

Let G be the multiplicative group $\left\{b^{n}, n \in \mathbb{Z}\right\} \simeq(\mathbb{Z},+)$ and consider its group algebra $R=\mathbb{Q} G=\mathbb{Q}\left[b, b^{-1}\right]$. Let $a \mapsto \bar{a}$ be the involution of the \mathbb{Q}-algebra R that maps b to b^{-1}.

A diagram with beads in R is an \varnothing-diagram with the following supplementary data: The beads form a map $f: E \longrightarrow R$ from the set of oriented edges of K such that if $-e$ denotes the same edge than e with opposite orientation, one has $f(-e)=\overline{f(e)}$.

We will represent the beads by some arrows on the edges with label in R. The value of the bead f on e is given by the product of these labels and we will not represent the beads with value 1 . So with graphical notation, we have:

$$
\xrightarrow{f(b)}=\xrightarrow{\overline{f(b)}} \text { and } \xrightarrow{f(b) g(b)} \xrightarrow{f}
$$

The loop degree of a diagram with beads is the first Betti number of the underlying graph.

Let $\mathcal{A}^{R}(\varnothing)$ be the quotient of the \mathbb{Q}-vector space generated by diagrams with beads in R by the following relations:
(1) (AS)
(2) The (IHX) relations should only be considered near an edge with bead 1 .
(3) PUSH:

(4) Multilinearity:

$$
\xrightarrow{\alpha f(b)+\beta g(b)}=\alpha \xrightarrow{f(b)}+\beta \xrightarrow{g(b)}
$$

$\mathcal{A}^{R}(\varnothing)$ is graded by the loop degree:

$$
\mathcal{A}^{R}(\varnothing)=\bigoplus_{n \in \mathbb{N}} \mathcal{A}_{n}^{R}(\varnothing)
$$

We will prefer another presentation of $\mathcal{A}^{R}(\varnothing)$:

- Note that it is enough to consider diagrams with beads in G and the multilinear relation can be viewed as a notation.
- Next note that for a diagram with beads in G, the map f define a 1-cochain \tilde{f} with values in $\mathbb{Z} \simeq G$ on the underlying simplicial set of K. The elements \tilde{f} are in fact 1 -cocycles because of the condition $f(-e)=f(e)$ which implies $\tilde{f}(-e)=-\tilde{f}(e)$.
- The "PUSH" relation at a vertex v implies that \tilde{f} is only given up to the coboundary of the 0 -cochain with value 1 on v and 0 on the other vertices. Hence $\mathcal{A}^{R}(\varnothing)$ is also the \mathbb{Q}-vector space generated by the pairs (3-valent graph $D, x \in H^{1}(D, \mathbb{Z})$) quotiented by the relations (AS) and (IHX). With these notation one can describe the (IHX) relations in the following way:
Let K_{I}, K_{H} and K_{X} be three graphs which appear in a (IHX) relation on an edge e. Let K_{\bullet} be the graph obtained by collapsing the edge e. The maps $p_{?}: K_{\text {? }} \longrightarrow K_{\bullet}$ induce three cohomology isomorphisms. If $x \in H^{1}\left(K_{\bullet}, \mathbb{Z}\right)$ then the (IHX) relation at e says that

$$
\left(K_{I}, p_{I}^{*} x\right)=\left(K_{H}, p_{H}^{*} x\right)-\left(K_{X}, p_{X}^{*} x\right)
$$

holds in $\mathcal{A}^{R}(\varnothing)$.

1.3 The hair map

The hair map $H: \mathcal{A}^{R}(\varnothing) \longrightarrow \hat{\mathcal{B}}(*)$ replaces beads by legs (or hair): Just replace a bead b^{n} by the exponential of n times a leg.

$$
b^{n} \mapsto \exp _{\#}\binom{\vdots}{\vdots}=\left(+n \left\lvert\,-+\frac{n^{2}}{2!} \sqsubset+\cdots\right.\right.
$$

H is well defined (see [2]).

2 Grading on diagrams with beads

Note that for a 3 -valent graph $K, H^{1}(K, \mathbb{Z})$ is a free \mathbb{Z}-module. The beads $x \in$ $H^{1}(K, \mathbb{Z})$ which occur in an (AS) or (IHX) relation are the same up to isomorphisms. We will call $p \in \mathbb{N}$ the bead degree of (K, x) if x is p times an indivisible element of $H^{1}(K, \mathbb{Z})$.

Theorem 3 The bead degree is well defined in $\mathcal{A}_{n}^{R}(\varnothing)$. Thus we have a grading

$$
\mathcal{A}_{n}^{R}(\varnothing)=\bigoplus_{p \in \mathbb{N}} \mathcal{A}_{n, p}^{R}(\varnothing),
$$

where $\mathcal{A}_{n, p}^{R}(\varnothing)$ is the subspace of $\mathcal{A}_{n}^{R}(\varnothing)$ generated by diagrams with bead degree p. Furthermore, $\mathcal{A}_{n, 0}^{R}(\varnothing) \simeq \mathcal{A}_{n}(\varnothing)$ and for $p>0, \mathcal{A}_{n, p}^{R}(\varnothing) \simeq \mathcal{A}_{n, 1}^{R}(\varnothing)$.

Proof The second presentation we have given for $\mathcal{A}_{n}^{R}(\varnothing)$ implies that this degree is well defined. Indeed, the elements in a IHX relation have the same degree because the set of indivisible elements of the cohomology is preserved by isomorphisms.
Now, the map $\psi: R \longrightarrow \mathbb{Q}$ that sends b to 1 induces the isomorphism $\mathcal{A}_{n, 0}^{R}(\varnothing) \simeq$ $\mathcal{A}_{n}(\varnothing)$ and the group morphism $\phi_{p}: G \longrightarrow G$ that sends b to b^{p} (or the multiplication by p in $H^{1}(\cdot, \mathbb{Z})$) induces the isomorphism $\mathcal{A}_{n, 1}^{R}(\varnothing) \simeq \mathcal{A}_{n, p}^{R}(\varnothing)$. These maps are isomorphisms because they have obvious inverses.

3 A nontrivial element in the kernel of H

Theorem 4 This nontrivial element of $\mathcal{A}^{R}(\varnothing)$ is in the kernel of H :

Thus H is not injective.
Proof This element is not zero because its bead degree zero part is the opposite of the element $r \cdot \Theta$ of Corollary 2. Then, one has

but all these diagrams are zero in $B(*)$ because they contain, as a subdiagram, the element of F_{3} of Corollary 2.

Remark The element of Theorem 4 has a loop degree seventeen.
The hair map is obviously injective on the space of diagrams with bead degree zero. I don't know if the same is true in other degrees.

References

[1] D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472 MR1318886
[2] S Garoufalidis, A Kricker, A rational noncommutative invariant of boundary links, Geom. Topol. 8 (2004) 115-204 MR2033481
[3] A Kricker, The lines of the Kontsevich integral and Rozansky's rationality conjecture, Tokyo Institute of Technology preprint arXiv:math.GT/0005284
[4] T Ohtsuki, Problems on invariants of knots and 3-manifolds, from: "Invariants of knots and 3-manifolds (Kyoto, 2001)", (T Ohtsuki, T Kohno, T Le, J Murakami, J Roberts, V Turaev, editors), Geom. Topol. Monogr. 4 (2002) 377-572 MR2065029 With an introduction by J Roberts
[5] L Rozansky, Une structure rationnelle sur des fonctions génératrices d'invariants de Vassiliev, Summer school of the University of Grenoble preprint (1999)
[6] P Vogel, Algebraic structures on modules of diagrams, J. Pure Appl. Algebra 215 (2011) 1292-1339 MR2769234

LMAM, Université de Bretagne-Sud, Université Européenne de Bretagne
BP 573, 56017 Vannes, France
bertrand.patureau@univ-ubs.fr

Received: 9 December 2011

